-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from priba/master
Initialization for the sinkhorn iterations
- Loading branch information
Showing
5 changed files
with
165 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import argparse | ||
import torch | ||
from fml.functional import pairwise_distances, sinkhorn | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='Sinkhorn loss using the functional interface.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set1_size', '-sz1', type=int, default=5, | ||
help='Set size.') | ||
parser.add_argument('--set2_size', '-sz2', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
parser.add_argument('--lp_distance', '-p', type=int, default=2, | ||
help='p for the Lp-distance.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set1_size = args.set1_size | ||
set2_size = args.set2_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set1_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set2_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
# Condition P*1 = a and P^T*1 = b | ||
a = torch.ones(set_a.shape[0:2], | ||
requires_grad=False, | ||
device=set_a.device) | ||
|
||
b = torch.ones(set_b.shape[0:2], | ||
requires_grad=False, | ||
device=set_b.device) | ||
# Have the same total mass than set_a | ||
b = b * a.sum(1, keepdim=True) / b.sum(1, keepdim=True) | ||
|
||
# Compute the cost matrix | ||
M = pairwise_distances(set_a, set_b, p=args.lp_distance) | ||
|
||
print('Distance') | ||
print(M) | ||
|
||
# Compute the transport matrix between each pair of sets in the minibatch with default parameters | ||
P = sinkhorn(a, b, M, 1e-3, max_iters=500, stop_thresh=1e-8) | ||
|
||
print('Transport Matrix') | ||
print(P) | ||
|
||
print('Condition error') | ||
|
||
aprox_a = P.sum(2) | ||
aprox_b = P.sum(1) | ||
|
||
print('\t P*1_d mean error: {}'.format(torch.mean((aprox_a - a).abs()).item())) | ||
print('\t P^T*1_d mean error: {}'.format(torch.mean((aprox_b - b).abs()).item())) | ||
|
||
# Compute the loss | ||
loss = (M * P).sum(2).sum(1) | ||
|
||
print('Loss') | ||
print(loss) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
import argparse | ||
import torch | ||
from fml.functional import pairwise_distances, sinkhorn | ||
|
||
if __name__ == '__main__': | ||
# Parse input arguments | ||
parser = argparse.ArgumentParser( | ||
description='Sinkhorn loss using the functional interface.') | ||
parser.add_argument('--batch_size', '-bz', type=int, default=3, | ||
help='Batch size.') | ||
parser.add_argument('--set_size', '-sz', type=int, default=10, | ||
help='Set size.') | ||
parser.add_argument('--point_dim', '-pd', type=int, default=4, | ||
help='Point dimension.') | ||
parser.add_argument('--lp_distance', '-p', type=int, default=2, | ||
help='p for the Lp-distance.') | ||
|
||
args = parser.parse_args() | ||
|
||
# Set the parameters | ||
minibatch_size = args.batch_size | ||
set_size = args.set_size | ||
point_dim = args.point_dim | ||
|
||
# Create two minibatches of point sets where each batch item set_a[k, :, :] is a set of `set_size` points | ||
set_a = torch.rand([minibatch_size, set_size, point_dim]) | ||
set_b = torch.rand([minibatch_size, set_size, point_dim]) | ||
|
||
print('Set A') | ||
print(set_a) | ||
|
||
print('Set B') | ||
print(set_b) | ||
|
||
# Condition P*1 = a and P^T*1 = b | ||
a = torch.rand(set_a.shape[0:2], | ||
requires_grad=False, | ||
device=set_a.device) | ||
# Keep an average mass of 1 per node | ||
a = a * set_a.shape[1] / a.sum(1, keepdim=True) | ||
|
||
b = torch.rand(set_b.shape[0:2], | ||
requires_grad=False, | ||
device=set_b.device) | ||
# Have the same total mass than set_a | ||
b = b * a.sum(1, keepdim=True) / b.sum(1, keepdim=True) | ||
|
||
# Compute the cost matrix | ||
M = pairwise_distances(set_a, set_b, p=args.lp_distance) | ||
|
||
print('Distance') | ||
print(M) | ||
|
||
# Compute the transport matrix between each pair of sets in the minibatch with default parameters | ||
P = sinkhorn(a, b, M, 1e-3, max_iters=500, stop_thresh=1e-8) | ||
|
||
print('Transport Matrix') | ||
print(P) | ||
|
||
print('Condition error') | ||
|
||
aprox_a = P.sum(2) | ||
aprox_b = P.sum(1) | ||
|
||
print('\t P*1_d mean error: {}'.format(torch.mean((aprox_a - a).abs()).item())) | ||
print('\t P^T*1_d mean error: {}'.format(torch.mean((aprox_b - b).abs()).item())) | ||
|
||
# Compute the loss | ||
loss = (M * P).sum(2).sum(1) | ||
|
||
print('Loss') | ||
print(loss) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters