-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_metadata.py
62 lines (50 loc) · 2.44 KB
/
extract_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import json as js
import re
import pandas as pd
import sys
# Extract paths from command-line arguments
t1s_path_array = sys.argv[1:]
# Assuming df is predefined, if not, initialize it
df = pd.DataFrame(columns=['sub', 'ses', 'mrtype', 'description', 'thickness', 'sar', 'TE', 'TR', 'flip', 'direction', 'field_strength'])
for nii_file_path in t1s_path_array:
root = os.path.dirname(nii_file_path)
json_file = None
try:
for file in os.listdir(root):
if file.endswith('.json'):
json_file = file
break
if json_file:
json_file_path = os.path.join(root, json_file)
with open(json_file_path, encoding='utf-8') as f:
if f.read(1):
f.seek(0)
print(f"Reading JSON from: {json_file_path}")
data = js.load(f)
else:
print(f"File {json_file_path} is empty.")
continue # Skip to the next iteration if the file is empty
except UnicodeDecodeError:
print(f"Could not read file {json_file_path} due to encoding issues.")
continue # Skip to the next iteration if there's an encoding issue
except json.JSONDecodeError:
print(f"Could not decode JSON from file {json_file_path}.")
continue # Skip to the next iteration if JSON decoding fails
with open(json_file_path, encoding='ISO-8859-1') as f:
data = js.load(f)
sub = re.findall(r'(sub-[a-zA-Z0-9]+)', root)[0]
ses = re.findall(r'(ses-[a-zA-Z0-9]+)', root)[0]
mrtype = data.get('MRAcquisitionType', '')
description = data.get('SeriesDescription', '')
thickness = data.get('SliceThickness', '')
sar = data.get('SAR', '')
TE = data.get('EchoTime', '')
TR = data.get('RepetitionTime', '')
flip = data.get('FlipAngle', '')
direction = data.get('ImageOrientationPatientDICOM', '')
field_strength = data.get('MagneticFieldStrength', None)
d = {'sub': sub, 'ses': ses, 'mrtype': mrtype, 'description': description, 'thickness': thickness, 'sar': sar, 'TE': TE, 'TR': TR, 'flip': flip, 'direction': direction, 'field_strength': field_strength}
df = pd.concat([df, pd.DataFrame([d])], ignore_index=True)
# Save the DataFrame to a CSV file named "T1_metadata.csv" inside the current working directory
df.to_csv('T1_metadata.csv', index=False)