-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
138 lines (115 loc) · 3.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# utils.py in SASRec
# Usage: 1) Dataset Construction 2) Evaluate
import sys
import copy
import torch
import random
from tqdm import tqdm
import numpy as np
from collections import defaultdict
# ----- Dataset Construction by Split Whole Dataset into TRAIN/VALIDATION/TEST Dataset -----
# train/val/test data generation
def data_partition(fname):
usernum = 0
itemnum = 0
User = defaultdict(list)
user_train = {}
user_valid = {}
user_test = {}
# assume user/item index starting from 1
f = open('%s.txt' % fname, 'r')
for line in f:
u, i = line.rstrip().split(' ')
u = int(u)
i = int(i)
usernum = max(u, usernum)
itemnum = max(i, itemnum)
User[u].append(i)
for user in User:
nfeedback = len(User[user])
if nfeedback < 3:
user_train[user] = User[user]
user_valid[user] = []
user_test[user] = []
else:
user_train[user] = User[user][:-2]
user_valid[user] = []
user_valid[user].append(User[user][-2])
user_test[user] = []
user_test[user].append(User[user][-1])
return [user_train, user_valid, user_test, usernum, itemnum]
# ----- Evaluation Function in SASRec -----
# # evaluate on val set
# def evaluate_valid(model, dataset, maxlen):
# [train, valid, test, usernum, itemnum] = copy.deepcopy(dataset)
# NDCG = 0.0
# valid_user = 0.0
# HT = 0.0
# if usernum>10000:
# users = random.sample(range(1, usernum + 1), 10000)
# else:
# users = range(1, usernum + 1)
# for u in users:
# if len(train[u]) < 1 or len(valid[u]) < 1: continue
# seq = np.zeros([maxlen], dtype=np.int32)
# idx = maxlen - 1
# for i in reversed(train[u]):
# seq[idx] = i
# idx -= 1
# if idx == -1: break
# rated = set(train[u])
# rated.add(0)
# item_idx = [valid[u][0]]
# for _ in range(100):
# t = np.random.randint(1, itemnum + 1)
# while t in rated: t = np.random.randint(1, itemnum + 1)
# item_idx.append(t)
# predictions = -model.predict(*[np.array(l) for l in [[u], [seq], item_idx]])
# predictions = predictions[0]
# rank = predictions.argsort().argsort()[0].item()
# valid_user += 1
# if rank < 10:
# NDCG += 1 / np.log2(rank + 2)
# HT += 1
# if valid_user % 100 == 0:
# print('.', end="")
# sys.stdout.flush()
# return NDCG / valid_user, HT / valid_user
# TODO: merge evaluate functions for test and val set
# evaluate on test set
def evaluate(model, dataset, maxlen, device):
[train, valid, test, usernum, itemnum] = copy.deepcopy(dataset)
NDCG = 0.0
HT = 0.0
valid_user = 0.0
if usernum > 10000:
users = random.sample(range(1, usernum + 1), 10000)
else:
users = range(1, usernum + 1)
for u in tqdm(users):
if len(train[u]) < 1 or len(test[u]) < 1: continue
seq = np.zeros([maxlen], dtype=np.int32)
idx = maxlen - 1
seq[idx] = valid[u][0]
idx -= 1
for i in reversed(train[u]):
seq[idx] = i
idx -= 1
if idx == -1: break
rated = set(train[u])
rated.add(0)
item_idx = [test[u][0]]
for _ in range(100):
t = np.random.randint(1, itemnum + 1)
while t in rated: t = np.random.randint(1, itemnum + 1)
item_idx.append(t)
pred_data = [np.array(l) for l in [[u], [seq], item_idx]]
model.to(device)
predictions = -model.predict(*pred_data)
predictions = predictions[0] # - for 1st argsort DESC
rank = predictions.argsort().argsort()[0].item()
valid_user += 1
if rank < 10:
NDCG += 1 / np.log2(rank + 2)
HT += 1
return NDCG / valid_user, HT / valid_user