-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetaflow_train.py
931 lines (855 loc) · 34.6 KB
/
metaflow_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
import logging
import os
from dotenv import load_dotenv
from metaflow import FlowSpec, Parameter, card, current, step
from metaflow.cards import Image
class PrintLogger(logging.Logger):
"""
Metaflow uses python `print()` to log stuff. I just don't like it very much.
"""
def handle(self, record):
print(f"{record.name}: {record.msg}")
class FacialRecognitionTrainFlow(FlowSpec):
bucket = Parameter("bucket", default="facial-recognition-bucket", type=str)
dataset_root_key = Parameter(
"dataset_root_key",
default="lfw_dataset",
type=str,
)
dataset_csv_key = Parameter(
"dataset_csv",
default="lfw_dataset/lfw.csv",
type=str,
)
dataset_images_root = Parameter(
"dataset_filename",
default="lfw_dataset/lfw/",
type=str,
)
dataset_in_batch_num_samples_per_label = Parameter(
"dataset_in_batch_num_samples_per_label", default=2, type=int
)
train_people_frac = Parameter(
"train_people_frac",
default=0.6,
type=float,
)
dev_people_frac = Parameter(
"dev_people_frac",
default=0.2,
type=float,
)
test_people_frac = Parameter(
"test_people_frac",
default=0.2,
type=float,
)
model_name = Parameter(
"model_name", default="tf_efficientnet_b0.ns_jft_in1k", type=str
)
model_init_kwargs = Parameter(
"model_init_kwargs",
default={"src_embeddings_dim": 1280, "tgt_embeddings_dim": 300},
type=dict,
)
optimizer = Parameter("optimizer", default="adamw", type=str)
loss = Parameter("loss", default="batch-hard-soft-margin", type=str)
distance = Parameter("distance", default="euclidean", type=str)
learning_rate = Parameter(
"learning_rate",
default=3e-4,
type=float,
)
weight_decay = Parameter(
"weight_decay",
default=1e-2,
type=float,
)
max_epochs = Parameter("max_epochs", default=1, type=int)
evals_per_epoch = Parameter("evals_per_epoch", default=1, type=int)
early_stopping = Parameter("early_stopping", default=False, type=bool)
early_stopping_patience = Parameter("early_stopping_patience", default=1, type=int)
train_batch_size = Parameter("train_batch_size", default=64, type=int)
eval_batch_size = Parameter("eval_batch_size", default=64, type=int)
resize_hw = Parameter("resize_hw", default=(224, 224), type=tuple)
norm_mean = Parameter("norm_mean", default=(0.485, 0.456, 0.406), type=tuple)
norm_std = Parameter("norm_std", default=(0.229, 0.224, 0.225), type=tuple)
augmentation_level = Parameter("augmentation_level", default="high", type=str)
clip_grad_norm = Parameter("clip_grad_norm", default=True, type=bool)
@property
def logger(self):
"""
Get the logger for this class
"""
logger = PrintLogger(name=self.__class__.__name__, level=logging.INFO)
return logger
@step
def start(self):
"""
This is the 'start' step. All flows must have a step named 'start' that
is the first step in the flow.
"""
self.logger.info("FacialRecognitionTrainFlow is starting.")
self.next(self.validate_params)
@step
def validate_params(self):
"""
Verifies that user informed `Parameters` are within expected ranges and values.
