-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathhamt.go
888 lines (790 loc) · 28.2 KB
/
hamt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
package hamt
import (
"bytes"
"context"
"fmt"
"sort"
cid "github.com/ipfs/go-cid"
cbor "github.com/ipfs/go-ipld-cbor"
cbg "github.com/whyrusleeping/cbor-gen"
)
// -----------------------------------------------------------------------------
// Boolean constants
type overwrite bool
const (
// use OVERWRITE for modifyValue operations that overwrite existing values
OVERWRITE = overwrite(true)
// use NOVERWRITE for modifyValue operations that cannot overwrite existing values
NOVERWRITE = overwrite(false)
)
type modified bool
const (
// return MODIFIED when a key value mapping is overwritten
MODIFIED = modified(true)
// return UNMODIFIED when a no key value mappings are overwritten
UNMODIFIED = modified(false)
)
//-----------------------------------------------------------------------------
// Errors
// ErrMaxDepth is returned when the HAMT spans further than the hash function
// is capable of representing. This can occur when sufficient hash collisions
// (e.g. from a weak hash function and attacker-provided keys) extend leaf
// nodes beyond the number of bits that a hash can represent. Or this can occur
// on extremely large (likely impractical) HAMTs that are unable to be
// represented with the hash function used. Hash functions with larger byte
// output increase the maximum theoretical depth of a HAMT.
var ErrMaxDepth = fmt.Errorf("attempted to traverse HAMT beyond max-depth")
// ErrMalformedHamt is returned whenever a block intended as a HAMT node does
// not conform to the expected form that a block may take. This can occur
// during block-load where initial validation takes place or during traversal
// where certain conditions are expected to be met.
var ErrMalformedHamt = fmt.Errorf("HAMT node was malformed")
//-----------------------------------------------------------------------------
// Serialized data structures
// HashFunc is a hashing function for values.
type HashFunc func([]byte) []byte
// Node is a single point in the HAMT, encoded as an IPLD tuple in DAG-CBOR of
// shape:
//
// [bytes, [Pointer...]]
//
// where 'bytes' is the big.Int#Bytes() and the Pointers array is between 1 and
// `2^bitWidth`.
//
// The Bitfield provides us with a mechanism to store a compacted array of
// Pointers. Each bit in the Bitfield represents an element in a sparse array
// where `1` indicates the element is present in the Pointers array and `0`
// indicates it is omitted. To look-up a specific index in the Pointers array
// you must first make a count of the number of `1`s (popcount) up to the
// element you are looking for.
// e.g. a Bitfield of `10010110000` shows that we have a 4 element Pointers
// array. Indexes `[1]` and `[2]` are not present, but index `[3]` is at
// the second position of our Pointers array.
//
// The IPLD Schema representation of this data structure is as follows:
//
// type Node struct {
// bitfield Bytes
// pointers [Pointer]
// } representation tuple
type Node struct {
Bitfield Bitfield
Pointers []*Pointer
bitWidth int
hash HashFunc
// for fetching and storing children
store cbor.IpldStore
}
// Pointer is an element in a HAMT node's Pointers array, encoded as an IPLD
// tuple in DAG-CBOR of shape:
//
// CID or [KV...]
//
// i.e. it is represented as a "kinded union" where a Link is a pointer to a
// child node, while an array is a bucket of elements local to this node. A
// Pointer must represent exactly one of of these two states and cannot be both
// (or neither).
//
// There are between 1 and 2^bitWidth of these Pointers in any HAMT node.
//
// A Pointer contains either a KV bucket of up to `bucketSize` (3) values or a
// link (CID) to a child node. When a KV bucket overflows beyond `bucketSize`,
// the bucket is replaced with a link to a newly created HAMT node which will
// contain the `bucketSize+1` elements in its own Pointers array.
//
// The IPLD Schema representation of this data structure is as follows:
//
// type Pointer union {
// &Node link
// Bucket list
// } representation kinded
//
// type Bucket [KV]
type Pointer struct {
KVs []*KV
Link cid.Cid
// cache is a pointer to an in-memory Node, which may or may not be
// present, and corresponds to the Link field, which also may or may not
// be present.
