-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsun_position.m
executable file
·891 lines (742 loc) · 27.4 KB
/
sun_position.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
function sun = sun_position(time, location)
% sun = sun_position(time, location)
%
% This function compute the sun position (zenith and azimuth angle at the observer
% location) as a function of the observer local time and position.
%
% It is an implementation of the algorithm presented by Reda et Andreas in:
% Reda, I., Andreas, A. (2003) Solar position algorithm for solar
% radiation application. National Renewable Energy Laboratory (NREL)
% Technical report NREL/TP-560-34302.
% This document is avalaible at www.osti.gov/bridge
%
% This algorithm is based on numerical approximation of the exact equations.
% The authors of the original paper state that this algorithm should be
% precise at +/- 0.0003 degrees. I have compared it to NOAA solar table
% (http://www.srrb.noaa.gov/highlights/sunrise/azel.html) and to USNO solar
% table (http://aa.usno.navy.mil/data/docs/AltAz.html) and found very good
% correspondance (up to the precision of those tables), except for large
% zenith angle, where the refraction by the atmosphere is significant
% (difference of about 1 degree). Note that in this code the correction
% for refraction in the atmosphere as been implemented for a temperature
% of 10C (283 kelvins) and a pressure of 1010 mbar. See the subfunction
% «sun_topocentric_zenith_angle_calculation» for a possible modification
% to explicitely model the effect of temperature and pressure as describe
% in Reda & Andreas (2003).
%
% Input parameters:
% time: a structure that specify the time when the sun position is
% calculated.
% time.year: year. Valid for [-2000, 6000]
% time.month: month [1-12]
% time.day: calendar day [1-31]
% time.hour: local hour [0-23]
% time.min: minute [0-59]
% time.sec: second [0-59]
% time.UTC: offset hour from UTC. Local time = Greenwich time + time.UTC
% This input can also be passed using the Matlab time format ('dd-mmm-yyyy HH:MM:SS').
% In that case, the time has to be specified as UTC time (time.UTC = 0)
%
% location: a structure that specify the location of the observer
% location.latitude: latitude (in degrees, north of equator is
% positive)
% location.longitude: longitude (in degrees, positive for east of
% Greenwich)
% location.altitude: altitude above mean sea level (in meters)
%
% Output parameters
% sun: a structure with the calculated sun position
% sun.zenith = zenith angle in degrees (angle from the vertical)
% sun.azimuth = azimuth angle in degrees, eastward from the north.
% Only the sun zenith and azimuth angles are returned as output, but a lot
% of other parameters are calculated that could also extracted as output of
% this function.
%
% Exemple of use
%
% location.longitude = -105.1786;
% location.latitude = 39.742476;
% location.altitude = 1830.14;
% time.year = 2003;
% time.month = 10;
% time.day = 17;
% time.hour = 12;
% time.min = 30;
% time.sec = 30;
% time.UTC = -7;
%
% sun = sun_position(time, location);
%
% sun =
%
% zenith: 50.1080438859849
% azimuth: 194.341174010338
%
% History
% 09/03/2004 Original creation by Vincent Roy (vincent.roy@drdc-rddc.gc.ca)
% 10/03/2004 Fixed a bug in julian_calculation subfunction (was
% incorrect for year 1582 only), Vincent Roy
% 18/03/2004 Correction to the header (help display) only. No changes to
% the code. (changed the «elevation» field in «location» structure
% information to «altitude»), Vincent Roy
% 13/04/2004 Following a suggestion from Jody Klymak (jklymak@ucsd.edu),
% allowed the 'time' input to be passed as a Matlab time string.
% 22/08/2005 Following a bug report from Bruce Bowler
% (bbowler@bigelow.org), modified the julian_calculation function. Bug
% was 'MATLAB has allowed structure assignment to a non-empty non-structure
% to overwrite the previous value. This behavior will continue in this release,
% but will be an error in a future version of MATLAB. For advice on how to
% write code that will both avoid this warning and work in future versions of
% MATLAB, see R14SP2 Release Notes'. Script should now be
% compliant with futher release of Matlab...
% 1. Calculate the Julian Day, and Century. Julian Ephemeris day, century
% and millenium are calculated using a mean delta_t of 33.184 seconds.
julian = julian_calculation(time);
% 2. Calculate the Earth heliocentric longitude, latitude, and radius
% vector (L, B, and R)
earth_heliocentric_position = earth_heliocentric_position_calculation(julian);
% 3. Calculate the geocentric longitude and latitude
sun_geocentric_position = sun_geocentric_position_calculation(earth_heliocentric_position);
% 4. Calculate the nutation in longitude and obliquity (in degrees).
nutation = nutation_calculation(julian);
% 5. Calculate the true obliquity of the ecliptic (in degrees).
true_obliquity = true_obliquity_calculation(julian, nutation);
% 6. Calculate the aberration correction (in degrees)
aberration_correction = abberation_correction_calculation(earth_heliocentric_position);
% 7. Calculate the apparent sun longitude in degrees)
apparent_sun_longitude = apparent_sun_longitude_calculation(sun_geocentric_position, nutation, aberration_correction);
% 8. Calculate the apparent sideral time at Greenwich (in degrees)
apparent_stime_at_greenwich = apparent_stime_at_greenwich_calculation(julian, nutation, true_obliquity);
% 9. Calculate the sun rigth ascension (in degrees)
sun_rigth_ascension = sun_rigth_ascension_calculation(apparent_sun_longitude, true_obliquity, sun_geocentric_position);
% 10. Calculate the geocentric sun declination (in degrees). Positive or
% negative if the sun is north or south of the celestial equator.
sun_geocentric_declination = sun_geocentric_declination_calculation(apparent_sun_longitude, true_obliquity, sun_geocentric_position);
% 11. Calculate the observer local hour angle (in degrees, westward from south).
observer_local_hour = observer_local_hour_calculation(apparent_stime_at_greenwich, location, sun_rigth_ascension);
% 12. Calculate the topocentric sun position (rigth ascension, declination and
% rigth ascension parallax in degrees)
topocentric_sun_position = topocentric_sun_position_calculate(earth_heliocentric_position, location, observer_local_hour, sun_rigth_ascension, sun_geocentric_declination);
% 13. Calculate the topocentric local hour angle (in degrees)
topocentric_local_hour = topocentric_local_hour_calculate(observer_local_hour, topocentric_sun_position);
% 14. Calculate the topocentric zenith and azimuth angle (in degrees)
sun = sun_topocentric_zenith_angle_calculate(location, topocentric_sun_position, topocentric_local_hour);
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Subfunction definitions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function julian = julian_calculation(t_input)
% This function compute the julian day and julian century from the local
% time and timezone information. Ephemeris are calculated with a delta_t=0
% seconds.
% If time input is a Matlab time string, extract the information from
% this string and create the structure as defined in the main header of
% this script.
if ~isstruct(t_input)
tt = datevec(t_input);
time.UTC=0;
time.year = tt(1);
time.month = tt(2);
time.day = tt(3);
time.hour = tt(4);
time.min = tt(5);
time.sec = tt(6);
else
time = t_input;
end
if(time.month == 1 | time.month == 2)
Y = time.year - 1;
M = time.month + 12;
else
Y = time.year;
M = time.month;
end
ut_time = ((time.hour - time.UTC)/24) + (time.min/(60*24)) + (time.sec/(60*60*24)); % time of day in UT time.
