-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHybrid_Inflation.nb
4661 lines (4561 loc) · 234 KB
/
Hybrid_Inflation.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 234289, 4653]
NotebookOptionsPosition[ 228922, 4557]
NotebookOutlinePosition[ 229504, 4578]
CellTagsIndexPosition[ 229461, 4575]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
Canonical Scalar Field Inflation In The Presence Of A Chern-Simons Term.\
\>", "Title",
CellChangeTimes->{{3.825321489976886*^9, 3.825321511691293*^9}, {
3.8253400803375006`*^9, 3.825340089587715*^9}, {3.825344193893558*^9,
3.8253441953950434`*^9}},ExpressionUUID->"e4a03e49-420f-4148-b7ae-\
6cab3b58738a"],
Cell[CellGroupData[{
Cell["\<\
Hybrid Inflation With An Oscillating Chern-Simons Scalar Coupling Function.\
\>", "Chapter",
CellChangeTimes->{{3.82534009763216*^9, 3.82534012081983*^9}, {
3.82894771938982*^9,
3.8289477204592347`*^9}},ExpressionUUID->"d4e918e2-2403-4150-b363-\
66048cf583a9"],
Cell[CellGroupData[{
Cell["\<\
1.Designation Of Scalar Functions, Equations Of Motion, Slow-Roll/Observed \
Indices.\
\>", "Section",
CellChangeTimes->{{3.8253215281889534`*^9,
3.8253215644209905`*^9}},ExpressionUUID->"7882bc9e-8ffa-488b-a80a-\
c5cf7dd57bc6"],
Cell["\<\
We start by designating the scalar functions of the model. For simplicity, \
the Chern-Simons scalar coupling function obtains a trigonometric form and \
the scalar field a power-law form. Compatibility is achieved for a quadratic \
potential but we shall keep it arbitrary for the time being so as to study \
the dependence of the observed indices, and especially the scalar spectral \
index ns on such exponent. The equations of motion are extracted by assuming \
the slow-roll condition is valid. Slow-roll indices along with observed \
indices are taken from arXiv:0412126.\
\>", "Text",
CellChangeTimes->{{3.8253215839599423`*^9, 3.8253217151712966`*^9}, {
3.8253217551888924`*^9, 3.8253218625957565`*^9}, 3.825350393239304*^9, {
3.8289478032525296`*^9,
3.8289478094615655`*^9}},ExpressionUUID->"27fb5bc0-6581-494a-a667-\
7bf89acc71ef"],
Cell["\<\
Every parameter that ends with 1 is an auxiliary free parameter that needs to \
be designated later. With v and V the Chern-Simons coupling and the scalar \
potential are denoted while H is Hubble\[CloseCurlyQuote]s parameter and H2 \
the squared Hubble. Each parameter ending with dot implies time derivative \
for simplicity and Qt is an auxiliary function that depends on both the \
scalar field and the polarization of gravitational waves. Finally, indices \
\[CurlyEpsilon]1 through \[CurlyEpsilon]3 are the slow-roll indices of the \
model and ns, nt, r indicate the observed indices.\
\>", "Text",
CellChangeTimes->{{3.8289478305547037`*^9, 3.8289479716535397`*^9}, {
3.828948004676238*^9,
3.828948092182082*^9}},ExpressionUUID->"114eb9a0-e291-495e-8547-\
faa7f7fd0500"],
Cell[BoxData[{
RowBox[{
RowBox[{"v", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{"\[CapitalLambda]1", " ",
RowBox[{"Sin", "[",
FractionBox["\[CurlyPhi]", "\[CurlyPhi]1"], "]"}]}]}], "\n",
RowBox[{
RowBox[{"vdot", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"v", "[", "\[CurlyPhi]", "]"}], ",", "\[CurlyPhi]"}], "]"}],
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}]}], "\n",
RowBox[{
RowBox[{"V", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{"V1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Kappa]", " ", "\[CurlyPhi]"}], ")"}], "n"]}]}], "\n",
RowBox[{
RowBox[{"H2", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
RowBox[{"\[Kappa]", "^", "2"}],
FractionBox[
RowBox[{"V", "[", "\[CurlyPhi]", "]"}], "3"]}]}], "\n",
RowBox[{
RowBox[{"H", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{"H2", "[", "\[CurlyPhi]", "]"}], "]"}]}], "\n",
RowBox[{
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]_", "]"}], ":=",
FractionBox[
RowBox[{"-",
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[", "\[CurlyPhi]", "]"}], ",", "\[CurlyPhi]"}], "]"}]}],
RowBox[{"3",
RowBox[{"H", "[", "\[CurlyPhi]", "]"}]}]]}], "\n",
RowBox[{
RowBox[{"Hdot", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
FractionBox[
RowBox[{"-",
SuperscriptBox["\[Kappa]", "2"]}], "2"],
SuperscriptBox[
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}], "2"]}]}], "\n",
RowBox[{
RowBox[{"Qt", "[",
RowBox[{"\[Lambda]_", ",", "\[CurlyPhi]_"}], "]"}], ":=",
RowBox[{
FractionBox["1",
SuperscriptBox["\[Kappa]", "2"]], "+",
RowBox[{"2", "\[Lambda]", " ",
RowBox[{"vdot", "[", "\[CurlyPhi]", "]"}],
RowBox[{"H", "[", "\[CurlyPhi]", "]"}]}]}]}], "\n",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]_", "]"}], ":=",
FractionBox[
RowBox[{"-",
RowBox[{"Hdot", "[", "\[CurlyPhi]", "]"}]}],
RowBox[{"H2", "[", "\[CurlyPhi]", "]"}]]}], "\n",
RowBox[{
RowBox[{"\[CurlyEpsilon]2", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}], "-",
FractionBox[
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[", "\[CurlyPhi]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[CurlyPhi]", ",", "2"}], "}"}]}], "]"}],
RowBox[{
SuperscriptBox["\[Kappa]", "2"],
RowBox[{"V", "[", "\[CurlyPhi]", "]"}]}]]}]}], "\n",
RowBox[{
RowBox[{"\[CurlyEpsilon]6", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"Qt", "[",
RowBox[{"1", ",", "\[CurlyPhi]"}], "]"}], ",", "\[CurlyPhi]"}], "]"}],
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}],
RowBox[{"2",
RowBox[{"H", "[", "\[CurlyPhi]", "]"}],
RowBox[{"Qt", "[",
RowBox[{"1", ",", "\[CurlyPhi]"}], "]"}]}]], "+",
FractionBox[
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"Qt", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "\[CurlyPhi]"}], "]"}], ",",
"\[CurlyPhi]"}], "]"}],
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}],
RowBox[{"2",
RowBox[{"H", "[", "\[CurlyPhi]", "]"}],
RowBox[{"Qt", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "\[CurlyPhi]"}], "]"}]}]]}]}], "\n",
RowBox[{
RowBox[{"ns", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{"1", "-",
RowBox[{"2",
RowBox[{"(",
RowBox[{
RowBox[{"2",
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}]}], "+",
RowBox[{"\[CurlyEpsilon]2", "[", "\[CurlyPhi]", "]"}]}],
")"}]}]}]}], "\n",
RowBox[{
RowBox[{"nt", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"(",
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}], "+",
RowBox[{"\[CurlyEpsilon]6", "[", "\[CurlyPhi]", "]"}]}], ")"}]}]}], "\n",
RowBox[{
RowBox[{"r", "[", "\[CurlyPhi]_", "]"}], ":=",
RowBox[{"8",
RowBox[{"Abs", "[",
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}], "]"}],
RowBox[{"(",
RowBox[{
FractionBox["1",
RowBox[{"Abs", "[",
RowBox[{
SuperscriptBox["\[Kappa]", "2"],
RowBox[{"Qt", "[",
RowBox[{"1", ",", "\[CurlyPhi]"}], "]"}]}], "]"}]], "+",
FractionBox["1",
RowBox[{"Abs", "[",
RowBox[{
SuperscriptBox["\[Kappa]", "2"],
RowBox[{"Qt", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "\[CurlyPhi]"}], "]"}]}], "]"}]]}],
")"}]}]}]}], "Code",
CellChangeTimes->{{3.825267484290244*^9, 3.825267888713532*^9}, {
3.8252679271846733`*^9, 3.8252679301323156`*^9}, {3.8252686453778186`*^9,
3.8252686561523733`*^9}, {3.82526931650364*^9, 3.825269318937385*^9}, {
3.825302336123021*^9, 3.8253023494412346`*^9}, {3.8253176668739996`*^9,
3.8253176725655484`*^9}, {3.8253187352710247`*^9, 3.8253187377531652`*^9}, {
3.8253188039156694`*^9, 3.825318814253041*^9}, {3.825321747710378*^9,
3.8253217489381065`*^9}, {3.825343437096776*^9, 3.8253434452536445`*^9}, {
3.8287784857808943`*^9, 3.828778494315997*^9}, {3.8289484339323587`*^9,
3.8289484478947873`*^9}, {3.828948510674965*^9, 3.8289485205545187`*^9}, {
3.828948551709519*^9, 3.8289487702637525`*^9}, {3.828948804171687*^9,
3.828948833295642*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"c91e1ddd-7288-4dd7-9490-a087d18bbd34"]
}, Open ]],
Cell[CellGroupData[{
Cell["2. Extracting The Values Of The Scalar Field.", "Section",
CellChangeTimes->{{3.825321872105427*^9,
3.825321889596363*^9}},ExpressionUUID->"e5ee8a6b-c4b9-4fba-abe6-\
49635c9da05b"],
Cell["\<\
To study the inflationary era, one needs to insert as an input the value of \
the scalar field during the first horizon crossing to the observed indices. \
Such a value can be extracted by firstly finding the final value during the \
ending stage of the inflationary era by imposing that \[CurlyEpsilon]1 \
becomes of order O(1). Afterwards, by using the e-folding number \
N=\[Integral] Hdt, the initial value can be extracted as a function of N and \
\[CurlyPhi]f.\
\>", "Text",
CellChangeTimes->{{3.8253219018160257`*^9, 3.8253220286903563`*^9}, {
3.8253220731093884`*^9,
3.825322102277686*^9}},ExpressionUUID->"46207b55-e6e6-42f3-85fa-\
733e50d1737a"],
Cell["\<\
I use variable U to denote solutions hereafter while L is a random variable \
such that the initial value of the scalar field can be extracted.\
\>", "Text",
CellChangeTimes->{{3.828948120250533*^9,
3.828948212497246*^9}},ExpressionUUID->"4103b208-86c2-461e-8c72-\
04fa2e97599b"],
Cell[BoxData[{
RowBox[{
RowBox[{"U1", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}], "\[Equal]",
"1"}], ",", "\[CurlyPhi]"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"\[CurlyPhi]f", "=",
RowBox[{
RowBox[{"\[CurlyPhi]", "/.",
RowBox[{"U1", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "/.",
RowBox[{
RowBox[{"C", "[", "1", "]"}], "\[Rule]", "0"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"L1", "=",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"H", "[", "\[CurlyPhi]", "]"}], "/",
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}], ",",
"\[CurlyPhi]"}], "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]l"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"L2", "=",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"H", "[", "\[CurlyPhi]", "]"}], "/",
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}], ",",
"\[CurlyPhi]"}], "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]k"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"U2", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"N0", "\[Equal]",
RowBox[{"L1", "-", "L2"}]}], ",", "\[CurlyPhi]k"}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{"\[CurlyPhi]i", "=",
RowBox[{
RowBox[{"\[CurlyPhi]k", "/.",
RowBox[{"U2", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"C", "[", "1", "]"}], "\[Rule]", "0"}], ",",
RowBox[{"\[CurlyPhi]l", "\[Rule]", "\[CurlyPhi]f"}]}], "}"}]}]}],
";"}]}], "Code",
CellChangeTimes->{{3.8252679395734315`*^9, 3.8252681495394287`*^9}, {