//
// If present, the cached Node should be semantically substitutable with
// the Link field. It makes no sense for a cache Node to be present if KVs
// is set. Link might not be set, if cache is present and is describing
// data that has never yet been serialized and stored.
//
// `loadChild` will short circut to return this node if the pointer isn't
// nil;
// `loadChild` will also set this pointer when loading a node that wasn't
// yet present cached.
// `Flush` on a `Node` will iterate through each `Pointer` and `Put` its
// cache node if:
// 1. The Pointer's cache is not nil
// 2. The Pointer's dirty flag is true
// (and also recurse to `Flush` on that `Node`) -- in other words,
// `Flush` writes out the cached data
// `Flush` will assign `Link` in the process of `Put`'ing the 'cache' data.
// `Copy` will copy any cached nodes, Link fields and dirty flags.
//
// `Link` becomes defined on`Flush`
cache *Node
// dirty flag to indicate that the cached node needs to be flushed
dirty bool
}
// KV represents leaf storage within a HAMT node. A Pointer may hold up to
// `bucketSize` KV elements, where each KV contains a key and value pair
// stored by the user.
//
// Keys are represented as bytes.
//
// The IPLD Schema representation of this data structure is as follows:
//
// type KV struct {
// key Bytes
// value Any
// } representation tuple
type KV struct {
Key []byte
Value *cbg.Deferred
}
//-----------------------------------------------------------------------------
// Instance and helpers functions
// NewNode creates a new IPLD HAMT Node with the given IPLD store and any
// additional options (bitWidth and hash function).
//
// This function creates a new HAMT that you can use directly and is also
// used internally to create child nodes.
func NewNode(cs cbor.IpldStore, options ...Option) (*Node, error) {
cfg := defaultConfig()
for _, option := range options {
if err := option(cfg); err != nil {
return nil, err
}
}
return newNode(cs, cfg.hashFn, cfg.bitWidth), nil
}
// Find navigates through the HAMT structure to where key `k` should exist. If
// the key is not found, returns false. If the key is found, returns true, and
// if the `out` parameter has an UnmarshalCBOR(Reader) method, the
// value is decoded into it. The `out` parameter may be nil to test for existence
// without decoding.
//
// Depending on the size of the HAMT, this method may load a large number of
// child nodes via the HAMT's IpldStore.
func (n *Node) Find(ctx context.Context, k string, out cbg.CBORUnmarshaler) (bool, error) {
var found bool
err := n.getValue(ctx, &hashBits{b: n.hash([]byte(k))}, k, func(kv *KV) error {
found = true
// Note that an interface pointer-to-nil is not == nil and, if received here, will panic.
if out == nil {
return nil
}
return out.UnmarshalCBOR(bytes.NewReader(kv.Value.Raw))
})
return found, err
}
// FindRaw performs the same function as Find, but returns the raw bytes found
// at the key's location (which may or may not be DAG-CBOR, see also SetRaw).
func (n *Node) FindRaw(ctx context.Context, k string) (bool, []byte, error) {
var found bool
var value []byte
err := n.getValue(ctx, &hashBits{b: n.hash([]byte(k))}, k, func(kv *KV) error {
found = true
value = kv.Value.Raw
return nil
})
return found, value, err
}
// Delete removes an entry from the HAMT structure.
//
// Returns true if the key was found and deleted, false if the key was absent.
//
// This operation will result in the modification of _at least_ one IPLD block
// via the IpldStore. Depending on the contents of the leaf node, this
// operation may result in a node collapse to shrink the HAMT into its
// canonical form for the remaining data. For an insufficiently random
// collection of keys at the relevant leaf nodes such a collapse may cascade to
// further nodes.
func (n *Node) Delete(ctx context.Context, k string) (bool, error) {
kb := []byte(k)
modified, err := n.modifyValue(ctx, &hashBits{b: n.hash(kb)}, kb, nil, OVERWRITE)
return modified == MODIFIED, err
}
// Constructs a new node value.
func newNode(cs cbor.IpldStore, hashFn HashFunc, bitWidth int) *Node {
nd := &Node{
Pointers: make([]*Pointer, 0),
bitWidth: bitWidth,
hash: hashFn,
store: cs,
}
return nd
}
// handle the two Find operations in a recursive manner, where each node in the
// HAMT we traverse we call this function again with the same parameters.
// Invokes the callback if and only if the key is found.
// Note that `hv` contains state and `hv.Next()` is not idempotent. Each call
// increments a counter for the number of bits consumed.
func (n *Node) getValue(ctx context.Context, hv *hashBits, k string, cb func(*KV) error) error {
// hv.Next chomps off `bitWidth` bits from the hash digest. As we proceed
// down the tree, each node takes `bitWidth` more bits from the digest. If
// we attempt to take more bits than the digest contains, we hit max-depth
// and can't proceed.
idx, err := hv.Next(n.bitWidth)
if err != nil {
return ErrMaxDepth
}
// if the element expected at this node isn't here then we can be sure it
// doesn't exist in the HAMT.
if n.Bitfield.Bit(idx) == 0 {
return nil
}
// otherwise, the value is either local or in a child
// perform a popcount of bits up to the `idx` to find `cindex`
cindex := byte(n.indexForBitPos(idx))
c := n.getPointer(cindex)
if c.isShard() {
// if isShard, we have a pointer to a child that we need to load and
// delegate our find operation to
chnd, err := c.loadChild(ctx, n.store, n.bitWidth, n.hash)
if err != nil {
return err
}
return chnd.getValue(ctx, hv, k, cb)
}
// if not isShard, then the key/value pair is local and we need to retrieve
// it from the bucket. The bucket is sorted but only between 1 and
// `bucketSize` in length, so no need for fanciness.
for _, kv := range c.KVs {
if string(kv.Key) == k {
return cb(kv)
}
}
return nil
}
// load a HAMT node from the IpldStore and pass on the (assumed) parameters
// that are not stored with the node.
func (p *Pointer) loadChild(ctx context.Context, ns cbor.IpldStore, bitWidth int, hash HashFunc) (*Node, error) {
if p.cache != nil {
return p.cache, nil
}
out, err := loadNode(ctx, ns, p.Link, false, bitWidth, hash)
if err != nil {
return nil, err
}
p.cache = out
return out, nil
}
// load a HAMT node from the IpldStore passing on the (assumed) parameters
// that are not stored with the node and return all KVs of the child and its children.
func (p *Pointer) loadChildKVs(ctx context.Context, ns cbor.IpldStore, bitWidth int, hash HashFunc) ([]*KV, error) {
child, err := p.loadChild(ctx, ns, bitWidth, hash)
if err != nil {
return nil, err
}
var out []*KV
if err := child.ForEach(ctx, func(k string, val *cbg.Deferred) error {
out = append(out, &KV{
Key: []byte(k),
Value: val,
})
return nil
}); err != nil {
return nil, err
}
return out, nil
}
// LoadNode loads a HAMT Node from the IpldStore and configures it according
// to any specified Option parameters. Where the parameters of this HAMT vary
// from the defaults (hash function and bitWidth), those variations _must_ be
// supplied here via Options otherwise the HAMT will not be readable.
//
// Users should consider how their HAMT parameters are stored or specified
// along with their HAMT where the data is expected to have a long shelf-life
// as future users will need to know the parameters of a HAMT being loaded in
// order to decode it. Users should also NOT rely on the default parameters
// of this library to remain the defaults long-term and have strategies in
// place to manage variations.
func LoadNode(ctx context.Context, cs cbor.IpldStore, c cid.Cid, options ...Option) (*Node, error) {
cfg := defaultConfig()
for _, option := range options {
if err := option(cfg); err != nil {
return nil, err
}
}
return loadNode(ctx, cs, c, true, cfg.bitWidth, cfg.hashFn)
}
// internal version of loadNode that is aware of whether this is a root node or
// not for the purpose of additional validation on non-root nodes.
func loadNode(
ctx context.Context,
cs cbor.IpldStore,
c cid.Cid,
isRoot bool,
bitWidth int,
hashFunction HashFunc,
) (*Node, error) {
var out Node
if err := cs.Get(ctx, c, &out); err != nil {
return nil, err
}
out.store = cs
out.bitWidth = bitWidth
out.hash = hashFunction
// Validation
// too many elements in the data array for the configured bitWidth?
if len(out.Pointers) > 1<<uint(out.bitWidth) {
return nil, ErrMalformedHamt
}
// the bifield is lying or the elements array is
if out.bitsSetCount() != len(out.Pointers) {
return nil, ErrMalformedHamt
}
for _, ch := range out.Pointers {
if ch == nil {
// Cannot have nil pointers.
return nil, ErrMalformedHamt
}
isLink := ch.isShard()
isBucket := ch.KVs != nil
if isLink == isBucket {
// Pointer#UnmarshalCBOR shouldn't allow this
// A node can only be one of link or bucket
return nil, ErrMalformedHamt
}
if isLink && ch.Link.Type() != cid.DagCBOR { // not dag-cbor
return nil, ErrMalformedHamt
}
if isBucket {
if len(ch.KVs) == 0 || len(ch.KVs) > bucketSize {
return nil, ErrMalformedHamt
}
for _, kv := range ch.KVs {
if kv == nil {
// Cannot have nil pointers kvs.
return nil, ErrMalformedHamt
}
}
for i := 1; i < len(ch.KVs); i++ {
if bytes.Compare(ch.KVs[i-1].Key, ch.KVs[i].Key) >= 0 {
return nil, ErrMalformedHamt
}
}
}
}
if !isRoot {
// the only valid empty node is a root node
if len(out.Pointers) == 0 {
return nil, ErrMalformedHamt
}
// a non-root node that contains <=bucketSize direct elements should not
// exist under compaction rules
if out.directChildCount() == 0 && out.directKVCount() <= bucketSize {
return nil, ErrMalformedHamt
}
}
return &out, nil
}
// checkSize computes the total serialized size of the entire HAMT.
// It both puts and loads blocks as necesary to do this
// (using the Put operation and a paired Get to discover the serial size,
// and the load to move recursively as necessary).
//
// This is an expensive operation and should only be used in testing and analysis.
//
// Note that checkSize *does* actually *use the blockstore*: therefore it
// will affect get and put counts (and makes no attempt to avoid duplicate puts!);
// be aware of this if you are measuring those event counts.
func (n *Node) checkSize(ctx context.Context) (uint64, error) {
c, err := n.store.Put(ctx, n)
if err != nil {
return 0, err
}
var def cbg.Deferred
if err := n.store.Get(ctx, c, &def); err != nil {
return 0, nil
}
totsize := uint64(len(def.Raw))
for _, ch := range n.Pointers {
if ch.isShard() {
chnd, err := ch.loadChild(ctx, n.store, n.bitWidth, n.hash)
if err != nil {
return 0, err
}
chsize, err := chnd.checkSize(ctx)
if err != nil {
return 0, err
}
totsize += chsize
}
}
return totsize, nil
}
// Write is a convenience method that calls flush and writes the node to it's
// internal store, returning the CID of the stored node. It is equivelant to:
//
// n.Flush
// store.Put(ctx, n)
//
// where store is equal to the store provided to the node when constructed.
//
// write should only be called on the root node of a HAMT
func (n *Node) Write(ctx context.Context) (cid.Cid, error) {
if err := n.Flush(ctx); err != nil {
return cid.Undef, err
}
return n.store.Put(ctx, n)
}
// Flush has two effects, it (partially!) persists data and resets dirty flag
//
// Flush operates recursively, telling each "cache" child node to flush;
// Put'ing that "cache" node to the store;
// updating this node's Link to the CID resulting from the store Put;
// clearing the dirty flag of that pointer to flase
// and then returning.
// Flush doesn't operate unless there's a "cache" node.
//
// "cache" nodes were previously storing either updated values,
// or, simply storing previously loaded data; these are disambiguated by the
// dirty flag which is true when the cache node's data has not been persisted
//
// Notice that Flush _does not_ Put _this node_.
// To fully persist changes, the caller still needs to Put this node to the
// store themselves, and store the new resulting Link wherever they expect the
// updated HAMT to be seen.
func (n *Node) Flush(ctx context.Context) error {
for _, p := range n.Pointers {
if p.cache != nil && p.dirty {
if err := p.cache.Flush(ctx); err != nil {
return err
}
c, err := n.store.Put(ctx, p.cache)
if err != nil {
return err
}
p.dirty = false
p.Link = c
}
}
return nil
}
// Set key k to value v, where v is has a MarshalCBOR(bytes.Buffer) method to
// encode it.
