-
Notifications
You must be signed in to change notification settings - Fork 0
/
output_metrics.py
40 lines (31 loc) · 1.46 KB
/
output_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from stanza.research import config, metrics, instance
from stanza.research.learner import Learner
import html_report
parser = config.get_options_parser()
parser.add_argument('--splits', type=str, default=['dev'],
help='Which data splits to output a results file for.')
parser.add_argument('--metrics', type=str, choices=metrics.METRICS.keys(), nargs='+',
default=['log_likelihood',
'log_likelihood_bits',
'perplexity',
'aic_averaged'],
help='Which metrics to output a results file for.')
def write_metrics():
options = config.options(read=True)
for split in options.splits:
output = html_report.get_output(options.run_dir, split)
for m in options.metrics:
write_metric_for_split(output, options.run_dir, split, m)
def write_metric_for_split(output, run_dir, split, metric_name):
filename = '%s.%s.jsons' % (metric_name, split)
learner = Learner()
learner.num_params = output.results['%s.num_params' % split]
metric_func = metrics.METRICS[metric_name]
if output.data[0].keys() == ['error']:
data_insts = []
else:
data_insts = (instance.Instance(**d) for d in output.data)
metric_scores = metric_func(data_insts, output.predictions, output.scores, learner)
config.dump(metric_scores, filename, lines=True)
if __name__ == '__main__':
write_metrics()