3.8252684046625166`*^9, 3.825268441672371*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"5c9b8595-f61b-430e-9834-657d223de842"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
3. Designation Of Free Parameters And Validity Of Approximations.\
\>", "Section",
CellChangeTimes->{{3.8253221300938034`*^9,
3.825322165688389*^9}},ExpressionUUID->"1b634bcf-55ea-43ba-bb85-\
6644b8af3b37"],
Cell[CellGroupData[{
Cell["3.1. Derivation Of Observed Indices.", "Subsection",
CellChangeTimes->{{3.8253221750277452`*^9,
3.825322207296102*^9}},ExpressionUUID->"dfe4e0e9-f742-4790-a0d1-\
f839adc390e8"],
Cell[TextData[{
"By assigning numerical values to the free parameters of the model, the \
initial value of the scalar field during the first horizon crossing is \
extracted. Subsequently, one can use such value as an input on the observed \
indices and derive results. Here, a blue shifted tensor spectral index (nt>0) \
can be achieved under the slow-roll assumption due to the presence of the \
Chern-Simons term in the initial gravitational action.\n\nThe model used in \
the article has a power-law Chern-Simons coupling v(\[CurlyPhi])=\
\[CapitalLambda]1(\[CurlyPhi]/\[CurlyPhi]1)^m and admits the following \
values:\[LineSeparator] ",
Cell[BoxData[
RowBox[{
RowBox[{"\[Kappa]", "=",
SuperscriptBox["Mp",
RowBox[{"-", "1"}]]}], ";",
RowBox[{"\[CapitalLambda]1", "=",
RowBox[{"4", " ",
SuperscriptBox["10",
RowBox[{"-", "23"}]]}]}], " ", ";",
RowBox[{"V1", "=",
RowBox[{"9.6", " ",
SuperscriptBox["10",
RowBox[{"-", "11"}]], " ",
SuperscriptBox["Mp", "4"]}]}], ";",
RowBox[{"N0", "=", "60."}], ";",
RowBox[{"n", "=", "2"}], ";",
RowBox[{"m", "=", "2"}], ";",
RowBox[{"\[CurlyPhi]1", "=", " ",
RowBox[{"25", " ",
SuperscriptBox["10", "6"], " ", "Mp", " ", "\[CapitalLambda]1"}]}],
";"}]],
CellChangeTimes->{{3.8252681631638308`*^9, 3.8252682404900103`*^9}, {
3.825268460218093*^9, 3.825268460325925*^9}, {3.825268516660346*^9,
3.825268547265356*^9}, {3.825268663805129*^9, 3.825268682316456*^9}, {
3.8252688151902*^9, 3.825268834184974*^9}, {3.825268903402299*^9,
3.825269276800727*^9}, {3.8252693441889963`*^9, 3.8252694359451666`*^9}, {
3.825317680875106*^9, 3.8253176849794703`*^9}, {3.825317774954938*^9,
3.82531782946695*^9}, {3.825318320700656*^9, 3.8253183243242683`*^9}, {
3.8253184668131495`*^9, 3.825318496530528*^9}, {3.825318855628165*^9,
3.825318895132723*^9}, {3.8253189413954983`*^9, 3.825318976526473*^9}, {
3.825322336496038*^9, 3.825322338237178*^9}, {3.8253434604516163`*^9,
3.8253434657565107`*^9}, {3.828703889448332*^9, 3.828704369640952*^9}, {
3.8287046556783857`*^9, 3.82870469832535*^9}, {3.8287047477726774`*^9,
3.828704780270561*^9}, {3.828705941122157*^9, 3.828706355002686*^9}, {
3.828707581563986*^9, 3.8287076527279873`*^9}, {3.8287077001492558`*^9,
3.828707717838068*^9}, 3.8287080353809476`*^9, {3.8287081105944104`*^9,
3.828708133560497*^9}, {3.8287144940786886`*^9, 3.8287145351482697`*^9}, {
3.828714759024869*^9, 3.828714765837009*^9}, {3.828714847753754*^9,
3.828714852967661*^9}, {3.828714894159136*^9, 3.8287148982813053`*^9}, {
3.8287257019355087`*^9, 3.8287257565239515`*^9}, {3.828725787303796*^9,
3.8287257950884275`*^9}, {3.828725828479913*^9, 3.828725861475815*^9}, {
3.8287260448526864`*^9, 3.828726071083268*^9}, {3.8287261072045345`*^9,
3.8287261418852196`*^9}, {3.828726222678111*^9, 3.828726267244321*^9}, {
3.8287266309792795`*^9, 3.828726668526176*^9}, {3.8287268512482724`*^9,
3.8287268573636227`*^9}, {3.82872718986493*^9, 3.8287271901496935`*^9},
3.82872728107286*^9, {3.828727482829321*^9, 3.828727547361534*^9}, {
3.828727578417297*^9, 3.828727582470372*^9}, {3.828727624953224*^9,
3.8287276752207966`*^9}, {3.8287277197271633`*^9, 3.8287277252020187`*^9},
3.8287277574880753`*^9, {3.8287278356009254`*^9,
3.8287278361663666`*^9}, {3.8287579165503864`*^9, 3.828757949776112*^9}, {
3.8287579826232643`*^9, 3.828758012770955*^9}, {3.828758055692696*^9,
3.828758205817647*^9}, {3.8287586120234118`*^9, 3.8287586298217726`*^9}, {
3.8287589373367295`*^9, 3.82875894748435*^9}, {3.8287590934072294`*^9,
3.8287591213460135`*^9}, {3.8287592731382365`*^9,
3.8287592903264923`*^9}, {3.828759403115328*^9, 3.8287594341068764`*^9}, {
3.8287789065605726`*^9, 3.8287789734501796`*^9}, {3.828779015294694*^9,
3.828779332709051*^9}, {3.8287794166882324`*^9, 3.8287796473848352`*^9}, {
3.828779739932339*^9, 3.8287798686605663`*^9}, {3.8287804477459793`*^9,
3.8287804688224077`*^9}, {3.828780588047567*^9, 3.828780597376443*^9}, {
3.8287811616841097`*^9, 3.82878140918036*^9}},ExpressionUUID->
"7bc1ccd3-603c-4d30-bc0d-9f33f6e462c2"]
}], "Text",
CellChangeTimes->{{3.825322220740419*^9, 3.825322331901831*^9}, {
3.8289519738861227`*^9, 3.8289520596232777`*^9}, {3.828952097281371*^9,
3.8289521422668233`*^9},
3.8289521842963204`*^9},ExpressionUUID->"e447ee06-17e6-49f7-9267-\
f4be6a531035"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[Kappa]", "=",
RowBox[{"1", "/", "Mp"}]}], ";",
RowBox[{"Mp", "=",
RowBox[{"1.2", " ",
SuperscriptBox["10", "27"]}]}], ";", " ",
RowBox[{"\[CapitalLambda]1", "=", "1."}], ";",
RowBox[{"V1", "=",
SuperscriptBox["Mp", "4"]}], ";",
RowBox[{"N0", "=", "60."}], ";",
RowBox[{"n", "=", "2."}], ";",
RowBox[{"\[CurlyPhi]1", "=", "Mp"}], ";"}], "\n",
RowBox[{"\[CurlyPhi]i", "//", "N"}], "\n",
RowBox[{"\[CurlyPhi]f", "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"ns", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"nt", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"r", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}]}], "Code",
CellChangeTimes->{{3.8252681631638308`*^9, 3.8252682404900103`*^9}, {
3.825268460218093*^9, 3.825268460325925*^9}, {3.825268516660346*^9,
3.825268547265356*^9}, {3.825268663805129*^9, 3.825268682316456*^9}, {
3.8252688151902*^9, 3.825268834184974*^9}, {3.825268903402299*^9,
3.825269276800727*^9}, {3.8252693441889963`*^9, 3.8252694359451666`*^9}, {
3.825317680875106*^9, 3.8253176849794703`*^9}, {3.825317774954938*^9,
3.82531782946695*^9}, {3.825318320700656*^9, 3.8253183243242683`*^9}, {
3.8253184668131495`*^9, 3.825318496530528*^9}, {3.825318855628165*^9,
3.825318895132723*^9}, {3.8253189413954983`*^9, 3.825318976526473*^9}, {
3.825322336496038*^9, 3.825322338237178*^9}, {3.8253434604516163`*^9,
3.8253434657565107`*^9}, {3.828778542987501*^9, 3.828778565315395*^9}, {
3.8289482406093426`*^9, 3.8289482675822926`*^9}, {3.8289483090214453`*^9,
3.828948340881366*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"1c85eac2-29c1-4d52-8bf0-65a8aef5449b"],
Cell[BoxData["1.8667619023324854`*^28"], "Output",
CellChangeTimes->{{3.82531894667476*^9, 3.8253189771813173`*^9},
3.825324671877384*^9, 3.825324837603386*^9, 3.8253265834418807`*^9,
3.8253401393927913`*^9, 3.8253402441099215`*^9, 3.8253434687021685`*^9,
3.8287785676353474`*^9, 3.828948471270584*^9, 3.8289485334545746`*^9,
3.828948935409808*^9},
CellLabel->"Out[22]=",ExpressionUUID->"dfa7ca10-58e6-4b10-977d-e6adcd1c229d"],
Cell[BoxData["1.6970562748477138`*^27"], "Output",
CellChangeTimes->{{3.82531894667476*^9, 3.8253189771813173`*^9},
3.825324671877384*^9, 3.825324837603386*^9, 3.8253265834418807`*^9,
3.8253401393927913`*^9, 3.8253402441099215`*^9, 3.8253434687021685`*^9,
3.8287785676353474`*^9, 3.828948471270584*^9, 3.8289485334545746`*^9,
3.8289489354140935`*^9},
CellLabel->"Out[23]=",ExpressionUUID->"ab09c362-82d7-4f8e-94ef-db543f139648"],
Cell[BoxData["0.9669421487603306`"], "Output",
CellChangeTimes->{{3.82531894667476*^9, 3.8253189771813173`*^9},
3.825324671877384*^9, 3.825324837603386*^9, 3.8253265834418807`*^9,
3.8253401393927913`*^9, 3.8253402441099215`*^9, 3.8253434687021685`*^9,
3.8287785676353474`*^9, 3.828948471270584*^9, 3.8289485334545746`*^9,
3.8289489354173474`*^9},
CellLabel->"Out[24]=",ExpressionUUID->"b8cd3d59-eacb-4db2-ac56-3e86b8c8ac31"],
Cell[BoxData["0.03941905161737866`"], "Output",
CellChangeTimes->{{3.82531894667476*^9, 3.8253189771813173`*^9},
3.825324671877384*^9, 3.825324837603386*^9, 3.8253265834418807`*^9,
3.8253401393927913`*^9, 3.8253402441099215`*^9, 3.8253434687021685`*^9,
3.8287785676353474`*^9, 3.828948471270584*^9, 3.8289485334545746`*^9,
3.8289489354200697`*^9},
CellLabel->"Out[25]=",ExpressionUUID->"3d6a00f5-4d89-4f48-8cea-40341b30cc1c"],
Cell[BoxData["0.0064644744219944286`"], "Output",
CellChangeTimes->{{3.82531894667476*^9, 3.8253189771813173`*^9},
3.825324671877384*^9, 3.825324837603386*^9, 3.8253265834418807`*^9,
3.8253401393927913`*^9, 3.8253402441099215`*^9, 3.8253434687021685`*^9,
3.8287785676353474`*^9, 3.828948471270584*^9, 3.8289485334545746`*^9,
3.8289489354250736`*^9},
CellLabel->"Out[26]=",ExpressionUUID->"622fb19c-09f1-4d85-aedc-ae437f4cb709"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["3.2. Ascertaining The Validity Of The Approximations.", "Subsection",
CellChangeTimes->{{3.8253223543397627`*^9,
3.8253223699790945`*^9}},ExpressionUUID->"d2abcc50-3f79-4f7e-8b03-\
f4f0b83cf67e"],
Cell["\<\
The numerical values of the slow-roll indices during the first horizon \
crossing according to Planck 2018 data must be of order O(10^-3) and lesser. \
Such results are indicative of the validity of the slow-roll approximations. \
Slow-roll index \[CurlyEpsilon]6 is excluded in this case.\
\>", "Text",
CellChangeTimes->{{3.825322384106152*^9, 3.825322472495164*^9},
3.825350404247987*^9},ExpressionUUID->"902aa5b9-71ff-4d2b-b82f-\
e342cae80cca"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[CurlyEpsilon]1", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"\[CurlyEpsilon]2", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"\[CurlyEpsilon]6", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}]}], "Code",
CellChangeTimes->{{3.825268346225968*^9, 3.8252683640737333`*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"4c6a6453-9513-47d0-9e8d-b2ee5502d220"],
Cell[BoxData["0.008264462809917359`"], "Output",
CellChangeTimes->{3.825268470848626*^9, 3.825269382112152*^9,
3.8252694433184996`*^9, 3.8253023674198184`*^9, 3.8253177025055156`*^9,
3.825317836834159*^9, 3.825343474101666*^9, 3.8287785723673906`*^9,
3.828948474804438*^9, 3.8289489390205383`*^9},
CellLabel->"Out[27]=",ExpressionUUID->"ae64c386-b6f6-4eab-994c-be7629ca52d6"],
Cell[BoxData["2.9294280898841125`*^-18"], "Output",
CellChangeTimes->{3.825268470848626*^9, 3.825269382112152*^9,
3.8252694433184996`*^9, 3.8253023674198184`*^9, 3.8253177025055156`*^9,