D = time.day + ut_time; % Day of month in decimal time, ex. 2sd day of month at 12:30:30UT, D=2.521180556
% In 1582, the gregorian calendar was adopted
if(time.year == 1582)
if(time.month == 10)
if(time.day <= 4) % The Julian calendar ended on October 4, 1582
B = 0;
elseif(time.day >= 15) % The Gregorian calendar started on October 15, 1582
A = floor(Y/100);
B = 2 - A + floor(A/4);
else
disp('This date never existed!. Date automatically set to October 4, 1582');
time.month = 10;
time.day = 4;
B = 0;
end
elseif(time.month<10) % Julian calendar
B = 0;
else % Gregorian calendar
A = floor(Y/100);
B = 2 - A + floor(A/4);
end
elseif(time.year<1582) % Julian calendar
B = 0;
else
A = floor(Y/100); % Gregorian calendar
B = 2 - A + floor(A/4);
end
julian.day = floor(365.25*(Y+4716)) + floor(30.6001*(M+1)) + D + B - 1524.5;
delta_t = 0; % 33.184;
julian.ephemeris_day = julian.day + (delta_t/86400);
julian.century = (julian.day - 2451545) / 36525;
julian.ephemeris_century = (julian.ephemeris_day - 2451545) / 36525;
julian.ephemeris_millenium = julian.ephemeris_century / 10;
function earth_heliocentric_position = earth_heliocentric_position_calculation(julian)
% This function compute the earth position relative to the sun, using
% tabulated values.
% Tabulated values for the longitude calculation
% L terms from the original code.
L0_terms = [175347046.0 0 0
3341656.0 4.6692568 6283.07585
34894.0 4.6261 12566.1517
3497.0 2.7441 5753.3849
3418.0 2.8289 3.5231
3136.0 3.6277 77713.7715
2676.0 4.4181 7860.4194
2343.0 6.1352 3930.2097
1324.0 0.7425 11506.7698
1273.0 2.0371 529.691
1199.0 1.1096 1577.3435
990 5.233 5884.927
902 2.045 26.298
857 3.508 398.149
780 1.179 5223.694
753 2.533 5507.553
505 4.583 18849.228
492 4.205 775.523
357 2.92 0.067
317 5.849 11790.629
284 1.899 796.298
271 0.315 10977.079
243 0.345 5486.778
206 4.806 2544.314
205 1.869 5573.143
202 2.4458 6069.777
156 0.833 213.299
132 3.411 2942.463
126 1.083 20.775
115 0.645 0.98
103 0.636 4694.003
102 0.976 15720.839
102 4.267 7.114
99 6.21 2146.17
98 0.68 155.42
86 5.98 161000.69
85 1.3 6275.96
85 3.67 71430.7
80 1.81 17260.15
79 3.04 12036.46
71 1.76 5088.63
74 3.5 3154.69
74 4.68 801.82
70 0.83 9437.76
62 3.98 8827.39
61 1.82 7084.9
57 2.78 6286.6
56 4.39 14143.5
56 3.47 6279.55
52 0.19 12139.55
52 1.33 1748.02
51 0.28 5856.48
49 0.49 1194.45
41 5.37 8429.24
41 2.4 19651.05
39 6.17 10447.39
37 6.04 10213.29
37 2.57 1059.38
36 1.71 2352.87
36 1.78 6812.77
33 0.59 17789.85
30 0.44 83996.85
30 2.74 1349.87
25 3.16 4690.48];
L1_terms = [628331966747.0 0 0
206059.0 2.678235 6283.07585
4303.0 2.6351 12566.1517
425.0 1.59 3.523
119.0 5.796 26.298
109.0 2.966 1577.344
93 2.59 18849.23
72 1.14 529.69
68 1.87 398.15
67 4.41 5507.55
