-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSP_batch_gpu0.py
185 lines (147 loc) · 6.19 KB
/
SP_batch_gpu0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import cv2
import sys
import time
import torch
import argparse
import torch.optim
import numpy as np
from srblib import abs_path
from formal_utils import *
from skimage.util import view_as_windows
from skimage.transform import resize
from torch.utils.data import Dataset
import matplotlib.pyplot as plt
from tqdm import tqdm, trange
import skimage
from skimage.transform import resize
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
imagenet_val_xml_path = './val_bb'
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
torch.manual_seed(0)
print('Explicacion SP - GPU 0')
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
im_label_map = imagenet_label_mappings()
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], if_noise=0, noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.if_noise = if_noise
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, f'{i}.JPEG') for i in img_list]
# self.img_filenames.sort()
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
if self.if_noise == 1:
img = skimage.util.random_noise(np.asarray(img), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img = Image.fromarray(np.uint8(img * 255))
img = self.transform(img)
return img, target, os.path.join(self.data_path, self.img_filenames[index])
# return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
transform_val = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
class OcclusionAnalysis:
def __init__(self, image, net):
self.image = image
self.model = net
def explain(self, neuron, loader):
# Compute original output
org_softmax = torch.nn.Softmax(dim=1)(self.model(self.image))
eval0 = org_softmax.data[0, neuron]
batch_heatmap = torch.Tensor().cuda()
for data in loader:
data = data.cuda()
softmax_out = torch.nn.Softmax(dim=1)(self.model(data * self.image))
delta = eval0 - softmax_out.data[:, neuron]
batch_heatmap = torch.cat((batch_heatmap, delta))
sqrt_shape = len(loader)
attribution = np.reshape(batch_heatmap.cpu().numpy(), (sqrt_shape, sqrt_shape))
attribution = np.clip(attribution, 0, 1)
attribution = resize(attribution, (size, size))
return attribution
size = 224
patch_size = 75
stride = 3
torch.cuda.set_device(0) # especificar cual gpu 0 o 1
# model = models.googlenet(pretrained=True)
# model = models.resnet50(pretrained=True)
# model = models.vgg16(pretrained=True)
model = models.alexnet(pretrained=True)
model.eval()
model.cuda()
label_map = load_imagenet_label_map()
for p in model.parameters():
p.requires_grad = False
batch_size = int((224 - patch_size) / stride) + 1
# Create all occlusion masks initially to save time
# Create mask
input_shape = (3, size, size)
total_dim = np.prod(input_shape)
index_matrix = np.arange(total_dim).reshape(input_shape)
idx_patches = view_as_windows(index_matrix, (3, patch_size, patch_size), stride).reshape(
(-1,) + (3, patch_size, patch_size))
# Start perturbation loop
batch_size = int((size - patch_size) / stride) + 1
batch_mask = torch.zeros(((idx_patches.shape[0],) + input_shape), device='cuda')
total_dim = np.prod(input_shape)
for i, p in enumerate(idx_patches):
mask = torch.ones(total_dim, device='cuda')
mask[p.reshape(-1)] = 0 # occ_val
batch_mask[i] = mask.reshape(input_shape)
trainloader = torch.utils.data.DataLoader(batch_mask.cpu(), batch_size=batch_size, shuffle=False,
num_workers=0)
del mask
del batch_mask
init_time = time.time()
# save_path = './resnet50_SP'
# save_path = './vgg16_SP'
save_path = './alexnet_SP'
val_dataset = DataProcessing(base_img_dir, transform_val, img_idxs=[0, 100], if_noise=0, noise_var=0.0)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=10,
pin_memory=True)
iterator = tqdm(enumerate(val_loader), total=len(val_loader), desc='batch')
for i, (image, target, file_name) in iterator:
image = image.cuda()
# Occlusion class
heatmap_occ = OcclusionAnalysis(image, net=model)
heatmap = heatmap_occ.explain(neuron=target.item(), loader=trainloader)
mask_file = ('{}_mask.npy'.format(file_name[0].split('/')[-1].split('.JPEG')[0]))
np.save(os.path.abspath(os.path.join(save_path, mask_file)), heatmap)
print('Time taken: {:.3f}'.format(time.time() - init_time))