-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Pau Riba
committed
Feb 12, 2019
1 parent
91be026
commit c0cfc2c
Showing
1 changed file
with
42 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import argparse | ||
import torch | ||
from fml.nn import ChamferLoss | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='SikhornLoss between two batchs of points.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
# Create a loss function module with default parameters. See the class documentation for optional parameters. | ||
loss_fun = ChamferLoss() | ||
|
||
# Compute the loss between each pair of sets in the minibatch | ||
# loss is a tensor with [minibatch_size] elements which can be backpropagated through | ||
loss = loss_fun(set_a, set_b) | ||
|
||
print('Loss') | ||
print(loss) | ||
|