59 2.89 5223.69
56 2.17 155.42
45 0.4 796.3
36 0.47 775.52
29 2.65 7.11
21 5.34 0.98
19 1.85 5486.78
19 4.97 213.3
17 2.99 6275.96
16 0.03 2544.31
16 1.43 2146.17
15 1.21 10977.08
12 2.83 1748.02
12 3.26 5088.63
12 5.27 1194.45
12 2.08 4694
11 0.77 553.57
10 1.3 3286.6
10 4.24 1349.87
9 2.7 242.73
9 5.64 951.72
8 5.3 2352.87
6 2.65 9437.76
6 4.67 4690.48];
L2_terms = [52919.0 0 0
8720.0 1.0721 6283.0758
309.0 0.867 12566.152
27 0.05 3.52
16 5.19 26.3
16 3.68 155.42
10 0.76 18849.23
9 2.06 77713.77
7 0.83 775.52
5 4.66 1577.34
4 1.03 7.11
4 3.44 5573.14
3 5.14 796.3
3 6.05 5507.55
3 1.19 242.73
3 6.12 529.69
3 0.31 398.15
3 2.28 553.57
2 4.38 5223.69
2 3.75 0.98];
L3_terms =[289.0 5.844 6283.076
35 0 0
17 5.49 12566.15
3 5.2 155.42
1 4.72 3.52
1 5.3 18849.23
1 5.97 242.73];
L4_terms = [114.0 3.142 0
8 4.13 6283.08
1 3.84 12566.15];
L5_terms = [1 3.14 0];
A0 = L0_terms(:,1);
B0 = L0_terms(:,2);
C0 = L0_terms(:,3);
A1 = L1_terms(:,1);
B1 = L1_terms(:,2);
C1 = L1_terms(:,3);
A2 = L2_terms(:,1);
B2 = L2_terms(:,2);
C2 = L2_terms(:,3);
A3 = L3_terms(:,1);
B3 = L3_terms(:,2);
C3 = L3_terms(:,3);
A4 = L4_terms(:,1);
B4 = L4_terms(:,2);
C4 = L4_terms(:,3);
A5 = L5_terms(:,1);
B5 = L5_terms(:,2);
C5 = L5_terms(:,3);
JME = julian.ephemeris_millenium;
% Compute the Earth Heliochentric longitude from the tabulated values.
L0 = sum(A0 .* cos(B0 + (C0 * JME)));
L1 = sum(A1 .* cos(B1 + (C1 * JME)));
L2 = sum(A2 .* cos(B2 + (C2 * JME)));
L3 = sum(A3 .* cos(B3 + (C3 * JME)));
L4 = sum(A4 .* cos(B4 + (C4 * JME)));
L5 = A5 .* cos(B5 + (C5 * JME));
earth_heliocentric_position.longitude = (L0 + (L1 * JME) + (L2 * JME^2) + (L3 * JME^3) + (L4 * JME^4) + (L5 * JME^5)) / 1e8;
% Convert the longitude to degrees.
earth_heliocentric_position.longitude = earth_heliocentric_position.longitude * 180/pi;
% Limit the range to [0,360[;
earth_heliocentric_position.longitude = set_to_range(earth_heliocentric_position.longitude, 0, 360);
% Tabulated values for the earth heliocentric latitude.
% B terms from the original code.
B0_terms = [280.0 3.199 84334.662
102.0 5.422 5507.553
80 3.88 5223.69
44 3.7 2352.87
32 4 1577.34];
B1_terms = [9 3.9 5507.55
6 1.73 5223.69];
A0 = B0_terms(:,1);
B0 = B0_terms(:,2);
C0 = B0_terms(:,3);
A1 = B1_terms(:,1);
B1 = B1_terms(:,2);
C1 = B1_terms(:,3);
L0 = sum(A0 .* cos(B0 + (C0 * JME)));
L1 = sum(A1 .* cos(B1 + (C1 * JME)));
earth_heliocentric_position.latitude = (L0 + (L1 * JME)) / 1e8;
% Convert the latitude to degrees.
earth_heliocentric_position.latitude = earth_heliocentric_position.latitude * 180/pi;
% Limit the range to [0,360];
earth_heliocentric_position.latitude = set_to_range(earth_heliocentric_position.latitude, 0, 360);
% Tabulated values for radius vector.
% R terms from the original code
R0_terms = [ 100013989.0 0 0
1670700.0 3.0984635 6283.07585
13956.0 3.05525 12566.1517
3084.0 5.1985 77713.7715
1628.0 1.1739 5753.3849
1576.0 2.8469 7860.4194
925.0 5.453 11506.77
542.0 4.564 3930.21
472.0 3.661 5884.927
346.0 0.964 5507.553
329.0 5.9 5223.694
307.0 0.299 5573.143
243.0 4.273 11790.629
212.0 5.847 1577.344
186.0 5.022 10977.079
175.0 3.012 18849.228
110.0 5.055 5486.778
98 0.89 6069.78
86 5.69 15720.84
86 1.27 161000.69
85 0.27 17260.15
63 0.92 529.69
57 2.01 83996.85
56 5.24 71430.7
49 3.25 2544.31
47 2.58 775.52
45 5.54 9437.76
43 6.01 6275.96
39 5.36 4694
38 2.39 8827.39
37 0.83 19651.05
37 4.9 12139.55
36 1.67 12036.46
35 1.84 2942.46
33 0.24 7084.9
32 0.18 5088.63
32 1.78 398.15
28 1.21 6286.6
28 1.9 6279.55
26 4.59 10447.39];
R1_terms = [ 103019.0 1.10749 6283.07585
1721.0 1.0644 12566.1517
702.0 3.142 0
32 1.02 18849.23
31 2.84 5507.55
25 1.32 5223.69
18 1.42 1577.34
10 5.91 10977.08
9 1.42 6275.96
9 0.27 5486.78];
R2_terms = [4359.0 5.7846 6283.0758
124.0 5.579 12566.152
12 3.14 0
9 3.63 77713.77
6 1.87 5573.14
3 5.47 18849];
R3_terms = [145.0 4.273 6283.076
7 3.92 12566.15];
R4_terms = [4 2.56 6283.08];
A0 = R0_terms(:,1);
B0 = R0_terms(:,2);
C0 = R0_terms(:,3);
A1 = R1_terms(:,1);
B1 = R1_terms(:,2);
C1 = R1_terms(:,3);
A2 = R2_terms(:,1);
B2 = R2_terms(:,2);
C2 = R2_terms(:,3);
A3 = R3_terms(:,1);
B3 = R3_terms(:,2);
C3 = R3_terms(:,3);
A4 = R4_terms(:,1);
B4 = R4_terms(:,2);
C4 = R4_terms(:,3);
% Compute the Earth heliocentric radius vector
L0 = sum(A0 .* cos(B0 + (C0 * JME)));
L1 = sum(A1 .* cos(B1 + (C1 * JME)));
L2 = sum(A2 .* cos(B2 + (C2 * JME)));
L3 = sum(A3 .* cos(B3 + (C3 * JME)));
L4 = A4 .* cos(B4 + (C4 * JME));
% Units are in AU
earth_heliocentric_position.radius = (L0 + (L1 * JME) + (L2 * JME^2) + (L3 * JME^3) + (L4 * JME^4)) / 1e8;
function sun_geocentric_position = sun_geocentric_position_calculation(earth_heliocentric_position)
% This function compute the sun position relative to the earth.
sun_geocentric_position.longitude = earth_heliocentric_position.longitude + 180;
% Limit the range to [0,360];
sun_geocentric_position.longitude = set_to_range(sun_geocentric_position.longitude, 0, 360);
sun_geocentric_position.latitude = -earth_heliocentric_position.latitude;
% Limit the range to [0,360]
sun_geocentric_position.latitude = set_to_range(sun_geocentric_position.latitude, 0, 360);
function nutation = nutation_calculation(julian)
% This function compute the nutation in longtitude and in obliquity, in
% degrees.
% All Xi are in degrees.
JCE = julian.ephemeris_century;
% 1. Mean elongation of the moon from the sun
p = [(1/189474) -0.0019142 445267.11148 297.85036];
% X0 = polyval(p, JCE);
X0 = p(1) * JCE^3 + p(2) * JCE^2 + p(3) * JCE + p(4); % This is faster than polyval...
