-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLiveCameraUndistort.py
72 lines (57 loc) · 2.08 KB
/
LiveCameraUndistort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import cv2 as cv
# Chessboard Params
xCam=9
yCam=13
# Image Capture Location
cap = cv.VideoCapture(1)
full = None
count = 0
nameCount = 0
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((xCam*yCam,3), np.float32)
objp[:,:2] = np.mgrid[0:xCam,0:yCam].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
while True:
initRet, img = cap.read()
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv.findChessboardCorners(gray, (yCam,xCam), None)
# If found, add object points, image points (after refining them)
if ret == True and count > 10:
cv.imwrite(str(nameCount)+'.jpg', img)
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)
# Draw and display the corners
cv.drawChessboardCorners(img, (yCam,xCam), corners2, ret)
nameCount += 1
count = 0
cv.imshow('img', img)
count += 1
if cv.waitKey(1) & 0xFF == ord('q'):
break
initRet, img = cap.read()
cap.release()
cv.destroyAllWindows()
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print(mtx)
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
## undistort
mapx, mapy = cv.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5)
dst = cv.remap(img, mapx, mapy, cv.INTER_LINEAR)
# crop the image
# x, y, w, h = roi
# dst = dst[y:y+h, x:x+w]
cv.imwrite('/images/calibresult.png', dst)
cv.waitKey(0)
mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error
print( "total error: {}".format(mean_error/len(objpoints)) )