//
// To fully commit the change, it is necessary to Flush the root Node,
// and then additionally Put the root node to the store itself,
// and save the resulting CID wherever you expect the HAMT root to persist.
func (n *Node) Set(ctx context.Context, k string, v cbg.CBORMarshaler) error {
var d cbg.Deferred
if v == nil {
d.Raw = cbg.CborNull
} else {
valueBuf := new(bytes.Buffer)
if err := v.MarshalCBOR(valueBuf); err != nil {
return err
}
d.Raw = valueBuf.Bytes()
}
keyBytes := []byte(k)
_, err := n.modifyValue(ctx, &hashBits{b: n.hash(keyBytes)}, keyBytes, &d, OVERWRITE)
return err
}
// SetIfAbsent sets key k to value v only if k is not already set to some value.
// Returns true if the value mapped to k is changed by this operation
// false otherwise.
func (n *Node) SetIfAbsent(ctx context.Context, k string, v cbg.CBORMarshaler) (bool, error) {
var d cbg.Deferred
if v == nil {
d.Raw = cbg.CborNull
} else {
valueBuf := new(bytes.Buffer)
if err := v.MarshalCBOR(valueBuf); err != nil {
return false, err
}
d.Raw = valueBuf.Bytes()
}
keyBytes := []byte(k)
modified, err := n.modifyValue(ctx, &hashBits{b: n.hash(keyBytes)}, keyBytes, &d, NOVERWRITE)
return bool(modified), err
}
// SetRaw is similar to Set but sets key k in the HAMT to raw bytes without
// performing a DAG-CBOR marshal. The bytes may or may not be encoded DAG-CBOR
// (see also FindRaw for fetching raw form).
func (n *Node) SetRaw(ctx context.Context, k string, raw []byte) error {
d := &cbg.Deferred{Raw: raw}
kb := []byte(k)
_, err := n.modifyValue(ctx, &hashBits{b: n.hash(kb)}, kb, d, OVERWRITE)
return err
}
// the number of links to child nodes this node contains
func (n *Node) directChildCount() int {
count := 0
for _, p := range n.Pointers {
if p.isShard() {
count++
}
}
return count
}
// the number of KV entries this node contains
func (n *Node) directKVCount() int {
count := 0
for _, p := range n.Pointers {
if !p.isShard() {
count = count + len(p.KVs)
}
}
return count
}
// This happens after deletes to ensure that we retain canonical form for the
// given set of data this HAMT contains. This is a key part of the CHAMP
// algorithm. Any node that could be represented as a bucket in a parent node
// should be collapsed as such. This collapsing process could continue back up
// the tree as far as necessary to represent the data in the minimal HAMT form.
// This operation is done from a parent perspective, so we clean the child
// below us first and then our parent cleans us.
func (n *Node) cleanChild(chnd *Node, cindex byte) error {
if chnd.directChildCount() != 0 {
// child has its own children, nothing to collapse
return nil
}
if chnd.directKVCount() > bucketSize {
// child contains more local elements than could be collapsed
return nil
}
if len(chnd.Pointers) == 1 {
// The case where the child node has a single bucket, which we know can
// only contain `bucketSize` elements (maximum), so we need to pull that
// bucket up into this node.
// This case should only happen when it bubbles up from the case below
// where a lower child has its elements compacted into a single bucket. We
// shouldn't be able to reach this block unless a delete has been
// performed on a lower block and we are performing a post-delete clean on
// a parent block.
return n.setPointer(cindex, chnd.Pointers[0])
}
// The case where the child node contains enough elements to fit in a
// single bucket and therefore can't justify its existence as a node on its
// own. So we collapse all entries into a single bucket and replace the
// link to the child with that bucket.
// This may cause cascading collapses if this is the only bucket in the
// current node, that case will be handled by our parent node by the l==1
// case above.
var chvals []*KV
for _, p := range chnd.Pointers {
chvals = append(chvals, p.KVs...)
