-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
238 lines (202 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import sys
import time
import copy
import numpy as np
import math
import random
import functools
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import pickle
import datasets
import models
import init
import measures
def run( args):
# reduce batch_size when larger than train_size
if (args.batch_size >= args.train_size):
args.batch_size = args.train_size
assert (args.train_size%args.batch_size)==0, 'batch_size must divide train_size!'
args.num_batches = args.train_size//args.batch_size
args.max_iters = args.max_epochs*args.num_batches
if args.bonus:
assert args.test_size > 0, 'bonus measures require non empty test set!'
args.bonus = {}
args.bonus['size'] = args.test_size
if args.rules:
args.bonus['rules'] = None
if args.tree:
args.bonus['tree'] = None
if args.noise:
args.bonus['noise'] = None
if args.synonyms:
args.bonus['synonyms'] = None
train_loader, test_loader = init.init_data( args)
model = init.init_model( args)
model0 = copy.deepcopy( model)
if args.scheduler_time is None:
args.scheduler_time = args.max_iters
criterion, optimizer, scheduler = init.init_training( model, args)
print_ckpts, save_ckpts = init.init_loglinckpt( args.print_freq, args.max_iters, freq=args.save_freq)
print_ckpt = next(print_ckpts)
save_ckpt = next(save_ckpts)
start_time = time.time()
step = 0
dynamics, best = init.init_output( model, criterion, train_loader, test_loader, args)
if args.checkpoints:
output = {
'model': copy.deepcopy(model.state_dict()),
'state': dynamics[-1],
'step': step
}
with open(args.outname+f'_t{0}', "wb") as handle:
pickle.dump(args, handle)
pickle.dump(output, handle)
for epoch in range(args.max_epochs):
model.train()
optimizer.zero_grad()
running_loss = 0.
for batch_idx, (inputs, targets) in enumerate(train_loader):
outputs = model(inputs.to(args.device))
loss = criterion(outputs, targets.to(args.device))
running_loss += loss.item()
loss /= args.accumulation
loss.backward()
if ((batch_idx+1)%args.accumulation==0):
optimizer.step()
optimizer.zero_grad()
scheduler.step()
step += 1
if step==print_ckpt:
test_loss, test_acc = measures.test(model, test_loader, args.device)
if test_loss<best['loss']: # update best model if loss is smaller
best['step'] = step
best['loss'] = test_loss
best['model'] = copy.deepcopy( model.state_dict())
print('step : ',step, '\t train loss: {:06.4f}'.format(running_loss/(batch_idx+1)), ',test loss: {:06.4f}'.format(test_loss))
print_ckpt = next(print_ckpts)
if step>=save_ckpt:
print(f'Checkpoint at step {step}, saving data ...')
train_loss, train_acc = measures.test(model, train_loader, args.device)
save_dict = {'t': step, 'trainloss': train_loss, 'trainacc': train_acc, 'testloss': test_loss, 'testacc': test_acc}
if args.bonus:
if 'synonyms' in args.bonus:
save_dict['synonyms'] = measures.sensitivity( model, args.bonus['features'], args.bonus['synonyms'], args.device)
if 'noise' in args.bonus:
save_dict['noise'] = measures.sensitivity( model, args.bonus['features'], args.bonus['noise'], args.device)
dynamics.append(save_dict)
if args.checkpoints:
output = {
'model': copy.deepcopy(model.state_dict()),
'state': dynamics[-1],
'step': step
}
with open(args.outname+f'_t{step}', "wb") as handle:
pickle.dump(output, handle)
else:
output = {
'init': model0.state_dict(),
'best': best,
'model': copy.deepcopy(model.state_dict()),
'dynamics': dynamics,
'step': step
}
with open(args.outname, "wb") as handle:
pickle.dump(args, handle)
pickle.dump(output, handle)
save_ckpt = next(save_ckpts)
if (running_loss/(batch_idx+1)) <= args.loss_threshold:
train_loss, train_acc = measures.test(model, train_loader, args.device)
save_dict = {'t': step, 'trainloss': train_loss, 'trainacc': train_acc, 'testloss': test_loss, 'testacc': test_acc}
if args.bonus:
if 'synonyms' in args.bonus:
save_dict['synonyms'] = measures.sensitivity( model, args.bonus['features'], args.bonus['synonyms'], args.device)
if 'noise' in args.bonus:
save_dict['noise'] = measures.sensitivity( model, args.bonus['features'], args.bonus['noise'], args.device)
dynamics.append(save_dict)
