-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetodologia_recuperacion_ruido.py
179 lines (141 loc) · 6.48 KB
/
metodologia_recuperacion_ruido.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import os
import random
import shutil
import time
import numpy as np
import matplotlib.pyplot as plt
from srblib import abs_path
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import skimage
from PIL import ImageFilter, Image
from tqdm import tqdm
# buenos resultados con MP, V2, V4?
# results_path = './googlenet_v2_gen'
results_path = './output_MP_0.05'
val_dir = './val'
imagenet_val_xml_path = './val_bb'
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, '{}.JPEG'.format(i)) for i in img_list]
self.mask_filenames = [os.path.join(results_path, '{}_mask.npy'.format(i)) for i in img_list]
def __getitem__(self, index):
img_orig = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
mask = np.load(self.mask_filenames[index])
img_noise = skimage.util.random_noise(np.asarray(img_orig), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img_noise = Image.fromarray(np.uint8(img_noise * 255))
img_orig = self.transform(img_orig)
img_noise = self.transform(img_noise)
return img_orig, img_noise, mask.reshape(1, 224, 224), target, os.path.join(self.data_path, self.img_filenames[index])
# return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
transform_val = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Plots image from tensor
def tensor_imshow(inp, title=None, **kwargs):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
# Mean and std for ImageNet
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp, **kwargs)
if title is not None:
plt.title(title)
plt.axis('off')
plt.show()
im_label_map = imagenet_label_mappings()
val_dataset = DataProcessing(base_img_dir, transform_val, img_idxs=[0, 25], noise_var=0.7)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=25, shuffle=False, num_workers=10, pin_memory=True)
torch.cuda.set_device(0)
model = models.googlenet(pretrained=True)
# model = models.resnet50(pretrained=True)
# model = models.vgg16(pretrained=True)
# model = models.alexnet(pretrained=True)
# model = torch.nn.DataParallel(model, device_ids=[0,1])
model.cuda()
model.eval()
for p in model.parameters():
p.requires_grad = False
iterator = tqdm(enumerate(val_loader), total=len(val_loader), desc='batch')
# top_cnt_full = torch.empty((val_loader.batch_size, 10), dtype=torch.bool)
top_cnt_full = []
for i, (images, images_noise, masks, targets, file_names) in iterator:
images_orig = images.cuda()
images_noise = images_noise.cuda()
targets_orig = targets.numpy() # las y originales
# predicciones originales
preds_orig = torch.nn.Softmax(dim=1)(model(images_orig))
probs_orig, labels_orig = torch.topk(preds_orig, 10) # Top 10 predicciones originales
# reenmascaramiento de img noise con explicacion
extended_mask = masks.expand(masks.size(0), 3, 224, 224)
noise_masked = images_noise.mul(extended_mask.cuda())
noise_masked = noise_masked.to(torch.float32)
# prediccion reenmascaramiento
preds_masked = torch.nn.Softmax(dim=1)(model(images_noise)) # tensor(10,1000)
probs_masked, labels_masked = torch.topk(preds_masked, 1000) # predicciones recuperadas
for i in range(val_loader.batch_size): # se itera en el tamaño del batch
prob_orig = probs_orig.cpu().detach()[i] # (10, ) topk = 10
label_orig = labels_orig.cpu().detach()[i] # (10, ) topk = 10
prob_masked = probs_masked.cpu().detach()[i] # (1000,)
label_masked = labels_masked.cpu().detach()[i] # (1000,)
# pred_list = [im_label_map.get(label) for label in label_orig]
# label_orig_list = [label.item() for label in label_orig]
# label_masked_list = [label.item() for label in label_masked[0:10]]
pos_list = [torch.where(label_masked == label_orig_item)[0].item() for label_orig_item in label_orig]
pos_list_tensor = torch.tensor(pos_list)
top_cnt = [torch.where(pos_list_tensor <= i)[0].nelement() >= 1 for i in range(10)]
top_cnt_full.append(torch.tensor(top_cnt))
print('orig label, muestra', i, ': ', label_orig.tolist())
print('pos orig en recuperado ', pos_list)
print('lista top 10 recuperados acum ', top_cnt)
print('lista de recuperados ', label_masked[0:10].tolist())
print('')
# print(torch.stack(top_cnt_full))
print(torch.stack(top_cnt_full).sum(0)/val_loader.batch_size)
# inp = im[0].numpy().transpose((1, 2, 0))
# plt.imshow(inp)
# plt.axis('off')
# plt.show()