-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vlad_data_generation.py
42 lines (29 loc) · 1007 Bytes
/
test_vlad_data_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# %%
import matplotlib.pyplot as plt
import importlib
import numpy as np
import rmm
importlib.reload(rmm)
# Define path
path = "training_data/test_data_generation"
# Generate Data
x, data_1, data_2, true_value_1, true_value_2, poles, residues = \
rmm.generate_data.generate_data()
# Save Data
rmm.generate_data.save_data(path, x, data_1,\
data_2, true_value_1,true_value_2,poles,residues)
# Plot and save to path
rmm.generate_data.plot_data(x, data_1,data_2,true_value_1,\
true_value_2,poles,residues, path)
# Test loading
loaded_data = \
rmm.generate_data.load_data(path)
# %%
importlib.reload(rmm)
test = rmm.error_function.error(x,np.transpose(np.array([true_value_1,true_value_2])),[1/len(x)]*len(x),poles,residues,[0]*len(poles),1,0,0,rmm.error_function.delta_5,rmm.error_function.delta_5)
test
# %%
Y = [np.real(rmm.utils.model(point, poles, residues[:,1],1)) for point in x]
Y-true_value_2
# %%
from scipy import optimize