-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworldMagneticModel.js
733 lines (677 loc) · 27.5 KB
/
worldMagneticModel.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
DOD World Magnetic Model 2015-2020
See bottom of file for info from original Fortran source code
Reminder - this is just a model! See the USGS and BGS sites for predicted accuracy.
Usage is var wmm = new WorldMagneticModel();
then var dec = wmm.declination(0.0, 59.0, -2.0, 2015.5);
parameters are:
altitude in kilometres
decimal degree latitude, -ve for south
decimal degree longitude, -ve for west
date as year + fraction of year
return is declination angle in decimal degrees,
+ve for Magnetic North East of True North
(-999 for < 2015.0 and >= 2020.0)
The method knownAnswerTest yields a maximum declination error of 0.12% on the USGS test data set.
This is assumed to be down to the use of double rather than single precision floating point arithmetic.
The maximum error is at 0 latitude, 120W longitude. The value produced by this code at this point is 9.191 degrees.
This is the same answer as produced by the BGS calculator at http://www.geomag.bgs.ac.uk/gifs/wmm_calc.html
*/
function WorldMagneticModel (){
/* 2015 - 2020 coefficients from WMM.COF */
this.coff = [
" 1, 0, -29438.5, 0.0, 10.7, 0.0",
" 1, 1, -1501.1, 4796.2, 17.9, -26.8",
" 2, 0, -2445.3, 0.0, -8.6, 0.0",
" 2, 1, 3012.5, -2845.6, -3.3, -27.1",
" 2, 2, 1676.6, -642.0, 2.4, -13.3",
" 3, 0, 1351.1, 0.0, 3.1, 0.0",
" 3, 1, -2352.3, -115.3, -6.2, 8.4",
" 3, 2, 1225.6, 245.0, -0.4, -0.4",
" 3, 3, 581.9, -538.3, -10.4, 2.3",
" 4, 0, 907.2, 0.0, -0.4, 0.0",
" 4, 1, 813.7, 283.4, 0.8, -0.6",
" 4, 2, 120.3, -188.6, -9.2, 5.3",
" 4, 3, -335.0, 180.9, 4.0, 3.0",
" 4, 4, 70.3, -329.5, -4.2, -5.3",
" 5, 0, -232.6, 0.0, -0.2, 0.0",
" 5, 1, 360.1, 47.4, 0.1, 0.4",
" 5, 2, 192.4, 196.9, -1.4, 1.6",
" 5, 3, -141.0, -119.4, 0.0, -1.1",
" 5, 4, -157.4, 16.1, 1.3, 3.3",
" 5, 5, 4.3, 100.1, 3.8, 0.1",
" 6, 0, 69.5, 0.0, -0.5, 0.0",
" 6, 1, 67.4, -20.7, -0.2, 0.0",
" 6, 2, 72.8, 33.2, -0.6, -2.2",
" 6, 3, -129.8, 58.8, 2.4, -0.7",
" 6, 4, -29.0, -66.5, -1.1, 0.1",
" 6, 5, 13.2, 7.3, 0.3, 1.0",
" 6, 6, -70.9, 62.5, 1.5, 1.3",
" 7, 0, 81.6, 0.0, 0.2, 0.0",
" 7, 1, -76.1, -54.1, -0.2, 0.7",
" 7, 2, -6.8, -19.4, -0.4, 0.5",
" 7, 3, 51.9, 5.6, 1.3, -0.2",
" 7, 4, 15.0, 24.4, 0.2, -0.1",
" 7, 5, 9.3, 3.3, -0.4, -0.7",
" 7, 6, -2.8, -27.5, -0.9, 0.1",
" 7, 7, 6.7, -2.3, 0.3, 0.1",
" 8, 0, 24.0, 0.0, 0.0, 0.0",
" 8, 1, 8.6, 10.2, 0.1, -0.3",
" 8, 2, -16.9, -18.1, -0.5, 0.3",
" 8, 3, -3.2, 13.2, 0.5, 0.3",
" 8, 4, -20.6, -14.6, -0.2, 0.6",
" 8, 5, 13.3, 16.2, 0.4, -0.1",
" 8, 6, 11.7, 5.7, 0.2, -0.2",
" 8, 7, -16.0, -9.1, -0.4, 0.3",
" 8, 8, -2.0, 2.2, 0.3, 0.0",
" 9, 0, 5.4, 0.0, 0.0, 0.0",
" 9, 1, 8.8, -21.6, -0.1, -0.2",
" 9, 2, 3.1, 10.8, -0.1, -0.1",
" 9, 3, -3.1, 11.7, 0.4, -0.2",
" 9, 4, 0.6, -6.8, -0.5, 0.1",
" 9, 5, -13.3, -6.9, -0.2, 0.1",
" 9, 6, -0.1, 7.8, 0.1, 0.0",
" 9, 7, 8.7, 1.0, 0.0, -0.2",
" 9, 8, -9.1, -3.9, -0.2, 0.4",
" 9, 9, -10.5, 8.5, -0.1, 0.3",
" 10, 0, -1.9, 0.0, 0.0, 0.0",
" 10, 1, -6.5, 3.3, 0.0, 0.1",
" 10, 2, 0.2, -0.3, -0.1, -0.1",
" 10, 3, 0.6, 4.6, 0.3, 0.0",
" 10, 4, -0.6, 4.4, -0.1, 0.0",
" 10, 5, 1.7, -7.9, -0.1, -0.2",
" 10, 6, -0.7, -0.6, -0.1, 0.1",
" 10, 7, 2.1, -4.1, 0.0, -0.1",
" 10, 8, 2.3, -2.8, -0.2, -0.2",
" 10, 9, -1.8, -1.1, -0.1, 0.1",
" 10, 10, -3.6, -8.7, -0.2, -0.1",
" 11, 0, 3.1, 0.0, 0.0, 0.0",
" 11, 1, -1.5, -0.1, 0.0, 0.0",
" 11, 2, -2.3, 2.1, -0.1, 0.1",
" 11, 3, 2.1, -0.7, 0.1, 0.0",
" 11, 4, -0.9, -1.1, 0.0, 0.1",
" 11, 5, 0.6, 0.7, 0.0, 0.0",
" 11, 6, -0.7, -0.2, 0.0, 0.0",
" 11, 7, 0.2, -2.1, 0.0, 0.1",
" 11, 8, 1.7, -1.5, 0.0, 0.0",
" 11, 9, -0.2, -2.5, 0.0, -0.1",
" 11, 10, 0.4, -2.0, -0.1, 0.0",
" 11, 11, 3.5, -2.3, -0.1, -0.1",
" 12, 0, -2.0, 0.0, 0.1, 0.0",
" 12, 1, -0.3, -1.0, 0.0, 0.0",
" 12, 2, 0.4, 0.5, 0.0, 0.0",
" 12, 3, 1.3, 1.8, 0.1, -0.1",
" 12, 4, -0.9, -2.2, -0.1, 0.0",
" 12, 5, 0.9, 0.3, 0.0, 0.0",
" 12, 6, 0.1, 0.7, 0.1, 0.0",
" 12, 7, 0.5, -0.1, 0.0, 0.0",
" 12, 8, -0.4, 0.3, 0.0, 0.0",
" 12, 9, -0.4, 0.2, 0.0, 0.0",
" 12, 10, 0.2, -0.9, 0.0, 0.0",
" 12, 11, -0.9, -0.2, 0.0, 0.0",
" 12, 12, 0.0, 0.7, 0.0, 0.0"
];
/* static variables */
/* some 13x13 2D arrays */
this.c = new Array(13);
this.cd = new Array(13);
this.tc = new Array(13);
this.dp = new Array(13);
this.k = new Array(13);
for(var i=0; i< 13; i++)
{
this.c[i] = new Array(13);
this.cd[i] = new Array(13);
this.tc[i] = new Array(13);
this.dp[i] = new Array(13);
this.k[i] = new Array(13);
}
/* some 1D arrays */
this.snorm = new Array(169);
this.sp = new Array(13);
this.cp = new Array(13);
this.fn = new Array(13);
this.fm = new Array(13);
this.pp = new Array(13);
/* locals */
var maxdeg = 12;
var maxord;
var i,j,D1,D2,n,m;
var a,b,a2,b2,c2,a4,b4,c4,re;
var gnm,hnm,dgnm,dhnm,flnmj;
var c_str;
var c_flds;
/* INITIALIZE CONSTANTS */
maxord = maxdeg;
this.sp[0] = 0.0;
this.cp[0] = this.snorm[0] = this.pp[0] = 1.0;
this.dp[0][0] = 0.0;
a = 6378.137;
b = 6356.7523142;
re = 6371.2;
a2 = a*a;
b2 = b*b;
c2 = a2-b2;
a4 = a2*a2;
b4 = b2*b2;
c4 = a4 - b4;
/* READ WORLD MAGNETIC MODEL SPHERICAL HARMONIC COEFFICIENTS */
this.c[0][0] = 0.0;
this.cd[0][0] = 0.0;
for(i=0; i<this.coff.length; i++)
{
c_str = this.coff[i];
c_flds = c_str.split(",");
n = parseInt(c_flds[0]);
m = parseInt(c_flds[1]);
gnm = parseFloat(c_flds[2]);
hnm = parseFloat(c_flds[3]);
dgnm = parseFloat(c_flds[4]);
dhnm = parseFloat(c_flds[5]);
if (m <= n)
{
this.c[m][n] = gnm;
this.cd[m][n] = dgnm;
if (m != 0)
{
this.c[n][m-1] = hnm;
this.cd[n][m-1] = dhnm;
}
}
}
/* CONVERT SCHMIDT NORMALIZED GAUSS COEFFICIENTS TO UNNORMALIZED */
this.snorm[0] = 1.0;
for (n=1; n<=maxord; n++)
{
this.snorm[n] = this.snorm[n-1]*(2*n-1)/n;
j = 2;
for (m=0,D1=1,D2=(n-m+D1)/D1; D2>0; D2--,m+=D1)
{
this.k[m][n] = (((n-1)*(n-1))-(m*m))/((2*n-1)*(2*n-3));
if (m > 0)
{
flnmj = ((n-m+1)*j)/(n+m);
this.snorm[n+m*13] = this.snorm[n+(m-1)*13]*Math.sqrt(flnmj);
j = 1;
this.c[n][m-1] = this.snorm[n+m*13]*this.c[n][m-1];
this.cd[n][m-1] = this.snorm[n+m*13]*this.cd[n][m-1];
}
this.c[m][n] = this.snorm[n+m*13]*this.c[m][n];
this.cd[m][n] = this.snorm[n+m*13]*this.cd[m][n];
}
this.fn[n] = (n+1);
this.fm[n] = n;
}
this.k[1][1] = 0.0;
this.fm[0] = 0.0; // !!! WMM C and Fortran both have a bug in that fm[0] is not initialised
}
WorldMagneticModel.prototype.declination = function(altitudeKm, latitudeDegrees, longitudeDegrees, yearFloat){
/* locals */
var a = 6378.137;
var b = 6356.7523142;
var re = 6371.2;
var a2 = a*a;
var b2 = b*b;
var c2 = a2-b2;
var a4 = a2*a2;
var b4 = b2*b2;
var c4 = a4 - b4;
var D3, D4;
var dip, ti, gv, dec;
var n,m;
var pi, dt, rlon, rlat, srlon, srlat, crlon, crlat,srlat2,
crlat2, q, q1, q2, ct, d,aor,ar, br, r2, bpp, par,
temp1,parp,temp2,bx,by,bz,bh,dtr,bp,bt, st,ca,sa;
var maxord = 12;
var alt = altitudeKm;
var glon = longitudeDegrees;
var glat = latitudeDegrees;
/*************************************************************************/
dt = yearFloat - 2015.0;
// if more then 5 years has passed since last epoch update then return invalid
if ((dt < 0.0) || (dt > 5.0))
return -999;
pi = 3.14159265359;
dtr = pi/180.0;
rlon = glon*dtr;
rlat = glat*dtr;
srlon = Math.sin(rlon);
srlat = Math.sin(rlat);
crlon = Math.cos(rlon);
crlat = Math.cos(rlat);
srlat2 = srlat*srlat;
crlat2 = crlat*crlat;
this.sp[1] = srlon;
this.cp[1] = crlon;
/* CONVERT FROM GEODETIC COORDS. TO SPHERICAL COORDS. */
q = Math.sqrt(a2-c2*srlat2);
q1 = alt*q;
q2 = ((q1+a2)/(q1+b2))*((q1+a2)/(q1+b2));
ct = srlat/Math.sqrt(q2*crlat2+srlat2);
st = Math.sqrt(1.0-(ct*ct));
r2 = (alt*alt)+2.0*q1+(a4-c4*srlat2)/(q*q);
r = Math.sqrt(r2);
d = Math.sqrt(a2*crlat2+b2*srlat2);
ca = (alt+d)/r;
sa = c2*crlat*srlat/(r*d);
for (m=2; m<=maxord; m++)
{
this.sp[m] = this.sp[1]*this.cp[m-1]+this.cp[1]*this.sp[m-1];
this.cp[m] = this.cp[1]*this.cp[m-1]-this.sp[1]*this.sp[m-1];
}
aor = re/r;
ar = aor*aor;
br = bt = bp = bpp = 0.0;
for (n=1; n<=maxord; n++)
{
ar = ar*aor;
for (m=0,D3=1,D4=(n+m+D3)/D3; D4>0; D4--,m+=D3)
{
/*
COMPUTE UNNORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS
AND DERIVATIVES VIA RECURSION RELATIONS
*/
if (n == m)
{
this.snorm[n+m*13] = st*this.snorm[n-1+(m-1)*13];
this.dp[m][n] = st*this.dp[m-1][n-1]+ct*this.snorm[n-1+(m-1)*13];
}
else if (n == 1 && m == 0)