3.825317836834159*^9, 3.825343474101666*^9, 3.8287785723673906`*^9,
3.828948474804438*^9, 3.8289489390242615`*^9},
CellLabel->"Out[28]=",ExpressionUUID->"2dc65bab-6076-4ebb-98dd-06de66241554"],
Cell[BoxData[
RowBox[{"-", "0.027973988618606685`"}]], "Output",
CellChangeTimes->{3.825268470848626*^9, 3.825269382112152*^9,
3.8252694433184996`*^9, 3.8253023674198184`*^9, 3.8253177025055156`*^9,
3.825317836834159*^9, 3.825343474101666*^9, 3.8287785723673906`*^9,
3.828948474804438*^9, 3.828948939027705*^9},
CellLabel->"Out[29]=",ExpressionUUID->"d90a3bea-b6ba-427a-a529-9aaeb47ce42a"]
}, Open ]],
Cell["\<\
Such result is also expected to apply on the self check on the equations of \
motion.\
\>", "Text",
CellChangeTimes->{{3.8253224891249447`*^9,
3.8253225129796257`*^9}},ExpressionUUID->"f3c45f63-f12b-4d53-82aa-\
039e4871509d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Hdot", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"H2", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}], "2"], "2"], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{"V", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}], ",",
"\[CurlyPhi]"}], "]"}],
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"H", "[", "\[CurlyPhi]", "]"}],
RowBox[{"\[CurlyPhi]dot", "[", "\[CurlyPhi]", "]"}]}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "//", "N"}]}], "Code",
CellChangeTimes->{{3.8252682546747093`*^9, 3.825268330060786*^9}, {
3.8253246769088116`*^9, 3.825324682468728*^9}, {3.8289488567442713`*^9,
3.8289488816456313`*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"fdec38d8-e51e-4c4e-bc0e-675f69cf2a34"],
Cell[BoxData[
RowBox[{"-", "9.600000000000003`*^53"}]], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.8289489407227144`*^9},
CellLabel->"Out[30]=",ExpressionUUID->"b9997385-cbbc-494d-9a1e-a9505adf0d16"],
Cell[BoxData["1.1615999999999999`*^56"], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.8289489407267036`*^9},
CellLabel->"Out[31]=",ExpressionUUID->"0cad9c6f-a00b-4b49-8334-bcee653dbb61"],
Cell[BoxData["1.3824000000000006`*^108"], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.828948940728712*^9},
CellLabel->"Out[32]=",ExpressionUUID->"b3fb1ef2-00c8-4157-8e84-15ec2b35beae"],
Cell[BoxData["5.0181119999999996`*^110"], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.8289489407337112`*^9},
CellLabel->"Out[33]=",ExpressionUUID->"fb23918f-d235-492a-b37e-2cc890cec191"],
Cell[BoxData[
RowBox[{"-", "2.856615004231188`*^64"}]], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.828948940735684*^9},
CellLabel->"Out[34]=",ExpressionUUID->"c8ab444c-90e5-4f51-b4be-f66914815833"],
Cell[BoxData[
RowBox[{"-", "1.7920914262391865`*^82"}]], "Output",
CellChangeTimes->{
3.8252684786222677`*^9, 3.8252694485646887`*^9, 3.8253023717157345`*^9,
3.8253177043919053`*^9, 3.8253178384438596`*^9, 3.8253434758226557`*^9,
3.8287785785782986`*^9, 3.828948479556635*^9, {3.828948868552825*^9,
3.82894888252658*^9}, 3.8289489407396545`*^9},
CellLabel->"Out[35]=",ExpressionUUID->"862eca02-77d2-4249-9b81-60e3a91f22bd"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["4. Diagrammatic Results.", "Section",
CellChangeTimes->{{3.8253225274410753`*^9,
3.8253225398923388`*^9}},ExpressionUUID->"f6c5e466-d966-429e-9fa5-\
9fc128c147f5"],
Cell["\<\
In this section, it is interesting to examine the area of values for certain \
auxiliary parameters that result in both a compatible with the observations \
result and also a blue shifted tensor spectral index.\
\>", "Text",
CellChangeTimes->{{3.825322553483509*^9,
3.825322606435342*^9}},ExpressionUUID->"939b2bbe-c2f7-469f-bb23-\
e5e83bf1744d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[", "V1", "]"}], ";",
RowBox[{"Clear", "[", "\[CurlyPhi]1", "]"}], ";"}], "\n",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"nt", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"V1", ",",
SuperscriptBox["Mp", "4"], ",",
RowBox[{"2",
SuperscriptBox["Mp", "4"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[CurlyPhi]1", ",",
RowBox[{"0.95", "Mp"}], ",",
RowBox[{"1.05", "Mp"}]}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Subscript", "[",
RowBox[{"\"\<V\>\"", ",", "1"}], "]"}], ",",
RowBox[{"Subscript", "[",
RowBox[{"\"\<\[CurlyPhi]\>\"", ",", "1"}], "]"}]}], "}"}]}]}],
"]"}], "\n",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"r", "[", "\[CurlyPhi]", "]"}], "/.",
RowBox[{"\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]i"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"V1", ",",
SuperscriptBox["Mp", "4"], ",",
RowBox[{"2",
SuperscriptBox["Mp", "4"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[CurlyPhi]1", ",",
RowBox[{"0.95", "Mp"}], ",",
RowBox[{"1.05", "Mp"}]}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Subscript", "[",
RowBox[{"\"\<V\>\"", ",", "1"}], "]"}], ",",
RowBox[{"Subscript", "[",
RowBox[{"\"\<\[CurlyPhi]\>\"", ",", "1"}], "]"}]}], "}"}]}]}],
"]"}]}], "Code",
CellChangeTimes->{{3.82531771057556*^9, 3.825317735712077*^9}, {
3.8253178582053337`*^9, 3.825317967332239*^9}, {3.8253180292846375`*^9,
3.825318050221224*^9}, {3.8253180867596335`*^9, 3.825318191217987*^9}, {
