Skip to content

Latest commit

 

History

History
178 lines (149 loc) · 16.8 KB

README.md

File metadata and controls

178 lines (149 loc) · 16.8 KB

BKISemanticMapping

Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping

Quantitative results on SemanticKITTI dataset sequence 00-10 for 19 semantic classes. SqueezeSegV2-kNN (Sq.-kNN)

Sequence Method Car Bicycle Motorcycle Truck Other Vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other Ground Building Fence Vegetation Trunk Terrain Pole Traffic Sign Average
00 Sq.-KNN 92.1 18.3 55.0 76.5 62.9 34.2 52.0 61.4 94.7 71.0 87.9 1.2 89.8 54.6 82.2 53.1 79.3 38.6 51.5 60.9
S-CMS 95.6 23.5 69.8 88.3 74.4 47.9 71.6 56.9 96.3 78.1 91.2 3.1 93.6 64.2 87.4 70.1 83.5 61.1 70.7 69.9
S-BKI 96.9 26.5 75.8 93.5 80.1 61.5 77.5 71.0 96.2 79.2 91.5 6.6 94.6 66.5 88.9 73.4 84.5 65.8 76.2 75.0
01 Sq.-KNN 83.8 n/a n/a n/a 82.9 n/a n/a 67.9 92.6 n/a n/a 70.5 58.0 71.4 72.1 18.0 71.5 21.8 68.9 64.0
S-CMS 89.8 n/a n/a n/a 91.0 n/a n/a 70.3 93.4 n/a n/a 74.2 64.4 73.8 75.1 26.3 74.7 31.9 78.7 70.3
S-BKI 91.0 n/a n/a n/a 96.0 n/a n/a 70.7 94.3 n/a n/a 75.2 67.1 75.1 76.4 30.6 76.1 36.2 81.4 72.5
02 Sq.-KNN 90.9 14.5 50.8 n/a 56.4 38.6 n/a 59.9 93.9 68.1 84.9 50.9 79.1 66.1 82.5 48.9 68.3 25.7 35.9 59.7
S-CSM 95.4 28.5 73.4 n/a 80.3 60.3 n/a 75.1 94.8 74.4 87.4 61.7 85.0 71.8 86.7 66.9 72.9 43.5 55.7 71.4
S-BKI 95.8 31.1 76.4 n/a 83.3 62.5 n/a 79.5 94.8 75.0 87.4 63.6 85.6 72.1 87.1 68.8 73.4 45.9 60.4 73.1
03 Sq.-KNN 88.4 21.9 n/a 12.4 60.1 16.3 n/a n/a 92.8 57.9 83.2 n/a 77.4 70.1 79.3 41.6 62.3 35.9 47.3 56.5
S-CSM 92.4 29.7 n/a 23.1 65.4 17.6 n/a n/a 94.3 69.4 86.9 n/a 80.4 73.8 83.2 52.3 66.9 53.5 62.0 63.0
S-BKI 94.5 42.4 n/a 48.8 73.6 23.8 n/a n/a 94.3 73.2 87.2 n/a 82.1 74.7 84.1 55.7 67.4 57.3 66.7 68.0
04 Sq.-KNN 84.9 n/a n/a n/a 68.1 20.8 n/a n/a 95.8 26.1 68.4 61.5 49.3 76.4 82.6 14.0 67.6 36.0 44.6 56.9
S-CSM 88.3 n/a n/a n/a 71.2 23.2 n/a n/a 96.5 40.5 72.5 64.0 52.1 78.5 85.5 19.4 72.5 50.8 57.6 62.3
S-BKI 87.7 n/a n/a n/a 82.5 37.3 n/a n/a 96.2 55.7 72.3 68.3 56.9 80.3 87.1 24.4 72.7 55.5 67.0 67.5
05 Sq.-KNN 89.1 8.6 15.4 82.5 70.9 31.0 55.0 n/a 94.7 84.8 85.0 61.5 87.0 72.4 75.5 30.3 64.6 27.6 39.5 59.8
