-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
280 lines (225 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import multiprocessing
import os
import json
import numpy as np
import torch
import torch.optim as optim
import scipy.io.wavfile as wavfile
from pathlib import Path
from dataset import Dataset
from network import DemucsDirection, center_trim, load_pretrain
def train_epoch(model, device, optimizer, train_loader, epoch, log_interval=20):
# Set the model to training.
model.train()
# Training loop
losses = []
interval_losses = []
for batch_idx, (ambi_mixes, target_signals,
target_direction, beamformer_audio) in enumerate(train_loader):
ambi_mixes = ambi_mixes.to(device)
target_signals = target_signals.to(device)
target_direction = target_direction.to(device)
beamformer_audio = beamformer_audio.to(device)
# Reset grad
optimizer.zero_grad()
output_signal = model(ambi_mixes, target_direction, beamformer_audio)
output_signal = center_trim(output_signal, ambi_mixes)
output_signal = torch.squeeze(output_signal, dim = 1)
loss = model.loss(output_signal, target_signals)
interval_losses.append(loss.item())
# Backpropagation
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
# Update the weights
optimizer.step()
# Print the loss
if batch_idx % log_interval == 0:
print("Train Epoch: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}".format(
epoch, batch_idx * len(ambi_mixes), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
np.mean(interval_losses)))
losses.extend(interval_losses)
interval_losses = []
return np.mean(losses)
def test_epoch(model, device, test_loader, args, epoch, log_interval=20):
model.eval()
test_loss = 0
output_folder = os.path.join(args.checkpoints_dir, args.name, 'samples')
with torch.no_grad():
for batch_idx, (ambi_mixes, target_signals,
target_direction, beamformer_audio) in enumerate(test_loader):
ambi_mixes = ambi_mixes.to(device)
ambi_mixes_original = ambi_mixes
target_signals = target_signals.to(device)
target_direction = target_direction.to(device)
beamformer_audio = beamformer_audio.to(device)
# Run through the model
output_signal = model(ambi_mixes, target_direction, beamformer_audio)
output_signal = center_trim(output_signal, ambi_mixes)
output_signal = torch.squeeze(output_signal, dim = 1)
if batch_idx == 0 and epoch % 10 == 0:
for b in range(output_signal.shape[0]):
output_signal_np = output_signal.detach().cpu().numpy()
target_signals_np = target_signals.detach().cpu().numpy()
ambi_mixes_original_np = ambi_mixes_original.detach().cpu().numpy()
output_signal_np = output_signal_np * np.iinfo(np.int16).max
target_signals_np = target_signals_np * np.iinfo(np.int16).max
ambi_mixes_original_np = ambi_mixes_original_np * np.iinfo(np.int16).max
wavfile.write(os.path.join(output_folder,
'epoch_' + str(epoch) + '_batch_pos_' + str(b) + '_output_signal.wav'),
args.sr, output_signal_np[b, ...].T.astype(np.int16))
wavfile.write(os.path.join(output_folder, 'epoch_' + str(epoch) + '_batch_pos_' + str(
b) + '_label_source_signals.wav'), args.sr, target_signals_np[b, ...].T.astype(np.int16))
wavfile.write(os.path.join(output_folder,
'epoch_' + str(epoch) + '_batch_pos_' + str(b) + '_input_mixture.wav'),
args.sr, ambi_mixes_original_np[b, ...].T.astype(np.int16))
loss = model.loss(output_signal, target_signals)
test_loss += loss.item()
if batch_idx % log_interval == 0:
print("Loss: {}".format(loss))
test_loss /= len(test_loader)
print("\nTest set: Average Loss: {:.4f}\n".format(test_loss))
return test_loss
def train(args):
# Load dataset
if args.dataset == 'musdb':
args.sr = 44100
if args.dataset == 'fuss':
args.sr = 16000
data_train = Dataset(args.train_dir, sr = args.sr, ambiorder = args.ambiorder,
angular_window_deg = 2.5, ambimode = args.ambimode, dataset = args.dataset)
data_test = Dataset(args.test_dir, sr = args.sr, ambiorder = args.ambiorder,
angular_window_deg = 2.5, ambimode = args.ambimode, dataset = args.dataset)