"""
assert (
self.train_people_frac + self.dev_people_frac + self.test_people_frac
) == 1, "train, dev, test people frac should sum to one"
assert (
self.dataset_in_batch_num_samples_per_label > 1
), "`dataset_in_batch_num_samples_per_label` should be > 1"
assert self.model_name in [
"resnet18",
"efficientnet_b0",
"tf_efficientnet_b0.ns_jft_in1k",
], "`model_name` not implemented"
assert self.optimizer in ["sgd", "adamw"], "`optimizer` not implemented"
assert self.optimizer in ["sgd", "adamw"], "`optimizer` not implemented"
assert self.loss in [
"batch-hard-soft-margin",
"batch-hard",
], "`loss` not implemented"
assert self.distance in ["euclidean", "cosine"], "`distance` not implemented"
assert (
1e-2 >= self.learning_rate and self.learning_rate >= 1e-5
), "`learning_rate` too big or too small"
assert (
1e-1 >= self.weight_decay and self.weight_decay >= 0
), "`weight_decay` too big or too small"
assert (
self.train_batch_size >= 16
), "`train_batch_size` cant be that small, we need to sample triplets online"
assert self.max_epochs >= 1, "`max_epochs`should be positive"
assert self.evals_per_epoch >= 1, "`evals_per_epoch` should be positive"
if self.early_stopping:
assert self.early_stopping_patience < (
self.max_epochs * self.evals_per_epoch
), "`early_stopping_patience` should be smaller than the total number of evaluations"
assert (
self.resize_hw[0] > 1 and self.resize_hw[1] > 1
), "`resize_hw` should be positive"
assert (
len(self.resize_hw) == 2
), "`resize_hw` should be a tuple of height and width"
assert (
len(self.norm_mean) == 3
), "`norm_mean` should be a tuple of channel means (R, G and B)"
assert (
len(self.norm_std) == 3
), "`norm_std` should be a tuple of channel stds (R, G and B)"
assert self.augmentation_level in [
"none",
"low",
"high",
], "`augmentation_level` not implemented"
self.logger.info("Params OK.")
self.next(self.train_dev_test_split)
@step
def train_dev_test_split(self):
"""
Splits data into train, dev and test sets, mining static hard triplets for the last two.
Saves splits at a unique path on s3.
"""
import json
import os
from uuid import uuid4
import boto3
import numpy as np
import pandas as pd
from supertriplets.encoder import PretrainedSampleEncoder
from supertriplets.evaluate import HardTripletsMiner
from supertriplets.sample import ImageSample
from src.train.utils import (
delete_path,
s3_download_all,
s3_load_csv,
s3_save_csv,
)
# reading csv data
self.logger.info("Loading csv from s3..")
s3_client = boto3.client(
"s3",
aws_access_key_id=os.environ["S3_ACCESS_KEY"],
aws_secret_access_key=os.environ["S3_SECRET_KEY"],
endpoint_url=os.environ["S3_URL"],
)
df = s3_load_csv(
s3_client=s3_client, src_bucket=self.bucket, src_key=self.dataset_csv_key
)
self.logger.info("Downloading dataset from s3..")
saving_folder_name = os.path.join("/tmp", str(uuid4()))
s3_download_all(
s3_client=s3_client,
src_bucket=self.bucket,
src_key=self.dataset_images_root,
tgt_local_directory=saving_folder_name,
)
# wrangle columns to supertriplets expected format
self.logger.info("Wrangling data to expected format..")
df["label"] = df["person_id"].astype(int)
df["image_path"] = (df["person"] + "/" + df["image_path"]).apply(
lambda x: os.path.join(saving_folder_name, x)
)
df = df[["label", "image_path"]]
# split people (labels) into train, dev, test data
self.logger.info("Splitting people (labels) into train, dev, test..")
available_ids = df.label.unique().tolist()
np.random.seed(42)
np.random.shuffle(available_ids)
num_ids = len(available_ids)
train_size = int(self.train_people_frac * num_ids)
dev_size = int(self.dev_people_frac * num_ids)
test_size = num_ids - train_size - dev_size
self.metadata = {
"trainset_num_people": train_size,
"devset_num_people": dev_size,
"testset_num_people": test_size,
}
train_set = df[df.label.isin(available_ids[:train_size])].reset_index(drop=True)
dev_set = df[
df.label.isin(available_ids[train_size : train_size + dev_size])
].reset_index(drop=True)
test_set = df[
df.label.isin(available_ids[train_size + dev_size :])
].reset_index(drop=True)
# finding dev and test static triplets
self.logger.info("Mining hard triplets for the dev and test dataset..")
device = "cuda:0"
dev_examples = [
ImageSample(image_path=image_path, label=label)
for image_path, label in zip(dev_set["image_path"], dev_set["label"])
]
test_examples = [
ImageSample(image_path=image_path, label=label)
for image_path, label in zip(test_set["image_path"], test_set["label"])
]
pretrained_encoder = PretrainedSampleEncoder(modality="image")
dev_embeddings = pretrained_encoder.encode(
examples=dev_examples, device=device, batch_size=self.eval_batch_size
)
test_embeddings = pretrained_encoder.encode(
examples=test_examples, device=device, batch_size=self.eval_batch_size
)
del pretrained_encoder
hard_triplet_miner = HardTripletsMiner(use_gpu_powered_index_if_available=True)
(
dev_anchor_examples,
dev_positive_examples,
dev_negative_examples,
) = hard_triplet_miner.mine(
examples=dev_examples,
embeddings=dev_embeddings,
normalize_l2=True,
sample_from_topk_hardest=5,
)
(
test_anchor_examples,
test_positive_examples,
test_negative_examples,
) = hard_triplet_miner.mine(
examples=test_examples,
embeddings=test_embeddings,
normalize_l2=True,
sample_from_topk_hardest=5,
)
del hard_triplet_miner
dev_set = pd.DataFrame(
[
{
**{"anchor_" + k: v for k, v in a.data().items()},
**{"positive_" + k: v for k, v in p.data().items()},
**{"negative_" + k: v for k, v in n.data().items()},
}
for a, p, n in zip(
dev_anchor_examples, dev_positive_examples, dev_negative_examples
)
]
)
test_set = pd.DataFrame(
[
{
**{"anchor_" + k: v for k, v in a.data().items()},
**{"positive_" + k: v for k, v in p.data().items()},
**{"negative_" + k: v for k, v in n.data().items()},
}
for a, p, n in zip(
test_anchor_examples, test_positive_examples, test_negative_examples
)
]
)
# fix image_path col
train_set["image_path"] = train_set["image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
dev_set["anchor_image_path"] = dev_set["anchor_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
dev_set["positive_image_path"] = dev_set["positive_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
dev_set["negative_image_path"] = dev_set["negative_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
test_set["anchor_image_path"] = test_set["anchor_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
test_set["positive_image_path"] = test_set["positive_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
test_set["negative_image_path"] = test_set["negative_image_path"].apply(
lambda x: x.split(saving_folder_name)[-1][1:]
)
# saving train, dev and test data
self.logger.info(
"Saving training dataset and dev/test mined hard triplets datasets.."
)
random_id = str(uuid4())
self.train_set_key = f"/train/{random_id}/train.csv"
s3_save_csv(
df=train_set,
s3_client=s3_client,
target_bucket=self.bucket,
target_key=self.train_set_key,
)
self.dev_set_key = f"/train/{random_id}/dev.csv"
s3_save_csv(
df=dev_set,
s3_client=s3_client,
target_bucket=self.bucket,
target_key=self.dev_set_key,
)
self.test_set_key = f"/train/{random_id}/test.csv"
s3_save_csv(
df=test_set,
s3_client=s3_client,
target_bucket=self.bucket,
target_key=self.test_set_key,
)
self.metadata.update(
{
"trainset_size": len(train_set),
"devset_size": len(dev_set),
"testset_size": len(test_set),
}
)
self.logger.info(json.dumps(self.metadata, indent=4))
# cleanup
self.logger.info("Deleting everything downloaded..")
delete_path(saving_folder_name)
self.next(self.finetune)
@card(type="blank")
@step
def finetune(self):
"""
Loads data splits from s3 and fine-tunes a pretrained neural network for metric learning with online mined hard triplets.
