-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodels.py
executable file
·208 lines (140 loc) · 6.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os, sys, random, yaml
from itertools import product
from tqdm import tqdm
import numpy as np
import matplotlib as mpl
#mpl.use('Agg')
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch import optim
from utils import *
import IPython
""" Model that implements batchwise training with "compilation" and custom loss.
Exposed methods: predict_on_batch(), fit_on_batch(),
Overridable methods: loss(), forward().
Handles Nonetype input with grace (masks implemented)
"""
class AbstractModel(nn.Module):
def __init__(self):
super(AbstractModel, self).__init__()
self.compiled = False
# Compile module and assign optimizer + params
def compile(self, optimizer=None, **kwargs):
if optimizer is not None:
self.optimizer_class = optimizer
self.optimizer_kwargs = kwargs
self.optimizer = self.optimizer_class(self.parameters(), **self.optimizer_kwargs)
self.compiled = True
self.to(DEVICE)
# Process a batch of data from a generator to get tensors + masks
def __process_batch(self, data):
data, mask = stack(data), {}
for key in data:
mask[key] = [int(x is not None) for x in data[key]]
template = next((x for x in data[key] if x is not None))
data[key] = [x if x is not None else torch.zeros_like(template) \
for x in data[key]]
data[key] = torch.stack(data[key]).to(DEVICE)
mask[key] = torch.tensor(mask[key]).to(DEVICE)
return data, mask
# Predict scores from a batch of data
def predict_on_batch(self, data):
self.eval()
with torch.no_grad():
data, mask = self.__process_batch(data)
pred = self.forward(data, mask)
pred = {key: pred[key].cpu().data.numpy() for key in pred}
return pred
# Fit (make one optimizer step) on a batch of data
def fit_on_batch(self, data, target):
self.train()
self.zero_grad()
self.optimizer.zero_grad()
data, mask = self.__process_batch(data)
pred = self.forward(data, mask)
target = stack(target)
target = {key: torch.stack(target[key]).to(DEVICE) for key in target}
loss = self.loss(pred, target)
loss.backward()
self.optimizer.step()
pred = {key: pred[key].cpu().data.numpy() for key in pred}
return pred, float(loss)
# Subclasses: please override for custom loss + forward functions
def loss(self, pred, target):
raise NotImplementedError()
def forward(self, data, mask):
raise NotImplementedError()
""" Model that implements training and prediction on generator objects, with
the ability to print train and validation metrics.
"""
class TrainableModel(AbstractModel):
def __init__(self):
super(AbstractModel, self).__init__()
self.compiled = False
self.losses = []
# Predict on generator for one epoch
def predict(self, data, verbose=False):
self.eval()
with torch.no_grad():
iterator = tqdm(data) if verbose else data
pred = [self.predict_on_batch(batch) for batch in iterator]
pred = np.hstack(pred)
return pred
# Fit on generator for one epoch
def fit(self, datagen, validation=None, verbose=True):
self.train()
target = []
iterator = tqdm(datagen) if verbose else datagen
pred = []
for batch, y in iterator:
y_pred, loss = self.fit_on_batch(batch, y)
self.losses.append(loss)
target.append(stack(y))
pred.append(y_pred)
if verbose and len(self.losses) % 16 == 0:
iterator.set_description(f"Loss: {np.mean(self.losses[-32:]):0.3f}")
#plt.plot(self.losses)
#plt.savefig(f"{OUTPUT_DIR}/loss.jpg");
if verbose:
pred, target = stack(pred), stack(target)
pred = {key: np.concatenate(pred[key], axis=0) for key in pred}
target = {key: np.concatenate(target[key], axis=0) for key in target}
print (f"(training) {self.evaluate(pred, target)}")
if validation != None:
val_data, val_target = zip(*list(validation))
val_pred = self.predict(val_data)
val_target = [stack(x) for x in val_target]
val_pred, val_target = stack(val_pred), stack(val_target)
val_pred = {key: np.concatenate(val_pred[key], axis=0) for key in val_pred}
val_target = {key: np.concatenate(val_target[key], axis=0) for key in val_target}
print (f"(validation) {self.evaluate(val_pred, val_target)}")
return self.score(val_pred, val_target)
# Evaluate predictions and targets
def evaluate(self, pred, target):
scores = self.score(pred, target)
base_scores = self.score(pred, {key: shuffle(target[key]) for key in target})
display = []
for key in scores:
display.append(f"{key}={scores[key]:.4f}/{base_scores[key]:.4f}")
return ", ".join(display)
def eval_data(self, datagen):
val_data, val_target = zip(*list(datagen))
val_pred = self.predict(val_data)
val_target = [stack(x) for x in val_target]
val_pred, val_target = stack(val_pred), stack(val_target)
val_pred = {key: np.concatenate(val_pred[key], axis=0) for key in val_pred}
val_target = {key: np.concatenate(val_target[key], axis=0) for key in val_target}
return self.score(val_pred, val_target)["C-index"]
# Score generator based on predictions and targets
def score(self, pred, targets):
return NotImplementedError()
def load(self, file_path):
self.load_state_dict(torch.load(file_path))
def save(self, file_path):
torch.save(self.state_dict(), file_path)
if __name__ == "__main__":
IPython.embed()