-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtranscripting.py
120 lines (97 loc) · 3.26 KB
/
transcripting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# enter audio file path
path = 'audio_files/fbd_meeting.m4a'
import time
start = time.time()
import os
from setEnv import num_speakers, model_size, language
import subprocess
import whisper
import contextlib
import wave
import datetime
from pyannote.audio import Audio
from pyannote.core import Segment
import torch
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
)
from sklearn.cluster import AgglomerativeClustering
import numpy as np
from pydub import AudioSegment
from pydub.playback import play
def segment_embedding(segment):
start = segment['start']
end = min(duration, segment['end'])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(path, clip)
return embedding_model(waveform[None])
def time(secs):
return datetime.timedelta(seconds=round(secs))
#audio file path
#convert to .wav format
if path[-3:] != '.wav':
subprocess.call(['ffmpeg', '-i', path, 'audio.wav', '-y'])
path = 'audio.wav'
#transcription
model_name = model_size
if language == 'English ' and model_size != 'large':
model_name += '.en'
model = whisper.load_model(model_size)
result = model.transcribe(path)
segments = result['segments']
with contextlib.closing(wave.open(path, 'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames/float(rate)
audio = Audio()
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
#identify speakers
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
labels = clustering.labels_
with contextlib.closing(wave.open('audio.wav', 'r')) as f:
# Read the entire file into a numpy array
audio = np.frombuffer(f.readframes(-1), np.int16)
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
input('Identify Speakers, enter 0 to play another clip')
speaker = ['0']*num_speakers
input_val = '0'
for i in range(num_speakers):
sp = [x for x in segments if x['speaker'] == f'SPEAKER {i+1}']
j =-1
while input_val=='0':
j += 1
seg = sp[j]
start_time = seg['start']
end_time = seg['end']
start_sample = int(start_time * f.getframerate())
end_sample = int(end_time * f.getframerate())
cropped_audio = audio[start_sample:end_sample]
# Play the cropped audio
start_ms = start_time * 1000
end_ms = end_time * 1000
sound = AudioSegment.from_file(path, format="wav")
splice = sound[start_ms:end_ms]
play(splice)
# Get speaker name
input_val = input(f'Identify Speaker {i+1}:')
if input_val!=0:
speaker[i] = input_val
input_val = '0'
os.remove('audio.wav')
print('Identified speakers are', speaker)
for i in range(len(segments)):
segments[i]["speaker"] = speaker[labels[i]]
#write transcript
with open("transcript.txt", "w") as f:
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
f.write("\n" + segment["speaker"] + ': ')
f.write(segment["text"][1:] + ' ')
# print(open('transcript.txt', 'r').read())
print('Runtime: %f', time.time()-start)