-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·53 lines (46 loc) · 2.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import numpy as np
#original net A3C-LSTM used in https://arxiv.org/pdf/1602.01783.pdf
class ActorCritic(torch.nn.Module):
def __init__(self,input_shape, layer1, kernel_size1, stride1, layer2, kernel_size2, stride2, fc1_dim, lstm_dim, out_actor_dim, out_critic_dim):
super(ActorCritic, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=input_shape, out_channels=layer1, kernel_size=kernel_size1, stride=stride1)
self.conv2 = torch.nn.Conv2d(in_channels=layer1, out_channels=layer2, kernel_size=kernel_size2, stride=stride2)
self.relu = torch.nn.ReLU()
self.fc1 = torch.nn.Linear(in_features=32*9*9, out_features=fc1_dim)
self.out_actor = torch.nn.Linear(in_features=lstm_dim, out_features=out_actor_dim)
self.out_critic = torch.nn.Linear(in_features=lstm_dim, out_features=out_critic_dim)
#lstm cell
self.lstm_cell = torch.nn.LSTMCell(fc1_dim, lstm_dim)
for layer in self.modules():
if isinstance(layer, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(layer.weight, nonlinearity="relu")
layer.bias.data.zero_()
for name, param in self.lstm_cell.named_parameters():
if 'bias' in name:
param.data.zero_()
elif 'weight' in name:
torch.nn.init.xavier_uniform_(param)
torch.nn.init.xavier_uniform_(self.fc1.weight)
self.fc1.bias.data.zero_()
torch.nn.init.xavier_uniform_(self.out_critic.weight)
self.out_critic.bias.data.zero_()
torch.nn.init.xavier_uniform_(self.out_actor.weight)
self.out_actor.bias.data.zero_()
def forward(self,x):
x, (hx, cx) = x
out_backbone = self.conv1(x)
out_backbone = self.relu(out_backbone)
out_backbone = self.conv2(out_backbone)
out_backbone = self.relu(out_backbone)
out = out_backbone.reshape(-1,32*9*9)
out = self.fc1(out)
out = self.relu(out)
#lstm cell
hx, cx = self.lstm_cell(out, (hx, cx))
out = hx
#actor
actor = self.out_actor(out)
#critic
critic = self.out_critic(out)
return actor,critic,(hx, cx)