From e004f97f57c8bc62213e579e5780c5b4710c255c Mon Sep 17 00:00:00 2001 From: Quarto GHA Workflow Runner Date: Tue, 23 Apr 2024 03:43:35 +0000 Subject: [PATCH] Built site for gh-pages --- .nojekyll | 2 +- 01-introduccion.html | 46 +- 02-flujo-basico-2.html | 14 +- 02-flujo-basico.html | 14 +- 03-modelos-genericos.html | 26 +- 05-dags.html | 138 +- .../figure-html/unnamed-chunk-10-1.png | Bin 30797 -> 30407 bytes .../figure-html/unnamed-chunk-13-1.png | Bin 480607 -> 575882 bytes .../figure-html/unnamed-chunk-14-1.png | Bin 472129 -> 566858 bytes .../figure-html/unnamed-chunk-22-1.png | Bin 19834 -> 19419 bytes .../figure-html/unnamed-chunk-25-1.png | Bin 20426 -> 13981 bytes .../figure-html/unnamed-chunk-28-1.png | Bin 12867 -> 22677 bytes .../figure-html/unnamed-chunk-29-1.png | Bin 26807 -> 26804 bytes .../figure-html/unnamed-chunk-32-1.png | Bin 109737 -> 110214 bytes .../figure-html/unnamed-chunk-33-1.png | Bin 236413 -> 222369 bytes .../figure-html/unnamed-chunk-37-1.png | Bin 27459 -> 27298 bytes .../figure-html/unnamed-chunk-38-1.png | Bin 29025 -> 28891 bytes .../figure-html/unnamed-chunk-41-1.png | Bin 80219 -> 76993 bytes .../figure-html/unnamed-chunk-42-1.png | Bin 187768 -> 174742 bytes .../figure-html/unnamed-chunk-50-1.png | Bin 107182 -> 95215 bytes .../figure-html/unnamed-chunk-52-1.png | Bin 84916 -> 84673 bytes .../figure-html/unnamed-chunk-8-1.png | Bin 28866 -> 29064 bytes 06-calculo-do.html | 68 +- 07-buenos-malos-controles.html | 38 +- 08-mcmc.html | 972 +++++------ .../figure-html/unnamed-chunk-47-1.png | Bin 72322 -> 72574 bytes .../figure-html/unnamed-chunk-51-1.png | Bin 57296 -> 57815 bytes .../figure-html/unnamed-chunk-52-1.png | Bin 67020 -> 67556 bytes .../figure-html/unnamed-chunk-54-1.png | Bin 0 -> 16788 bytes .../figure-html/unnamed-chunk-55-1.png | Bin 112484 -> 0 bytes .../figure-html/unnamed-chunk-56-1.png | Bin 79095 -> 112484 bytes .../figure-html/unnamed-chunk-57-1.png | Bin 0 -> 79095 bytes 09-modelos-jerarquicos.html | 58 +- .../figure-html/unnamed-chunk-6-1.png | Bin 73411 -> 74193 bytes 13-exp-naturales.html | 1522 +++++++++++++++++ .../figure-html/unnamed-chunk-15-1.png | Bin 0 -> 132118 bytes .../figure-html/unnamed-chunk-16-1.png | Bin 0 -> 153029 bytes .../figure-html/unnamed-chunk-21-1.png | Bin 0 -> 203970 bytes .../figure-html/unnamed-chunk-22-1.png | Bin 0 -> 77964 bytes figuras/gelman-rdd.png | Bin 0 -> 210390 bytes index.html | 6 + search.json | 88 +- 42 files changed, 2320 insertions(+), 672 deletions(-) create mode 100644 08-mcmc_files/figure-html/unnamed-chunk-54-1.png delete mode 100644 08-mcmc_files/figure-html/unnamed-chunk-55-1.png create mode 100644 08-mcmc_files/figure-html/unnamed-chunk-57-1.png create mode 100644 13-exp-naturales.html create mode 100644 13-exp-naturales_files/figure-html/unnamed-chunk-15-1.png create mode 100644 13-exp-naturales_files/figure-html/unnamed-chunk-16-1.png create mode 100644 13-exp-naturales_files/figure-html/unnamed-chunk-21-1.png create mode 100644 13-exp-naturales_files/figure-html/unnamed-chunk-22-1.png create mode 100644 figuras/gelman-rdd.png diff --git a/.nojekyll b/.nojekyll index 5956025..edb7fa2 100644 --- a/.nojekyll +++ b/.nojekyll @@ -1 +1 @@ -76578e17 \ No newline at end of file +626ca465 \ No newline at end of file diff --git a/01-introduccion.html b/01-introduccion.html index 3c09ff3..2bc3faf 100644 --- a/01-introduccion.html +++ b/01-introduccion.html @@ -254,6 +254,12 @@ 9  Modelos jerárquicos + + @@ -360,14 +366,14 @@

Ejemp -A +B chicos -sin_mejora +mejora B grandes -mejora +sin_mejora B @@ -380,34 +386,34 @@

Ejemp mejora -B -grandes -sin_mejora +A +chicos +mejora B chicos -mejora +sin_mejora -A -chicos +B +grandes mejora -A -grandes -sin_mejora +B +chicos +mejora -A +B chicos mejora -A -grandes -mejora +B +chicos +sin_mejora @@ -660,8 +666,8 @@

Ejemp ", width = 200, height = 50)
-
- +
+

Es decir, el tamaño de los cálculos es una causa común de tratamiento (T) y resultado (M). Veremos más adelante que la decisión de condicionar a el tipo de cálculos proviene de un análisis relativamente simple de este diagrama causal, independientemente de los métodos que usemos para estimar las proporciones de interés (en este ejemplo, examinar las tablas cruzadas es equivalente a hacer estimaciones de máxima verosimlitud).

@@ -782,8 +788,8 @@

Eje ", width = 200, height = 50)
-
- +
+

Nótese que el análisis más apropiado no está en los datos: en ambos casos la tabla de datos es exactamente la misma. Los supuestos acerca del proceso que genera los datos sin embargo nos lleva a respuestas opuestas.

diff --git a/02-flujo-basico-2.html b/02-flujo-basico-2.html index 4daf6a3..884fa56 100644 --- a/02-flujo-basico-2.html +++ b/02-flujo-basico-2.html @@ -232,6 +232,12 @@ 9  Modelos jerárquicos + + @@ -320,8 +326,8 @@

")#, width = 200, height = 50)
-
- +
+

Donde vemos ahora que el estado real de cada persona de la prueba es desconocido, aunque el resultado de la prueba depende de ese estado, y la cantidad de positivos que observamos es ahora \(N_{obs}\), que depende también de la sensibilidad y especificidad de la prueba.

@@ -563,8 +569,8 @@

")#, width = 200, height = 50)
-
- +
+

Usando argumentos como los del modelo original, las distribuciones de esp y sens son beta y podemos incorporarlas en la simulación de la posterior. Nuestra nueva función para simular el proceso generativo es:

diff --git a/02-flujo-basico.html b/02-flujo-basico.html index 8095611..887e911 100644 --- a/02-flujo-basico.html +++ b/02-flujo-basico.html @@ -234,6 +234,12 @@ 9  Modelos jerárquicos + + @@ -339,8 +345,8 @@

", width = 300, height = 100)
-
- +
+

Que también podríamos simplificar (suponiendo la \(N\) fija y conocida, pues \(N_+\) y \(M\) dan \(N_{-}\)) como:

@@ -373,8 +379,8 @@

", width = 300, height = 100)
-
- +
+

Y ahora construimos el modelo generativo. Supondremos que la muestra de \(N\) personas se toma de manera aleatoria de la población (una población grande, así que podemos ignorar el efecto de muestreo). Supondremos provisionalmente, además, que la prueba es perfecta, es decir, no hay falsos positivos o negativos.

diff --git a/03-modelos-genericos.html b/03-modelos-genericos.html index 05cdc91..06a3763 100644 --- a/03-modelos-genericos.html +++ b/03-modelos-genericos.html @@ -252,6 +252,12 @@ 9  Modelos jerárquicos + + @@ -345,8 +351,8 @@

")#, width = 200, height = 50)
-
- +
+

Nótese que no consideramos \(W\to H\), porque podemos pensar en varias intervenciones que podrían cambiar el peso por no cambian la estatura. Por otro lado, es difícil pensar en alguna intervención que cambie la estatura pero no cambie el peso de una persona. Adicionalmente, hay otros factores desconocidos no observados \(U\) que afectan el peso de cada persona adicionalmente a su estatura.

@@ -940,8 +946,8 @@

", width = 200, height = 50)
-
- +
+

Omitiendo del diagrama las variables no observadas que también son causas únicamente de \(S\) y \(W, H\):

@@ -966,8 +972,8 @@

", width = 200, height = 50)
-
- +
+

Si queremos saber cómo influye el sexo en el peso, este diagrama indica que hay dos tipos de preguntas que podemos hacer:

@@ -1457,8 +1463,8 @@

")#, width = 200, height = 50)
-
- +
+

En este caso, el modelo causal es como sigue: conocemos la distancia \(D\) al hoyo en cada tiro. El éxito (\(Y=1\)) o fracaso (\(Y=0\)) depende de la distancia, junto con la velocidad a la que sale la pelota (muy alto o muy bajo puede dar un tiro fallido), y el ángulo \(\theta\) de salida. Adicionalmente, hay otros factors \(U\) que pueden afectar la probabilidad de éxito. Nótese que no escribiríamos, por ejemplo \(Y \leftarrow D\), porque la distancia no cambia causalmente con el resultado del tiro, aunque es cierto que si intervenimos en la distancia, esperaríamos obtener tasas de éxito diferentes. Igualmente, es necesario poner una flecha de \(V\) a \(D\) y \(V\) a \(Y\).

@@ -2212,7 +2218,7 @@

Warning: 236 of 4000 (6.0%) transitions hit the maximum treedepth limit of 10.
diff --git a/05-dags.html b/05-dags.html
index deff427..57a53f6 100644
--- a/05-dags.html
+++ b/05-dags.html
@@ -252,6 +252,12 @@
   
  9  Modelos jerárquicos
   
+
+        
     
     
@@ -355,8 +361,8 @@ 

", width = 150, height = 40)

-
- +
+

Nótese que no describimos exactamente cómo son las funciones que relacionan las variables, sino más bien qué variables son causas directas de qué otras. Por ejemplo, aunque en nuestro ejemplo de arriba \(Y\) puede estar correlacionado con \(Z\), no hay una causa directa a \(Y\), porque cambios en \(Z\) afectan a \(X\), y es el cambio en \(X\) que es causa directa de \(Y\).

@@ -413,8 +419,8 @@

")
-
- +
+

En este ejemplos no podemos saber \(U1\) y \(U2\), y no nos interesa modelar la física de monedas, manera de lanzarlas, etc. En este ejemplo también no consideraremos qué hace que un día sea soleado o lluvioso (no nos interesa modelar el clima). En este momento, en teoría tenemos ecuaciones determinísticas para todas las variables, y si conocemos todas las variables exógenas \(U1,U2,U3,U4\) podríamos determinar exactamente lo que va a suceder con la ganancia, por ejemplo, o cualquier otra variable del sistema.

@@ -445,8 +451,8 @@

")
-
- +
+
@@ -521,13 +527,13 @@

Ejemplo

simular_juego(5)
# A tibble: 5 × 5
-       x d           s1    s2     g
-   <dbl> <chr>    <int> <int> <int>
-1 0.0907 lluvioso     3     0     3
-2 0.808  soleado      4     3     4
-3 0.410  soleado      1     4     1
-4 0.422  soleado      2     1     2
-5 0.253  soleado      2     0     2
+ x d s1 s2 g + <dbl> <chr> <int> <int> <int> +1 0.737 soleado 4 3 4 +2 0.775 lluvioso 4 2 6 +3 0.184 soleado 0 1 0 +4 0.407 soleado 1 3 1 +5 0.328 soleado 1 1 1
@@ -589,8 +595,8 @@

", width = 200, height = 50)
-
- +
+

En este caso,

@@ -639,8 +645,8 @@

Ejemplo (si
cor(sims_confusor |> select(x,y)) |> round(3)
       x      y
-x  1.000 -0.418
-y -0.418  1.000
+x 1.000 -0.428 +y -0.428 1.000

Sin embargo, si condicionamos a \(Z\), que puede tomar los valores 0 o 1, vemos que \(X\) y \(Y\) son independientes, o dicho de otra manera, la condicional de \(Y\) dada \(Z\) y \(X\) sólo depende de \(Z\):

@@ -665,15 +671,15 @@

Ejemplo (si
cor(sims_confusor |> filter(z == 1) |> select(x,y)) |> round(3)
-
      x     y
-x 1.000 0.003
-y 0.003 1.000
+
       x      y
+x  1.000 -0.011
+y -0.011  1.000
cor(sims_confusor |> filter(z == 0) |> select(x,y)) |> round(3)
-
      x     y
-x 1.000 0.003
-y 0.003 1.000
+
       x      y
+x  1.000 -0.012
+y -0.012  1.000

Un ejemplo con variables continuas podría ser como sigue:

@@ -773,8 +779,8 @@

E ", width = 200, height = 50)
-
- +
+

Por la discusión de arriba, es claro que es necesario considerar la edad al casarse si queremos estimar el efecto de tasa de matrimonio en la tasa de divorcio. Es posible que la correlación entre estas dos tasas puede ser explicada solamente por la edad al casarse, y que en realidad al flecha \(M\to D\) sea muy débil o inexistente.

@@ -925,8 +931,8 @@

", width = 200, height = 50)
-
- +
+

Es decir, borramos todas las flechas que caen en \(M\) (pues la estamos interveniendo al valor que queramos), y luego simulando \(D\).

@@ -942,7 +948,7 @@

@@ -994,8 +1000,8 @@

", width = 150, height = 20)
-
- +
+

En este caso,

@@ -1062,15 +1068,15 @@

cor(sims_mediador |> filter(z == 1) |> select(x,y)) |> round(3)
-
       x      y
-x  1.000 -0.007
-y -0.007  1.000
+
      x     y
+x 1.000 0.007
+y 0.007 1.000
cor(sims_mediador |> filter(z == 0) |> select(x,y)) |> round(3)
      x     y
-x 1.000 0.005
-y 0.005 1.000
+x 1.000 0.002 +y 0.002 1.000

Podemos también hacer un ejemplo continuo:

@@ -1163,8 +1169,8 @@

Ejemplo: Burks")
-
- +
+

Como el NSE es del hogar (una medida general de estatus social), se consideró en principio como una variable pre-tratamiento a la inteligencia de los niños por la que tradicionalmente se controlaba. Burks notó que hacer esto tenía no era apropiado, pues tiene como consecuencia cortar parte del efecto total de la inteligencia sobre el la inteligencia de los hijos. En otras palabras: la inteligencia de los padres hace más probable mejor NSE, y mejor NSE presenta mejores condiciones de desarrollo para sus hijos. Estatificar por esta variable bloquea este efecto.

@@ -1191,8 +1197,8 @@

", width = 200, height = 50)
-
- +
+
@@ -342,8 +348,8 @@

', width = 250, height = 60)
-
- +
+
@@ -377,8 +383,8 @@

")
-
- +
+

No hay ninguna variable confusora, y una estrategia de estimación es comparar \(PF\) entre los grupos.

@@ -505,8 +511,8 @@

', width = 250, height = 120)
-
- +
+
@@ -555,8 +561,8 @@

', width = 250, height = 120)

-
- +
+

Hemos añadido un nodo implícito (otros factores que afectan \(Y\) y no tienen relación con otras variables del sistema) para explicar qué es lo que pasa cuando condicionamos a \(Z\): como \(Z\) es un descendiente del colisionador en \(Y\), se activa una ruta no causal entre \(U_y\) y \(T\), y estas dos cantidades aparecen como correlacionadas (es una correlación no causal). Esto en consecuencia modifica la correlación entre \(T\) y \(Y\).

@@ -635,8 +641,8 @@

', width = 250, height = 140)
-
- +
+
@@ -666,8 +672,8 @@

}")
-
- +
+

En la gráfica de arriba, \(T\) indica si la madre es fumadora o no, y \(Y\) la mortalidad. \(Z\) si el bebé nació con bajo peso o no.

@@ -694,8 +700,8 @@

}', width = 100, height = 50)
-
- +
+

En este caso, condicionar a \(Z\) no sesga nuestras estimaciones, pues no activamos ninguna ruta no causal. La dificultad es que típicamente disminuye la precisión de la estimación (usamos un modelo más grande donde no es necesario):

@@ -741,8 +747,8 @@

}', width = 100, height = 50)
-
- +
+

En este caso, tenemos una variable confusora \(U\) que no nos permite estimar sin sesgo el efecto de \(T\) sobre \(Y\). Sin embargo, si condicionamos a \(Z\), la situación puede emperorar (amplificación de sesgo), pues dentro de cada nivel de \(Z\) hay menos variación de \(X\), y eso implica que la covarianza entre \(X\) y \(Y\), en cada nivel de \(Z\), se debe más a la variable confusora.

diff --git a/08-mcmc.html b/08-mcmc.html index f834db5..e4058e2 100644 --- a/08-mcmc.html +++ b/08-mcmc.html @@ -252,6 +252,12 @@ 9  Modelos jerárquicos + + @@ -973,7 +979,7 @@

   user  system elapsed 
-  0.065   0.000   0.064 
+ 0.064 0.000 0.063
system.time(metropolis_1 <- metropolis_mc(1000, c(1,2), log_p, 0.2, 0.2))
@@ -981,7 +987,7 @@

   user  system elapsed 
-  0.018   0.000   0.018 
+ 0.018 0.000 0.017

system.time(metropolis_2 <- metropolis_mc(1000, c(1,2), log_p, 1, 1))
@@ -1195,7 +1201,6 @@

-
Chain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmp112fow/model-27112f177c06.stan', line 25, column 2 to column 33)
+
Chain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpecaSsk/model-29e611095069.stan', line 25, column 2 to column 33)

Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
@@ -2716,24 +2722,24 @@

8.4 Extendiendo el modelo de variable latente

-

Ahora continuamos con nuestro modelo de calidad de vinos. Incluímos el origen del vino (que tiene dos niveles):

+

Ahora continuamos con nuestro modelo de calidad de vinos. Incluímos el origen del vino (que tiene dos niveles). La idea es que el origen, si vemos en el diagrama original, puede ser una variable de confusión entre calidad y score (pues afecta a calidad y también potencialmente al score). Adicionalmente, el origen no tiene puerta trasera, así que podemos examinar su efecto total sobre el score de los vinos. Estratificamos de la manera más simple, incluyendo origen en nuestra regresión:

-
wines_2012 <- wines_2012 |> mutate(origen_num = as.numeric(factor(wine.amer)))
+
wines_2012 <- wines_2012 |> mutate(origen_num = ifelse(wine.amer == 1, 1, 2))
 wines_2012 |> select(wine.amer, origen_num) |> unique()
# A tibble: 2 × 2
   wine.amer origen_num
       <dbl>      <dbl>
-1         1          2
-2         0          1
+1 1 1 +2 0 2
n_jueces <- length(unique(wines_2012$juez_num))
 n_vinos <- length(unique(wines_2012$vino_num))
 n_origen <- length(unique(wines_2012$origen_num))
-c("num_vinos" = n_jueces, "num_jueces" = n_vinos, "num_datos" = nrow(wines_2012))
+c("num_vinos" = n_vinos, "num_jueces" = n_jueces, "num_datos" = nrow(wines_2012))
 num_vinos num_jueces  num_datos 
-         9         20        180 
+ 20 9 180
@@ -2819,11 +2825,11 @@

O[1] -0.099 -0.350 --0.476 -0.681 +-0.066 +0.290 +-0.543 +0.421 1.002 -2412.789 -4204.645 +2287.306 +3321.151 O[2] --0.075 -0.298 --0.569 -0.420 +0.106 +0.351 +-0.465 +0.679 1.001 -1894.755 -3151.806 +2484.077 +3858.430 Q[1] -0.206 -0.412 --0.468 -0.882 -1.000 -3592.155 -5240.623 +0.197 +0.409 +-0.471 +0.878 +1.001 +3942.153 +5029.018 Q[2] -0.009 +0.007 0.447 --0.734 -0.747 +-0.729 +0.725 1.001 -4003.812 -5697.399 +3855.171 +5170.915 Q[3] -0.338 -0.418 --0.354 -1.031 -1.000 -3308.706 -5152.561 +0.332 +0.415 +-0.364 +1.006 +1.001 +4170.358 +5201.923 Q[4] 0.458 -0.448 --0.278 -1.194 +0.447 +-0.276 +1.180 1.001 -4037.965 -5292.574 +3678.397 +5085.397 Q[5] --0.212 -0.442 --0.935 -0.508 +-0.223 +0.448 +-0.952 +0.514 1.001 -3648.474 -4531.175 +3854.360 +5259.621 Q[6] --0.298 -0.418 --0.982 -0.395 +-0.307 +0.412 +-0.976 +0.366 1.001 -3439.901 -4588.545 +4109.770 +5083.645 Q[7] -0.197 -0.443 --0.544 -0.925 +0.198 +0.446 +-0.534 +0.928 1.001 -3844.284 -5522.440 +3981.338 +5487.974 Q[8] -0.337 -0.414 --0.347 -1.014 -1.001 -3470.029 -4716.944 +0.330 +0.410 +-0.344 +1.015 +1.000 +4160.583 +5196.431 Q[9] -0.152 -0.414 --0.526 -0.834 +0.140 +0.411 +-0.536 +0.821 1.001 -3398.534 -5020.712 +3925.106 +5383.750 Q[10] -0.185 -0.412 --0.496 -0.872 -1.001 -3476.594 -4876.944 +0.182 +0.409 +-0.489 +0.871 +1.000 +4198.558 +4953.803 Q[11] -0.060 -0.414 --0.615 -0.745 +0.051 +0.409 +-0.626 +0.711 1.001 -3467.460 -4832.557 +3835.440 +5195.758 Q[12] -0.038 +0.028 0.414 --0.641 -0.727 -1.000 -3244.006 -4972.325 +-0.648 +0.707 +1.001 +4066.563 +4891.343 Q[13] --0.039 -0.413 --0.721 -0.636 -1.001 -3434.090 -5449.640 +-0.046 +0.414 +-0.733 +0.619 +1.000 +3731.818 +4772.284 Q[14] --0.081 -0.450 --0.818 -0.667 +-0.083 +0.448 +-0.814 +0.656 1.001 -3721.005 -4902.528 +3660.288 +4800.175 Q[15] --0.308 -0.446 --1.034 -0.424 -1.001 -3871.176 -4955.067 +-0.315 +0.448 +-1.052 +0.423 +1.000 +4042.565 +5126.763 Q[16] --0.132 +-0.139 0.416 --0.822 -0.543 +-0.818 +0.540 1.000 -3254.726 -5149.031 +3953.433 +5064.421 Q[17] --0.072 -0.415 --0.741 -0.613 -1.001 -3582.440 -4455.786 +-0.083 +0.414 +-0.770 +0.595 +1.000 +4124.527 +5544.165 Q[18] --0.793 -0.423 --1.500 --0.095 -1.000 -3485.233 -4641.234 +-0.799 +0.409 +-1.464 +-0.126 +1.001 +4042.865 +4892.500 Q[19] --0.253 -0.448 --1.007 -0.474 -1.002 -3771.965 -5226.927 +-0.259 +0.447 +-0.996 +0.480 +1.001 +3741.120 +5044.906 Q[20] -0.297 -0.443 --0.436 -1.015 +0.287 +0.445 +-0.439 +1.027 1.001 -3595.291 -5448.456 +3701.595 +5366.897 sigma 0.998 -0.055 -0.912 -1.093 +0.056 +0.911 +1.094 1.000 -10061.554 -5795.223 +9688.425 +6351.040 @@ -3106,9 +3112,11 @@