3.8253182254107313`*^9, 3.825318226000615*^9}, {3.8253183938262997`*^9,
3.8253184221207457`*^9}, {3.8253187649173117`*^9, 3.8253187666516685`*^9}, {
3.8253189130852437`*^9, 3.8253189203197055`*^9}, {3.825318982653883*^9,
3.8253189884120407`*^9}, {3.8253247413884764`*^9, 3.8253247550133905`*^9}, {
3.825324849821026*^9, 3.8253249120671625`*^9}, {3.8253265642014055`*^9,
3.8253265720751867`*^9}, {3.8253434832982135`*^9, 3.8253434949808817`*^9}, {
3.828778587951785*^9, 3.828778609742292*^9}, {3.8289483785081444`*^9,
3.8289484002175922`*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"98958a79-3d3c-4d2a-b2e8-da8acce393e7"],
Cell[BoxData[
TemplateBox[{GraphicsBox[
GraphicsComplexBox[CompressedData["
1:eJxlnGVYVVvUtrE5CnZjI4qNoiiiiCJbsTCnYnduujZs7MBCsFtsMBBsLFRs
7ELs7kLsfud8v+/eC3l/neu+nrWAZ405xxgzPJUH+3QdltPMzCxfXjMz9d86
MS/nfXXRi7mtYys8Dol0G/Gwwqzlbt4mvlxk89GKNr4mfrfj+CG/6n4mLtD9
/r5jNfxNbPv5++4StQNM7Lao+I4RdQNNPLhxvW377IJMPD7dfXMB+2ATrwgd
urFfoxAT7ys7fm1CY4OJ0w4sXZWjaaiJP/bdtaxbszATF/5zYdEGZ6OJ/5+/
8GysF7U3OScsT9T8wviF8QvjF8YvjF8YvzB+YfzC+IXxC+MXxi+M339ZL05Z
prXo/lLzC+MXxi+MXxi/MH5h/ML4hfEL4xfGL4xfGL8wfv9lvRjs73XJosoc
k18YvzB+YfzC+IXxC+MXxi+MXxi/MH5h/ML4hfH7L+vF77Tcg0701vzC+IXx
C+MXxi+MXxi/MH5h/ML4hfEL4xfGL4zff1kvljit+DB2vuYXxi+MXxi/MH5h
/ML4hfEL4xfGL4xfGL8wfmH8/st6Yb/afpLDOc0vjF8YvzB+YfzC+IXxC+MX
xi+MXxi/MH5h/ML4/Zf14kLus0Xf544y+YXxC+MXxi+MXxi/MH5h/ML4hfEL
4xfGL4xfGL//sl6MGjV4XWxzzS+MXxi/MH5h/ML4hfEL4xfGL4xfGL8wfmH8
wvj9l/Ui94Xv9gODNb8wfmH8wviF8QvjF8YvjF8YvzB+YfzC+IXxC+P3X9aL
mAZzj5dO0PzC+IXxC+MXxi+MXxi/MH5h/ML4hfEL4xfGL4zff1kvmi627XH5
ueYXxi+MXxi/MH5h/ML4hfEL4xfGL4xfGL8wfmH8/st68fr3/czWhaNNfmH8
wviF8QvjF8YvjF8YvzB+YfzC+IXxC+MXxu+/rBeOibWc1tTW/ML4hfEL4xfG
L4xfGL8wfmH8wviF8QvjF8YvjN9/WS+mDQ6Z/Lut5hfGL4xfGL8wfmH8wviF
8QvjF8YvjF8YvzB+YfzC7VxyR7m7eol7XzKHt1ig9dPwqk53Flw4bMymh5uY
9wfO6DLgYlPt+8G8n52z/37Wa+gweva/n5938P2X6EopepFU/nyrItMi3Z59
eVRsiFm4idE/Bg31e9Yy2qTD/L3Z3+f3837238/76NnXn/w8fn7238/PmzLJ
MeJtGx/T9xw4eO/htht9TRye68qBZXF+Jl62/s3eN5v9TbzHLd8u5/gAE197
VjkxOiHQxBkRzbY+2h5k4oI1esY13BVs4pqpfuun7Qkxcdsxs1enJxlMPNQi
dkXNA6EmnhR/dEn4obD/E//iRypPT8wzx+QHxg+MHxg/MH5g/MD4gfED4wfG
D4wfGD8w4w/G37O3zx1vJWj+YPzB+IPxB+MPxh+MPxh/MP5g/MH4g/EH4w/G
X9cJbuEH50WZ/MH4g/EH4w/GH4w/GH8w/mD8wfiD8QfjD8YfjL/jVfdfKJlT
m28w/mD8wfiD8QfjD8YfjD8YfzD+YPzB+IPxl90P+RA/MH5g/MD4gfED4wfG
D4wfGD8wfmD8wPnbD+8WXylcNHvj9cPPTeOq9ffb/RgX6RbYJqPI7Il6k05+
hanP5CPqM0x9hqnPMPUZpj7D1GeY+gxTn2HqM0x9hqnPMPU5e33FP/7IR9QT
GL8wfmH8wviF8QvjF8YvjF8YvzB+YfzC+P3XT7iJ8Ut+wi+MXxi/MH5h/ML4
hfEL4xfGL4xfGL8wfmH8/usn3MT4JV/hF8YvjF8YvzB+YfzC+IXxC+MXxi+M
Xxi/MH7/9RNuYvySv/AL4xfGL4xfGL8wfmH8wviF8QvjF8YvjF8Yv//6CTcx
frP3x+Qv/KLjF8YvjF8YvzB+YfzC+IXxC+MXxi+MXzg9ukik/3EvU38L0//2
3Hi9RNPxxv/DPE89g6nXPI8Oo/N8ytoB10o/MJryZa4lvwvtzull+r7oMP03
z9O/Z9dhfl9Yn5lfv57Tfj/nLfjNc6n0LK+1kaZ6zPPEH+b5bpOGXj2TrD3P
z/tSv/aM4ye9TTrPZ18vwNR7mHoPU+9h6j1MvYep9zD1Hqbew9R7mHoPU+9h
6juMP+rf3Bf5C96b7CXa53/Q3TZS4+zxgL+tXm8/vXC4GBSbmdy4jfZ9WI/x
PRk/xa7qppY842Nivh/Pl96f6LJrmK9Jj82f7Hz3mcZ8X55v1Odss7wj/Uz6
8S3pTeu91Jjvz/Ndfz1t0mu0v0l/2OGjw8TXGhMfnvdZadZosz7ApP95a2l/
9a3GxI/nZztb1f/lHWjSraJs69lkaEx8eX7T/UZ1OvkFmfQmdq61QjI1Jv48
f3JC5xqrA4JNeo/L/aqf+aQx44PnH1ceY5MZFGLS/f0N1lZfNWb88LzZsamV
WxsMJj2q2PyKXt81ZnzxfPmhq8svCgs16Vt3xVsd/qkx44/nm+Y5UOZFeJhJ
P9PjdKkifzRmvJBfGA8w8YaJJ0y8YOIB871hvifM94L5HjB+YfzA9MvMryXL
A7qkrdGb5ke5z9UDrthp84X8xPvMD5j6BDMfYOoVzPiHqV8w4x2mnsGMb5j6
BjOeYeodzPiFqX8w4xWmHsKMT5j6CDMeYeolzPiDqZ8w4w2mnsLEI3u9zH7f
AT3sR68eU2K0+sfzxB+dfEk9zV4veb7amwkef6t4mcbHA9ewS6MfaeOH97PX
V1M96VD5U/MMo+l5xg9/L+MFZnzAjAeY+MPEGya+MPGEiR9MvGDiAzfs2jXt
fX/t+3T+qL/ScpDmn/qTWHVf6VHO2v4J5/PUH3QYnXqDDqNTX9BhdOoJOoxO
/UCH0akX6DA69QEdRqceoMPo5H90GJ18jw6jk9/RYXTyOTqMzvhEh9GJ14Su
41PnvdCY82jihQ6jEy90GJ14ocPoxAsdRide6DA68UKH0YkXOoxOvNBhdOKF
DqMTL3QYnXihw+jECx1GJ17oMDrxKnojT6mACtp85LyKeKHD6MQLHUYnXugw
OvFCh9GJFzqMTrzQYXTihQ6jEy90GJ14ocPoxAsdRide6DA68UKH0YkXOoxe
ybG0Rb483qb6Qb9B/aC/gOknYPoHmH4Bpj+A6Qdg6j9MvYep7zD1HKZ+Zz8P
yt5fobO+ZH0Is96h/rLeoX+DE7+t3PXxolZPeR8dRmf9mv15p6Vttt4rNsfU
38L0tzD9LUx/C9PfwvS3MP0tTH8L09/C9Lcw/S1MfwvT38D4szhl2d88WfMH
4w/GH4w/GH8w/mD8wfiD8QfjD8YfjD8YfzD5bY/Vtte5emvnGdw3wX+t2Iq9
5kyJMq2nYfIf78O8z/fieeYjTH7kfZj3+b48z/yFyZ+8D/M+8eB55jtMfuV9
mPeJH8+TH2DyL+/DvE+8eZ58ApOfeR/mfcYHz5N/YPI378O8z3jiefIVTH7n
fZj3GX88T36Dyf+8D/M+45XnyYcw9YH3Yd5nfPM8+ROmfvA+zPvMB54n38LU
F96HeZ/5w/PkZ5j6w/sw7zPfeJ78CTO/ehU5/6DOf9Gm+QIz/mHGM8z4hBlv
MOMHZjzAxBcmXjDfH+Z7wnwfGL8w+3HUC+oPTD4h37I+hckXMOs9mHwAs/6D
me8w60GY+QyzPoSZrzDrRZj5CLN+hJlvMOtJmPkEs76EmS8w602Y+QCz/oQZ
7zDrUZjxDLP+hxmvMPGifhAvmHjBxAsmXjDxgokXTLxg4gUTL5h4wcQLJl4w
8YKJF0y8YOIFEy+YeMHECyZeMPGCiRdMvGDiBRMvmHjBnAdlr9/MT+IHEz+Y
+MHEDyZ+MPGDiR9M/GDiBxM/mPjBxA8mfjDxg4kfTPxg4gcTP5j4wcQPJn4w
8YOJH0z8YOIHEz+YeLGeYX1Df06+ZT+J/aXs5xk8z35a9vyb/TwD3jbDJr/d
NG/Tz+fvR2f/j/XI7PVlgzYlaD8fnef5/TDrj1v7E2O9jdr6hN+HX/jNpvY9
+1Qw/p/7C+zH4GdG+/mfmtpp+Qed8Y3O+EVnfKMzftEZ3+iMX3TGNzrjF53x
jc74RWd8ozN+0Rnf6IxfdMY3OuMXnfGNzvhFZ3yjM37RGd/ojF90xgc661d0
xjc68WM/hvj1DvXcOPSWFj904odO/NCJHzrxQyd+6MQPnfihEz904odO/NCJ
HzrxQyd+6MQPnfihEz904odO/NCJHzrxQyd+6MQPnfihEz904odO/NiPIX7j
XmXm7ltKqx/oxA+d+KETP3Tih0780IkfOvFDJ37oxA+d+KETP3Tih0780Ikf
OvFDJ37oxA+d+KETP3Tih0780IkfOvFDJ37oxA+dfJ09/2a/D8H9deJ7boVz
xyR7jbPfv+Y+Asz9A+oV+1Uw+1X8fei8z+9H5/fD2e9ro8Po+Nv8t/eL3s5a
feR56hM63w8//D7uT/D38z5/L0z/BfP7SxZrm+baWBu/P+9062me5Tzq+972
