-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_BP.c
297 lines (209 loc) · 8.39 KB
/
static_BP.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Static Belief-Propagation for the Ising model with arbitrary connectivity
// (positive, negative, and asymmetric connectivity). The code compute the magnetization
// as a function of beta = 1/temperature using belief-propagation (message-passing)
//
// ./a.out N BetaFinal input_file_ERRG.dat
// where N = size of the ERRG, BetaFinal = 1/Final_Temperature, input_file_ERRG.dat it is the graph file
// containing the structure of the network and generated with Generate_ERRG_deg.c
//
// OUTPUT: BP_magnetization.dat -> file which contains the magnetization vs beta = 1/Temperature
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <errno.h>
//#include <cblas.h>
#define directory "DMP_data" //directory containing the
#define OPEN 0
#define CLOSE 1
#define Tmax 100000
#define EPSILON 1e-9
#define DAMP 0.9
struct variable{ //Structure for MC simulations
// number of neighbours of a given site, incoming and outcoming ones
int degree;
int *neigh; //neighbours of a given site
double *J; // couplings J_{ij}
};
/* ------------------------------------------- */
struct bp{ // Structure for dynamic message passing algorithm
double *to; //value of the message from the site to another site
};
/* ------------------------------------------- */
void get_parameters(int argc, char **argv);
void allocate_memory(struct variable **site, struct bp **u, struct bp **temp);
void read_ERRG(struct variable *site, char **argv);
void initialize_bp(struct variable *site, struct bp *u,double bias);
void update_bp(struct variable *site, struct bp *u, struct bp *temp, double beta, int *t);
double magnetization(struct variable *site, struct bp *u, double beta);
void verify_bp(struct variable *site, struct bp *u, double beta);
double get_rand(void);
int N;
double BETAfinal;
/* =========================================================================== */
/* MAIN */
/* =========================================================================== */
int main(int argc, char *argv[]){
chdir(directory); // Move to the directory
struct variable *site;
struct bp *u,*temp;
int t;
double beta;
double M;
FILE *fp_m;
fp_m=fopen("BP_magnetization.dat","w");
get_parameters(argc,argv); // get parameters from command line, stdin
allocate_memory(&site,&u,&temp);
read_ERRG(site,argv);
for(beta=BETAfinal;beta>=0.001;beta-=0.01){
printf("beta = %lf\n",beta);
initialize_bp(site,u,1.);
for(t=0;t<Tmax;t++){
update_bp(site,u,temp,beta,&t);
}
M=magnetization(site,u,beta);
fprintf(fp_m,"%lf\t%lf\n",beta,M);
verify_bp(site,u,beta);
}
return 1;
}
/* =========================================================================== */
/* MODULE FUNCTIONS DEFINITIONS */
/* =========================================================================== */
// get parameter from stdout and convert them in the right format
void get_parameters(int argc, char **argv){
if(argc>1){
N=atoi(argv[1]);
BETAfinal=atof(argv[2]);
}
return;
}
/*************************************************************************************/
void allocate_memory(struct variable **site, struct bp **u, struct bp **temp){
int i;
/* allocate memory for the array of structures */
*site=(struct variable *)malloc(N*sizeof(struct variable)); //all.mem. for an array of structures
*u=(struct bp *)malloc(N*sizeof(struct bp)); //all.mem. for an array of structures
*temp=(struct bp *)malloc(N*sizeof(struct bp)); //all.mem. for an array of structures
for(i=0;i<N;i++){
