-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov9npuResourceBuilder.cpp
458 lines (378 loc) · 17.7 KB
/
yolov9npuResourceBuilder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#include "pch.h"
#include "yolov9npu.h"
#include "ATGColors.h"
#include "ControllerFont.h"
#include "FindMedia.h"
#include "ReadData.h"
#include "TensorHelper.h"
#include "ssd_anchors.h"
//#include "onnx.proto3.pb.h"
using Microsoft::WRL::ComPtr;
using namespace DirectX;
static bool TryGetProperty(IDXCoreAdapter* adapter, DXCoreAdapterProperty prop, std::string& outputValue)
{
if (adapter->IsPropertySupported(prop))
{
size_t propSize;
THROW_IF_FAILED(adapter->GetPropertySize(prop, &propSize));
outputValue.resize(propSize);
THROW_IF_FAILED(adapter->GetProperty(prop, propSize, outputValue.data()));
// Trim any trailing nul characters.
while (!outputValue.empty() && outputValue.back() == '\0')
{
outputValue.pop_back();
}
return true;
}
return false;
}
void Sample::GetNonGraphicsAdapter(IDXCoreAdapterList* adapterList, IDXCoreAdapter** outAdapter)
{
for (uint32_t i = 0, adapterCount = adapterList->GetAdapterCount(); i < adapterCount; i++)
{
ComPtr<IDXCoreAdapter> possibleAdapter;
THROW_IF_FAILED(adapterList->GetAdapter(i, IID_PPV_ARGS(&possibleAdapter)));
std::string adapterName;
if (TryGetProperty(possibleAdapter.Get(), DXCoreAdapterProperty::DriverDescription, adapterName))
{
if (m_run_on_gpu)
{
if (possibleAdapter->IsAttributeSupported(DXCORE_ADAPTER_ATTRIBUTE_D3D12_GRAPHICS))
{
m_device_name = L"GPU";
*outAdapter = possibleAdapter.Detach();
return;
}
}
if (!possibleAdapter->IsAttributeSupported(DXCORE_ADAPTER_ATTRIBUTE_D3D12_GRAPHICS))
{
m_device_name = L"NPU";
*outAdapter = possibleAdapter.Detach();
return;
}
}
}
*outAdapter = nullptr;
}
void Sample::InitializeDirectML(ID3D12Device1** d3dDeviceOut, ID3D12CommandQueue** commandQueueOut, IDMLDevice** dmlDeviceOut,
ID3D12CommandAllocator** commandAllocatorOut,
ID3D12GraphicsCommandList** commandListOut)
{
#if 0
// is extermely slow when createing the ort::Session
#if defined(_DEBUG)
// Enable the debug layer (requires the Graphics Tools "optional feature").
//
// NOTE: Enabling the debug layer after device creation will invalidate the active device.
{
ComPtr<ID3D12Debug> debugController;
if (SUCCEEDED(D3D12GetDebugInterface(IID_PPV_ARGS(debugController.GetAddressOf()))))
{
debugController->EnableDebugLayer();
}
else
{
OutputDebugStringA("WARNING: Direct3D Debug Device is not available\n");
}
ComPtr<IDXGIInfoQueue> dxgiInfoQueue;
if (SUCCEEDED(DXGIGetDebugInterface1(0, IID_PPV_ARGS(dxgiInfoQueue.GetAddressOf()))))
{
m_dxgiFactoryFlags = DXGI_CREATE_FACTORY_DEBUG;
dxgiInfoQueue->SetBreakOnSeverity(DXGI_DEBUG_ALL, DXGI_INFO_QUEUE_MESSAGE_SEVERITY_ERROR, true);
dxgiInfoQueue->SetBreakOnSeverity(DXGI_DEBUG_ALL, DXGI_INFO_QUEUE_MESSAGE_SEVERITY_CORRUPTION, true);
DXGI_INFO_QUEUE_MESSAGE_ID hide[] =
{
80 /* IDXGISwapChain::GetContainingOutput: The swapchain's adapter does not control the output on which the swapchain's window resides. */,
};
DXGI_INFO_QUEUE_FILTER filter = {};
filter.DenyList.NumIDs = _countof(hide);
filter.DenyList.pIDList = hide;
dxgiInfoQueue->AddStorageFilterEntries(DXGI_DEBUG_DXGI, &filter);
}
}
#endif
#endif
// Create Adapter Factory
ComPtr<IDXCoreAdapterFactory> factory;
// Note: this module is not currently properly freed. Outside of sample usage, this module should freed e.g. with an explicit free or through wil::unique_hmodule.
HMODULE dxCoreModule = LoadLibraryW(L"DXCore.dll");
if (dxCoreModule)
{
auto dxcoreCreateAdapterFactory = reinterpret_cast<HRESULT(WINAPI*)(REFIID, void**)>(
GetProcAddress(dxCoreModule, "DXCoreCreateAdapterFactory")
);
if (dxcoreCreateAdapterFactory)
{
dxcoreCreateAdapterFactory(IID_PPV_ARGS(&factory));
}
}
// Create the DXCore Adapter, for the purposes of selecting NPU we look for (!GRAPHICS && (GENERIC_ML || CORE_COMPUTE))
ComPtr<IDXCoreAdapter> adapter;
ComPtr<IDXCoreAdapterList> adapterList;
D3D_FEATURE_LEVEL featureLevel = D3D_FEATURE_LEVEL_1_0_GENERIC;
if (factory)
{
THROW_IF_FAILED(factory->CreateAdapterList(1, &DXCORE_ADAPTER_ATTRIBUTE_D3D12_GENERIC_ML, IID_PPV_ARGS(&adapterList)));
if (adapterList->GetAdapterCount() > 0)
{
GetNonGraphicsAdapter(adapterList.Get(), adapter.GetAddressOf());
}
if (!adapter)
{
featureLevel = D3D_FEATURE_LEVEL_1_0_CORE;
THROW_IF_FAILED(factory->CreateAdapterList(1, &DXCORE_ADAPTER_ATTRIBUTE_D3D12_CORE_COMPUTE, IID_PPV_ARGS(&adapterList)));
GetNonGraphicsAdapter(adapterList.Get(), adapter.GetAddressOf());
}
}
if (adapter)
{
std::string adapterName;
if (TryGetProperty(adapter.Get(), DXCoreAdapterProperty::DriverDescription, adapterName))
{
printf("Successfully found adapter %s\n", adapterName.c_str());
}
else
{
printf("Failed to get adapter description.\n");
}
}
// Create the D3D12 Device
ComPtr<ID3D12Device1> d3dDevice;
if (adapter)
{
// Note: this module is not currently properly freed. Outside of sample usage, this module should freed e.g. with an explicit free or through wil::unique_hmodule.
HMODULE d3d12Module = LoadLibraryW(L"d3d12.dll");
if (d3d12Module)
{
auto d3d12CreateDevice = reinterpret_cast<HRESULT(WINAPI*)(IUnknown*, D3D_FEATURE_LEVEL, REFIID, void*)>(
GetProcAddress(d3d12Module, "D3D12CreateDevice")
);
if (d3d12CreateDevice)
{
// The GENERIC feature level minimum allows for the creation of both compute only and generic ML devices.
THROW_IF_FAILED(d3d12CreateDevice(adapter.Get(), featureLevel, IID_PPV_ARGS(&d3dDevice)));
}
}
}
// Create the DML Device and D3D12 Command Queue
ComPtr<IDMLDevice> dmlDevice;
ComPtr<ID3D12CommandQueue> commandQueue;
ComPtr<ID3D12CommandAllocator> commandAllocator;
ComPtr<ID3D12GraphicsCommandList> commandList;
if (d3dDevice)
{
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_COMPUTE;
THROW_IF_FAILED(d3dDevice->CreateCommandQueue(
&queueDesc,
IID_PPV_ARGS(commandQueue.ReleaseAndGetAddressOf())));
THROW_IF_FAILED(d3dDevice->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_COMPUTE, IID_PPV_ARGS(commandAllocator.ReleaseAndGetAddressOf())));
THROW_IF_FAILED(d3dDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, commandAllocator.Get(), nullptr, IID_PPV_ARGS(commandList.ReleaseAndGetAddressOf())));
// Note: this module is not currently properly freed. Outside of sample usage, this module should freed e.g. with an explicit free or through wil::unique_hmodule.