{
this.snorm[n+m*13] = ct*this.snorm[n-1+m*13];
this.dp[m][n] = ct*this.dp[m][n-1]-st*this.snorm[n-1+m*13];
}
else if (n > 1 && n != m)
{
if (m > n-2) this.snorm[n-2+m*13] = 0.0;
if (m > n-2) this.dp[m][n-2] = 0.0;
this.snorm[n+m*13] = ct*this.snorm[n-1+m*13]-this.k[m][n]*this.snorm[n-2+m*13];
this.dp[m][n] = ct*this.dp[m][n-1] - st*this.snorm[n-1+m*13]-this.k[m][n]*this.dp[m][n-2];
}
/*
TIME ADJUST THE GAUSS COEFFICIENTS
*/
this.tc[m][n] = this.c[m][n]+dt*this.cd[m][n];
if (m != 0) this.tc[n][m-1] = this.c[n][m-1]+dt*this.cd[n][m-1];
/*
ACCUMULATE TERMS OF THE SPHERICAL HARMONIC EXPANSIONS
*/
par = ar*this.snorm[n+m*13];
if (m == 0)
{
temp1 = this.tc[m][n]*this.cp[m];
temp2 = this.tc[m][n]*this.sp[m];
}
else
{
temp1 = this.tc[m][n]*this.cp[m]+this.tc[n][m-1]*this.sp[m];
temp2 = this.tc[m][n]*this.sp[m]-this.tc[n][m-1]*this.cp[m];
}
bt = bt-ar*temp1*this.dp[m][n];
bp += (this.fm[m]*temp2*par);
br += (this.fn[n]*temp1*par);
/*
SPECIAL CASE: NORTH/SOUTH GEOGRAPHIC POLES
*/
if (st == 0.0 && m == 1)
{
if (n == 1) this.pp[n] = this.pp[n-1];
else this.pp[n] = this.ct*this.pp[n-1]-this.k[m][n]*this.pp[n-2];
parp = ar*this.pp[n];
bpp += (this.fm[m]*temp2*parp);
}
}
}
if (st == 0.0)
bp = bpp;
else
bp /= st;
/*
ROTATE MAGNETIC VECTOR COMPONENTS FROM SPHERICAL TO
GEODETIC COORDINATES
*/
bx = -bt*ca-br*sa;
by = bp;
bz = bt*sa-br*ca;
/*
COMPUTE DECLINATION (DEC), INCLINATION (DIP) AND
TOTAL INTENSITY (TI)
*/
bh = Math.sqrt((bx*bx)+(by*by));
ti = Math.sqrt((bh*bh)+(bz*bz));
dec = Math.atan2(by,bx)/dtr;
dip = Math.atan2(bz,bh)/dtr;
/*
COMPUTE MAGNETIC GRID VARIATION IF THE CURRENT
GEODETIC POSITION IS IN THE ARCTIC OR ANTARCTIC
(I.E. GLAT > +55 DEGREES OR GLAT < -55 DEGREES)
OTHERWISE, SET MAGNETIC GRID VARIATION TO -999.0
*/
gv = -999.0;
if (Math.abs(glat) >= 55.0)
{
if (glat > 0.0 && glon >= 0.0) gv = dec-glon;
if (glat > 0.0 && glon < 0.0) gv = dec+Math.abs(glon);
if (glat < 0.0 && glon >= 0.0) gv = dec+glon;
if (glat < 0.0 && glon < 0.0) gv = dec-Math.abs(glon);
if (gv > +180.0) gv -= 360.0;
if (gv < -180.0) gv += 360.0;
}
return dec;
}
WorldMagneticModel.prototype.knownAnswerTest = function(){
/* http://www.ngdc.noaa.gov/geomag/WMM/data/2006TestValues_WMM2005.pdf */
/* Lat Lon Dec */
/* Lon 240 = 120W, Lon 300 = 60W */
var kat = [
"80.00 ,0.00 ,-7.55 ",
"80.00 ,60.00 ,35.53 ",
"80.00 ,120.00 ,0.85 ",
"80.00 ,180.00 ,9.32 ",
"80.00 ,240.00 ,36.35 ",
"80.00 ,300.00 ,-55.92 ",
"40.00 ,0.00 ,-1.13 ",
"40.00 ,60.00 ,4.98 ",
"40.00 ,120.00 ,-7.27 ",
"40.00 ,180.00 ,5.85 ",
"40.00 ,240.00 ,14.93 ",
"40.00 ,300.00 ,-17.98 ",
"0.00 ,0.00 ,-6.60 ",
"0.00 ,60.00 ,-4.20 ",
"0.00 ,120.00 ,1.12 ",
"0.00 ,180.00 ,9.63 ",
"0.00 ,240.00 ,9.18 ",
"0.00 ,300.00 ,-14.48 ",
"-40.00 ,0.00 ,-23.47 ",
"-40.00 ,60.00 ,-45.20 ",
"-40.00 ,120.00 ,-3.42 ",
