-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkuka_controllers.py
263 lines (216 loc) · 9.55 KB
/
kuka_controllers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# -*- coding: utf8 -*-
import numpy as np
import pydrake
from pydrake.all import (
BasicVector,
LeafSystem,
PortDataType,
)
import kuka_utils
class KukaController(LeafSystem):
def __init__(self, rbt, plant,
control_period=0.005,
print_period=0.5):
LeafSystem.__init__(self)
self.set_name("Kuka Controller")
self.controlled_joint_names = [
"iiwa_joint_1",
"iiwa_joint_2",
"iiwa_joint_3",
"iiwa_joint_4",
"iiwa_joint_5",
"iiwa_joint_6",
"iiwa_joint_7"
]
self.controlled_inds, _ = kuka_utils.extract_position_indices(
rbt, self.controlled_joint_names)
# Extract the full-rank bit of B, and verify that it's full rank
self.nq_reduced = len(self.controlled_inds)
self.B = np.empty((self.nq_reduced, self.nq_reduced))
for k in range(self.nq_reduced):
for l in range(self.nq_reduced):
self.B[k, l] = rbt.B[self.controlled_inds[k],
self.controlled_inds[l]]
if np.linalg.matrix_rank(self.B) < self.nq_reduced:
print "The joint set specified is underactuated."
sys.exit(-1)
self.B_inv = np.linalg.inv(self.B)
# Copy lots of stuff
self.rbt = rbt
self.nq = rbt.get_num_positions()
self.plant = plant
self.nu = plant.get_input_port(0).size()
self.print_period = print_period
self.last_print_time = -print_period
self.shut_up = False
self.robot_state_input_port = \
self._DeclareInputPort(PortDataType.kVectorValued,
rbt.get_num_positions() +
rbt.get_num_velocities())
self.setpoint_input_port = \
self._DeclareInputPort(PortDataType.kVectorValued,
rbt.get_num_positions() +
rbt.get_num_velocities())
self._DeclareDiscreteState(self.nu)
self._DeclarePeriodicDiscreteUpdate(period_sec=control_period)
self._DeclareVectorOutputPort(
BasicVector(self.nu),
self._DoCalcVectorOutput)
def _DoCalcDiscreteVariableUpdates(self, context, events, discrete_state):
# Call base method to ensure we do not get recursion.
# (This makes sure relevant event handlers get called.)
LeafSystem._DoCalcDiscreteVariableUpdates(
self, context, events, discrete_state)
new_control_input = discrete_state. \
get_mutable_vector().get_mutable_value()
x = self.EvalVectorInput(
context, self.robot_state_input_port.get_index()).get_value()
x_des = self.EvalVectorInput(
context, self.setpoint_input_port.get_index()).get_value()
q = x[:self.nq]
v = x[self.nq:]
q_des = x_des[:self.nq]
v_des = x_des[self.nq:]
qerr = (q_des[self.controlled_inds] - q[self.controlled_inds])
verr = (v_des[self.controlled_inds] - v[self.controlled_inds])
kinsol = self.rbt.doKinematics(q, v)
# Get the full LHS of the manipulator equations
# given the current config and desired accelerations
vd_des = np.zeros(self.rbt.get_num_positions())
vd_des[self.controlled_inds] = 1000.*qerr + 100*verr
lhs = self.rbt.inverseDynamics(kinsol, external_wrenches={}, vd=vd_des)
new_u = self.B_inv.dot(lhs[self.controlled_inds])
new_control_input[:] = new_u
def _DoCalcVectorOutput(self, context, y_data):
if (self.print_period and
context.get_time() - self.last_print_time
>= self.print_period):
print "t: ", context.get_time()
self.last_print_time = context.get_time()
control_output = context.get_discrete_state_vector().get_value()
y = y_data.get_mutable_value()
# Get the ith finger control output
y[:] = control_output[:]
class HandController(LeafSystem):
def __init__(self, rbt, plant,
control_period=0.001):
LeafSystem.__init__(self)
self.set_name("Hand Controller")
self.controlled_joint_names = [
"left_finger_sliding_joint",
"right_finger_sliding_joint"
]
self.max_force = 100. # gripper max closing / opening force
self.controlled_inds, _ = kuka_utils.extract_position_indices(
rbt, self.controlled_joint_names)
self.nu = plant.get_input_port(1).size()
self.nq = rbt.get_num_positions()
self.robot_state_input_port = \
self._DeclareInputPort(PortDataType.kVectorValued,
rbt.get_num_positions() +
rbt.get_num_velocities())
self.setpoint_input_port = \
self._DeclareInputPort(PortDataType.kVectorValued,
1)
self._DeclareDiscreteState(self.nu)
self._DeclarePeriodicDiscreteUpdate(period_sec=control_period)
self._DeclareVectorOutputPort(
BasicVector(self.nu),
self._DoCalcVectorOutput)
def _DoCalcDiscreteVariableUpdates(self, context, events, discrete_state):