\(H\) que indica qué tan alto o bajo califica un juez en general. Adicionalmente, incluímos un parámetro de discriminación \(D\) de los jueces, que indica qué tanto del rango de la escala usa cada juez El modelo para el valor esperado del Score de un vino \(i\) calificado por el juez \(j\) es:

-

\[\mu_{i} = Q_{vino(i)} + U_{origen(i)} - H_{juez(i)}\] Podemos pensar que el valor \(H\) de cada juez es qué tan duro es en sus calificaciones. Para cada vino, un juez con valor alto de \(H\) tendrá a calificar más bajo un vino de misma calidad y origen que otro juez con un valor más bajo de \(H\). Podemos incluír un parámetro de discriminación \(D\) para cada juez, que indica qué tanto del rango de la escala usa cada juez de la siguiente forma:

-

\[\mu_{i} = (Q_{vino(i)} + U_{origen(i)} - H_{juez(i)})D_{juez(i)}\] Un juez con valor alto de \(D\) es más extremo en sus calificaciones: un vino por arriba de su promedio lo califica más alto en la escala, y un vino por debajo de su promedio lo califica más bajo. El extremo es que \(D=0\), que quiere decir que el juez tiende a calificar a todos los vinos con un score.

+

Todo parece ir bien, así que podemos expandir el modelo para incluir la forma de calificar de los jueces. Esto no es necesario (los jueces son una causa adicional que afecta el score), pero puede mejorar nuestras estimaciones.

+

Para estratificar por estas variables, tenemos que separarnos un poco de efectos adivitivos. Una razón importante por la que varían las calificaciones es que hay jueces que son más duros que otros, o que discriminan más qué otros. Esto es usual también cuando pensamos que los jueces son reactivos que las personas contestan: existen reactivos más difíciles que otros, y también discriminan de diferente manera.

+

En primer lugar, definimos un nivel general \(H\) que indica qué tan alto o bajo califica un juez en general. Adicionalmente, incluímos un parámetro de discriminación \(D\) de los jueces, que indica qué tanto del rango de la escala usa cada juez El modelo para el valor esperado del Score de un vino \(i\) calificado por el juez \(j\) es:

+

\[\mu_{i} = Q_{vino(i)} + O_{origen(i)} - H_{juez(i)}\] Podemos pensar que el valor \(H\) de cada juez es qué tan duro es en sus calificaciones. Para cada vino, un juez con valor alto de \(H\) tendrá a calificar más bajo un vino de misma calidad y origen que otro juez con un valor más bajo de \(H\). Podemos incluír un parámetro de discriminación \(D\) para cada juez, que indica qué tanto del rango de la escala usa cada juez de la siguiente forma:

+

\[\mu_{i} = (Q_{vino(i)} + O_{origen(i)} - H_{juez(i)})D_{juez(i)}\] Un juez con valor alto de \(D\) es más extremo en sus calificaciones: un vino por arriba de su promedio lo califica más alto en la escala, y un vino por debajo de su promedio lo califica más bajo. El extremo es que \(D=0\), que quiere decir que el juez tiende a calificar a todos los vinos con un score.

mod_vinos_3 <-cmdstan_model("./src/vinos-3.stan")
 print(mod_vinos_3)
@@ -3196,18 +3204,18 @@

O[1] -0.181 -0.476 --0.615 -0.956 -1.001 -3765.989 -4950.363 +-0.115 +0.447 +-0.859 +0.629 +1.002 +3518.843 +4790.784 O[2] --0.127 -0.444 --0.851 -0.603 +0.198 +0.476 +-0.572 +0.986 1.001 -3813.505 -4494.836 +3963.128 +5271.349 Q[1] -0.368 -0.556 --0.525 -1.304 +0.366 +0.562 +-0.543 +1.315 1.000 -5727.932 -6428.301 +5657.887 +5719.280 Q[2] -0.166 -0.570 --0.759 -1.108 +0.168 +0.586 +-0.779 +1.132 1.000 -5663.956 -5912.333 +5514.261 +5765.562 Q[3] -0.515 -0.538 --0.365 -1.400 -1.001 -6728.405 -6116.070 +0.508 +0.537 +-0.369 +1.377 +1.000 +6854.468 +5604.398 Q[4] -0.833 -0.570 --0.075 -1.779 +0.825 +0.579 +-0.111 +1.800 1.000 -6969.773 -5395.361 +6452.743 +5446.307 Q[5] --0.479 -0.556 --1.372 -0.437 +-0.483 +0.558 +-1.385 +0.451 1.001 -6477.503 -5430.105 +6299.704 +5695.944 Q[6] --0.824 -0.594 --1.797 -0.165 -1.001 -3820.716 -4280.100 +-0.830 +0.593 +-1.783 +0.171 +1.000 +4716.862 +5114.054 Q[7] -0.211 -0.590 --0.739 -1.185 +0.229 +0.602 +-0.753 +1.229 1.000 -5341.614 -5699.260 +4749.244 +6033.222 Q[8] -0.623 -0.552 +0.618 +0.553 -0.274 -1.525 +1.552 1.001 -5797.117 -5654.560 +6631.817 +5578.857 Q[9] -0.292 -0.553 --0.631 -1.191 +0.278 +0.556 +-0.642 +1.179 1.000 -6851.184 -5645.657 +5940.039 +5748.859 Q[10] -0.341 -0.534 --0.550 -1.196 +0.313 +0.531 +-0.568 +1.172 1.000 -6961.356 -5808.247 +6559.060 +5848.707 Q[11] -0.205 -0.541 --0.711 -1.082 -1.001 -6051.072 -5165.780 +0.183 +0.535 +-0.708 +1.054 +1.000 +6569.389 +6443.012 Q[12] --0.091 -0.545 --0.961 -0.821 -1.001 -5718.268 -5309.599 +-0.079 +0.537 +-0.941 +0.807 +1.000 +6281.310 +5903.469 Q[13] -0.072 -0.551 --0.849 -0.955 +0.052 +0.549 +-0.860 +0.940 1.001 -6459.464 -5836.498 +6563.927 +5507.827 Q[14] --0.148 -0.541 --1.030 -0.728 -1.000 -7359.575 -5321.920 +-0.158 +0.558 +-1.077 +0.753 +1.001 +6874.838 +5893.450 Q[15] --0.510 -0.563 --1.446 -0.401 -1.000 -5951.653 -5523.262 +-0.521 +0.584 +-1.498 +0.422 +1.001 +5853.924 +5734.059 Q[16] --0.128 -0.559 --1.046 -0.800 +-0.121 +0.565 +-1.036 +0.815 1.001 -4795.742 -5328.219 +5233.317 +5555.469 Q[17] -0.105 +0.103 0.562 --0.836 -0.992 -1.000 -5704.539 -5511.541 +-0.845 +1.007 +1.001 +5025.607 +5096.996 Q[18] --1.504 -0.559 --2.440 --0.606 +-1.507 +0.552 +-2.424 +-0.608 1.000 -6210.482 -5604.212 +5907.052 +5459.271 Q[19] --0.359 -0.535 --1.245 -0.521 -1.000 -6851.111 -6289.493 +-0.367 +0.561 +-1.292 +0.545 +1.001 +6738.238 +6061.758 Q[20] -0.496 -0.568 --0.440 -1.435 -1.000 -6488.383 -6042.595 +0.482 +0.569 +-0.445 +1.408 +1.001 +5687.180 +5521.888 H[1] -0.595 -0.590 --0.297 -1.600 -1.001 -4890.795 -5083.860 +0.619 +0.586 +-0.269 +1.601 +1.000 +6123.319 +4979.950 H[2] --0.277 -0.430 --0.987 -0.412 +-0.274 +0.437 +-0.998 +0.424 1.001 -4067.421 -4471.063 +4060.809 +4583.991 H[3] --0.487 -0.752 --1.690 -0.755 -1.001 -6634.445 -5038.125 +-0.469 +0.734 +-1.656 +0.745 +1.000 +6648.205 +5243.692 H[4] -1.230 -0.604 -0.334 -2.282 +1.233 +0.601 +0.322 +2.271 1.000 -5810.318 -5565.047 +5632.281 +5695.773 H[5] --1.789 -0.614 --2.861 --0.845 -1.001 -5710.315 -5603.079 +-1.779 +0.618 +-2.853 +-0.815 +1.000 +6082.938 +5816.825 H[6] --1.176 -0.658 --2.289 --0.172 -1.001 -5852.321 -4696.880 +-1.169 +0.649 +-2.268 +-0.170 +1.000 +6714.764 +5139.543 H[7] --0.237 -0.570 --1.187 -0.624 -1.000 -4864.331 -4506.914 +-0.234 +0.588 +-1.195 +0.672 +1.002 +5076.004 +5060.476 H[8] -1.220 -0.565 -0.358 -2.210 -1.000 -4741.553 -5182.626 +1.213 +0.570 +0.355 +2.218 +1.001 +4389.700 +5537.353 H[9] -0.849 -0.802 --0.532 -2.101 -1.000 -7080.074 -4764.104 +0.823 +0.824 +-0.577 +2.108 +1.001 +5338.110 +4003.320 D[1] -0.470 +0.461 0.253 -0.104 -0.922 -1.001 -3175.320 -3157.776 +0.097 +0.932 +1.000 +2983.543 +2565.263 D[2] -0.935 -0.355 +0.925 +0.350 0.359 -1.537 +1.529 1.001 -2500.634 -2606.835 +2810.568 +3022.820 D[3] -0.248 -0.184 -0.023 -0.605 +0.251 +0.186 +0.022 +0.613 1.001 -3663.955 -3477.833 +3483.762 +2882.873 D[4] -0.445 -0.194 -0.176 -0.805 -1.001 -4330.755 -3565.457 +0.446 +0.198 +0.169 +0.804 +1.000 +3765.231 +3179.683 D[5] 0.450 0.151 -0.240 -0.728 +0.243 +0.725 1.000 -5467.003 -4588.211 +5896.061 +5536.056 D[6] -0.341 -0.171 -0.094 -0.648 -1.002 -3379.508 -2023.933 +0.342 +0.167 +0.104 +0.641 +1.001 +3743.613 +2423.599 D[7] -0.595 -0.409 -0.052 -1.339 -1.002 -1855.105 -2665.182 +0.573 +0.411 +0.044 +1.324 +1.000 +1909.202 +3066.287 D[8] -0.620 -0.248 -0.283 -1.084 -1.000 -3914.767 -4854.722 +0.621 +0.245 +0.285 +1.069 +1.001 +3828.092 +4701.569 D[9] -0.198 -0.142 -0.017 -0.464 -1.001 -4130.257 -3929.585 +0.196 +0.143 +0.016 +0.463 +1.000 +3181.170 +2733.067 sigma -0.822 +0.824 0.050 -0.744 +0.745 0.909 -1.000 -4920.030 -5690.416 +1.001 +5443.715 +5411.834 @@ -3685,9 +3693,19 @@

mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3)))

# A tibble: 1 × 8
-  variable    mean    sd     q5   q95  rhat ess_bulk ess_tail
-  <chr>      <dbl> <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
-1 dif_origen 0.308 0.499 -0.521  1.12     1    4346.    5291.
+ variable mean sd q5 q95 rhat ess_bulk ess_tail + <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +1 dif_origen -0.312 0.497 -1.12 0.495 1.00 4087. 4952. +
+

+
+
mcmc_hist(ajuste_vinos_3$draws("dif_origen"), binwidth = 0.07)
+
+
+
+

+
+

@@ -3712,12 +3730,12 @@

8.5.1 El embudo de Neal

Para ver un ejemplo, consideremos un ejemplo de una distribución cuya forma aparecerá más tarde en modelos jerárquicos. Primero, la marginal de \(y\) es normal con media 0 y desviación estándar 3. La distribución condicional \(p(x|y)\) de \(x = c(x_1,\ldots, x_9)\) dado \(y\) es normal multivariada, todas con media cero y desviación estándar \(e^{y/2}\). Veamos qué pasa si intentamos simular de esta distribución en Stan:

-
mod_embudo <- cmdstan_model("./src/embudo-neal.stan")
-ajuste_embudo <- mod_embudo$sample(
-  chains = 1,
-  iter_warmup = 1000,
-  iter_sampling = 3000,
-  refresh = 1000)
+
mod_embudo <- cmdstan_model("./src/embudo-neal.stan")
+ajuste_embudo <- mod_embudo$sample(
+  chains = 1,
+  iter_warmup = 1000,
+  iter_sampling = 3000,
+  refresh = 1000)
Running MCMC with 1 chain...
 
@@ -3740,11 +3758,11 @@ 

Y vemos que aparecen algunos problemas.

-
simulaciones <- ajuste_embudo$draws(format = "df")
-diagnosticos <- ajuste_embudo$sampler_diagnostics(format = "df")
-sims_diag <- simulaciones |> inner_join(diagnosticos, by = c(".draw", ".iteration", ".chain"))
-ajuste_embudo$summary() |> 
-  select(variable, mean, rhat, contains("ess")) 
+
simulaciones <- ajuste_embudo$draws(format = "df")
+diagnosticos <- ajuste_embudo$sampler_diagnostics(format = "df")
+sims_diag <- simulaciones |> inner_join(diagnosticos, by = c(".draw", ".iteration", ".chain"))
+ajuste_embudo$summary() |> 
+  select(variable, mean, rhat, contains("ess")) 
# A tibble: 11 × 5
    variable    mean  rhat ess_bulk ess_tail
@@ -3761,22 +3779,22 @@ 

-
ggplot(sims_diag, aes(y = y, x = `x[1]`)) +
-  geom_point(alpha = 0.1) +
-  geom_point(data = sims_diag |> filter(divergent__ == 1), color = "red", size = 2) +
-  geom_hline(yintercept = -2.5, linetype = 2) 
+
ggplot(sims_diag, aes(y = y, x = `x[1]`)) +
+  geom_point(alpha = 0.1) +
+  geom_point(data = sims_diag |> filter(divergent__ == 1), color = "red", size = 2) +
+  geom_hline(yintercept = -2.5, linetype = 2) 
-

+

Y vemos que hay transiciones divergentes. Cuando el muestreador entra en el cuello del embudo, es muy fácil que se “despeñe” en probabilidad y que no pueda explorar correctamente la forma del cuello. Esto lo podemos ver, por ejemplo, si hacemos más simulaciones:

-
mod_embudo <- cmdstan_model("./src/embudo-neal.stan")
-print(mod_embudo)
+
mod_embudo <- cmdstan_model("./src/embudo-neal.stan")
+print(mod_embudo)
parameters {
   real y;
@@ -3787,11 +3805,11 @@ 

-
ajuste_embudo <- mod_embudo$sample(
-  chains = 1,
-  iter_warmup = 1000,
-  iter_sampling = 30000,
-  refresh = 10000)
+
ajuste_embudo <- mod_embudo$sample(
+  chains = 1,
+  iter_warmup = 1000,
+  iter_sampling = 30000,
+  refresh = 10000)
Running MCMC with 1 chain...
 
@@ -3814,8 +3832,8 @@ 

Warning: 1 of 1 chains had an E-BFMI less than 0.3. See https://mc-stan.org/misc/warnings for details.