"-40.00 ,180.00 ,21.73 ",
"-40.00 ,240.00 ,22.43 ",
"-40.00 ,300.00 ,-2.45 ",
"-80.00 ,0.00 ,-21.65 ",
"-80.00 ,60.00 ,-74.13 ",
"-80.00 ,120.00 ,-140.50 ",
"-80.00 ,180.00 ,131.73 ",
"-80.00 ,240.00 ,70.50 ",
"-80.00 ,300.00 ,23.95 "
];
var maxErr = 0.0;
for(var i=0; i<kat.length; i++){
var c_str = kat[i];
var c_flds = c_str.split(",");
var lat = parseFloat(c_flds[0]);
var lon = parseFloat(c_flds[1]);
var exp = parseFloat(c_flds[2]);
var maxExp;
var dec = this.declination(0,lat,lon,2006.0);
if(Math.abs(dec-exp) > maxErr){
maxErr = Math.abs(dec-exp);
maxExp = exp;
}
}
return maxErr * 100 / maxExp;//max % error
}
/*
C***********************************************************************
C
THIS SUBROUTINE IS USED TO CALCULATE LOCAL MAGNETIC DECLINATION.
LAST MODIFICATION: 12/18/2014 - COMPILED BY LUIZ C. PINHEIRO.
COPYRIGHT 1997 - 2014 LUIZ C. PINHEIRO - HTTP://WWW.GEOSATS.COM/
IF YOU HAVE ANY QUESTION SEND ME A E-MAIL TO WAYANA@GMAIL.COM
IF YOU THINK THAT THIS CODE IS USEFUL, LEAVE THIS HEADER AND CONTACT ME.
C
C***********************************************************************
C
C SUBROUTINE GEOMAG (GEOMAGNETIC FIELD COMPUTATION)
C
C***********************************************************************
C
C GEOMAG IS A NATIONAL GEOSPATIAL INTELLIGENCE AGENCY (NGA) STANDARD
C PRODUCT. IT IS COVERED UNDER NGA MILITARY SPECIFICATION:
C MIL-W-89500 (1993).
C
C***********************************************************************
C Contact Information
C
C Software and Model Support
C National Geophysical Data Center
C NOAA EGC/2
C 325 Broadway
C Boulder, CO 80303 USA
C Attn: Susan McLean or Stefan Maus
C Phone: (303) 497-6478 or -6522
C Email: Susan.McLean@noaa.gov or Stefan.Maus@noaa.gov
C Web: http://www.ngdc.noaa.gov/seg/WMM/
C
C Sponsoring Government Agency
C National Geospatial-Intelligence Agency
C PRG / CSAT, M.S. L-41
C 3838 Vogel Road
C Arnold, MO 63010
C Attn: Craig Rollins
C Phone: (314) 263-4186
C Email: Craig.M.Rollins@Nga.Mil
C
C Original Program By:
C Dr. John Quinn
C FLEET PRODUCTS DIVISION, CODE N342
C NAVAL OCEANOGRAPHIC OFFICE (NAVOCEANO)
C STENNIS SPACE CENTER (SSC), MS 39522-5001
C
C***********************************************************************
C
C PURPOSE: THIS ROUTINE COMPUTES THE DECLINATION (DEC),
C INCLINATION (DIP), TOTAL INTENSITY (TI) AND
C GRID VARIATION (GV - POLAR REGIONS ONLY, REFERENCED
C TO GRID NORTH OF A STEREOGRAPHIC PROJECTION) OF THE
C EARTH'S MAGNETIC FIELD IN GEODETIC COORDINATES
C FROM THE COEFFICIENTS OF THE CURRENT OFFICIAL
C DEPARTMENT OF DEFENSE (DOD) SPHERICAL HARMONIC WORLD
C MAGNETIC MODEL (WMM.COF). THE WMM SERIES OF MODELS IS
C UPDATED EVERY 5 YEARS ON JANUARY 1ST OF THOSE YEARS
C WHICH ARE DIVISIBLE BY 5 (I.E. 2000, 2005, 2010 ETC.)
C BY NOAA'S NATIONAL GEOPHYSICAL DATA CENTER IN
C COOPERATION WITH THE BRITISH GEOLOGICAL SURVEY (BGS).
C THE MODEL IS BASED ON GEOMAGNETIC FIELD MEASUREMENTS
C FROM SATELLITE AND GROUND OBSERVATORIES.
C
C***********************************************************************
C
C MODEL: THE WMM SERIES GEOMAGNETIC MODELS ARE COMPOSED
C OF TWO PARTS: THE MAIN FIELD MODEL, WHICH IS
C VALID AT THE BASE EPOCH OF THE CURRENT MODEL AND
C A SECULAR VARIATION MODEL, WHICH ACCOUNTS FOR SLOW
C TEMPORAL VARIATIONS IN THE MAIN GEOMAGNETIC FIELD
C FROM THE BASE EPOCH TO A MAXIMUM OF 5 YEARS BEYOND
C THE BASE EPOCH. FOR EXAMPLE, THE BASE EPOCH OF
C THE WMM-2005 MODEL IS 2005.0. THIS MODEL IS THEREFORE
C CONSIDERED VALID BETWEEN 2005.0 AND 2010.0. THE
C COMPUTED MAGNETIC PARAMETERS ARE REFERENCED TO THE
C WGS-84 ELLIPSOID.
C
C***********************************************************************
C
C ACCURACY: IN OCEAN AREAS AT THE EARTH'S SURFACE OVER THE
C ENTIRE 5 YEAR LIFE OF THE DEGREE AND ORDER 12
C SPHERICAL HARMONIC MODEL WMM-2005, THE ESTIMATED
C MAXIMUM RMS ERRORS FOR THE VARIOUS MAGNETIC COMPONENTS
C ARE:
C
C DEC - 0.5 Degrees
C DIP - 0.5 Degrees
C TI - 280.0 nanoTeslas (nT)
C GV - 0.5 Degrees
C
C OTHER MAGNETIC COMPONENTS THAT CAN BE DERIVED FROM
C THESE FOUR BY SIMPLE TRIGONOMETRIC RELATIONS WILL
C HAVE THE FOLLOWING APPROXIMATE ERRORS OVER OCEAN AREAS:
C
C X - 140 nT (North)
C Y - 140 nT (East)
C Z - 200 nT (Vertical) Positive is down
C H - 200 nT (Horizontal)
C
C OVER LAND THE MAXIMUM RMS ERRORS ARE EXPECTED TO BE
C HIGHER, ALTHOUGH THE RMS ERRORS FOR DEC, DIP, AND GV
C ARE STILL ESTIMATED TO BE LESS THAN 1.0 DEGREE, FOR
C THE ENTIRE 5-YEAR LIFE OF THE MODEL AT THE EARTH's
C SURFACE. THE OTHER COMPONENT ERRORS OVER LAND ARE
C MORE DIFFICULT TO ESTIMATE AND SO ARE NOT GIVEN.
C
C THE ACCURACY AT ANY GIVEN TIME FOR ALL OF THESE
C GEOMAGNETIC PARAMETERS DEPENDS ON THE GEOMAGNETIC
C LATITUDE. THE ERRORS ARE LEAST FROM THE EQUATOR TO
C MID-LATITUDES AND GREATEST NEAR THE MAGNETIC POLES.
C
C IT IS VERY IMPORTANT TO NOTE THAT A DEGREE AND
C ORDER 12 MODEL, SUCH AS WMM-2005, DESCRIBES ONLY
C THE LONG WAVELENGTH SPATIAL MAGNETIC FLUCTUATIONS
C DUE TO EARTH'S CORE. NOT INCLUDED IN THE WMM SERIES
C MODELS ARE INTERMEDIATE AND SHORT WAVELENGTH
C SPATIAL FLUCTUATIONS OF THE GEOMAGNETIC FIELD
C WHICH ORIGINATE IN THE EARTH'S MANTLE AND CRUST.
C CONSEQUENTLY, ISOLATED ANGULAR ERRORS AT VARIOUS
C POSITIONS ON THE SURFACE (PRIMARILY OVER LAND, IN
C CONTINENTAL MARGINS AND OVER OCEANIC SEAMOUNTS,
C RIDGES AND TRENCHES) OF SEVERAL DEGREES MAY BE
C EXPECTED. ALSO NOT INCLUDED IN THE MODEL ARE
C NONSECULAR TEMPORAL FLUCTUATIONS OF THE GEOMAGNETIC
C FIELD OF MAGNETOSPHERIC AND IONOSPHERIC ORIGIN.
C DURING MAGNETIC STORMS, TEMPORAL FLUCTUATIONS CAN
C CAUSE SUBSTANTIAL DEVIATIONS OF THE GEOMAGNETIC
C FIELD FROM MODEL VALUES. IN ARCTIC AND ANTARCTIC
C REGIONS, AS WELL AS IN EQUATORIAL REGIONS, DEVIATIONS
C FROM MODEL VALUES ARE BOTH FREQUENT AND PERSISTENT.
C
C IF THE REQUIRED DECLINATION ACCURACY IS MORE
C STRINGENT THAN THE WMM SERIES OF MODELS PROVIDE, THEN
C THE USER IS ADVISED TO REQUEST SPECIAL (REGIONAL OR
C LOCAL) SURVEYS BE PERFORMED AND MODELS PREPARED.
C REQUESTS OF THIS NATURE SHOULD BE MADE TO NIMA
C AT THE ADDRESS ABOVE.
C
C***********************************************************************
C
C USAGE: THIS ROUTINE IS BROKEN UP INTO TWO PARTS:
C
C A) AN INITIALIZATION MODULE, WHICH IS CALLED ONLY
C ONCE AT THE BEGINNING OF THE MAIN (CALLING)
C PROGRAM
C B) A PROCESSING MODULE, WHICH COMPUTES THE MAGNETIC
C FIELD PARAMETERS FOR EACH SPECIFIED GEODETIC
C POSITION (ALTITUDE, LATITUDE, LONGITUDE) AND TIME
C
C INITIALIZATION IS MADE VIA A SINGLE CALL TO THE MAIN
C ENTRY POINT (GEOMAG), WHILE SUBSEQUENT PROCESSING
C CALLS ARE MADE THROUGH THE SECOND ENTRY POINT (GEOMG1).
C ONE CALL TO THE PROCESSING MODULE IS REQUIRED FOR EACH
C POSITION AND TIME.
C
C THE VARIABLE MAXDEG IN THE INITIALIZATION CALL IS THE
C MAXIMUM DEGREE TO WHICH THE SPHERICAL HARMONIC MODEL
C IS TO BE COMPUTED. IT MUST BE SPECIFIED BY THE USER
C IN THE CALLING ROUTINE. NORMALLY IT IS 12 BUT IT MAY
C BE SET LESS THAN 12 TO INCREASE COMPUTATIONAL SPEED AT
C THE EXPENSE OF REDUCED ACCURACY.
C
C THE PC VERSION OF THIS SUBROUTINE MUST BE COMPILED
C WITH A FORTRAN 77 COMPATIBLE COMPILER SUCH AS THE
C MICROSOFT OPTIMIZING FORTRAN COMPILER VERSION 4.1
C OR LATER.
C
C**********************************************************************
C
C REFERENCES:
C
C JOHN M. QUINN, DAVID J. KERRIDGE AND DAVID R. BARRACLOUGH,
C WORLD MAGNETIC CHARTS FOR 1985 - SPHERICAL HARMONIC
C MODELS OF THE GEOMAGNETIC FIELD AND ITS SECULAR
C VARIATION, GEOPHYS. J. R. ASTR. SOC. (1986) 87,
C PP 1143-1157
C
C DEFENSE MAPPING AGENCY TECHNICAL REPORT, TR 8350.2:
C DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984,
C SEPT. 30 (1987)
C
C JOHN M. QUINN, RACHEL J. COLEMAN, MICHAEL R. PECK, AND
C STEPHEN E. LAUBER; THE JOINT US/UK 1990 EPOCH
C WORLD MAGNETIC MODEL, TECHNICAL REPORT NO. 304,
C NAVAL OCEANOGRAPHIC OFFICE (1991)
C
C JOHN M. QUINN, RACHEL J. COLEMAN, DONALD L. SHIEL, AND
C JOHN M. NIGRO; THE JOINT US/UK 1995 EPOCH WORLD
C MAGNETIC MODEL, TECHNICAL REPORT NO. 314, NAVAL
C OCEANOGRAPHIC OFFICE (1995)
C
C SUSAN AMCMILLAN, DAVID R. BARRACLOUGH, JOHN M. QUINN, AND
C RACHEL J. COLEMAN; THE 1995 REVISION OF THE JOINT US/UK
C GEOMAGNETIC FIELD MODELS - I. SECULAR VARIATION, JOURNAL OF
C GEOMAGNETISM AND GEOELECTRICITY, VOL. 49, PP. 229-243
C (1997)
C
C JOHN M. QUINN, RACHEL J. COELMAN, SUSAM MACMILLAN, AND
C DAVID R. BARRACLOUGH; THE 1995 REVISION OF THE JOINT
C US/UK GEOMAGNETIC FIELD MODELS: II. MAIN FIELD,JOURNAL OF
C GEOMAGNETISM AND GEOELECTRICITY, VOL. 49, PP. 245 - 261
C (1997)
C
C***********************************************************************
C
C PARAMETER DESCRIPTIONS:
C
C A - SEMIMAJOR AXIS OF WGS-84 ELLIPSOID (KM)
C B - SEMIMINOR AXIS OF WGS-84 ELLIPSOID (KM)
C RE - MEAN RADIUS OF IAU-66 ELLIPSOID (KM)
C SNORM - SCHMIDT NORMALIZATION FACTORS
C C - GAUSS COEFFICIENTS OF MAIN GEOMAGNETIC MODEL (NT)
C CD - GAUSS COEFFICIENTS OF SECULAR GEOMAGNETIC MODEL (NT/YR)
C TC - TIME ADJUSTED GEOMAGNETIC GAUSS COEFFICIENTS (NT)
C OTIME - TIME ON PREVIOUS CALL TO GEOMAG (YRS)
C OALT - GEODETIC ALTITUDE ON PREVIOUS CALL TO GEOMAG (YRS)
C OLAT - GEODETIC LATITUDE ON PREVIOUS CALL TO GEOMAG (DEG.)
C TIME - COMPUTATION TIME (YRS) (INPUT)
C (EG. 1 JULY 1995 = 1995.500)
C ALT - GEODETIC ALTITUDE (KM) (INPUT)
C GLAT - GEODETIC LATITUDE (DEG.) (INPUT)
C GLON - GEODETIC LONGITUDE (DEG.) (INPUT)
C EPOCH - BASE TIME OF GEOMAGNETIC MODEL (YRS)
C DTR - DEGREE TO RADIAN CONVERSION
C SP(M) - SINE OF (M*SPHERICAL COORD. LONGITUDE)
C CP(M) - COSINE OF (M*SPHERICAL COORD. LONGITUDE)
C ST - SINE OF (SPHERICAL COORD. LATITUDE)
C CT - COSINE OF (SPHERICAL COORD. LATITUDE)
C R - SPHERICAL COORDINATE RADIAL POSITION (KM)
C CA - COSINE OF SPHERICAL TO GEODETIC VECTOR ROTATION ANGLE
C SA - SINE OF SPHERICAL TO GEODETIC VECTOR ROTATION ANGLE
C BR - RADIAL COMPONENT OF GEOMAGNETIC FIELD (NT)
C BT - THETA COMPONENT OF GEOMAGNETIC FIELD (NT)
C BP - PHI COMPONENT OF GEOMAGNETIC FIELD (NT)
C P(N,M) - ASSOCIATED LEGENDRE POLYNOMIALS (UNNORMALIZED)
C PP(N) - ASSOCIATED LEGENDRE POLYNOMIALS FOR M=1 (UNNORMALIZED)
C DP(N,M)- THETA DERIVATIVE OF P(N,M) (UNNORMALIZED)
C BX - NORTH GEOMAGNETIC COMPONENT (NT)
C BY - EAST GEOMAGNETIC COMPONENT (NT)
C BZ - VERTICALLY DOWN GEOMAGNETIC COMPONENT (NT)
C BH - HORIZONTAL GEOMAGNETIC COMPONENT (NT)
C DEC - GEOMAGNETIC DECLINATION (DEG.) (OUTPUT)
C EAST=POSITIVE ANGLES
C WEST=NEGATIVE ANGLES
C DIP - GEOMAGNETIC INCLINATION (DEG.) (OUTPUT)
C DOWN=POSITIVE ANGLES
C UP=NEGATIVE ANGLES
C TI - GEOMAGNETIC TOTAL INTENSITY (NT) (OUTPUT)
C GV - GEOMAGNETIC GRID VARIATION (DEG.) (OUTPUT)
C REFERENCED TO GRID NORTH
C GRID NORTH REFERENCED TO 0 MERIDIAN
C OF A POLAR STEREOGRAPHIC PROJECTION
C (ARCTIC/ANTARCTIC ONLY)
C MAXDEG - MAXIMUM DEGREE OF SPHERICAL HARMONIC MODEL (INPUT)
C MOXORD - MAXIMUM ORDER OF SPHERICAL HARMONIC MODEL
C
C***********************************************************************
C
C NOTE: THIS VERSION OF GEOMAG USES A WMM SERIES GEOMAGNETIC
C FIELS MODEL REFERENCED TO THE WGS-84 GRAVITY MODEL
C ELLIPSOID
C
*/