"""
import json
import math
import os
from io import BytesIO
from uuid import uuid4
import boto3
import joblib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from sklearn.calibration import calibration_curve
from sklearn.isotonic import IsotonicRegression
from sklearn.metrics import accuracy_score, f1_score
from supertriplets.dataset import OnlineTripletsDataset, StaticTripletsDataset
from supertriplets.distance import CosineDistance, EuclideanDistance
from supertriplets.evaluate import TripletEmbeddingsEvaluator
from supertriplets.loss import (
BatchHardSoftMarginTripletLoss,
BatchHardTripletLoss,
)
from supertriplets.sample import ImageSample
from supertriplets.utils import move_tensors_to_device
from torch.utils.data import DataLoader
from tqdm import tqdm
from src.inference.config import ProductionConfig
from src.inference.model import init_model, load_state_dict, save_state_dict
from src.train.encoding import get_triplet_embeddings
from src.train.preprocessing import get_augmentations, load_input_example
from src.train.utils import (
MetricTracker,
delete_path,
get_cosine_similarity_scores_shuffled,
s3_download_all,
s3_load_csv,
set_seed,
)
# reading csv data
self.logger.info("Downloading dataset from s3..")
s3_client = boto3.client(
"s3",
aws_access_key_id=os.environ["S3_ACCESS_KEY"],
aws_secret_access_key=os.environ["S3_SECRET_KEY"],
endpoint_url=os.environ["S3_URL"],
)
saving_folder_name = os.path.join("/tmp", str(uuid4()))
s3_download_all(
s3_client=s3_client,
src_bucket=self.bucket,
src_key=self.dataset_images_root,
tgt_local_directory=saving_folder_name,
)
# locking random seeds
self.logger.info("Locking random seeds..")
set_seed(42)
# loading train, dev and test data
self.logger.info(
"Loading training dataset and dev/test mined hard triplets datasets.."
)
s3_client = boto3.client(
"s3",
aws_access_key_id=os.environ["S3_ACCESS_KEY"],
aws_secret_access_key=os.environ["S3_SECRET_KEY"],
endpoint_url=os.environ["S3_URL"],
)
train_data = s3_load_csv(
s3_client=s3_client, src_bucket=self.bucket, src_key=self.train_set_key
)
dev_data = s3_load_csv(
s3_client=s3_client, src_bucket=self.bucket, src_key=self.dev_set_key
)
test_data = s3_load_csv(
s3_client=s3_client, src_bucket=self.bucket, src_key=self.test_set_key
)
# creating supertriplet samples
self.logger.info("Creating Samples from dfs..")
# train ImageSamples
train_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(train_data["image_path"], train_data["label"])
]
# dev ImageSamples
dev_anchor_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
dev_data["anchor_image_path"], dev_data["anchor_label"]
)
]
dev_positive_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
dev_data["positive_image_path"], dev_data["positive_label"]
)
]
dev_negative_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
dev_data["negative_image_path"], dev_data["negative_label"]
)
]
# test ImageSamples
test_anchor_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
test_data["anchor_image_path"], test_data["anchor_label"]
)
]
test_positive_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
test_data["positive_image_path"], test_data["positive_label"]
)
]
test_negative_examples = [
ImageSample(
image_path=os.path.join(saving_folder_name, image_path), label=label
)
for image_path, label in zip(
test_data["negative_image_path"], test_data["negative_label"]
)
]
# loading model
self.logger.info("Loading model..")
device = "cuda:0"
model = init_model(
model_name=self.model_name, model_init_kwargs=self.model_init_kwargs
)
model.to(device)
model.eval()
# defining torch datasets
self.logger.info("Building torch train/dev/test Datasets..")
trainset = OnlineTripletsDataset(
examples=train_examples,
in_batch_num_samples_per_label=self.dataset_in_batch_num_samples_per_label,
batch_size=self.train_batch_size,
sample_loading_func=load_input_example,
sample_loading_kwargs={
"transform": get_augmentations(
level=self.augmentation_level,
resize_hw=self.resize_hw,
norm_mean=self.norm_mean,
norm_std=self.norm_std,
)
},
)
devset = StaticTripletsDataset(
anchor_examples=dev_anchor_examples,
positive_examples=dev_positive_examples,
negative_examples=dev_negative_examples,
sample_loading_func=load_input_example,
sample_loading_kwargs={
"transform": get_augmentations(
level="none",
resize_hw=self.resize_hw,
norm_mean=self.norm_mean,
norm_std=self.norm_std,
)
},
)
testset = StaticTripletsDataset(
anchor_examples=test_anchor_examples,
positive_examples=test_positive_examples,
negative_examples=test_negative_examples,
sample_loading_func=load_input_example,
sample_loading_kwargs={
"transform": get_augmentations(
level="none",
resize_hw=self.resize_hw,
norm_mean=self.norm_mean,
norm_std=self.norm_std,
)
},
)
# defining torch dataloaders
self.logger.info("Building torch train/dev/test DataLoaders..")
