-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
executable file
·84 lines (84 loc) · 3.1 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Package: abn
Title: Modelling Multivariate Data with Additive Bayesian Networks
Version: 3.1.3
Date: 2024-09-18
Authors@R: c(
person("Matteo", "Delucchi", , "matteo.delucchi@math.uzh.ch", role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-9327-1496")),
person("Reinhard", "Furrer", , "reinhard.furrer@math.uzh.ch", role = "aut",
comment = c(ORCID = "0000-0002-6319-2332")),
person("Gilles", "Kratzer", , "gilles.kratzer@gmail.com", role = "aut",
comment = c(ORCID = "0000-0002-5929-8935")),
person("Fraser Iain", "Lewis", , "fraser.iain.lewis@gmail.com", role = "aut",
comment = c(ORCID = "0000-0003-4580-2712")),
person("Jonas I.", "Liechti", , "j-i-l@t4d.ch", role = "ctb",
comment = c(ORCID = "0000-0003-3447-3060")),
person("Marta", "Pittavino", , "marta.pittavino@math.uzh.ch", role = "ctb",
comment = c(ORCID = "0000-0002-1232-1034")),
person("Kalina", "Cherneva", , "kalinacherneva@gmail.com", role = "ctb")
)
Description: The 'abn' R package facilitates Bayesian network analysis, a
probabilistic graphical model that derives from empirical data a
directed acyclic graph (DAG). This DAG describes the dependency
structure between random variables. The R package 'abn' provides
routines to help determine optimal Bayesian network models for a given
data set. These models are used to identify statistical dependencies
in messy, complex data. Their additive formulation is equivalent to
multivariate generalised linear modelling, including mixed models with
independent and identically distributed (iid) random effects. The core
functionality of the 'abn' package revolves around model selection,
also known as structure discovery. It supports both exact and
heuristic structure learning algorithms and does not restrict the data
distribution of parent-child combinations, providing flexibility in
model creation and analysis. The 'abn' package uses Laplace
approximations for metric estimation and includes wrappers to the
'INLA' package. It also employs 'JAGS' for data simulation purposes.
For more resources and information, visit the 'abn' website.
License: GPL (>= 3)
URL: https://r-bayesian-networks.org/, https://github.com/furrer-lab/abn
BugReports: https://github.com/furrer-lab/abn/issues
Depends:
R (>= 4.0.0)
Imports:
doParallel,
foreach,
graph,
lme4,
mclogit,
methods,
nnet,
Rcpp,
Rgraphviz,
rjags,
stringi,
Suggests:
bookdown,
boot,
brglm,
devtools (>= 2.4.5),
ggplot2,
gridExtra,
INLA,
knitr,
Matrix,
MatrixModels (>= 0.5.3),
microbenchmark,
R.rsp,
RhpcBLASctl,
rmarkdown,
testthat (>= 3.0.0),
entropy,
moments,
R6
LinkingTo:
Rcpp,
RcppArmadillo
VignetteBuilder:
knitr
Additional_repositories: https://inla.r-inla-download.org/R/stable/
Config/testthat/edition: 3
Encoding: UTF-8
LazyData: TRUE
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
SystemRequirements: pkg-config, cmake, gsl, jpeg, gdal, geos, proj, udunits-2, openssl, libcurl, jags