-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from priba/master
pairwise distance abs()
- Loading branch information
Showing
6 changed files
with
195 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import argparse | ||
import torch | ||
from fml.nn import ChamferLoss | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='SikhornLoss between two batchs of points.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
# Create a loss function module with default parameters. See the class documentation for optional parameters. | ||
loss_fun = ChamferLoss() | ||
|
||
# Compute the loss between each pair of sets in the minibatch | ||
# loss is a tensor with [minibatch_size] elements which can be backpropagated through | ||
loss = loss_fun(set_a, set_b) | ||
|
||
print('Loss') | ||
print(loss) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import argparse | ||
import torch | ||
from fml.functional import pairwise_distances | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='Pairwise distance between two batchs of points.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
parser.add_argument('--lp_distance', '-p', type=int, default=2, | ||
help='p for the Lp-distance.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
# Compute the pairwise distances between each pair of sets in the minibatch | ||
# distances is a tensor of shape [minibatch_size, set_size, set_size] where each | ||
# distances[k, i, j] = ||set_a[k, i] - set_b[k, j]||^2 | ||
distances = pairwise_distances(set_a, set_b, p=args.lp_distance) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
print('Distance') | ||
print(distances) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import argparse | ||
import torch | ||
from fml.nn import SinkhornLoss | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='SikhornLoss between two batchs of points.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
parser.add_argument('--transport_matrix', '-tm', action='store_true', | ||
help='Return transport matrix.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
# Create a loss function module with default parameters. See the class documentation for optional parameters. | ||
loss_fun = SinkhornLoss(return_transport_matrix=args.transport_matrix) | ||
|
||
# Compute the loss between each pair of sets in the minibatch | ||
# loss is a tensor with [minibatch_size] elements which can be backpropagated through | ||
if args.transport_matrix: | ||
loss, P = loss_fun(set_a, set_b) | ||
print('Transport Matrix') | ||
print(P) | ||
else: | ||
loss = loss_fun(set_a, set_b) | ||
|
||
print('Loss') | ||
print(loss) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import argparse | ||
import torch | ||
from fml.functional import pairwise_distances, sinkhorn | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='Sinkhorn loss using the functional interface.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
parser.add_argument('--lp_distance', '-p', type=int, default=2, | ||
help='p for the Lp-distance.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
a = torch.ones(set_a.shape[0:2], | ||
requires_grad=False, | ||
device=set_a.device) / set_a.shape[1] | ||
|
||
b = torch.ones(set_b.shape[0:2], | ||
requires_grad=False, | ||
device=set_b.device) / set_b.shape[1] | ||
|
||
# Compute the cost matrix | ||
M = pairwise_distances(set_a, set_b, p=args.lp_distance) | ||
|
||
print('Distance') | ||
print(M) | ||
|
||
# Compute the transport matrix between each pair of sets in the minibatch with default parameters | ||
P = sinkhorn(a, b, M, 1e-3) | ||
|
||
print('Transport Matrix') | ||
print(P) | ||
|
||
# Compute the loss | ||
loss = (M * P).sum(2).sum(1) | ||
|
||
print('Loss') | ||
print(loss) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters