-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (137 loc) · 6.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
import os
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
import math
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from src import utils
from src.model import UNet2D
import config.config as exp_config
from data import acdc_data
log_dir = os.path.join(exp_config.log_root, exp_config.experiment_name)
def train_net(net, device, global_step=0):
data = acdc_data.load_and_maybe_process_data(
input_folder=exp_config.data_root,
preprocessing_folder=exp_config.preproc_folder,
mode=exp_config.data_mode,
size=exp_config.image_size,
target_resolution=exp_config.target_resolution,
force_overwrite=False,
split_test_train=True
)
# the following are HDF5 datasets, not numpy arrays
images_train = data['images_train']
labels_train = data['masks_train']
images_val = data['images_test']
labels_val = data['masks_test']
print(np.unique(labels_train), np.unique(labels_val))
train_data = acdc_data.BasicDataset(images_train, labels_train)
val_data = acdc_data.BasicDataset(images_val, labels_val)
n_val = len(images_val)
n_train = len(images_train)
train_loader = DataLoader(train_data, batch_size=exp_config.batch_size,
shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val_data, batch_size=exp_config.batch_size,
shuffle=False, num_workers=0, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment='LR_{}_BS_{}'.format(exp_config.lr, exp_config.batch_size))
optimizer = optim.Adam(net.parameters(), lr=exp_config.lr, weight_decay=1e-8)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10,
threshold=exp_config.lr_threshold, verbose=True)
# criterion = utils.loss
criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.1, 0.3, 0.3, 0.3], dtype=torch.float32,
device=device, requires_grad=False))
max_epochs = exp_config.max_epochs - global_step//math.ceil(n_train/exp_config.batch_size)
logging.info(f'''Starting training from step {global_step}:
Epochs: {max_epochs}
Batch size: {exp_config.batch_size}
Learning rate: {exp_config.lr}
Training size: {n_train}
Validation size: {n_val}
Device: {device.type}
''')
for epoch in range(max_epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{max_epochs}', unit='img') as pbar:
for batch in train_loader:
labels = batch['label']
imgs = torch.reshape(batch['image'], [batch['label'].shape[0]] + [1] + list(exp_config.image_size))
imgs = imgs.to(device=device, dtype=torch.float32)
labels = labels.to(device=device, dtype=torch.long)
assert imgs.shape[1] == net.nchannels, \
f'Network has been defined with {net.nchannels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
# assert len(torch.unique(labels)) == net.nlabels, \
# f'Network has been defined with {net.nlabels} output labels, ' \
# f'but loaded images have {torch.unique(labels, sorted=True)} labels. Please check that ' \
# 'the labels are loaded correctly.'
logits = net(imgs)
loss = criterion(logits, labels)
# epoch_loss += loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss(batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
# nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
# if global_step % exp_config.val_eval_frequency == 0:
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), global_step)
writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), global_step)
val_loss, val_score = val_net(net, val_loader, device, criterion)
scheduler.step(val_score)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
logging.info('Validation Loss: {}'.format(val_loss))
writer.add_scalar('Loss/test', val_loss, global_step)
logging.info('Validation Dice Score: {}'.format(val_score))
writer.add_scalar('Dice/test', val_score, global_step)
# writer.add_images('images/image', imgs, global_step)
# writer.add_images('images/gt', labels, global_step)
# writer.add_images('images/pred', torch.argmax(F.softmax(logits[0], dim=1), dim=1), global_step)
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logging.info('Created checkpoint directory')
torch.save(net.state_dict(), os.path.join(log_dir, f'CP_step_{global_step}.pth'))
logging.info(f'Checkpoint {global_step} saved !')
writer.close()
def val_net(net, loader, device, criterion):
n_val = len(loader)
net.eval()
total_loss = 0
total_dice = 0
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
for batch in loader:
labels = batch['label']
imgs = torch.reshape(batch['image'], [batch['label'].shape[0]] + [1] + list(exp_config.image_size))
imgs = imgs.to(device=device, dtype=torch.float32)
labels = labels.to(device=device, dtype=torch.long)
with torch.no_grad():
logits = net(imgs)
loss, dice = utils.evaluation(logits, labels, criterion)
total_loss += loss
total_dice += dice
pbar.update()
net.train()
return total_loss/n_val, total_dice/n_val
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
net = UNet2D(nchannels=1, nlabels=4)
logging.info(f'Network:\n'
f'\t{net.nchannels} input channels\n'
f'\t{net.nlabels} output channels (classes)')
global_step = 0
if os.path.exists(log_dir):
net, global_step = utils.get_latest_checkpoint(net, log_dir, device)
logging.info(f'Model loaded from step {global_step}')
net.to(device=device)
train_net(net=net, device=device, global_step=global_step)