-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.cc
440 lines (381 loc) · 10.7 KB
/
Network.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*Network class implem.*/
#include "Network.h"
float sigmoid(float val)
{
float result=1.0f / (1.0f + exp(-val));
return result;
}
float sigmoidPrime(float val)
{
float result=sigmoid(val) * (1-sigmoid(val));
return result;
}
Network::Layer::Layer(Matrix& weights, Matrix& biases, bool outLayer):
m_weights(weights), m_biases(biases),
m_weightedInputs(weights.getNumRows(),1),
m_activations(weights.getNumRows(),1),
m_errors(weights.getNumRows(),1),
m_biasesErr(biases.getNumRows(),1),
m_weightsErr(weights.getNumRows(),weights.getNumCol()),
m_outLayer(outLayer)
{
}
void Network::Layer::printWeights() const
{
m_weights.print();
puts("");
}
void Network::Layer::printBiases() const
{
m_biases.print();
puts("");
}
void Network::Layer::printWeightedInputs() const
{
m_weightedInputs.print();
puts("");
}
Matrix Network::Layer::feedForward(Matrix& prevAct)
{
m_weightedInputs=m_weights * prevAct + m_biases;
Matrix result(m_weightedInputs);
result.map(sigmoid);
m_activations=result;
return result;
}
void Network::Layer::gradientDescent(Matrix& prevAct)
{
m_biasesErr = m_biasesErr + m_errors;
m_weightsErr= m_errors *(prevAct.transpose());
}
void Network::Layer::updateParams(float etaM,float reg_factor)
{
m_biases=m_biases - (m_biasesErr * etaM);
m_weights = (m_weights * reg_factor) - (m_weightsErr * etaM);
Matrix nBErr(m_biases.getNumRows(), 1);
Matrix nWErr(m_weights.getNumRows(), m_weights.getNumCol());
m_biasesErr = nBErr;
m_weightsErr = nWErr;
}
Matrix Network::Layer::getWeightedInputs() const
{
return m_weightedInputs;
}
void Network::Layer::setErrors(const Matrix& err)
{
m_errors=err;
}
const Matrix& Network::Layer::getErrors() const
{
return m_errors;
}
const Matrix& Network::Layer::getWeights() const
{
return m_weights;
}
const Matrix& Network::Layer::getBiases() const
{
return m_biases;
}
const Matrix& Network::Layer::getActivations() const
{
return m_activations;
}
//-----------------------------------Layer--------------------------------------------------
/* Construct the network from the vector containing the size of each layer
Total number of layers is sizes.size();
The first layer is the input layer and has no weights and biases, activation values
are provided as input for the network.
*/
Network::Network(std::vector<size_t> &sizes,NetworkParameters cfg):
layerSizes(sizes),
config(cfg)
{
size_t numNeurons=0;
size_t numWeights=0;
for (size_t i = 0; i < sizes.size(); i++)
{
numNeurons+=sizes[i];
if(i>0)
numWeights+=sizes[i-1] * sizes[i];
}
// construct a trivial random generator engine from a time-based seed:
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
//seed=2;//fixed values for debug
std::default_random_engine generator (seed);
std::normal_distribution<float> distribution (0.0f,1.0f);
float weights[numWeights];
float biases[numNeurons-sizes[0]];
/* create random weights and biases */
for (size_t i=0; i<numWeights; ++i)
weights[i]=distribution(generator);
for (size_t i=0; i<numNeurons-sizes[0]; ++i) // no biases for the first layer
biases[i]=distribution(generator);
// Create layers
float* cW=weights;
float* cB=biases;
for (size_t i=0; i<sizes.size(); ++i)
{
if(i==0)
{
Matrix weightsM(sizes[i],1);
Matrix biasesM(sizes[i],1);
Layer* current = new Layer(weightsM, biasesM);
layers.push_back(current);
}
else
{
Matrix weightsM(sizes[i],sizes[i-1],cW);
//optimize weights initialization
if(config.weightInitOpt)
{
weightsM=weightsM * (1.0f / sqrt((float)sizes[i-1]));
}
Matrix biasesM(sizes[i],1,cB);
Layer* current = new Layer(weightsM, biasesM, (i==sizes.size() - 1));
layers.push_back(current);
cW+=(sizes[i]*sizes[i-1]);
cB+=(sizes[i]);
}
//printf("Layer %lu ok.\n",i);
}
}
/* Construct the network from a save file.
*/
Network::Network(const std::string& filename)
{
load(filename);
}
void Network::printNetwork() const
{
for (size_t i = 1; i < layers.size(); i++)
{
Layer* c=layers.at(i);
printf("Layer %lu biases:\n",i);
c->printBiases();
printf("Layer %lu weights:\n",i);
c->printWeights();
}
}
void Network::printBiases() const
{
for (size_t i = 1; i < layers.size(); i++)
{
Layer* c=layers.at(i);
printf("Layer %lu biases:",i);
c->printBiases();
}
}
void Network::printWeightedInputs() const
{
for (size_t i = 1; i < layers.size(); i++)
{
Layer* c=layers.at(i);
printf("Layer %lu weighted sums:\n",i);
c->printWeightedInputs();
}
}
void Network::printWeights() const
{
for (size_t i = 1; i < layers.size(); i++)
{
printf("Layer %lu weights:\n",i);
Layer* c=layers.at(i);
c->printWeights();
}
puts("");
}
Matrix Network::feedForward(Matrix& input)
{
//puts("Feeding forward...");
Matrix cInput(input);
for (size_t i = 1; i < layers.size(); i++)
{
Layer* cL=layers.at(i);
cInput = cL->feedForward(cInput);
}
return cInput;
}
Matrix Network::backpropagateError(Matrix& input, Matrix& desiredOut)
{
Layer* cLayer=layers[layers.size() - 1];
/*
The error for the last layer is calculated as the hadamard product
of the folowing vectors:
1. (a(L) - y)
2. SigmoidPrime(z)
For the CrossEntropy cost function the error is just 1.
*/
//1.
Matrix first=feedForward(input) - desiredOut;
//2.
Matrix second=cLayer->getWeightedInputs();
if(config.costFn == QuadraticCostFunction)
{
second.map(sigmoidPrime);
//hadamard
first = first.hadamard(second);
}
cLayer->setErrors(first);
for (size_t i = layers.size() - 2; i >0; --i)
{
/* For backpropagation calculate the error in the current layer
as the hadamard product of the vectors:
1. Transposed matrix of next layer * next layer error vector
2. SigmoidPrime(z) for current layer
*/
//1.
Layer* prevLayer=layers[i+1];
first = prevLayer->getWeights();
first=(first.transpose() * prevLayer->getErrors());
//2.
