-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_test_data.py
315 lines (264 loc) · 13.9 KB
/
make_test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import shutil
from pathlib import Path
from typing import Dict
import nibabel as nib
import pandas as pd
from brats.nnunet.datasets import copy_BraTS_segmentation_and_convert_labels
from brats.preprocessing.preprocessing import PreprocessorHDBET, apply_mask_match_brats
from brats.preprocessing.captk_wrappers import greedy_apply_transforms, greedy_registration
from brats.preprocessing.hdbet_wrapper import hd_bet
from brats.preprocessing.nipype_wrappers import fsl_bet
from brats.utils import dcm2nifti
from nibabel.orientations import aff2axcodes, axcodes2ornt, apply_orientation, inv_ornt_aff
def apply_hd_bet_fast(modalities_fpaths: Dict[str,Path], tmpdir: Path):
modality_fpath = modalities_fpaths['t1']
_, brain_mask_fpath = hd_bet(
str(modality_fpath),
str(tmpdir/(modality_fpath.name.split('_')[0] + '_mask')),
mode='fast',
)
return brain_mask_fpath
def apply_hd_bet(modalities_fpaths: Dict[str,Path], tmpdir: Path):
modality_fpath = modalities_fpaths['t1']
_, brain_mask_fpath = hd_bet(
str(modality_fpath),
str(tmpdir/(modality_fpath.name.split('_')[0] + '_mask')),
)
return brain_mask_fpath
def apply_bet(modalities_fpaths: Dict[str,Path], tmpdir: Path):
modality_fpath = modalities_fpaths['t1']
_, brain_mask_fpath = fsl_bet(
str(modality_fpath),
str(tmpdir/(modality_fpath.name.split('_')[0] + '_mask')),
fast=True,
)
return brain_mask_fpath
def apply_bet_reduced_bias(modalities_fpaths: Dict[str,Path], tmpdir: Path):
modality_fpath = modalities_fpaths['t1']
_, brain_mask_fpath = fsl_bet(
str(modality_fpath),
str(tmpdir/(modality_fpath.name.split('_')[0] + '_mask')),
fast=False,
)
return brain_mask_fpath
def apply_XXX(modalities_fpaths: Dict[str,Path], tmpdir: Path):
"""You can implement other BE methods following this template.
The function must take all modalities as argument, generate a brain mask,
store it at `tmpdir` and return the filepath of the mask. Then, add it to
the dict of functions to be applied down below in the main.
"""
raise NotImplementedError
if __name__ == '__main__':
project_dir = Path(__file__).resolve().parents[0]
data_dir = Path(project_dir, 'data')
tmpdir = Path('.tmpdir').resolve()
tmpdir.mkdir(exist_ok=True)
sri24_fpath = data_dir/'raw/SRI24_T1.nii'
assert sri24_fpath.exists(), f"SRI24 T1 template not found in {sri24_fpath}"
modality_number = {
"flair": "0000",
"t1": "0001",
"t1ce": "0002",
"t2": "0003",
}
metadata = pd.read_pickle(data_dir/'raw/test_metadata.pkl')
assert all(metadata['Filepath'].apply(lambda r: (data_dir/'raw'/r).exists())), (
"Missing Test set files"
)
name_mapping = pd.read_csv(data_dir/'raw/MICCAI_BraTS2020_TrainingData/name_mapping.csv')
tcga2brats = name_mapping[~name_mapping['TCGA_TCIA_subject_ID'].isna()]
tcga2brats = tcga2brats.set_index('TCGA_TCIA_subject_ID')['BraTS_2020_subject_ID']
tcga2brats = dict(tcga2brats)
# create directory for preprocessed images
dst_dir = data_dir/'processed/Test'
dst_dir.mkdir(exist_ok=True)
(dst_dir/'X').mkdir(exist_ok=True)
(dst_dir/'y').mkdir(exist_ok=True)
# get modalities fpaths
metadata = metadata.set_index(['Subject ID', 'Modality'])
fpaths = metadata.groupby(level=0).apply(lambda df: df.xs(df.name).Filepath.to_dict()).to_dict()
for tcga_id in list(fpaths.keys())[:5]: # TODO: remove images limit
# get fpath of segmentation file
t1_fpath = fpaths[tcga_id]['T1']
possible_segs = list(data_dir.glob(f"raw/TCGA/*/Pre*/{tcga_id}/*GlistrBoost*"))
possible_segs = sorted(possible_segs) # keeps `manually corrected` one (if any) last
seg_fpath = possible_segs[-1]
# convert dicom images to nifti
t1_fpath = dcm2nifti(data_dir/'raw'/fpaths[tcga_id]['T1'], tmpdir)
t1ce_fpath = dcm2nifti(data_dir/'raw'/fpaths[tcga_id]['T1CE'], tmpdir)
flair_fpath = dcm2nifti(data_dir/'raw'/fpaths[tcga_id]['FLAIR'], tmpdir)
t2_fpath = dcm2nifti(data_dir/'raw'/fpaths[tcga_id]['T2'], tmpdir)
# several patches for series with multiple images
if tcga_id.startswith('TCGA-FG-7643') and isinstance(t1ce_fpath, list) and len(t1ce_fpath) == 2:
t1ce_fpath = t1ce_fpath[0]
if tcga_id.startswith('TCGA-HT-8114') and isinstance(t1ce_fpath, list) and len(t1ce_fpath) == 2:
t1ce_fpath = t1ce_fpath[1]
