-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
31 lines (23 loc) · 981 Bytes
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from keras.models import Sequential
from keras.layers import Dense, Reshape
from keras.layers import LeakyReLU
from keras.layers import BatchNormalization
from keras.layers import UpSampling2D, Conv2D
def build_generator():
gen_model = Sequential()
gen_model.add(Dense(input_dim=100, units = 2048))
gen_model.add(LeakyReLU(alpha = 0.2))
gen_model.add(Dense(256 * 8 * 8))
gen_model.add(BatchNormalization())
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(Reshape((8, 8, 256), input_shape=(256 * 8 * 8,)))
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(128, (5, 5), padding='same'))
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(64, (5, 5), padding='same'))
gen_model.add(LeakyReLU(alpha=0.2))
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(3, (5, 5), padding='same'))
gen_model.add(LeakyReLU(alpha=0.2))
return gen_model