trainloader = DataLoader(
dataset=trainset,
batch_size=self.train_batch_size,
num_workers=1,
drop_last=True,
)
devloader = DataLoader(
dataset=devset,
batch_size=self.eval_batch_size,
shuffle=False,
num_workers=1,
drop_last=False,
)
testloader = DataLoader(
dataset=testset,
batch_size=self.eval_batch_size,
shuffle=False,
num_workers=1,
drop_last=False,
)
# training config
self.logger.info("Configuring criterion, optimizer..")
param_optimizer = model.parameters()
match self.optimizer:
case "sgd":
optimizer = torch.optim.SGD(
param_optimizer,
lr=self.learning_rate,
weight_decay=self.weight_decay,
)
case "adamw":
optimizer = torch.optim.AdamW(
param_optimizer,
lr=self.learning_rate,
weight_decay=self.weight_decay,
)
case _:
raise NotImplementedError(f"Optimizer `{self.optimizer}` not available")
match self.loss, self.distance:
case "batch-hard", "cosine":
criterion = BatchHardTripletLoss(
distance=CosineDistance(alredy_l2_normalized_vectors=False),
margin=5,
)
case "batch-hard", "euclidean":
criterion = BatchHardTripletLoss(
distance=EuclideanDistance(squared=False), margin=5
)
case "batch-hard-soft-margin", "cosine":
criterion = BatchHardSoftMarginTripletLoss(
distance=CosineDistance(alredy_l2_normalized_vectors=False)
)
case "batch-hard-soft-margin", "euclidean":
criterion = BatchHardSoftMarginTripletLoss(
distance=EuclideanDistance(squared=False)
)
case _:
raise NotImplementedError(
f"Loss `{self.loss}` with distance `{self.distance}` not available"
)
# init embeddings evaluator
triplet_embeddings_evaluator = TripletEmbeddingsEvaluator(
calculate_by_cosine=True,
calculate_by_manhattan=True,
calculate_by_euclidean=True,
)
# calculate initial metrics
self.logger.info("Calculating baseline dev accuracy..")
dev_triplet_embeddings = get_triplet_embeddings(
dataloader=devloader, model=model, device=device
)
dev_start_accuracies = triplet_embeddings_evaluator.evaluate(
embeddings_anchors=dev_triplet_embeddings["anchors"],
embeddings_positives=dev_triplet_embeddings["positives"],
embeddings_negatives=dev_triplet_embeddings["negatives"],
)
self.logger.info(json.dumps(dev_start_accuracies, indent=4))
metric_tracker = MetricTracker()
for k, v in dev_start_accuracies.items():
metric_tracker.log(name=f"dev_{k}", value=v, epoch=1, step=0)
# optimization loop
self.logger.info("Training..")
step = 0
max_step = self.max_epochs * len(trainloader)
eval_steps = [
math.ceil(len(trainloader) / (self.evals_per_epoch))
* i # within epoch steps case
if i % self.evals_per_epoch != 0
else (i / self.evals_per_epoch)
* len(trainloader) # epoch ending steps case
for i in range(1, (self.evals_per_epoch * self.max_epochs) + 1)
]
this_path_id = str(uuid4())
out_path = os.path.join("/tmp", this_path_id)
os.makedirs(out_path, exist_ok=True)
state_dict_path = os.path.join(out_path, "facial_recognition_model.pth")
curr_es_patience = 0
best_accuracy = -999
all_train_losses = []
for epoch in range(1, self.max_epochs + 1):
self.logger.info(f"Start of epoch {epoch}/{self.max_epochs}")
for batch in tqdm(
trainloader, total=len(trainloader), desc=f"Epoch {epoch}"
):
model.train()
data = batch["samples"]
labels = move_tensors_to_device(obj=data.pop("label"), device=device)
inputs = move_tensors_to_device(obj=data, device=device)
optimizer.zero_grad()
embeddings = model(**inputs)
loss = criterion(embeddings=embeddings, labels=labels)
loss.backward()
if self.clip_grad_norm:
torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm=1, norm_type=2
)
optimizer.step()
step += 1
all_train_losses.append(loss.item())
metric_tracker.log(
name="train_loss_50batches_movavg",
value=np.mean(all_train_losses[-50:]),
epoch=epoch,
step=step,
)
metric_tracker.log(
name="train_loss", value=loss.item(), epoch=epoch, step=step
)
if step in eval_steps:
with torch.no_grad():
self.logger.info(
f"Step {int(step)}/{int(max_step)}: evaluating.."