% 2. Mean anomaly of the sun (earth)
p = [-(1/300000) -0.0001603 35999.05034 357.52772];
% X1 = polyval(p, JCE);
X1 = p(1) * JCE^3 + p(2) * JCE^2 + p(3) * JCE + p(4);
% 3. Mean anomaly of the moon
p = [(1/56250) 0.0086972 477198.867398 134.96298];
% X2 = polyval(p, JCE);
X2 = p(1) * JCE^3 + p(2) * JCE^2 + p(3) * JCE + p(4);
% 4. Moon argument of latitude
p = [(1/327270) -0.0036825 483202.017538 93.27191];
% X3 = polyval(p, JCE);
X3 = p(1) * JCE^3 + p(2) * JCE^2 + p(3) * JCE + p(4);
% 5. Longitude of the ascending node of the moon's mean orbit on the
% ecliptic, measured from the mean equinox of the date
p = [(1/450000) 0.0020708 -1934.136261 125.04452];
% X4 = polyval(p, JCE);
X4 = p(1) * JCE^3 + p(2) * JCE^2 + p(3) * JCE + p(4);
% Y tabulated terms from the original code
Y_terms = [0 0 0 0 1
-2 0 0 2 2
0 0 0 2 2
0 0 0 0 2
0 1 0 0 0
0 0 1 0 0
-2 1 0 2 2
0 0 0 2 1
0 0 1 2 2
-2 -1 0 2 2
-2 0 1 0 0
-2 0 0 2 1
0 0 -1 2 2
2 0 0 0 0
0 0 1 0 1
2 0 -1 2 2
0 0 -1 0 1
0 0 1 2 1
-2 0 2 0 0
0 0 -2 2 1
2 0 0 2 2
0 0 2 2 2
0 0 2 0 0
-2 0 1 2 2
0 0 0 2 0
-2 0 0 2 0
0 0 -1 2 1
0 2 0 0 0
2 0 -1 0 1
-2 2 0 2 2
0 1 0 0 1
-2 0 1 0 1
0 -1 0 0 1
0 0 2 -2 0
2 0 -1 2 1
2 0 1 2 2
0 1 0 2 2
-2 1 1 0 0
0 -1 0 2 2
2 0 0 2 1
2 0 1 0 0
-2 0 2 2 2
-2 0 1 2 1
2 0 -2 0 1
2 0 0 0 1
0 -1 1 0 0
-2 -1 0 2 1
-2 0 0 0 1
0 0 2 2 1
-2 0 2 0 1
-2 1 0 2 1
0 0 1 -2 0
-1 0 1 0 0
-2 1 0 0 0
1 0 0 0 0
0 0 1 2 0
0 0 -2 2 2
-1 -1 1 0 0
0 1 1 0 0
0 -1 1 2 2
2 -1 -1 2 2
0 0 3 2 2
2 -1 0 2 2];
nutation_terms = [ -171996 -174.2 92025 8.9
-13187 -1.6 5736 -3.1
-2274 -0.2 977 -0.5
2062 0.2 -895 0.5
1426 -3.4 54 -0.1
712 0.1 -7 0
-517 1.2 224 -0.6
-386 -0.4 200 0
-301 0 129 -0.1
217 -0.5 -95 0.3
-158 0 0 0
129 0.1 -70 0
123 0 -53 0
63 0 0 0
63 0.1 -33 0
-59 0 26 0
-58 -0.1 32 0
-51 0 27 0
48 0 0 0
46 0 -24 0
-38 0 16 0
-31 0 13 0
29 0 0 0
29 0 -12 0
26 0 0 0
-22 0 0 0
21 0 -10 0
17 -0.1 0 0
16 0 -8 0
-16 0.1 7 0
-15 0 9 0
-13 0 7 0
-12 0 6 0
11 0 0 0
-10 0 5 0
-8 0 3 0
7 0 -3 0
-7 0 0 0
-7 0 3 0
-7 0 3 0
6 0 0 0
6 0 -3 0
6 0 -3 0
-6 0 3 0
-6 0 3 0
5 0 0 0
-5 0 3 0
-5 0 3 0
-5 0 3 0
4 0 0 0
4 0 0 0
4 0 0 0
-4 0 0 0
-4 0 0 0
-4 0 0 0
3 0 0 0
-3 0 0 0
-3 0 0 0
-3 0 0 0
-3 0 0 0
-3 0 0 0
-3 0 0 0
-3 0 0 0];
% Using the tabulated values, compute the delta_longitude and
% delta_obliquity.