9/5O1c6jmufuOP/bVO086vTMky6ZU7XzqNiPUw6+mZrlfmCLN0+eT9XOo1IS
P656PFU7j/JZuena/anaed/W1FKBd6Zq98kfBA0+6WWu9Y831zk4tkzS5nuv
0bmqTjVo98eWlyj/ZIFBuz/26dzyzDUG7f7Yq/P2T7YatPtjxV0XVt9jyPLv
yaZMLpxs0O6PnS7d7f5xg3Z/zO1m8ZOpBu3+2JhCTd5cNGj3x9wnWftdM2j3
xwoMKu2dbtDuj31+vPDrbYN2fyxs4eAK9w3a/bHlc7tnPDRo9+NmxzuZH7fQ
4lfj065BjrpotzdLM6/WMfcW+5rpdz6Ves24b3a58vmKX5lv132RPKvms3vX
/vMTDrsexuW2jHbzjLA7NNfCX/Rs9WZoYckH9+8v6VwoQJxat6NzWcmbyuyz
vVskUPRzcT5VRfKo/mHefsWDhOOjTgVrSrZZ7HX9V8lgYXOncF87yaHpkQ8n
lAkRubeUu91Icsf7PU79sTKIvL07xzeVvL7EzHEhFULFpcX33zpLHnotz6XX
lcJEx5gbO1pJntE+x8C+1kZR/WOLgjrJfncv7D5jEy7aPP1Y0F3yt5hVri4l
vMUXM8uvPaTfzDldUmZZ+or2Xm2uD5ecsb7Q0w2F/cTswVsuhEuunPAnIqaY
v5j2Yb1DlGSrEa6e40sGiEKfPp1eJflhwIqh7coEile39cW2Sq6wbeP03OWC
xLroC5P2Sj5/3fdUYoVgsbXchjFHJR+4kTmuS+UQEbw9pHCq5Lkp3ea+sDYI
Q3SjjZclVyxUZlJItVBRpuPonunq509bPuuvbZg4fGuJ7p7kfDVzJUysZRQb
U39FPdZp8fNO7ne9e5b7Xg693E++1Wnzf1D/vmfcJfuPnj3702G9cLUu3qmT
fH5m+vvgQTnCRc0LPUbclPMjZ94i54f+NYrGW6Z7KS7xs++ipqe9Rbnc57o1
lc/PG586LuOUjzjwbenM+pLtnZa0qzLcV3x2bq6vIXn0kYtTomV9+9Jgp1UV
dd/HzM654Ug/4Xr3el8ryS37P3UuL+ubu1lSoxKS4/Lt7H6nppdY1P1QoQFy
PlaNMCt2s56PqDE/oXMPyXGvhxcaskzOv2OX2nWUXG7VWOPVFXL8JT9crpO8
omT9Ui1i/MWTgpE/XST7eI+8uXFNgLiYsdy+meTgStXGFVgfKFqVPFm2iWTb
KzGLvDYGiRGWNeY2lHxpndeC83HBosGMq2PrSw46H3i51pYQ4T/Y/HxdyRMv
L104Pd4g+o/8411b8ivjy7JPEkLF1IgvoqbkzgPjo513hAlD7JwwW8lJn/eX
X7LLKJLut7hcTbKl48GJ37/oRY9aVS2dZH4x5rxUYMZPb2H+oFf75pKtTi8v
V3CCr3DN6GjdQvKv2evLeU7yEz5/Xm9xkWyzXDhumOIv8l02/6Lyk8+q7o6Z
0wJE7U/NCrpKjqmX80OLGbKfvmH1R/GN4Yec58wKErtymp9vLTm9o4v53chg
8aPLyQluku/nO9WkdnSIuJvjWXmd5NHDDxw2zjOIWd4F4hSf2HAw6uyCUFF2
cbUqbST3u/98pdXiMDFgzPI5ip+s6PRwzFKjOPltwHvFVyPMlucqFi4Smgf+
+iDHV9gN3cfPLcJF69PDtqfL8ROdv65P7gC9+O/Y7xrOUj/hkWjTOFovvokC
5Vx0Wv350nT0qcws3L5O123qffJxg5X/RXiaa/3ynTwZJzuba/3xmp+tprmb
a/2wbfmW/q7mWv/bapLo6Gyu9bs5e7x94Wiu9bdbTrlUdjDX+tnXH423Gphr
/euRxzv/1DPX+tWknkHhdcy1/rRl3iS3WuZaP3o+ubRHDXOt//S56RZV3Vzr
Nxv/jdmkxhf+Djz6urJZkuav863aC5yTNH+2W4Y2VOMBfz962c1V4wF/yy0G
JrVK0vw5rx++S40H/GXsdI9U4wF/67/r3NV4wN/pZW3fKsbfS4cmY9V4wF+o
vdMvxfhLqXBfr+Jv8nem6WXF+KtXaVNzjyzsHNful5PMv8sTHFOcTnoJq7Jf
Al3l/PdLvHOq1TjZjyz1+3xLxttt/fkJ9ScYRcFtxd4rJn9diPu5v6183nJs
vulnjhhFuVYzbJUefKar+FLES3Qcc6R3Wzl+RietOr7oo17MHFvHRyd5ycXq
oaFXjCJjU82bGZIfN36x8uBbo8jvt7OHGq/0Oyn5R49W+Y5+z3Lx/IFddNr5
t/6dw3GVPzm/GdZwpdVgnXa+/Z/nc32wTjvPTvz4fE6ETju//hnc0XqRTjuv
nj9v/Ya1Ou18+mHOdUHxOu08+sAAz3t7dNr5c2vrLlaHddp589qWLfqe1GW5
L2qx/9Q5nXaeXG1Rs7FXdFr/ej91dvXW8vvdOJJQOS7FS7RtnGex+v55ntex
auXmJSqmGGPV97XpYeveKdBLVJl3ZVMH+f6TIVHJ0fO9xMqicxZ0kmyRv18+
i4LhInXd9Wcfsnyfzo4Nb86T73tvtl3d8YS3mOXxboyqF2+Xtn7vlOojLBeO
Ca2f5b5oYnoJy8nqfuTdPjl0w3zFypBvIap+XHialFbjua+IPu5cvEqW+6Lu
/co/DJK87dUB2/QRfqJv7fcDVT2JK1zOrqWsJ32sXBqWyHJfdO2U5qdHS57v
t/Fs59H+4lnlHmsKSf5es+6mAZLPLd28WvHUrfOaxcj11Lq7Tbbkl9zRfVWz
IZLzT90Znz/LfdKizWf3GiS5/163kSH6AFEww80qr7rfWnpUsbuSezYdWkpx
qfrVepd5FyASkkfdziH5etL0KpFyPfYyof+DHFnumw6f3Kqlp+TKJ7e0Xu8d
KH5Ghn/6LcdfvSpXGnf3CRSnB+x9p7hBqYsXIuV6Lbb/EfcfkstsnrH14PtA
YVa3UmfFjJ/b4c9du6p47shwSvMNErU7xb35IvV7+vHNT/oFiRyp6U8V1x91
edVvub6bcKnkoY+Sj8wtk57xIUhYbrU/rpjxZ3c7sl4H+fMWB9qPsgiQ4zEq
4nKG1J/X252/YWCw6HKrSariDckTFo36HCzSF0SZv5PstCDHLVu5PjS3+1FI
MeN3SmjAXZ26PzwwopQuKEQMdR9ofC31PDnceqwKDhEerV8HKF4TWrLXFbl+
9L44y/yl5A7njhQe+iVE/Bnwu5Bixv8gl3l1W8mfZ3Fp6J5JIQbRxzk49ZnU
D0S035Yn1CD+FC12TPHmj9uHNflhEOkVQ1c/kRwSmPhjzTeD8OpxIlYx86da
1/T/nNX4qeB4+WhoqCix027DI6lHVjo0c7QxVDiUzLlK8fA822xX/AoVZ/s3
2vdA5avvx+s++hEq3nRueUQx829KibTeavx3n2/7X67wMLEi4sCXe1L/795u
9/Njw8Q2i7T3iiO7HrTJ8TdMZDb8OVutT2q9s+1Z9XeY2GNcorsr+XKpM3nb
B3sL+1yHe6p8lNMlfeX9Uj7CcM/dobfkbpMG9Ylq5itaejhfGy35zBebIeWj
fEXV7TZd/SU7VH3UtJKzn4jclppvguRxhcp3rjbPT3jlTBsxTfKng/89vtjC
X1wJtb41V/Wbhx53KbrQX3y1T+68WPKqNU+tl7QMEHX31f2+WnLIq1T754sD
xJRvexM2SI7yStMFugaKh/7DXqr8NfSs2YBNyyQfP2C2Q3Kf4gXiBroFiQiL
EkX2SV6Re6pT35VB4uuxqesOSu7RMsO7d5tg8Ty+6ZEUyVVDAgNyrg4WNVt8
f3RC5cfmg/sMcA8RlrVKOZyV/DMxpsqqtSHiRNneP86rfFfKYo1Xe4PYZmy4
QeW7dRkp3+w2GETCgoJlrkt+mbLq3OSOoaLHdOFwU3KvjhO7HoxV66d+w25L
ti37PWG1R5g4+zgu/33Jteo/at9yc5go2yvozwPJvSfdWN1hp16MXd6ydyvJ
PoesB/SpGy7mv8kbrPqVVWd8Tra1DxenXtSbpZh6fiWz3VOVL20+5Xi4KcRH
ZFQLTOyv0/aLTvr2fzRSctCQ9eHdDvmKiWcLPg/SaftFP3aNCRonuVCb+us+
JfuJw/XLd5mh0/aL8r+uEx0tufYJF9ftR/xF7Xnf9yzVaevt3dcrPY+RnBpx
9dvklAARf9ImMVan7Rd9T2yQS8Wrq0+bNSOPB4rHxtuJO3XaftGuFac6Jkl+
kO9Bnr4ng8Tbjt7FknVZ//2PRRkVr+Ktl8b0OR0sPpd+XuGUTtsvsulybYNa
33waW1o/LDVExNdMLnBRp+0XRW+9XF3Fa9LKERdCzhnEvNLt8qXporPs164/
rdY/1YdlhMy9ECpidugc7ui0/aLpA8tvVuuho9e79dx+KUw8ab13z0Odtl/0
OfXD88dZ4vHyQeeqLdT9/XWdkq8mG0WN45frqv6B/Y3ti5dVeiqfXxuzaUH5
eKMondNQR/ULz+oWWWQ+zyg+GHplvNFp+x/L7ONqqfe5f2Q35cMNN6n/XXX3
zCN7WV8HbBnVTs2Xus/3lbqsFyOPOrq3lrzyVJWJyZlGkX4udcyHLOOhcJFD
g+pkud8bX3JUXIUs93vFtEudi6r7ykUuGLu10u77XjrQe+DSFkbx51X1A7fl
3zMkZE1Edw+92D+18RWnLOs/91rrio401+5jvvLr26a/eZb7mEvSGwlz7b5l
7utlwj3MtfuV1vH3Lqv+mnrY8uBbMzdz7f7k1YEf7qv1F/XozsDPnZqba/cj
awR9btjUXLsPGfuh8rjG5tr9R7MBq8s2MtfuO27LXPNb9d/k05rj9pRT6zO+
/+UF7XxUP2769+VLx45V/S/+rFv4bVb9Lv52uzYLUv2rqV+bsfGj6ldN9w//
JjdyT9L8Hes3r027JM1fh9seDdonaf7yfin8WzH+Ho8dGt8hSfO3vcr2Nh2T
NH9d/cMvKsbfvMOr2nRK0vz9WTxqh2L87Vp1vIjqn/EX3nJs+gULrd86PK+q
90MLrR9t+KfVkQwLrR/9tHFsxG8LrR/1u1+3g7ml1o/u7pkaWMRS60eNb8d6
lLHU+tFujqdKV7LU+tErRQuYVbPU+tE2edJr1rLU+tFhzV321rPU+tFZFeYd
srfU+tGTxWO6NLbU5s8cs+2T1X5OgdQn1hmfvIRLiWfFu+u0/fOSP2zTVX/N