HMODULE dmlModule = LoadLibraryW(L"DirectML.dll");
if (dmlModule)
{
auto dmlCreateDevice = reinterpret_cast<HRESULT(WINAPI*)(ID3D12Device*, DML_CREATE_DEVICE_FLAGS, DML_FEATURE_LEVEL, REFIID, void*)>(
GetProcAddress(dmlModule, "DMLCreateDevice1")
);
if (dmlCreateDevice)
{
THROW_IF_FAILED(dmlCreateDevice(d3dDevice.Get(), DML_CREATE_DEVICE_FLAG_NONE, DML_FEATURE_LEVEL_5_0, IID_PPV_ARGS(dmlDevice.ReleaseAndGetAddressOf())));
}
}
}
d3dDevice.CopyTo(d3dDeviceOut);
commandQueue.CopyTo(commandQueueOut);
dmlDevice.CopyTo(dmlDeviceOut);
commandAllocator.CopyTo(commandAllocatorOut);
commandList.CopyTo(commandListOut);
}
void Sample::InitializeDirectMLResources(const wchar_t * model_path, bool bAddModel)
{
// wait for gpu to create new textures
m_deviceResources->WaitForGpu();
const OrtApi& ortApi = Ort::GetApi();
static Ort::Env s_OrtEnv{ nullptr };
s_OrtEnv = Ort::Env(Ort::ThreadingOptions{});
s_OrtEnv.DisableTelemetryEvents();
auto sessionOptions = Ort::SessionOptions{};
sessionOptions.DisableMemPattern();
sessionOptions.DisablePerSessionThreads();
sessionOptions.SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL);
//sessionOptions.SetExecutionMode(ExecutionMode::ORT_PARALLEL);
//sessionOptions.AddConfigEntry("session.load_model_format", "ORT");
//sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
m_ortDmlApi = nullptr;
Ort::ThrowOnError(ortApi.GetExecutionProviderApi("DML", ORT_API_VERSION, reinterpret_cast<const void**>(&m_ortDmlApi)));
Ort::ThrowOnError(m_ortDmlApi->SessionOptionsAppendExecutionProvider_DML1(sessionOptions, m_dmlDevice.Get(), m_commandQueue.Get()));
if (!bAddModel)
m_models.clear();
std::unique_ptr<Model_t> model = std::make_unique<Model_t>();
m_models.emplace_back(std::move(model));
try
{
if (model_path == nullptr)
{
// Create the session
//auto session = Ort::Session(s_OrtEnv, L"mobilenetv2-7-fp16.onnx", sessionOptions);
// model from here:
// https://github.com/DakeQQ/YOLO-Depth-Estimation-for-Android
//wchar_t * modelfile = L"Model_Yolo_v9c.ort";
//wchar_t* modelfile = L"Model_Yolo_v9c_f16.onnx";
//wchar_t* modelfile = L"Model_Yolo_v9c_f16_h1088_w1920.onnx";
//wchar_t* modelfile = L"yolov11_det.onnx";
//wchar_t* modelfile = L"yolo11n.onnx";
//wchar_t* modelfile = L"yolov10m.onnx";
//wchar_t* modelfile = L"yolov8_det.onnx";
wchar_t* modelfile = L"yolov8_seg.onnx";
// wchar_t* modelfile = L"yolo11n-seg.onnx";
m_models.back()->m_modelfile = std::wstring(modelfile);
std::wstring model_path = L".\\Data\\" + m_models.back()->m_modelfile;
m_models.back()->m_session = Ort::Session(s_OrtEnv, model_path.c_str(), sessionOptions);
}
else
{
const wchar_t* pstrName = wcsrchr(model_path, '\\');
if (!pstrName)
{
m_models.back()->m_modelfile = std::wstring(model_path);
}
else
{
pstrName++;
m_models.back()->m_modelfile = std::wstring(pstrName);
}
m_models.back()->m_session = Ort::Session(s_OrtEnv, model_path, sessionOptions);
}
}
catch (const std::runtime_error& re) {
std::cerr << "Runtime error: " << re.what() << std::endl;
exit(1);
}
catch (const std::exception& ex)
{
const char* err = ex.what();
MessageBoxA(0, err, "Error loading model", MB_YESNO);
std::cerr << "Error occurred: " << ex.what() << std::endl;
exit(1);
}
#if 0
//
std::ifstream input(".\\Data\\yolo11n-seg.onnx", std::ios::ate | std::ios::binary); // open file and move current position in file to the end
std::streamsize size = input.tellg(); // get current position in file
input.seekg(0, std::ios::beg); // move to start of file
std::vector<char> buffer(size);
input.read(buffer.data(), size); // read raw data
{
onnx::ModelProto model;
model.ParseFromArray(buffer.data(), size); // parse protobuf
auto graph = model.graph();
for (auto n : graph.node())
{
if (n.name() == "/model.23/Sigmoid")
{
auto opt = n.op_type();
volatile int a = 0;
auto in_node = n.input();
//in_node(
// n.set_i
}
}
std::cout << "graph inputs:\n";
//print_io_info(graph.input());
std::cout << "graph outputs:\n";
//print_io_info(graph.output());
}
#endif
// Create input tensor
Ort::MemoryInfo memoryInfo0 = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Allocator allocator0( m_models.back()->m_session, memoryInfo0);
auto meta = m_models.back()->m_session.GetModelMetadata();
auto modelname = meta.GetGraphNameAllocated(allocator0);
auto inputName = m_models.back()->m_session.GetInputNameAllocated(0, allocator0);