Xi = [X0
X1
X2
X3
X4];
tabulated_argument = (Y_terms * Xi) * pi/180;
delta_longitude = ((nutation_terms(:,1) + (nutation_terms(:,2) * JCE))) .* sin(tabulated_argument);
delta_obliquity = ((nutation_terms(:,3) + (nutation_terms(:,4) * JCE))) .* cos(tabulated_argument);
% Nutation in longitude
nutation.longitude = sum(delta_longitude) / 36000000;
% Nutation in obliquity
nutation.obliquity = sum(delta_obliquity) / 36000000;
function true_obliquity = true_obliquity_calculation(julian, nutation)
% This function compute the true obliquity of the ecliptic.
p = [2.45 5.79 27.87 7.12 -39.05 -249.67 -51.38 1999.25 -1.55 -4680.93 84381.448];
% mean_obliquity = polyval(p, julian.ephemeris_millenium/10);
U = julian.ephemeris_millenium/10;
mean_obliquity = p(1)*U^10 + p(2)*U^9 + p(3)*U^8 + p(4)*U^7 + p(5)*U^6 + p(6)*U^5 + p(7)*U^4 + p(8)*U^3 + p(9)*U^2 + p(10)*U + p(11);
true_obliquity = (mean_obliquity/3600) + nutation.obliquity;
function aberration_correction = abberation_correction_calculation(earth_heliocentric_position)
% This function compute the aberration_correction, as a function of the
% earth-sun distance.
aberration_correction = -20.4898/(3600*earth_heliocentric_position.radius);
function apparent_sun_longitude = apparent_sun_longitude_calculation(sun_geocentric_position, nutation, aberration_correction)
% This function compute the sun apparent longitude
apparent_sun_longitude = sun_geocentric_position.longitude + nutation.longitude + aberration_correction;
function apparent_stime_at_greenwich = apparent_stime_at_greenwich_calculation(julian, nutation, true_obliquity)
% This function compute the apparent sideral time at Greenwich.
JD = julian.day;
JC = julian.century;
% Mean sideral time, in degrees
mean_stime = 280.46061837 + (360.98564736629*(JD-2451545)) + (0.000387933*JC^2) - (JC^3/38710000);
% Limit the range to [0-360];
mean_stime = set_to_range(mean_stime, 0, 360);
apparent_stime_at_greenwich = mean_stime + (nutation.longitude * cos(true_obliquity * pi/180));
function sun_rigth_ascension = sun_rigth_ascension_calculation(apparent_sun_longitude, true_obliquity, sun_geocentric_position)
% This function compute the sun rigth ascension.
argument_numerator = (sin(apparent_sun_longitude * pi/180) * cos(true_obliquity * pi/180)) - ...
(tan(sun_geocentric_position.latitude * pi/180) * sin(true_obliquity * pi/180));
argument_denominator = cos(apparent_sun_longitude * pi/180);
sun_rigth_ascension = atan2(argument_numerator, argument_denominator) * 180/pi;
% Limit the range to [0,360];
sun_rigth_ascension = set_to_range(sun_rigth_ascension, 0, 360);
function sun_geocentric_declination = sun_geocentric_declination_calculation(apparent_sun_longitude, true_obliquity, sun_geocentric_position)
argument = (sin(sun_geocentric_position.latitude * pi/180) * cos(true_obliquity * pi/180)) + ...
(cos(sun_geocentric_position.latitude * pi/180) * sin(true_obliquity * pi/180) * sin(apparent_sun_longitude * pi/180));
sun_geocentric_declination = asin(argument) * 180/pi;
function observer_local_hour = observer_local_hour_calculation(apparent_stime_at_greenwich, location, sun_rigth_ascension)
observer_local_hour = apparent_stime_at_greenwich + location.longitude - sun_rigth_ascension;
% Set the range to [0-360]
observer_local_hour = set_to_range(observer_local_hour, 0, 360);
function topocentric_sun_position = topocentric_sun_position_calculate(earth_heliocentric_position, location, observer_local_hour, sun_rigth_ascension, sun_geocentric_declination)
% This function compute the sun position (rigth ascension and declination)
% with respect to the observer local position at the Earth surface.