fnkDm5r6UF2W81ef/F1n67T98Je31rdfodP2vydODn+9Saftd8/+/mHNbp22
vx0zov9J1U+zn93sh2HlaZ22f3148Yt+l3TafvV1rwX2N3Ta/vR/jYq3uqvT
9qPnD5248ZHKd2blP7U7rhfVI1pXUvsr5VoGLPNo6SVe1rK8qPrroEmnwoSr
XrTqJJ50k/y7dEAVr/NGsbzT4hSVb9jPnd0yzaFTlv//RsOBzbu6Zl2vxBs3
qfyx5dTgNlGeevEycvG+IXI+eE10PHaln7fY2etMZbVeLv66w81i9X1F5JLg
QLVeTl1SsZCbvZ/47mfbSs3n1smno4yN/IXPwZ6Oar18pHScbk/jAHHpha68
Wi9XWuw8+JOjXE/e/XxYrZfzTZzdslGzIPFmRf4/ar7++dZghME5WNx6/PuA
mq+pCcN8D7nI9aRVhSdqfr4/51Mwt6tB2BW2HqbWyy/a/snRwS1UWNrb1Ffr
5byG2FIL24SJHhG3mqn18vYn3WzuuxtFaO4849V6+ejShNqtI/Vi1NSqW5uq
+VWvQOPfc73FrzJ9fqn1skfUMyfP9r6ir2eFR2q9PO1byWE7OvqJS6vHB6n1
cqe1g0bk7+wvNrWtdFqtl48bt40b1DVATE6q/lzli7sHx6Tv7R4oGsdF3VHr
5bNX5yy27BkkZtbOk6jyh52d543BnsEiwnPKCLU+fhnbPn5vnxBh/epEPpVP
urefXdOiv0EMvhK5QPHyg6/6DhwYKkJGPSms8kuXlqs9dg2WIV/kMl5xzTb3
C5gPM4rErrEP22SZ3y69InKHG6Lc5lW1C/zbTS8ca50qFiL5mVX93R/ryfVy
k0brxkv+tSfF80N9b5Gj586n0yX//pi+NV54CWNU9YYTDdr9RIfeAcMiJZde
sDCtq6e3GP4yo8dMyQM7Pcn11d5HeEcf1M2VvOn7+ds5rHxF+P0fD5eon+95
sFRGHx/x80zA0nkG7b5i+HOHvcslN3kT19C1nq+wy5uv7DLJf0VdjwIrfEWN
Ab8uxEj+ltJmQqnyfmL4rxeVN0rWrVvoMSvRV/QRb96tNmj3F2f36BsbKznB
t+HeS/X9RLOReWsr/mJmV6naKj/xcn3xN1sk+/1NeeVQ0V/Ebwhqtl1yF9vu
+4rt9BPb341+pPbbyW+Plz7frfQzq62Wdm/oL1xXpFfaIblQ/Ov17qv9RaMy
eSqp/fgd1s2s+lcOEA6vLNful/x1nFze7vYXBSxKfVI6+bHP/sxWSu8U8OjK
JYcAsa2B24gDkrs5nqgUuDZArH7ldU7t59c2rzxnlnWg2LfvbGyK5OFFTsyy
SAoQ6x6XmXLYoN13fJt5fPFRyY4X6z7SyfnkXbtMt2OSb2/Z6LJ+faB4t/KY
00nJGWMPl0m2CRL7cllGnZE85E+zb+P3B4r78Udu/6/+//Nz8oV8b09J3mrM
/2avU5Cw3ri1qjo/CNze80/6xiDx9PvS2HOSnUcOS/tUPViMS94+U50n9HBo
nv7uYJBon3uv/XmDdh+yff6yPoqH+I+9VlXO53xLihS8JDlvt0mzi2wKFj6O
+ZpfkVwhYYFlvZohYnSpcynqPMJ7+63Pnodl/+7YN0np1IfzxkotFS8ZXdlj
jswHh1budbgu+YHl1LYdt4SIbyWOVrwh+cjZP3X0tQ3i4RfXnjclV61c9cPR
oyEi54Drs5VOffE47DQ+TXK1999ffWplECMP5klWz7cf55g4K94gVhv76NX5
x753Z1K21A0VkUlHB91V37dJw3bVjxvEmMGu55VOfVr6zsbllmSH9xZWnjIf
bZ/f/JB6fnVQaO9zCaFiYI63jur8ZMbhKl5v7cLEhg2lvj5Q5zMz5oyceTJU
lMkYGK106tsAj2GL1PtpW/Y0OyDzWd/C99uq85ZHteZ/KLgjTARt1i1/JHlj
Gd/7dvZG0SXWw/aJZKfWC1a/Ph0mzK13v1A69dFgbDBX/b7G5watsGpnFDUT
t/up5y3mVqzXbZdRfH16N+ap5EWXdt4MahQu7twPzvVcjTfHFY3bnzWKX2tD
nyr9ZrJL8oTxepHhWaJqmuwHbCNP3LTN4yWOzC384LbkMgUejkie5C361Ol2
8aXkrd4rVlcu4CP6Nh288J3kLnXzFK/g6itaF8/8/F3y2fq3P3pP9xX7dk75
pvqLhktKX/zc2k98bvNrUD51vmL2bHmjWX7iV+tNp/JLvrP/jdVDnb+YvylX
XFHJ5e/5HH0Z6S9its6bU0JygzOP8txpGyBstzRsXE7y5KQK5aOiA8Tnczd2
V5B8ZkOnWY/bBYo3kwoNrarOmyoGTradHyhyeueKVP3IyQ+Pen/uIOvRkL0+
qh9xuuxlnbQwSEzSB3apIzmx/ZgNhTyCRUqufJH11flS5Y/bWyyR+bxtFXvV
n8Q9Lvzbroscz9G2TxwkR72cNP3IMsmjf/ZsIvlHpavNe3UziNI/ay5U+5fB
qc0POK00iOmLOt9rJvnG037hU3qEiiGeT/a1UH7mfrfdERMqAg4vueciuWR1
z++7eoaJ+tPFCFfJr3ZVjai6NkzMrHFY31ryi6EvS730NIpVFfdvU+dVlQ7H
j56/3ii8tpRf2sZSu186YPRIR7W+5Hz1zbcJ1i0kXxUbZmzr4yWmnXhWXfXz
vct9fNu3jrfIMzzmg6r/oZtmd/s5wEcEu65a2F3yf+N7x9mW8RVtqoeU7yI5
10W3PbV2+IqrR5Zt76DOOxpd+LDcyk+kJE44r/qDuuWc9g3Y5SdS046VU+ct
V5f0uvJfBX8RWH1tvOoXHPfc9l+yx1/MXfQwWvX/FcLmDQ+oFCAi3/Ybr/qH
B0UeZ16T+XBl/QY3ndR+/NnpU29WCRS9dhqLqfXAoE4/JxY/ECh+lw48r9YD
u7rXu9ZM5r+RrY65qf141wvt5olDQWL8jomd1HnNb8tjV1bKfHbTxuKH6jdK
7Ny2a5nMP3PvfHRV64PWV+o8+1UjRLjeq1PWTnKxZSXmPpD5ZFmNwGVqvz2h
5P7+vWW+KVY9YoHqR2Y9+PlA5YdBT6a1Uuc7Xx++C98j84fH5Te9VX/yZujg
Mb5yvh+rF1dPnffEbKsSVKR+mFjy4MEg1a+4VLyUY7+cvz8Oreupzn/qlrXx
HyPnd8KdXzGqfxm+rui43HI+DgkouUOdBzm/d1l8XM7XOZkTLBUvst7ntCbK
S3jpBz9W50M5901PcfnuJbybHGuq+pvl3du27LXAR3Q0u/NDnRcdzpnQ7Mpv
H+HrP7GV6nfcDlz8PvWcryjo+3CXOj9amnY60D6Hn9g9rm+GYsPdT9PuXZDx
bPHXRvU/wbv7Fxify1/0S3/dU3Hld20sHS77i+nTRvRT/VBX8TrmbJ4A8Xvi
3gjFzb1uHZl9VdZDqxnDVX8U4TPJrIx5oIjYv3um4gpvAs88uh4oHrep1E71
S5XdX+QdkT9I1IxrP0qxU7uXbk3Sg8TS0A8FVf9Ua5P3wt0WwcK47XcNxb69
hnaKvBUsci1vv1/xkn4pC3IXChHO719d/t/zif3Fvjy8EyLa7hnaWfVXHYb1
zuxWxCDqdbIZprj6XNHB4b5BJN1acU3xi+QeMeuKhQqbGh+eKS6zd0W/mQ/l
eqtygrvqty67b4z6WCJMvLP+5Kl4yXSLhvceh4kJxdO2Kzba+e9zLW0UC370
PKK43IS/N+o/MwrP/M8LtpW8KHRF8QVlw8WD/U+s2iZp9wdEwb3OwTLf3i3Y
ObTkRC8x/dfi0AcW2v5Di6ppF59Ljt3bRRc8xUdM9Crtlmmhrf/P5DzZ85vk
yC01G+Y77itudfr2zcxS2w/qMiLJMq/KFzuc3F+e8BPV5hRtZWmp7Qd17PN6
tlrPnRpb48qdU/7CtnHc6lKW2n7QltaW7laSjzw/2u/emQBx4WNIkFrfsR90
rduhpdaSJ+wY4v76bKCocGhefltLbT/Iw6p7ijqvn+m0akaOC0FikLPv0rqW
2n5QrEPrr+r8vrRPn8kVLwWLNM8GHg0ttf0gP9fHg1R+jTSrk+F6JUR4rk/w
cLTU9oO+Gipaq/y6N1fzVK9rBrHWPnZvc0ttPyj1ZEgPlV9zlprXfEVaqBiX
1H9VS0ttP2jbIJ+CKr+uK1dm5YX0MNF5cVpJN0ttP2hxpXUDVH5dMGRo79y3
jeLPve12bdX36FGq4x9Xb2ExvO0a5yz/XtzLoXmm2t+pnr7y87guRnGm4q3k
1zLf3p0y3nuY3ijsc45xVftB3Kc5bbO81Ics68GCYXVd1f4t90Pnv/Sur87j
tx8aPLnhDqN4vmtma7Xe26df+2p7c6N4krnsqNq/Ib+n7LhUuIv8e/4HZrMM
Pg==
"], {{{
EdgeForm[],
RGBColor[
0.14800000000000008`, 0.33000000000000007`, 0.5400000000000001],
GraphicsGroupBox[{
PolygonBox[CompressedData["
1:eJwtlElPVFEQhe9774IT0o4rCQlB47DlZ7gjUTFik7SgG8WFRiNGRRBwxlkR
J3BgQWLCHn8DiNCNMiQmJmoTjZGEpfE7qVpUn/Pq1fTqntt1hZON7WkIoRXL
sOMxhJEkhH3gzooQfuOrB0cT42WsObMY8c3ETcPPggex9/AcuBUrwTvAH9ge
mvwE12J/ydtBzWr4XmIawANYLTEL4EbsI/7T4BF6tWJL5Jzw2TSjfHqnfuoz
g1Ey7E5tHkLCGX4+wTeBu1KrqW9UzzFsGX6Kd5PwDd5zwmPKPDeQs997jvr3
bvddNOHPE3g4s/ypxHopty61+TTbB7Ats929JucPvhHwBfYLPgwOYGX4c7Af
+wa/Dz7AvsOfgNexr/DbYCc2B78Cnsdm4ZfA9dH66NzUU7216x78i8RcA1eC
veMxFMDxzPZ+DGzBqv18j/oZ6xu0Z+1qW2p+6UV5BT8Xfe+4c8XkfSfakXbV
Hm1Pec/VOz1r16rX7H7N0QSv8TOc8nN8F22+ysoQiomdsfxX+VkNFnl3C74G
XoL/q7A55qPV0zmqZjfPq4iZwTekfcHn4BfhlA7TmdVSzRv47kmv8NnMcpTb