S-CSM 93.4 15.4 28.9 86.4 78.4 39.8 69.4 n/a 96.4 90.1 88.5 70.0 90.9 77.7 81.2 46.8 69.5 47.6 57.4 68.2
S-BKI 93.2 27.4 46.0 89.0 84.1 47.5 83.3 n/a 94.2 88.0 83.6 75.2 92.4 75.3 82.1 53.5 69.5 50.2 63.3 72.1
06 Sq.KNN 85.4 17.1 50.2 86.7 66.1 27.6 64.3 n/a 87.6 56.0 74.9 66.5 83.9 38.4 61.9 32.0 89.5 40.1 52.7 60.1
S-CSM 91.8 22.7 62.5 89.8 75.4 43.3 92.1 n/a 91.1 68.2 80.4 70.5 89.4 49.3 69.7 50.1 92.2 60.0 77.9 70.9
S-BKI 92.6 28.7 67.9 93.5 81.4 62.7 95.4 n/a 90.3 70.7 79.9 71.8 91.7 53.6 73.7 54.7 91.9 66.4 84.8 75.1
07 Sq.-KNN 92.4 21.3 64.0 83.6 69.8 53.2 63.6 n/a 93.9 75.9 89.3 n/a 90.9 59.7 76.5 45.9 82.8 40.2 54.0 68.1
S-CSM 94.9 25.9 76.8 82.6 81.5 64.2 88.0 n/a 95.8 80.9 92.0 n/a 93.8 66.6 80.8 59.8 84.7 55.4 73.2 76.2
S-BKI 93.8 29.2 80.2 82.7 87.8 70.1 92.7 n/a 93.9 77.0 87.7 n/a 94.1 63.4 81.4 84.1 84.5 53.2 77.6 77.2
08 Sq.-KNN 86.7 14.4 24.6 21.0 23.3 23.5 40.9 n/a 90.1 32.4 74.8 1.2 79.6 42.7 79.2 36.5 71.1 28.3 24.8 44.1
S-CSM 90.5 23.0 34.9 26.8 29.1 32.4 49.4 n/a 92.6 38.7 79.0 1.1 84.6 51.6 83.3 48.3 72.9 44.1 31.6 50.8
S-BKI 92.3 30.0 39.7 29.3 32.1 38.8 54.7 n/a 92.9 40.9 79.9 1.1 86.6 54.6 84.9 52.3 74.2 47.9 34.7 53.7
09 Sq.-KNN 89.2 5.3 48.0 79.8 61.3 37.3 n/a n/a 91.0 59.0 79.9 38.9 80.9 62.9 77.0 32.3 61.7 31.8 52.6 58.2
S-CSM 93.9 12.2 71.9 85.6 71.6 47.5 n/a n/a 91.8 67.0 83.1 23.4 88.9 65.7 82.6 42.9 64.9 52.4 53.0 64.6
S-BKI 96.0 22.8 80.2 90.5 79.7 60.7 n/a n/a 91.7 70.0 83.8 30.7 90.8 69.1 84.0 46.3 66.0 59.1 58.2 69.4
10 Sq.-KNN 84.0 8.1 36.2 49.3 10.2 40.9 n/a n/a 89.4 59.6 78.5 42.7 76.7 64.2 77.6 29.0 67.8 30.7 47.9 52.0
S-CSM 91.0 14.6 51.8 67.7 16.6 52.8 n/a n/a 92.1 69.7 83.7 51.3 81.7 70.0 82.2 43.3 72.4 51.7 64.1 62.1
S-BKI 93.8 24.6 60.3 76.2 21.2 65.0 n/a n/a 92.3 73.4 84.8 54.5 83.0 71.2 83.4 47.3 73.4 56.2 67.9 66.4
Average Sq.-KNN 87.9 14.4 43.0 61.5 57.5 32.3 55.2 63.1 92.4 59.1 80.7 43.9 77.5 61.7 76.9 34.7 71.5 32.4 47.2 57.6
S-CSM 92.5 21.7 58.7 68.8 66.8 42.9 74.1 67.4 94.1 67.7 84.5 46.6 82.3 67.5 81.6 47.8 75.2 50.2 62.0 65.9
S-BKI 93.4 29.2 65.8 75.4 72.9 93.0 80.7 73.7 93.7 72.3 83.8 49.0 84.1 68.7 83.0 53.7 75.8 54.0 67.1 72.1