(*site)[i].neigh=(int *)malloc(N*sizeof(int)); // For each element of the array, all.mem. for each spin's neighbours
(*site)[i].J=(double *)malloc(N*sizeof(double)); //For each element of the array, all. mem. for its couplings
(*site)[i].degree=0; //set the initial degree equal to zero
(*u)[i].to=(double *)malloc( N * sizeof(double));
(*temp)[i].to=(double *)malloc( N * sizeof(double));
}
return;
}
/*************************************************************************************/
void read_ERRG(struct variable *site, char **argv){
int i,j,nn;
double J1,J2;
FILE *fp_file;
char filename[101];
sprintf(filename,"%s_MC_graph.dat",argv[3]);
fp_file=fopen(filename,"r");
if(fp_file==NULL){
fprintf(stderr,"PROBLEM OPENING FILE %s\n\n" ,"XXX_MC_graph.dat");
exit(errno);
}
for(i=0;i<N;i++){
fscanf(fp_file,"%d",&site[i].degree);
printf("degree %d = %d\n",i,site[i].degree);
for(j=0;j<site[i].degree;j++){
fscanf(fp_file,"%d%d%lf%lf",&i,&nn,&J1,&J2);
site[i].neigh[j]=nn;
site[i].J[nn]=J1;
site[nn].J[i]=J2;
printf("%d ---> %d \t J[%d][%d] = %lf \t J[%d][%d] = %lf\n",i,nn,i,nn,site[i].J[nn],nn,i,site[nn].J[i]);
}
}
return;
}
/*************************************************************************************/
void initialize_bp(struct variable *site, struct bp *u,double bias){
int i,j,nn;
for(i=1;i<N;i++){
for(j=0;j<site[i].degree;j++){
nn=site[i].neigh[j];
u[i].to[nn]= (10 * get_rand() ) + bias;
}
}
return;
}
/*************************************************************************************/
void update_bp(struct variable *site, struct bp *u, struct bp *temp, double beta,int *t){
int i,j,k,nnj,nnk;
double sum;
double messChange,check;
for(i=0;i<N;i++){ //for each i
for(j=0;j<site[i].degree;j++){ // for each outgoing from i
nnj=site[i].neigh[j];
temp[i].to[nnj]=u[i].to[nnj]; //old message
sum=0;
for(k=0;k<site[i].degree;k++){ //sum ove the incoming to i
if(k!=j){
nnk=site[i].neigh[k];
sum += atanh(tanh(beta*site[nnk].J[i]) * tanh(beta*u[nnk].to[i]));
}
}
u[i].to[nnj]=DAMP*(1/beta * sum)+(1.-DAMP)*temp[i].to[nnj];
}
}
/* ---- CHECK DIFFERENCE ----- */
check=0;
for(i=0;i<N;i++){
for(j=0;j<site[i].degree;j++){
nnj=site[i].neigh[j];
messChange=fabs(u[i].to[nnj]-temp[i].to[nnj]);
if(messChange > EPSILON){
check = 1;
}
}
}
if(check == 0){
*t = Tmax;
}
return;
}
/*************************************************************************************/
double magnetization(struct variable *site, struct bp *u, double beta){
int i,j,nn;
double u_cav,M;
M = 0.;
for(i=0;i<N;i++){
u_cav = 0.;
for(j=0;j<site[i].degree;j++){ // sum over all the j neighbours
nn = site[i].neigh[j];
u_cav += atanh( tanh(beta*site[nn].J[i]) * tanh(beta * u[nn].to[i])); // sum of all the incoming contributions to node i
// NOTE: there should be a factor 1/beta but it cancels in the magn= tanh(beta*u_cav)
}
M += tanh(u_cav);
}
return (M / (double) N);
}
/***************************************************************/
void verify_bp(struct variable *site, struct bp *u, double beta){
int i,j,k,nnj,nnk;
double sum;
FILE *fp_u;
fp_u=fopen("Field_value.dat","w");
for(i=0;i<N;i++){
for(j=0;j<site[i].degree;j++){
nnj=site[i].neigh[j];
sum=0;
for(k=0;k<site[i].degree;k++){
nnk=site[i].neigh[k];
if(nnk!=nnj){
sum += atanh( tanh(beta * site[nnk].J[i]) * tanh(beta * u[nnk].to[i]));
}
}
fprintf(fp_u,"RHS = %lf\tLHS = %lf\tdiff = %lf\n",sum/beta, u[i].to[nnj], sum/beta-u[i].to[nnj]);
}
}
return;
}
/*************************************************************************************/
double get_rand(void){
return(1.0 * rand()/(1.0 + RAND_MAX));
}