)
dev_triplet_embeddings = get_triplet_embeddings(
dataloader=devloader, model=model, device=device
)
dev_accuracies = triplet_embeddings_evaluator.evaluate(
embeddings_anchors=dev_triplet_embeddings["anchors"],
embeddings_positives=dev_triplet_embeddings["positives"],
embeddings_negatives=dev_triplet_embeddings["negatives"],
)
for k, v in dev_accuracies.items():
metric_tracker.log(
name=f"dev_{k}", value=v, epoch=epoch, step=step
)
dev_max_accuracy = max(dev_accuracies.values())
if dev_max_accuracy >= best_accuracy:
self.logger.info(
f"New best model: dev_max_accuracy {round(best_accuracy, 3)} -> {round(dev_max_accuracy, 3)}"
)
save_state_dict(
model=model, state_dict_path=state_dict_path
)
best_accuracy = dev_max_accuracy
if self.early_stopping:
curr_es_patience = 0
else:
self.logger.info("No increase in accuracy")
if self.early_stopping:
curr_es_patience += 1
self.logger.info(f"ES patience: {curr_es_patience}")
if curr_es_patience >= self.early_stopping_patience:
self.logger.info(f"ES max patience reached")
break
else:
continue
break
self.logger.info("Ending of optimization loop")
# loading and encoding dev/test for score calibration
self.logger.info("Loading best model")
model = init_model(
model_name=self.model_name, model_init_kwargs=self.model_init_kwargs
)
model = load_state_dict(model=model, state_dict_path=state_dict_path)
self.logger.info("Encoding dev triplets")
dev_triplet_embeddings = get_triplet_embeddings(
dataloader=devloader, model=model, device=device
)
self.logger.info("Encoding test triplets")
test_triplet_embeddings = get_triplet_embeddings(
dataloader=testloader, model=model, device=device
)
self.logger.info(
"Creating scores dataframes for dev/test cos_sim(anchor embeddings, pos/neg embeddings)"
)
dev_scores = get_cosine_similarity_scores_shuffled(
anchor_embeddings=dev_triplet_embeddings["anchors"],
positive_embeddings=dev_triplet_embeddings["positives"],
negative_embeddings=dev_triplet_embeddings["negatives"],
)
test_scores = get_cosine_similarity_scores_shuffled(
anchor_embeddings=test_triplet_embeddings["anchors"],
positive_embeddings=test_triplet_embeddings["positives"],
negative_embeddings=test_triplet_embeddings["negatives"],
)
# fitting calibrator
self.logger.info("Fitting calibration model on dev set")
calibrator = IsotonicRegression(
y_min=0, y_max=1, increasing=True, out_of_bounds="clip"
)
calibrator.fit(X=dev_scores["score"].values, y=dev_scores["match"].values)
# calibrating
self.logger.info("Calibrating test set scores")
test_scores["calib_score"] = calibrator.transform(test_scores["score"].values)
# measures
self.logger.info("Calculating test set metrics")
metric_tracker.log(
name=f"test_calibrated_accuracy",
value=accuracy_score(
y_true=test_scores["match"].values,
y_pred=(test_scores["calib_score"] >= 0.5).astype(int),
),
epoch=epoch,
step=step,
)
metric_tracker.log(
name=f"test_calibrated_f1_score",
value=f1_score(
y_true=test_scores["match"].values,
y_pred=(test_scores["calib_score"] >= 0.5).astype(int),
),
epoch=epoch,
step=step,
)
test_accuracies = triplet_embeddings_evaluator.evaluate(
embeddings_anchors=test_triplet_embeddings["anchors"],
embeddings_positives=test_triplet_embeddings["positives"],
embeddings_negatives=test_triplet_embeddings["negatives"],
)
for k, v in test_accuracies.items():
metric_tracker.log(name=f"test_{k}", value=v, epoch=epoch, step=step)
# metrics
self.logger.info("Saving metrics")
self.metrics = metric_tracker.metrics
# cards
self.logger.info("Saving plots")
self.logger.info("Saving reliability diagram..")
y_true = test_scores["match"].values
yhat_uncalibrated = test_scores["score"].values
yhat_uncalibrated = np.clip(yhat_uncalibrated, a_min=0, a_max=1)
yhat_calibrated = test_scores["calib_score"].values
fop_uncalibrated, mpv_uncalibrated = calibration_curve(
y_true=y_true,
y_prob=yhat_uncalibrated,
n_bins=10,
)
fop_calibrated, mpv_calibrated = calibration_curve(
y_true=y_true, y_prob=yhat_calibrated, n_bins=10
)
fig = plt.figure()
plt.plot(
[0, 1],
[0, 1],
linestyle="--",
color="black",
label="perfect calibrated line",
)
plt.plot(
mpv_uncalibrated, fop_uncalibrated, marker=".", label="uncalibrated model"
)
plt.plot(mpv_calibrated, fop_calibrated, marker=".", label="calibrated model")
plt.title("uncalibrated vs. calibrated score curves")
plt.xlabel("predicted proba")
plt.ylabel("real proba")
plt.legend()
current.card.append(Image.from_matplotlib(fig, label=f"reliability plot"))
plt.close()
self.logger.info("Saving optimization plots..")
for metric, metric_data in self.metrics.items():
df = pd.DataFrame(metric_data)
fig = plt.figure()
plt.plot(df["step"], df[metric], marker="o", linestyle="-", label=metric)
plt.title(f"{metric} vs. step")
plt.xlabel("step")
plt.ylabel("metric")
plt.grid(True)
plt.legend()
current.card.append(Image.from_matplotlib(fig, label=f"{metric} plot"))
plt.close()
# creating cfg, sending stuff to s3
self.logger.info("Creating ProdConfig and sending models to S3")
self.s3_model_key = f"/models/{this_path_id}/facial_recognition_model.pth"
s3_client.upload_file(state_dict_path, self.bucket, self.s3_model_key)
self.s3_calibrator_key = f"/models/{this_path_id}/calibrator.joblib"
calibrator_bytes = BytesIO()
joblib.dump(calibrator, calibrator_bytes)
calibrator_bytes.seek(0)
s3_client.put_object(
Bucket=self.bucket,
Key=self.s3_calibrator_key,
Body=calibrator_bytes.getvalue(),
)
self.config_params = dict(
model_name=self.model_name,
model_init_kwargs=self.model_init_kwargs,
resize_hw=self.resize_hw,
norm_mean=self.norm_mean,
norm_std=self.norm_std,
s3_model_state_dict_bucket=self.bucket,
s3_model_state_dict_key=self.s3_model_key,
s3_calibrator_bucket=self.bucket,
s3_calibrator_key=self.s3_calibrator_key,
)
self.production_config = ProductionConfig(**self.config_params)
# cleanup
self.logger.info("Deleting everything downloaded..")
delete_path(saving_folder_name)
delete_path(out_path)
self.next(self.end)
@step
def end(self):
"""
This is the 'end' step. All flows must have a step named 'end' that
is the last step in the flow.
"""
self.logger.info("FacialRecognitionTrainFlow is ending.")
if __name__ == "__main__":
load_dotenv(dotenv_path=".env") # take environment variables from .env
FacialRecognitionTrainFlow()