6.835: Intelligent Multimodal User Interfaces - Final Project
├── public # Folder with publicly available resources
│ ├── css # Folder containing .css files
│ | ├── style.css # Stylizes all .html files in the application
│ ├── img # Folder containing .gif files
│ | ├── mic-animate.gif # .gif for when mic is recording
│ | ├── mic-slash.gif # .gif for when mic is not available
│ | ├── mic.gif # .gif for when mic is available
│ ├── js # Folder containing .js files
│ | ├── history.js # .js file for history.html
│ | ├── index.js # .js file for index.html
│ | ├── setupSpeech.js # .js file for continuous speech recognition used in history.html
├── topic_modelling # Folder containing topic modeling files
│ | ├── venv # Virtual environment for Python3
│ | ├── compute_input.py # Interfaces between topic modeling backend and app.js for frontend
│ | ├── guided_lda.py # One of the approaches to topic modeling. --Unused
│ | ├── guidedlda_model.pkl # Pickled model of guided lda topic model --Unused
│ | ├── lda.py # One of the approaches to topic modeling. --Used
│ | ├── requirements.txt # Requirements for Python3
│ | ├── test_we.py # Tests word embedding implementation
│ | ├── topic_modelling.py # Uses pretrained models to categorize input text with topics
│ | ├── vectorize.py # Converts words to vectors based on training corpus
│ | ├── vectorize_on_brown.pkl # Pickled model of vectorizer trained on brown corpus
│ | ├── vectorizer.pkl # Pickled model of vectorizer
│ | ├── word_embedding.py # Attempt at using neural network for topic modeling --Unused
├── .gitignore # Lists files or types of files to ignore when committing via git
├── README.md
├── app.js # Holds node.js server
├── data.json # .json file to store conversations in memory
├── history.html # Holds html for Past Conversations tab
├── index.html # Holds html for Create Conversations tab
├── package-lock.json # Automatically generated when npm modifies either the node_modules or package.json
├── package.json # File containing all dependencies for node.js app
└── vectorize_on_brown.pkl # Pickled model of vectorization model trained on brown corpus
- Clone the repository.
- Install node.js version recommended for most users
- Run
npm install
to install dependencies. This will create anode_modules
file at the root. - Install Python 3.6
- Run
pip3 install -r requirements.txt
in/topic_modelling/
to install required dependencies for topic modeling. - Run
npm start
to start Express server.
No need to train lda.py
or guided_lda.py
. Simply run either of them using python3
.
Test lda.py
by changing text
on line 42 to a string passage of your choice.
Test guided_lda.py
by changing text
on line 66 to a string passage of your choice.