# Call base method to ensure we do not get recursion.
# (This makes sure relevant event handlers get called.)
LeafSystem._DoCalcDiscreteVariableUpdates(
self, context, events, discrete_state)
new_control_input = discrete_state. \
get_mutable_vector().get_mutable_value()
x = self.EvalVectorInput(
context, self.robot_state_input_port.get_index()).get_value()
gripper_width_des = self.EvalVectorInput(
context, self.setpoint_input_port.get_index()).get_value()
q_full = x[:self.nq]
v_full = x[self.nq:]
q = q_full[self.controlled_inds]
q_des = np.array([-gripper_width_des[0], gripper_width_des[0]])
v = v_full[self.controlled_inds]
v_des = np.zeros(2)
qerr = q_des - q
verr = v_des - v
Kp = 1000.
Kv = 100.
new_control_input[:] = np.clip(
Kp * qerr + Kv * verr, -self.max_force, self.max_force)
def _DoCalcVectorOutput(self, context, y_data):
control_output = context.get_discrete_state_vector().get_value()
y = y_data.get_mutable_value()
# Get the ith finger control output
y[:] = control_output[:]
class ManipStateMachine(LeafSystem):
''' Encodes the high-level logic
for the manipulation system.
This implementation is fairly minimal.
It is supplied with an open-loop
trajectory (presumably, to grasp the object from a
known position). At runtime, it spools
out pose goals for the robot according to
this trajectory. Once the trajectory has been
executed, it closes the gripper, waits
a second, and then plays the trajectory back in reverse
to bring the robot back to its original posture.
'''
def __init__(self, rbt, plant, qtraj):
LeafSystem.__init__(self)
self.set_name("Manipulation State Machine")
self.qtraj = qtraj
self.rbt = rbt
self.nq = rbt.get_num_positions()
self.plant = plant
self.robot_state_input_port = \
self._DeclareInputPort(PortDataType.kVectorValued,
rbt.get_num_positions() +
rbt.get_num_velocities())
self._DeclareDiscreteState(1)
self._DeclarePeriodicDiscreteUpdate(period_sec=0.001)
self.kuka_setpoint_output_port = \
self._DeclareVectorOutputPort(
BasicVector(rbt.get_num_positions() +
rbt.get_num_velocities()),
self._DoCalcKukaSetpointOutput)
self.hand_setpoint_output_port = \
self._DeclareVectorOutputPort(BasicVector(1),
self._DoCalcHandSetpointOutput)
self._DeclarePeriodicPublish(0.01, 0.0)
def _DoCalcDiscreteVariableUpdates(self, context, events, discrete_state):
# Call base method to ensure we do not get recursion.
LeafSystem._DoCalcDiscreteVariableUpdates(
self, context, events, discrete_state)
new_state = discrete_state. \
get_mutable_vector().get_mutable_value()
# Close gripper after plan has been executed
if context.get_time() > self.qtraj.end_time():
new_state[:] = 0.
else:
new_state[:] = 0.1
def _DoCalcKukaSetpointOutput(self, context, y_data):
t = context.get_time()
t_end = self.qtraj.end_time()
if t < t_end:
virtual_time = t
else:
virtual_time = t_end - (t - t_end)
dt = 0.01 # Look-ahead for estimating target velocity
target_q = self.qtraj.value(virtual_time)
target_qn = self.qtraj.value(virtual_time+dt)
# This is pretty inefficient and inaccurate -- TODO(gizatt)
# velocity target directly from the trajectory object somehow.
target_v = (target_qn - target_q) / dt
if t >= t_end:
target_v *= -1.
kuka_setpoint = y_data.get_mutable_value()
kuka_setpoint[:self.nq] = target_q[:, 0]
kuka_setpoint[self.nq:] = target_v[:, 0]
def _DoCalcHandSetpointOutput(self, context, y_data):
state = context.get_discrete_state_vector().get_value()
y = y_data.get_mutable_value()
# Get the ith finger control output
y[:] = state[0]