cLayer = layers[i];
second=cLayer->getWeightedInputs();
second.map(sigmoidPrime);
//hadamard
first = first.hadamard(second);
cLayer->setErrors(first);
}
return first;
}
void Network::gradientDescent(Matrix& input,
Matrix& desired)
{
backpropagateError(input,desired);
Matrix prevAct(input);
for (size_t i = 1; i < layers.size(); ++i)
{
Layer* cLayer=layers[i];
cLayer->gradientDescent(prevAct);
prevAct=cLayer->getActivations();
}
}
void Network::trainNetwork(std::vector<Matrix>& inputs,
std::vector<Matrix>& outputs,
float eta, size_t batchSz, float reg_factor)
{
if(config.regType == NoRegularization)
{
reg_factor=1.0;
}
for (size_t i = 0; i < inputs.size(); i+=batchSz)
{
for (size_t j = 0; j < batchSz; ++j)
{
gradientDescent(inputs[i+j], outputs[i+j]);
}
for (size_t j = 1; j < layers.size(); ++j)
{
Layer* cLayer=layers[j];
float fact=eta/((float) batchSz);
cLayer->updateParams(fact, reg_factor);
}
}
}
size_t Network::predict(Matrix& input)
{
Matrix out = feedForward(input);
size_t idx = 0;
float max = out.getAt(0,0);
for (size_t i = 0; i < out.getNumRows(); ++i)
{
float c = out.getAt(i,0);
if(c>max)
{
max=c;
idx=i;
}
}
return idx;
}
size_t Network::evaluate(std::vector<Matrix>& inputs,
std::vector<Matrix>& outputs)
{
size_t numIn=inputs.size();
size_t correct=0;
printf("Evaluating %lu inputs....\n",numIn);
for (size_t i = 0; i < numIn; ++i)
{
size_t cPred=predict(inputs[i]);
if(outputs[i].getAt(cPred,0) ==1.0f)
{
correct++;
}
//printf("Finished at %lu\n",i);
}
float percent=(((float)correct * 100) / ((float)numIn));
printf("\t\t%.1f%% predicted correctly.\n",percent);
return correct;
}
void Network::save(const std::string& filename) const
{
NetworkFileHeader fh;
fh.magicNum = 0xAFFE;
fh.numLayers=layerSizes.size();
std::unique_ptr<FILE, FileDeleter> fNet(fopen(filename.c_str(),"wb"));
size_t nElem=fwrite(&fh, sizeof(fh),1,fNet.get());
if(nElem!=1) puts("Error saving network!");
//Saving layer sizes
for (int i = 0; i < layerSizes.size(); ++i)
{
size_t sz=layerSizes[i];
nElem=fwrite(&sz, sizeof(sz),1,fNet.get());
if(nElem!=1) puts("Error saving network!");
}
//Saving layers
//Skipping first layer as it doesn't have weights or biases
for (int i = 1; i < layerSizes.size(); ++i)
{
Layer* cLayer=layers[i];
std::vector<float> weights=cLayer->getWeights().getMatrix();
std::vector<float> biases =cLayer->getBiases().getMatrix();
nElem = fwrite(weights.data(), sizeof(float),weights.size(),fNet.get());
if(nElem!=weights.size()) puts("Error saving weights!");
nElem = fwrite(biases.data(), sizeof(float),biases.size(),fNet.get());
if(nElem!=biases.size()) puts("Error saving biases!");
}
printf("Network successfully saved to \"%s\"!\n", filename.c_str());
}
void Network::load(const std::string& filename)
{
NetworkFileHeader fh;
std::unique_ptr<FILE, FileDeleter> fNet(fopen(filename.c_str(),"rb"));
size_t nElem=fread(&fh, sizeof(fh),1,fNet.get());
if(nElem!=1)puts("Error reading network save file!");
else
{
if(fh.magicNum!=0xAFFE) puts("The file does not apear to be a network save file!");
else
{
layerSizes.clear();
size_t data[fh.numLayers];
nElem=fread(data, sizeof(data),1,fNet.get());
if(nElem!=1)puts("Error reading layer sizes!");
layerSizes.assign(data, data+fh.numLayers);
layers.clear();
for (int i = 0; i < layerSizes.size(); ++i)
{
if(i==0)
{
Matrix weightsM(layerSizes[i],1);
Matrix biasesM(layerSizes[i],1);
Layer* current = new Layer(weightsM, biasesM);
layers.push_back(current);
}
else
{
//number of weights + number of biases
size_t numParams= layerSizes[i]*layerSizes[i-1] + layerSizes[i];
float paramData[numParams];
nElem=fread(paramData, sizeof(paramData),1,fNet.get());
if(nElem!=1) printf("Error reading layer %i data!\n",i);
Matrix weightsM(layerSizes[i],layerSizes[i-1],paramData);
Matrix biasesM(layerSizes[i],1,paramData + layerSizes[i]*layerSizes[i-1]);
Layer* current = new Layer(weightsM, biasesM, (i==layerSizes.size() - 1));
layers.push_back(current);
}
}
puts("Network loaded successfully!");
}
}
}