if args.checkpoints:
output = {
'model': copy.deepcopy(model.state_dict()),
'state': dynamics[-1],
'step': step
}
with open(args.outname+f'_t{step}', "wb") as handle:
pickle.dump(output, handle)
else:
output = {
'init': model0.state_dict(),
'best': best,
'model': copy.deepcopy(model.state_dict()),
'dynamics': dynamics,
'step': step
}
with open(args.outname, "wb") as handle:
pickle.dump(args, handle)
pickle.dump(output, handle)
break
return None
torch.set_default_dtype(torch.float32)
parser = argparse.ArgumentParser(description='Learning the Random Hierarchy Model with deep neural networks')
parser.add_argument("--device", type=str, default='cuda')
'''
DATASET ARGS
'''
parser.add_argument('--dataset', type=str)
parser.add_argument('--mode', type=str, default=None)
parser.add_argument('--num_features', metavar='v', type=int, help='number of features')
parser.add_argument('--num_classes', metavar='n', type=int, help='number of classes')
parser.add_argument('--num_synonyms', metavar='m', type=int, help='multiplicity of low-level representations')
parser.add_argument('--tuple_size', metavar='s', type=int, help='size of low-level representations')
parser.add_argument('--num_layers', metavar='L', type=int, help='number of layers')
parser.add_argument("--seed_rules", type=int, help='seed for the dataset')
parser.add_argument("--zipf", type=str, help='zipf law exponent', default=None)
parser.add_argument("--layer", type=int, help='layer of the zipf law', default=None)
parser.add_argument("--num_tokens", type=int, help='number of input tokens (spatial size)')
parser.add_argument('--train_size', metavar='Ptr', type=int, help='training set size')
parser.add_argument('--batch_size', metavar='B', type=int, help='batch size')
parser.add_argument('--test_size', metavar='Pte', type=int, help='test set size')
parser.add_argument("--seed_sample", type=int, help='seed for the sampling of train and testset')
parser.add_argument("--replacement", default=False, action="store_true", help='allow for replacement in the dataset sampling')
parser.add_argument('--input_format', type=str, default='onehot')
parser.add_argument('--whitening', type=int, default=0)
'''
ARCHITECTURE ARGS
'''
parser.add_argument('--model', type=str, help='architecture (fcn, hcnn, hlcn, transformer_mla)')
parser.add_argument('--depth', type=int, help='depth of the network')
parser.add_argument('--width', type=int, help='width of the network')
parser.add_argument("--filter_size", type=int, help='number of heads (CNN only)', default=None)
parser.add_argument('--num_heads', type=int, help='number of heads (transformer only)', default=None)
parser.add_argument('--embedding_dim', type=int, help='embedding dimension (transformer only)', default=None)
parser.add_argument('--bias', default=False, action='store_true')
parser.add_argument("--seed_model", type=int, help='seed for model initialization')
'''
TRAINING ARGS
'''
parser.add_argument('--lr', type=float, help='learning rate', default=0.1)
parser.add_argument('--optim', type=str, default='sgd')
parser.add_argument('--accumulation', type=int, default=1)
parser.add_argument('--momentum', type=float, default=0.0)
parser.add_argument('--scheduler', type=str, default=None)
parser.add_argument('--scheduler_time', type=int, default=None)
parser.add_argument('--max_epochs', type=int, default=100)
'''
OUTPUT ARGS
'''
parser.add_argument('--print_freq', type=int, help='frequency of prints', default=16)
parser.add_argument('--save_freq', type=int, help='frequency of saves', default=2)
parser.add_argument('--bonus', default=False, action='store_true')
parser.add_argument('--rules', default=False, action='store_true')
parser.add_argument('--noise', default=False, action='store_true')
parser.add_argument('--synonyms', default=False, action='store_true')
parser.add_argument('--tree', default=False, action='store_true')
parser.add_argument('--checkpoints', default=False, action='store_true')
parser.add_argument('--loss_threshold', type=float, default=1e-3)
parser.add_argument('--outname', type=str, required=True, help='path of the output file')
args = parser.parse_args()
run( args)