Quantitative results on SemanticKITTI dataset sequence 00-10 for 19 semantic classes. Darknet53-kNN (Da-kNN)

Sequence Method Car Bicycle Motorcycle Truck Other Vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other Ground Building Fence Vegetation Trunk Terrain Pole Traffic Sign Average
00 Da-kNN 0.960 0.418 0.828 0.928 0.902 0.703 0.726 0.573 0.971 0.874 0.939 0.311 0.967 0.817 0.930 0.792 0.906 0.733 0.852 0.796
S-CSM 0.975 0.476 0.897 0.957 0.937 0.787 0.829 0.640 0.974 0.891 0.949 0.419 0.977 0.852 0.948 0.864 0.924 0.832 0.897 0.843
S-BKI 0.980 0.509 0.917 0.972 0.955 0.830 0.865 0.790 0.971 0.888 0.943 0.426 0.980 0.855 0.953 0.878 0.928 0.847 0.900 0.862
01 Da-kNN 0.860 0.000 0.000 0.000 0.000 0.000 0.000 0.582 0.956 0.000 0.000 0.832 0.924 0.793 0.873 0.557 0.863 0.606 0.887 0.460
S-CSM 0.870 0.000 0.000 0.000 0.000 0.000 0.000 0.534 0.962 0.000 0.000 0.843 0.929 0.806 0.880 0.600 0.874 0.694 0.922 0.469
S-BKI 0.889 0.000 0.000 0.000 0.000 0.000 0.000 0.586 0.963 0.000 0.000 0.849 0.959 0.825 0.895 0.691 0.883 0.747 0.942 0.486
02 Da-kNN 0.952 0.292 0.819 0.000 0.877 0.698 0.023 0.754 0.968 0.887 0.924 0.755 0.927 0.852 0.934 0.753 0.880 0.637 0.738 0.720
S-CSM 0.961 0.339 0.859 0.000 0.908 0.798 0.020 0.754 0.966 0.894 0.924 0.780 0.942 0.861 0.943 0.824 0.895 0.723 0.807 0.747
S-BKI 0.970 0.398 0.896 0.000 0.936 0.855 0.015 0.858 0.963 0.897 0.922 0.806 0.952 0.863 0.948 0.845 0.902 0.748 0.839 0.769
03 Da-kNN 0.943 0.393 0.000 0.712 0.889 0.473 0.000 0.000 0.971 0.828 0.935 0.000 0.930 0.880 0.951 0.645 0.922 0.722 0.782 0.630
S-CSM 0.957 0.525 0.000 0.685 0.903 0.496 0.000 0.000 0.973 0.852 0.942 0.000 0.947 0.895 0.961 0.709 0.935 0.802 0.827 0.653
S-BKI 0.970 0.684 0.000 0.705 0.939 0.618 0.000 0.000 0.971 0.871 0.937 0.000 0.955 0.894 0.964 0.724 0.938 0.820 0.837 0.675
04 Da-kNN 0.908 0.000 0.000 0.000 0.915 0.433 0.000 0.000 0.985 0.728 0.883 0.807 0.922 0.928 0.936 0.312 0.888 0.719 0.742 0.584
S-CSM 0.925 0.000 0.000 0.000 0.919 0.467 0.000 0.000 0.987 0.763 0.900 0.823 0.935 0.935 0.946 0.370 0.905 0.795 0.810 0.604
S-BKI 0.947 0.000 0.000 0.000 0.955 0.581 0.000 0.000 0.988 0.804 0.906 0.845 0.949 0.946 0.951 0.400 0.915 0.815 0.830 0.623
05 Da-kNN 0.910 0.465 0.612 0.925 0.535 0.655 0.700 0.000 0.973 0.937 0.921 0.848 0.947 0.874 0.892 0.649 0.791 0.698 0.788 0.743
S-CSM 0.923 0.517 0.695 0.941 0.539 0.713 0.822 0.000 0.967 0.938 0.925 0.865 0.958 0.891 0.910 0.761 0.821 0.789 0.843 0.780
S-BKI 0.938 0.591 0.774 0.957 0.563 0.820 0.913 0.000 0.974 0.944 0.928 0.876 0.972 0.900 0.926 0.798 0.842 0.807 0.869 0.810
06 Da-kNN 0.935 0.460 0.721 0.728 0.650 0.708 0.791 0.000 0.948 0.831 0.893 0.857 0.956 0.780 0.844 0.563 0.944 0.759 0.837 0.748
S-CSM 0.955 0.547 0.810 0.742 0.675 0.838 0.923 0.000 0.963 0.851 0.922 0.884 0.971 0.833 0.876 0.711 0.959 0.880 0.931 0.804
S-BKI 0.970 0.638 0.859 0.755 0.691 0.922 0.952 0.000 0.964 0.863 0.928 0.899 0.979 0.862 0.892 0.755 0.961 0.907 0.947 0.829
07 Da-kNN 0.961 0.446 0.876 0.911 0.939 0.768 0.798 0.000 0.970 0.888 0.946 0.000 0.971 0.816 0.894 0.769 0.910 0.750 0.869 0.762
S-SCM 0.973 0.497 0.920 0.896 0.964 0.839 0.916 0.000 0.972 0.901 0.952 0.000 0.979 0.840 0.913 0.830 0.924 0.815 0.913 0.792
S-BKI 0.979 0.523 0.936 0.905 0.980 0.880 0.945 0.000 0.971 0.899 0.948 0.000 0.982 0.844 0.921 0.845 0.929 0.823 0.921 0.802
08 Da-kNN 0.910 0.250 0.471 0.407 0.255 0.452 0.629 0.000 0.938 0.465 0.819 0.002 0.858 0.542 0.842 0.529 0.727 0.532 0.400 0.528
S-CSM 0.926 0.325 0.549 0.434 0.262 0.513 0.692 0.000 0.946 0.492 0.840 0.001 0.879 0.584 0.858 0.599 0.733 0.617 0.430 0.562
S-BKI 0.935 0.335 0.573 0.445 0.272 0.529 0.721 0.000 0.944 0.496 0.840 0.000 0.887 0.596 0.869 0.625 0.753 0.636 0.451 0.574
09 Da-kNN 0.909 0.349 0.774 0.851 0.376 0.582 0.000 0.000 0.963 0.859 0.913 0.755 0.941 0.864 0.919 0.576 0.853 0.723 0.823 0.686
S-CSM 0.917 0.410 0.837 0.881 0.383 0.658 0.000 0.000 0.961 0.877 0.923 0.785 0.956 0.879 0.934 0.659 0.865 0.821 0.907 0.719
S-BKI 0.932 0.490 0.887 0.904 0.392 0.723 0.000 0.000 0.962 0.875 0.925 0.797 0.966 0.897 0.943 0.678 0.888 0.848 0.920 0.738
10 Da-kNN 0.951 0.438 0.721 0.935 0.662 0.761 0.000 0.000 0.969 0.892 0.930 0.636 0.940 0.875 0.917 0.643 0.865 0.698 0.760 0.715
S-CSM 0.965 0.466 0.801 0.950 0.679 0.841 0.000 0.000 0.974 0.909 0.944 0.670 0.959 0.898 0.935 0.743 0.890 0.796 0.841 0.751
S-BKI 0.975 0.503 0.844 0.964 0.716 0.893 0.000 0.000 0.972 0.911 0.943 0.664 0.964 0.900 0.940 0.768 0.894 0.802 0.867 0.764

Getting Started

Building with catkin

catkin_ws/src$ git clone https://github.com/ganlumomo/BKISemanticMapping
catkin_ws/src$ cd ..
catkin_ws$ catkin_make
catkin_ws$ source ~/catkin_ws/devel/setup.bash

Building using Intel C++ compiler (optional for better speed performance)

catkin_ws$ source /opt/intel/compilers_and_libraries/linux/bin/compilervars.sh intel64
catkin_ws$ catkin_make -DCMAKE_C_COMPILER=icc -DCMAKE_CXX_COMPILER=icpc
catkin_ws$ source ~/catkin_ws/devel/setup.bash

Running the Demo

$ roslaunch semantic_bki toy_example_node.launch

Semantic Mapping using KITTI dataset

Download Data

Please download data_kitti_15 and uncompress it into the data folder.

Running

$ roslaunch semantic_bki kitti_node.launch

You will see semantic map in RViz. It also projects 3D grid onto 2D image for evaluation, stored at data/data_kitti_05/reproj_img.

Evaluation

Evaluation code is provided in kitti_evaluation.ipynb. You may modify the directory names to run it.

Semantic Mapping using SemanticKITTI dataset

Download Data

Please download semantickitti_04 and uncompress it into the data folder.

Running

$ roslaunch semantic_bki semantickitti_node.launch

You will see semantic map in RViz. It also query each ground truth point for evaluation, stored at data/semantickitti_04/evaluations.

Evaluation

Evaluation code is provided in semantickitti_evaluation.ipynb. You may modify the directory names to run it, or follow the guideline in semantic-kitti-api for evaluation.

Relevant Publications

If you found this code useful, please cite the following:

Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping (PDF)

@ARTICLE{gan2019bayesian,
author={L. {Gan} and R. {Zhang} and J. W. {Grizzle} and R. M. {Eustice} and M. {Ghaffari}},
journal={IEEE Robotics and Automation Letters},
title={Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping},
year={2020},
volume={5},
number={2},
pages={790-797},
keywords={Mapping;semantic scene understanding;range sensing;RGB-D perception},
doi={10.1109/LRA.2020.2965390},
ISSN={2377-3774},
month={April},}

Learning-Aided 3-D Occupancy Mapping with Bayesian Generalized Kernel Inference (PDF)

@article{Doherty2019,
  doi = {10.1109/tro.2019.2912487},
  url = {https://doi.org/10.1109/tro.2019.2912487},
  year = {2019},
  publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
  pages = {1--14},
  author = {Kevin Doherty and Tixiao Shan and Jinkun Wang and Brendan Englot},
  title = {Learning-Aided 3-D Occupancy Mapping With Bayesian Generalized Kernel Inference},
  journal = {{IEEE} Transactions on Robotics}
}