if tcga_id.startswith('TCGA-CS-494') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-CS-5395') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-HT-768') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-HT-769') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-HT-785') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-HT-7882') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-HT-8105') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-A6S6') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-7298') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-7014') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-7010') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-DU-7008') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-DU-6410') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-6401') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-6408') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-DU-640') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-DU-639') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-DU-58') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-0119') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-0128') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-013') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-014') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-0154') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-0158') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-0162') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-016') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-0177') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-017') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-018') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-0190') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-0213') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[0]
if tcga_id.startswith('TCGA-06-0240') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-1084') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-06-5408') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-27-183') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-27-2526') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-76-4932') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-76-6191') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-76-6193') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
if tcga_id.startswith('TCGA-76-628') and isinstance(t2_fpath, list) and len(t2_fpath) == 2:
t2_fpath = t2_fpath[1]
# register modalities to template
dpp = PreprocessorHDBET(
template_fpath=sri24_fpath,
tmpdir=tmpdir,
bet_modality='T1',
mode='fast',
tta=0,
registration='captk',
)
modalities_at_template, raw2template_transformations = dpp.run(
flair_fpath=flair_fpath,
t1_fpath=t1_fpath,
t1ce_fpath=t1ce_fpath,
t2_fpath=t2_fpath,
)
# register images at template to brats T1CE
brats_t1ce_fpath = next(seg_fpath.parent.glob('*t1Gd.nii*'))
template2brats_transformation = greedy_registration(
brats_t1ce_fpath,
modalities_at_template['t1ce'].get_filename(),
str(tmpdir/'template_to_brats.mat'),
)
# apply transformations to the raw images
modalities_registered = dict()
for mod, mod_fpath in {'t1': t1_fpath, 't1ce': t1ce_fpath,
'flair': flair_fpath, 't2': t2_fpath}.items():
mod_transforms = [template2brats_transformation, ] + raw2template_transformations[mod]
modalities_registered[mod] = greedy_apply_transforms(
str(mod_fpath),
str(brats_t1ce_fpath),
str(tmpdir/('brats_'+mod_fpath.name)),
mod_transforms,
)
# correct affine matrix of images to the std orientation
def fix_affine(image):
ornt = axcodes2ornt(aff2axcodes(image.affine))
image_data = apply_orientation(image.get_fdata(), ornt)
new_affine = image.affine @ inv_ornt_aff(ornt, image_data.shape)
return nib.Nifti1Image(image_data, new_affine, image.header)
t1_image = fix_affine(nib.load(modalities_registered['t1']))
t1ce_image = fix_affine(nib.load(modalities_registered['t1ce']))
t2_image = fix_affine(nib.load(modalities_registered['t2']))
flair_image = fix_affine(nib.load(modalities_registered['flair']))
# store raw images (w/o skull-stripping)
nobe_dir = dst_dir/'X/NoBE'
nobe_dir.mkdir(exist_ok=True)
registered_modalities = {
m: nobe_dir/f"{tcga_id}_{modality_number[m]}.nii.gz"
for m in ['t1', 't1ce', 't2', 'flair']
}
nib.save(t1_image, registered_modalities['t1'])
nib.save(t1ce_image, registered_modalities['t1ce'])
nib.save(t2_image, registered_modalities['t2'])
nib.save(flair_image, registered_modalities['flair'])
# fix segmentation labels
fixed_seg_fpath = tmpdir/('fixed_'+seg_fpath.name)
copy_BraTS_segmentation_and_convert_labels(str(seg_fpath),
str(fixed_seg_fpath))
seg = nib.load(fixed_seg_fpath)
seg = nib.Nifti1Image(seg.get_fdata().astype('uint8'),
seg.affine, seg.header)
seg.set_data_dtype('uint8') # store labels as uint to save disk
seg = fix_affine(seg)
nib.save(seg, dst_dir/'y'/f"{tcga_id}_seg.nii.gz")
# apply BE methods
be_methods = {
'HD-BET-fast': apply_hd_bet_fast,
'HD-BET': apply_hd_bet,
'BET': apply_bet,
'BET-reduced-bias': apply_bet_reduced_bias,
# INSERT NEW METHOD HERE
# 'new-be-method': apply_new_be_method
}
for be_method, apply_be_method in be_methods.items():
brain_mask_fpath = apply_be_method(registered_modalities, tmpdir)
brain_mask = nib.load(brain_mask_fpath)
be_dir = dst_dir/f"X/{be_method}"
be_dir.mkdir(exist_ok=True)
for modality, modality_fpath in registered_modalities.items():
# besides BE, also shifts histogram to match brats images
brain_modality_fpath = apply_mask_match_brats(
modality_fpath,
brain_mask_fpath,
tmpdir/'brain_'
)
shutil.move(brain_modality_fpath, be_dir/modality_fpath.name)
# clear temporary files
shutil.rmtree(tmpdir, ignore_errors=True)
tmpdir.mkdir(exist_ok=True)