auto inputTypeInfo = m_models.back()->m_session.GetInputTypeInfo(0);
auto inputTensorInfo = inputTypeInfo.GetTensorTypeAndShapeInfo();
m_models.back()->m_inputShape = inputTensorInfo.GetShape();
for (int i = 0; i < m_models.back()->m_inputShape.size(); i++)
{
if (i == 0 && m_models.back()->m_inputShape[i] == -1)
m_models.back()->m_inputShape[i] = 1;
if (i > 0 && m_models.back()->m_inputShape[i] == -1)
m_models.back()->m_inputShape[i] = 640;
}
m_models.back()->m_inputDataType = inputTensorInfo.GetElementType();
if ( m_models.back()->m_inputDataType != ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT && m_models.back()->m_inputDataType != ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
{
throw std::invalid_argument("Model input must be of type float32 or float16");
}
if ( m_models.back()->m_inputShape.size() < 3)
{
throw std::invalid_argument("Model input must be an image with 3 or 4 dimensions");
}
const size_t inputChannels = m_models.back()->m_inputShape[ m_models.back()->m_inputShape.size() - 3];
const size_t inputHeight = m_models.back()->m_inputShape[ m_models.back()->m_inputShape.size() - 2];
const size_t inputWidth = m_models.back()->m_inputShape[ m_models.back()->m_inputShape.size() - 1];
m_models.back()->m_inputWidth = inputWidth;
m_models.back()->m_inputHeight = inputHeight;
const size_t inputElementSize = m_models.back()->m_inputDataType == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT ? sizeof(float) : sizeof(uint16_t);
auto outputName = m_models.back()->m_session.GetOutputNameAllocated(0, allocator0);
auto tensors = m_models.back()->m_session.GetOutputCount();
auto outputTypeInfo = m_models.back()->m_session.GetOutputTypeInfo(0);
auto outputTensorInfo = outputTypeInfo.GetTensorTypeAndShapeInfo();
m_models.back()->m_outputShape = outputTensorInfo.GetShape();
auto outputDataType = outputTensorInfo.GetElementType();
if (outputDataType != ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT && outputDataType != ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16
&& outputDataType != ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8)
{
throw std::invalid_argument("Model output must be of type float32 or float16 or int8");
}
if ( m_models.back()->m_outputShape.size() < 3)
{
throw std::invalid_argument("Model output must be an image with 3 or 4 dimensions");
}
// mediapipe face detection anchors
// Anchors generation
//https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_detection/face_detection.pbtxt
{
onnxmediapipe::SsdAnchorsCalculatorOptions ssdAnchorsCalculatorOptions;
ssdAnchorsCalculatorOptions.input_size_height = (int32_t)128;
ssdAnchorsCalculatorOptions.input_size_width = (int32_t)128;
ssdAnchorsCalculatorOptions.min_scale = 0.1484375;
ssdAnchorsCalculatorOptions.max_scale = 0.75;
ssdAnchorsCalculatorOptions.anchor_offset_x = 0.5;
ssdAnchorsCalculatorOptions.anchor_offset_y = 0.5;
ssdAnchorsCalculatorOptions.aspect_ratios = { 1.0 };
ssdAnchorsCalculatorOptions.fixed_anchor_size = true;
//192x192 implies 'full range' face detection.
if ((inputHeight == 192) && (inputWidth == 192))
{
//https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_detection/face_detection_full_range.pbtxt
ssdAnchorsCalculatorOptions.num_layers = 1;
ssdAnchorsCalculatorOptions.strides = { 4 };
ssdAnchorsCalculatorOptions.interpolated_scale_aspect_ratio = 0.0;
}
else
{
//https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_detection/face_detection_short_range.pbtxt
ssdAnchorsCalculatorOptions.num_layers = 4;
ssdAnchorsCalculatorOptions.strides = { 8, 16, 16, 16 };
ssdAnchorsCalculatorOptions.interpolated_scale_aspect_ratio = 1.0;
}
m_anchors.clear();
std::vector<onnxmediapipe::Anchor> anchors;
onnxmediapipe::SsdAnchorsCalculator::GenerateAnchors(anchors, ssdAnchorsCalculatorOptions);
m_anchors.push_back(anchors);
if (true)
{
ssdAnchorsCalculatorOptions.input_size_height = (int32_t)256;
ssdAnchorsCalculatorOptions.input_size_width = (int32_t)256;
ssdAnchorsCalculatorOptions.min_scale = 0.1171875;
ssdAnchorsCalculatorOptions.num_layers = 5;
ssdAnchorsCalculatorOptions.strides = { 8, 16, 32, 32, 32 };
ssdAnchorsCalculatorOptions.interpolated_scale_aspect_ratio = 1.0;
}
anchors.clear();
onnxmediapipe::SsdAnchorsCalculator::GenerateAnchors(anchors, ssdAnchorsCalculatorOptions);
m_anchors.push_back(anchors);
}
}