# Set up the device and workers.
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
print("Using device {}".format('cuda' if use_cuda else 'cpu'))
# Set multiprocessing params
num_workers = min(multiprocessing.cpu_count(), args.n_workers)
kwargs = {
'num_workers': num_workers,
'pin_memory': True
} if use_cuda else {}
# Set up data loaders
train_loader = torch.utils.data.DataLoader(data_train,
batch_size = args.batch_size,
shuffle = True, **kwargs)
test_loader = torch.utils.data.DataLoader(data_test,
batch_size = args.batch_size,
**kwargs)
# Set up model
print('SETTING UP MODEL')
if args.ambimode == 'implicit':
model = DemucsDirection(n_audio_channels = (args.ambiorder + 1) ** 2, ambimode = args.ambimode)
elif args.ambimode == 'mixed':
model = DemucsDirection(n_audio_channels = 5, ambimode = args.ambimode)
model.to(device)
print('MODEL SET UP')
# Set up checkpoints
if not os.path.exists(os.path.join(args.checkpoints_dir, args.name)):
os.makedirs(os.path.join(args.checkpoints_dir, args.name))
if not os.path.exists(os.path.join(args.checkpoints_dir, args.name, 'samples')):
os.makedirs(os.path.join(args.checkpoints_dir, args.name, 'samples'))
# Save commandline_args
commandline_args_path = os.path.join(args.checkpoints_dir, args.name, 'commandline_args.txt')
with open(commandline_args_path, 'w') as f:
json.dump(args.__dict__, f, indent = 2)
# Set up the optimizer
optimizer = optim.Adam(model.parameters(), lr = args.lr,
weight_decay = args.decay)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience = 10, verbose = True)
# Load pretrain
if args.pretrain_path:
print('LOADING PRETRAINED')
state_dict = torch.load(args.pretrain_path)
load_pretrain(model, state_dict)
print('PRETRAINED LOADED')
# Load the model if `args.start_epoch` is greater than 0. This will load the model from
# epoch = `args.start_epoch - 1`
if args.start_epoch is not None:
assert args.start_epoch > 0, "start_epoch must be greater than 0."
start_epoch = args.start_epoch
checkpoint_path = Path(
args.checkpoints_dir) / "{}.pt".format(start_epoch - 1)
state_dict = torch.load(checkpoint_path)
model.load_state_dict(state_dict)
else:
start_epoch = 0
# Loss values
best_error = float("inf")
train_losses = []
test_losses = []
loss_dict = {'train': [], 'test': []}
print('GOING TO TRAINING LOOP')
# Training loop
try:
for epoch in range(start_epoch, args.epochs + 1):
train_loss = train_epoch(model, device, optimizer, train_loader,
epoch, args.print_interval)
torch.save(
model.state_dict(),
os.path.join(args.checkpoints_dir, args.name, "last.pt"))
print("Done with training, going to testing")
test_loss = test_epoch(model, device, test_loader, args, epoch,
args.print_interval)
if test_loss < best_error:
best_error = test_loss
torch.save(
model.state_dict(),
os.path.join(args.checkpoints_dir, args.name, "best.pt"))
scheduler.step(test_loss)
train_losses.append((epoch, train_loss))
test_losses.append((epoch, test_loss))
# save json
loss_dict['train'].append(train_loss)
loss_dict['test'].append(test_loss)
json_path = os.path.join(args.checkpoints_dir, args.name, 'loss.json')
with open(json_path, 'w') as fp:
json.dump(loss_dict, fp)
return train_losses, test_losses
except KeyboardInterrupt:
# print("Interrupted")
import traceback # pylint: disable=import-outside-toplevel
traceback.print_exc()
except Exception as _: # pylint: disable=broad-except
import traceback # pylint: disable=import-outside-toplevel
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data Params
parser.add_argument('train_dir', type = str,
help = "Path to the training dataset")
parser.add_argument('test_dir', type = str,
help = "Path to the testing dataset")
parser.add_argument('--name', type = str, default = "multimic_experiment",
help = "Name of the experiment")
parser.add_argument('--checkpoints_dir', type = str, default = './checkpoints',
help = "Path to the checkpoints")
parser.add_argument('--batch_size', type = int, default = 8,
help = "Batch size")
parser.add_argument('--ambiorder', type = int, default = 4,
help = "Ambisonics order")
parser.add_argument('--ambimode', type = str, default = 'implicit',
help = "Ambisonics mode. 'implicit': raw Ambisonics mixture as input. "
"'mixed': raw first order Ambisonics mixture and bf concatenated.")
parser.add_argument('--dataset', type = str, default = "musdb",
help = "Dataset to train")
# Training Params
parser.add_argument('--epochs', type = int, default = 350,
help = "Number of epochs")
parser.add_argument('--lr', type = float, default = 1e-4, help = "learning rate")
parser.add_argument('--sr', type = int, default = 44100, help = "Sampling rate")
parser.add_argument('--decay', type = float, default = 0, help = "Weight decay")
parser.add_argument('--n_workers', type = int, default = 16,
help = "Number of parallel workers")
parser.add_argument('--print_interval', type = int, default = 20,
help = "Logging interval")
parser.add_argument('--start_epoch', type = int, default = None,
help = "Start epoch")
parser.add_argument('--pretrain_path', type = str,
help = "Path to pretrained weights")
parser.add_argument('--use_cuda', dest = 'use_cuda', action = 'store_true',
help = "Whether to use cuda")
train(parser.parse_args())