Skip to content

Official release of DepS: Delayed Eps-Shrinking for Faster Once-For-All Training, ECCV 2024

License

Notifications You must be signed in to change notification settings

gatech-sysml/DepS

Repository files navigation

DϵpS: Delayed ϵ-Shrinking for Faster Once-For-All Training [arxiv]

@inproceedings{deps-eccv2024,
      title={D{\epsilon}pS: Delayed {\epsilon}-Shrinking for Faster Once-For-All Training},
      author={Aditya Annavajjala^{*} and Alind Khare^{*} and Animesh Agrawal and Igor Fedorov and Hugo Latapie and Myungjin Lee and Alexey Tumanov},
      booktitle = {Proc. of the 18th European Conference on Computer Vision},
      series = {ECCV '24},
      month = {August},
      year = {2024},
      url={https://arxiv.org/abs/2407.06167},
}

Overview

Reduced training cost and improved performance

  • DϵpS significantly reduces training cost while improving performance of subnetworks in the lower FLOPs range!

Superior performance across the pareto frontier

Role of different contributions to overall performance and cost

How to use

Evaluate checkpoints

To evaluate a checkpoint run the script located at deps/evaluate.py (it has the necessary instructions)

Train your supernetwork

MobileNetV3

horovodrun -np 16 --start-timeout 300 -H 130.207.125.17:8,130.207.125.19:8 --network-interface=ens8f0 \
python train_net.py --task maxnet --exp_id deps@eccv_test --n_epochs 270 \
--base_lr 0.1625 --opt_type sgd --lr_schedule_type cosine --lr_schedule_param 2 \
--ks_list 7 --depth_list "2, 3, 4" --expand_list "3, 4, 6" --dropout 0.1 \
--dynamic_batch_size 4 --weight_decay 3e-5 --momentum 0.9 --base_batch_size 128 \
--bn_momentum 0.99 --lr_gamma 0.973 --dataset imagenet --label_smoothing 0.1 \
--auto_augment "imagenet" --n_worker 16 --bignas_lr_decay_step_size 0 --teacher_warmup 150 \
--gradient_aggregation sum --inplace_distillation --reorganize_weights --smallnet_warmup 5 \
--network_family mbv3 --distort_color torch --random_erase_prob 0.2 --mixup_alpha 0 --cutmix_alpha 0 --wandb

Proxyless

train_net.py --task teacher --exp_id RES5_Proxyless_Largest_16GPU \
--n_epochs 300 --base_lr 0.0125 --opt_type sgd --lr_schedule_type cosine \
--ks_list 7 --depth_list 4 --expand_list 6 --dropout 0 --dynamic_batch_size 1 \
--weight_decay 5e-5 --momentum 0.9 --base_batch_size 64 --bn_momentum 0.99 \
--dataset imagenet --label_smoothing 0.1 --n_worker 8 --lr_gamma 1 --warmup_epochs 5 \
--manual_seed 42 --random_erase_prob 0.2 --mixup_alpha 0.1 --cutmix_alpha 0.1 \
--warmup_lr 0 --wandb --network_family proxyless --distort_color torch

Requirements

  • Python 3.6.13+
  • Pytorch 1.10.0+
  • Horovod 0.19.2

Check setup/ for environment setup instructions

About

Official release of DepS: Delayed Eps-Shrinking for Faster Once-For-All Training, ECCV 2024

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages