-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
benchmarking
- Loading branch information
Showing
25 changed files
with
2,231,351 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
#! /usr/bin/bash | ||
|
||
# https://kb.10xgenomics.com/hc/en-us/articles/4412343032205-Where-can-I-find-the-barcode-whitelist-s-for-Single-Cell-Multiome-ATAC-GEX-product- | ||
|
||
# The ARC Multiome Gene Expression whitelist can be found here:<path_to_cellrangerarc>/cellranger-arc-x.y.z/lib/python/cellranger/barcodes/737K-arc-v1.txt.gz | ||
|
||
cd ~/data/benchmarking/H2030/H2030_by_blaze | ||
|
||
cp ~/tools/cellranger-arc-2.0.2/lib/python/cellranger/barcodes/737K-arc-v1.txt.gz . | ||
|
||
gunzip 737K-arc-v1.txt.gz | ||
|
||
python3 ~/tools/BLAZE/bin/blaze.py --full-bc-whitelist 737K-arc-v1.txt --expect-cells 3000 --threads 30 /data/nanopore/2021/NP18_PROM0102_Gao_Kieser_nu_H2030_12012021/20211202_0228_2-E9-H9_PAI19630_2bbb4022/fastq_pass/ | ||
|
||
cp whitelist.csv ~/data/benchmarking/H2030_blaze.barcode_list.csv | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
#! /usr/bin/bash | ||
|
||
snakemake --use-conda --configfile sockeye_config_H2030/config.yml --cores 30 -pr all | ||
|
||
cp ~/data/benchmarking/H2030/H2030_by_sockeye/H2030/demux/whitelist.tsv ~/data/benchmarking/H2030_sockeye.barcode_list.csv | ||
|
119 changes: 119 additions & 0 deletions
119
benchmarking/3_comp_10X_scNanoGPS_BLAZE_sockeye.H2030.Rscript
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
#! Rscript | ||
|
||
library(tidyverse) | ||
|
||
tenX_bc <- data.frame(read.table(gzfile("H2030_10X.barcode_list.tsv.gz"), header=F, sep="-")) | ||
tenX_df <- data.frame(read.table("737K-arc-v1.txt", header=F, sep="\t")) | ||
scNanoGPS_bc <- data.frame(read.table("H2030_scNanoGPS.barcode_list.txt", header=F, sep="_")) | ||
blaze_bc <- data.frame(read.table("H2030_blaze.barcode_list.csv", header=F, sep="-")) | ||
sockeye_bc <- data.frame(read.table("H2030_sockeye.barcode_list.csv", header=F, sep="\t")) | ||
|
||
names(tenX_bc) <- c("BC", "V2") | ||
|
||
names(tenX_df) <- c("BC") | ||
tenX_df$tenX <- sapply(tenX_df$BC, function(x){if(x %in% tenX_bc$BC){return(1)}else{return(NA)}}) | ||
|
||
names(scNanoGPS_bc) <- c("V1", "V2", "BC") | ||
scNanoGPS_bc$scNanoGPS <- 1 | ||
scNanoGPS_bc <- scNanoGPS_bc[, c("BC", "scNanoGPS")] | ||
|
||
names(blaze_bc) <- c("BC", "V2") | ||
blaze_bc$BLAZE <- 1 | ||
blaze_bc <- blaze_bc[, c("BC", "BLAZE")] | ||
|
||
names(sockeye_bc) <- "BC" | ||
sockeye_bc$Sockeye <- 1 | ||
|
||
m_df <- merge(x=tenX_df, y=scNanoGPS_bc, by.x="BC", by.y="BC", all=T) | ||
m_df <- merge(x=m_df, y=blaze_bc, by.x="BC", by.y="BC", all=T) | ||
m_df <- merge(x=m_df, y=sockeye_bc, by.x="BC", by.y="BC", all=T) | ||
|
||
write.table(m_df, file = gzfile("3_comp_10X_scNanoGPS_BLAZE_sockeye.H2030.tsv.gz"), row.names=F, col.names=T, quote=F, sep="\t") | ||
|
||
m_df %>% | ||
group_by(tenX, scNanoGPS, BLAZE, Sockeye) %>% | ||
summarize(n=n()) %>% | ||
as.data.frame() -> | ||
summarise_df | ||
|
||
# tenX scNanoGPS BLAZE Sockeye n | ||
# 1 1 1 1 1 3627 | ||
# 2 1 1 NA 1 2 | ||
# 3 1 1 NA NA 2 | ||
# 4 1 NA 1 1 251 | ||
# 5 1 NA 1 NA 1 | ||
# 6 1 NA NA 1 9 | ||
# 7 1 NA NA NA 219 | ||
# 8 NA 1 1 1 56 | ||
# 9 NA 1 NA 1 1 | ||
# 10 NA 1 NA NA 5 | ||
# 11 NA NA 1 1 51 | ||
# 12 NA NA 1 NA 2 | ||
# 13 NA NA NA 1 3 | ||
# 14 NA NA NA NA 732095 | ||
|
||
total_n <- sum(summarise_df$n) | ||
# [1] 736324 | ||
|
||
|
||
|
||
scNanoGPS_TP <- sum(summarise_df[which(!is.na(summarise_df$tenX) & !is.na(summarise_df$scNanoGPS)), "n"]) | ||
scNanoGPS_TN <- sum(summarise_df[which( is.na(summarise_df$tenX) & is.na(summarise_df$scNanoGPS)), "n"]) | ||
scNanoGPS_FP <- sum(summarise_df[which( is.na(summarise_df$tenX) & !is.na(summarise_df$scNanoGPS)), "n"]) | ||
scNanoGPS_FN <- sum(summarise_df[which(!is.na(summarise_df$tenX) & is.na(summarise_df$scNanoGPS)), "n"]) | ||
|
||
scNanoGPS_TPR <- scNanoGPS_TP / (scNanoGPS_TP + scNanoGPS_FP) | ||
# [1] 0.9832115 | ||
scNanoGPS_FPR <- scNanoGPS_FP / (scNanoGPS_TP + scNanoGPS_FP) | ||
# [1] 0.01678852 | ||
scNanoGPS_TNR <- scNanoGPS_TN / (scNanoGPS_TN + scNanoGPS_FN) | ||
# [1] 0.9993448 | ||
scNanoGPS_FNR <- scNanoGPS_FN / (scNanoGPS_TN + scNanoGPS_FN) | ||
# [1] 0.0006551729 | ||
scNanoGPS_F1 <- 2*scNanoGPS_TP / (2*scNanoGPS_TP + scNanoGPS_FP + scNanoGPS_FN) | ||
# [1] 0.9305484 | ||
scNanoGPS_ACC <- (scNanoGPS_TP + scNanoGPS_TN) / total_n | ||
# [1] 0.9992639 | ||
|
||
|
||
|
||
blaze_TP <- sum(summarise_df[which(!is.na(summarise_df$tenX) & !is.na(summarise_df$BLAZE)), "n"]) | ||
blaze_TN <- sum(summarise_df[which( is.na(summarise_df$tenX) & is.na(summarise_df$BLAZE)), "n"]) | ||
blaze_FP <- sum(summarise_df[which( is.na(summarise_df$tenX) & !is.na(summarise_df$BLAZE)), "n"]) | ||
blaze_FN <- sum(summarise_df[which(!is.na(summarise_df$tenX) & is.na(summarise_df$BLAZE)), "n"]) | ||
|
||
blaze_TPR <- blaze_TP / (blaze_TP + blaze_FP) | ||
# [1] 0.972668 | ||
blaze_FPR <- blaze_FP / (blaze_TP + blaze_FP) | ||
# [1] 0.027332 | ||
blaze_TNR <- blaze_TN / (blaze_TN + blaze_FN) | ||
# [1] 0.9996832 | ||
blaze_FNR <- blaze_FN / (blaze_TN + blaze_FN) | ||
# [1] 0.0003167945 | ||
blaze_F1 <- 2*blaze_TP / (2*blaze_TP + blaze_FP + blaze_FN) | ||
# [1] 0.957896 | ||
blaze_ACC <- (blaze_TP + blaze_TN) / total_n | ||
# [1] 0.9995369 | ||
|
||
|
||
|
||
sockeye_TP <- sum(summarise_df[which(!is.na(summarise_df$tenX) & !is.na(summarise_df$Sockeye)), "n"]) | ||
sockeye_TN <- sum(summarise_df[which( is.na(summarise_df$tenX) & is.na(summarise_df$Sockeye)), "n"]) | ||
sockeye_FP <- sum(summarise_df[which( is.na(summarise_df$tenX) & !is.na(summarise_df$Sockeye)), "n"]) | ||
sockeye_FN <- sum(summarise_df[which(!is.na(summarise_df$tenX) & is.na(summarise_df$Sockeye)), "n"]) | ||
|
||
sockeye_TPR <- sockeye_TP / (sockeye_TP + sockeye_FP) | ||
# [1] 0.97225 | ||
sockeye_FPR <- sockeye_FP / (sockeye_TP + sockeye_FP) | ||
# [1] 0.02775 | ||
sockeye_TNR <- sockeye_TN / (sockeye_TN + sockeye_FN) | ||
# [1] 0.9996969 | ||
sockeye_FNR <- sockeye_FN / (sockeye_TN + sockeye_FN) | ||
# [1] 0.0003031445 | ||
sockeye_F1 <- 2*sockeye_TP / (2*sockeye_TP + sockeye_FP + sockeye_FN) | ||
# [1] 0.9589446 | ||
sockeye_ACC <- (sockeye_TP + sockeye_TN) / total_n | ||
# [1] 0.9995478 | ||
|
||
|
||
|
Oops, something went wrong.