% Equatorial horizontal parallax of the sun in degrees
eq_horizontal_parallax = 8.794 / (3600 * earth_heliocentric_position.radius);
% Term u, used in the following calculations (in radians)
u = atan(0.99664719 * tan(location.latitude * pi/180));
% Term x, used in the following calculations
x = cos(u) + ((location.altitude/6378140) * cos(location.latitude * pi/180));
% Term y, used in the following calculations
y = (0.99664719 * sin(u)) + ((location.altitude/6378140) * sin(location.latitude * pi/180));
% Parallax in the sun rigth ascension (in radians)
nominator = -x * sin(eq_horizontal_parallax * pi/180) * sin(observer_local_hour * pi/180);
denominator = cos(sun_geocentric_declination * pi/180) - (x * sin(eq_horizontal_parallax * pi/180) * cos(observer_local_hour * pi/180));
sun_rigth_ascension_parallax = atan2(nominator, denominator);
% Conversion to degrees.
topocentric_sun_position.rigth_ascension_parallax = sun_rigth_ascension_parallax * 180/pi;
% Topocentric sun rigth ascension (in degrees)
topocentric_sun_position.rigth_ascension = sun_rigth_ascension + (sun_rigth_ascension_parallax * 180/pi);
% Topocentric sun declination (in degrees)
nominator = (sin(sun_geocentric_declination * pi/180) - (y*sin(eq_horizontal_parallax * pi/180))) * cos(sun_rigth_ascension_parallax);
denominator = cos(sun_geocentric_declination * pi/180) - (x*sin(eq_horizontal_parallax * pi/180)) * cos(observer_local_hour * pi/180);
topocentric_sun_position.declination = atan2(nominator, denominator) * 180/pi;
function topocentric_local_hour = topocentric_local_hour_calculate(observer_local_hour, topocentric_sun_position)
% This function compute the topocentric local jour angle in degrees
topocentric_local_hour = observer_local_hour - topocentric_sun_position.rigth_ascension_parallax;
function sun = sun_topocentric_zenith_angle_calculate(location, topocentric_sun_position, topocentric_local_hour)
% This function compute the sun zenith angle, taking into account the
% atmospheric refraction. A default temperature of 283K and a
% default pressure of 1010 mbar are used.
% Topocentric elevation, without atmospheric refraction
argument = (sin(location.latitude * pi/180) * sin(topocentric_sun_position.declination * pi/180)) + ...
(cos(location.latitude * pi/180) * cos(topocentric_sun_position.declination * pi/180) * cos(topocentric_local_hour * pi/180));
true_elevation = asin(argument) * 180/pi;
% Atmospheric refraction correction (in degrees)
argument = true_elevation + (10.3/(true_elevation + 5.11));
refraction_corr = 1.02 / (60 * tan(argument * pi/180));
% For exact pressure and temperature correction, use this,
% with P the pressure in mbar amd T the temperature in Kelvins:
% refraction_corr = (P/1010) * (283/T) * 1.02 / (60 * tan(argument * pi/180));
% Apparent elevation
if(true_elevation > -5)
apparent_elevation = true_elevation + refraction_corr;
else
apparent_elevation = true_elevation;
end
sun.zenith = 90 - apparent_elevation;
% Topocentric azimuth angle. The +180 conversion is to pass from astronomer
% notation (westward from south) to navigation notation (eastward from
% north);
nominator = sin(topocentric_local_hour * pi/180);
denominator = (cos(topocentric_local_hour * pi/180) * sin(location.latitude * pi/180)) - ...
(tan(topocentric_sun_position.declination * pi/180) * cos(location.latitude * pi/180));
sun.azimuth = (atan2(nominator, denominator) * 180/pi) + 180;
% Set the range to [0-360]
sun.azimuth = set_to_range(sun.azimuth, 0, 360);
% This function make sure the variable is in the specified range.
function var = set_to_range(var, min_interval, max_interval)
% if(var>0)
% var = var - max_interval * floor(var/max_interval);
% else
% var = var - max_interval * ceil(var/max_interval);
% end
%
% if(var<min_interval)
% var = var + max_interval;
% end
var = var - max_interval * floor(var/max_interval);
if(var<min_interval)
var = var + max_interval;
end