}
kvLess := func(i, j int) bool {
ki := chvals[i].Key
kj := chvals[j].Key
return bytes.Compare(ki, kj) < 0
}
sort.Slice(chvals, kvLess)
return n.setPointer(cindex, &Pointer{KVs: chvals})
}
// Add a new value, update an existing value, or delete a value from the HAMT,
// potentially recursively calling child nodes to find the exact location of
// the entry in question and potentially collapsing nodes into buckets in
// parent nodes where a deletion violates the canonical form rules (see
// cleanNode()). Recursive calls use the same arguments on child nodes but
// note that `hv.Next()` is not idempotent. Each call will increment the number
// of bits chomped off the hash digest for this key.
func (n *Node) modifyValue(ctx context.Context, hv *hashBits, k []byte, v *cbg.Deferred, replace overwrite) (modified, error) {
idx, err := hv.Next(n.bitWidth)
if err != nil {
return UNMODIFIED, ErrMaxDepth
}
// if the element expected at this node isn't here then we can be sure it
// doesn't exist in the HAMT already and can insert it at the appropriate
// position.
if n.Bitfield.Bit(idx) != 1 {
if v == nil { // Delete absent key
return UNMODIFIED, nil
}
return MODIFIED, n.insertKV(idx, k, v)
}
// otherwise, the value is either local or in a child
// perform a popcount of bits up to the `idx` to find `cindex`
cindex := byte(n.indexForBitPos(idx))
child := n.getPointer(cindex)
if child.isShard() {
// if isShard, we have a pointer to a child that we need to load and
// delegate our modify operation to.
// Note that this loadChild operation will cause the loaded node to be
// "cached" and this pointer to be marked as dirty;
// it is an eventual Flush passing back over this "cache" node which
// causes the updates made to the in-memory "cache" node to eventually
// be persisted.
chnd, err := child.loadChild(ctx, n.store, n.bitWidth, n.hash)
if err != nil {
return UNMODIFIED, err
}
modified, err := chnd.modifyValue(ctx, hv, k, v, replace)
if err != nil {
return UNMODIFIED, err
}
if modified {
// if we are modifying set the child.dirty
// if we are not modifying leave it be, another operation might had set it previously
child.dirty = true
}
// CHAMP optimization, ensure the HAMT retains its canonical form for the
// current data it contains. This may involve collapsing child nodes if
// they no longer contain enough elements to justify their stand-alone
// existence.
if v == nil {
if err := n.cleanChild(chnd, cindex); err != nil {
return UNMODIFIED, err
}
}
return modified, nil
}
// if not isShard, then either the key/value pair is local here and can be
// modified (or deleted) here or needs to be added as a new child node if
// there is an overflow.
if v == nil {
// delete operation, find the child and remove it, compacting the bucket in
// the process
for i, p := range child.KVs {
if bytes.Equal(p.Key, k) {
if len(child.KVs) == 1 {
// last element in the bucket, remove it and update the bitfield
return MODIFIED, n.rmPointer(cindex, idx)
}
copy(child.KVs[i:], child.KVs[i+1:])
child.KVs = child.KVs[:len(child.KVs)-1]
return MODIFIED, nil
}
}
return UNMODIFIED, nil // Delete absent key
}
// modify existing, check if key already exists
for _, p := range child.KVs {
if bytes.Equal(p.Key, k) {
if bool(replace) && !bytes.Equal(p.Value.Raw, v.Raw) {
p.Value = v
return MODIFIED, nil
}
return UNMODIFIED, nil
}
}
if len(child.KVs) >= bucketSize {
// bucket is full, create a child node (shard) with all existing bucket
// elements plus the new one and set it in the place of the bucket
sub := newNode(n.store, n.hash, n.bitWidth)
hvcopy := &hashBits{b: hv.b, consumed: hv.consumed}
if _, err := sub.modifyValue(ctx, hvcopy, k, v, replace); err != nil {
return UNMODIFIED, err
}
for _, p := range child.KVs {
chhv := &hashBits{b: n.hash(p.Key), consumed: hv.consumed}
if _, err := sub.modifyValue(ctx, chhv, p.Key, p.Value, replace); err != nil {
return UNMODIFIED, err
}
}
return MODIFIED, n.setPointer(cindex, &Pointer{cache: sub, dirty: true})
}
// otherwise insert the new element into the array in order, the ordering is
// important to retain canonical form
np := &KV{Key: k, Value: v}
for i := 0; i < len(child.KVs); i++ {
if bytes.Compare(k, child.KVs[i].Key) < 0 {
child.KVs = append(child.KVs[:i], append([]*KV{np}, child.KVs[i:]...)...)
return MODIFIED, nil
}
}
child.KVs = append(child.KVs, np)
return MODIFIED, nil
}
// Insert a new key/value pair into the current node at the specified index.
// This will involve modifying the bitfield for that index and inserting a new
// bucket containing the single key/value pair at that position.
func (n *Node) insertKV(idx int, k []byte, v *cbg.Deferred) error {
i := n.indexForBitPos(idx)
n.Bitfield.SetBit(&n.Bitfield.Int, idx, 1)
p := &Pointer{KVs: []*KV{{Key: k, Value: v}}}
n.Pointers = append(n.Pointers[:i], append([]*Pointer{p}, n.Pointers[i:]...)...)
return nil
}
// Set a Pointer at a specific location, this doesn't modify the elements array
// but assumes that what's there can be updated. This seems to mostly be useful
// for tail calls.
func (n *Node) setPointer(i byte, p *Pointer) error {
n.Pointers[i] = p
return nil
}
// Remove a child at a specified index, splicing the Pointers array to remove
// it and updating the bitfield to specify that an element no longer exists at
// that position.
func (n *Node) rmPointer(i byte, idx int) error {
copy(n.Pointers[i:], n.Pointers[i+1:])
n.Pointers = n.Pointers[:len(n.Pointers)-1]
n.Bitfield.SetBit(&n.Bitfield.Int, idx, 0)
return nil
}
// Load a Pointer from the specified index of the Pointers array. The element
// should exist in a properly formed HAMT.
func (n *Node) getPointer(i byte) *Pointer {
if int(i) >= len(n.Pointers) {
// TODO(rvagg): I think this should be an error, there's an assumption in
// calling code that it's not null and a proper hash chomp shouldn't result
// in anything out of bounds
return nil
}
return n.Pointers[i]
}
// Copy a HAMT node and all of its contents. May be useful for mutation
// operations where the original needs to be preserved in memory.
//
// This operation will also recursively clone any child nodes that are attached
// as cached nodes.
func (n *Node) Copy() *Node {
// TODO(rvagg): clarify what situations this method is actually useful for.
nn := newNode(n.store, n.hash, n.bitWidth)
nn.Bitfield.Set(&n.Bitfield.Int)
nn.Pointers = make([]*Pointer, len(n.Pointers))
for i, p := range n.Pointers {
pp := &Pointer{}
if p.cache != nil {
pp.cache = p.cache.Copy()
pp.dirty = p.dirty
}
pp.Link = p.Link
if p.KVs != nil {
pp.KVs = make([]*KV, len(p.KVs))
for j, kv := range p.KVs {
pp.KVs[j] = &KV{Key: kv.Key, Value: kv.Value}
}
}
nn.Pointers[i] = pp
}
return nn
}
// Pointers elements can either contain a bucket of local elements or be a
// link to a child node. In the case of a link, isShard() returns true.
func (p *Pointer) isShard() bool {
return p.cache != nil || p.Link.Defined()
}
// ForEach recursively calls function f on each k / val pair found in the HAMT.
// This performs a full traversal of the graph and for large HAMTs can cause
// a large number of loads from the underlying store.
// The values are returned as raw bytes, not decoded.
func (n *Node) ForEach(ctx context.Context, f func(k string, val *cbg.Deferred) error) error {
for _, p := range n.Pointers {
if p.isShard() {
chnd, err := p.loadChild(ctx, n.store, n.bitWidth, n.hash)
if err != nil {
return err
}
if err := chnd.ForEach(ctx, f); err != nil {
return err
}
} else {
for _, kv := range p.KVs {
if err := f(string(kv.Key), kv.Value); err != nil {
return err
}
}
}
}
return nil
}