-
ajuste_embudo$summary() |> 
-  select(variable, mean, rhat, contains("ess")) 
+
ajuste_embudo$summary() |> 
+  select(variable, mean, rhat, contains("ess")) 
# A tibble: 11 × 5
    variable      mean  rhat ess_bulk ess_tail
@@ -3832,17 +3850,17 @@ 

-
simulaciones <- ajuste_embudo$draws(format = "df")
-diagnosticos <- ajuste_embudo$sampler_diagnostics(format = "df")
-sims_diag <- simulaciones |> inner_join(diagnosticos, by = c(".draw", ".iteration", ".chain"))
-ggplot(sims_diag, aes(y = y, x = `x[1]`)) +
-  geom_point(alpha = 0.1) +
-  geom_point(data = sims_diag |> filter(divergent__ == 1), color = "red", size = 2) +
-  geom_hline(yintercept = -2.5, linetype = 2) 
+
simulaciones <- ajuste_embudo$draws(format = "df")
+diagnosticos <- ajuste_embudo$sampler_diagnostics(format = "df")
+sims_diag <- simulaciones |> inner_join(diagnosticos, by = c(".draw", ".iteration", ".chain"))
+ggplot(sims_diag, aes(y = y, x = `x[1]`)) +
+  geom_point(alpha = 0.1) +
+  geom_point(data = sims_diag |> filter(divergent__ == 1), color = "red", size = 2) +
+  geom_hline(yintercept = -2.5, linetype = 2) 
-

+

@@ -3850,8 +3868,8 @@

Y vemos que ahora que en el primer ejemplo estábamos probablemente sobreestimando la media de \(y\). Las divergencias indican que esto puede estar ocurriendo. En este ejemplo particular, también vemos que las R-hat y los tamaños efectivos de muestra son bajos.

Este es un ejemplo extremo. Sin embargo, podemos reparametrizar para hacer las cosas más fáciles para el muestreador. Podemos simular \(y\), y después, simular \(x\) como \(x \sim e^{y/2} z\) donde \(z\) es normal estándar.

-
mod_embudo_reparam <- cmdstan_model("./src/embudo-neal-reparam.stan")
-print(mod_embudo_reparam)
+
mod_embudo_reparam <- cmdstan_model("./src/embudo-neal-reparam.stan")
+print(mod_embudo_reparam)
parameters {
   real y;
@@ -3870,11 +3888,11 @@ 

-
ajuste_embudo <- mod_embudo_reparam$sample(
-  chains = 4,
-  iter_warmup = 1000,
-  iter_sampling = 10000,
-  refresh = 1000)
+
ajuste_embudo <- mod_embudo_reparam$sample(
+  chains = 4,
+  iter_warmup = 1000,
+  iter_sampling = 10000,
+  refresh = 1000)
Running MCMC with 4 sequential chains...
 
@@ -3937,14 +3955,14 @@ 

+Total execution time: 0.9 seconds.

Y con este truco de reparametrización el muestreador funciona correctamente (observa que la media de \(y\) está estimada correctamente, y no hay divergencias).

-
ajuste_embudo$summary() |> 
-  select(variable, mean, rhat, contains("ess")) |> 
-  mutate(across(c(mean, rhat, ess_bulk, ess_tail), ~round(., 3))) 
+
ajuste_embudo$summary() |> 
+  select(variable, mean, rhat, contains("ess")) |> 
+  mutate(across(c(mean, rhat, ess_bulk, ess_tail), ~round(., 3))) 
# A tibble: 20 × 5
    variable   mean  rhat ess_bulk ess_tail
diff --git a/08-mcmc_files/figure-html/unnamed-chunk-47-1.png b/08-mcmc_files/figure-html/unnamed-chunk-47-1.png
index b3060873ee62c4c820e15c63dffb4f9e9d12d382..45d216ed13d2df07a4d1b552bb1456905f21af1b 100644
GIT binary patch
literal 72574
zcmcG$2UJv9n>JdY0*V9^N^S%}LBK$c0tx~Gk|nF;3=)c5C?F~V3Ia+F0+MsiqC|;B
zPDRc+$KrpBo|!v$zJF%EnY->@t5+YIrs{;f_xq&xyniY$MRJbn90GwLk$(J834u8C
z0D(AFO@t5s#r5>V0QlEgo5vb<2n4M!?jO9ssWn3c;xB~sLopSn$i-oIZ52c8@tV2O
zSG>2cUpx@|G^oP#=fLWZfsU3U@``yyT)~q;2XsriHO87(v#UqVY&rZ}w^dT-H18mn
zjBJO}ePwihSA3Te(*ry_-?3=QuirKfCfp{Zh8mY>2=v-SU1-`$T7SEqH=ed@b;y*x
zAsqy#1Y(WaZDc(_BGQlLISHe7chZ-UoPOxC2k>
zSWiOSK{d(K>QlIbQG$QsW2zs3br%6w+dZHsPY9
zE8mNaGBY<977}v0Dt^$nUIU
z3)<(gvazAj=n(mnE1AuCd!AAp4`V7BNVl}GkY@kE>etJh-QC?;dx1o+Y8{<&r;g`$
zb`K8NXiqPv78m!mwFQdNn9%$Eewo+rO`qi2q#qRpbKJ}nw&gM
zKu}ouT!L)cUSMajADyJUJ6noRMn;yQhWm<#SmLpj(@V^OF*E8!OU%dEr!H~sLPA1|
zj%DO;;QS*FIUeE#ZhvNazasu)!iI0a<(#!J?$#mxXE!|C6Xu(zt6f*mw8xgJsl5DN
zqHGY_l!%n)t?y377(qr+QD+AN5%nJT%&K(^-LZS>*5$U2GxFxr(q0k*^fA~=ETmO4
z(S5%jKFY;I2+-o5vgg6A{V`t!I_Jsyd@crW$znH|IlKB(m|*ycQoJ5d89to1^3Q@^BeE{}!XX
z7Nd=gjfLJU%n!wcI)Ccq4wLz!p+ZY785x-)VK(*5kMG}`wvVk%)RWN)7;sUol*~kz
zMw$0!%E`*6VJs%<{IOVU)Zt5bD%#_RBNc-yReBj6hphbkul{^xD^yQW$tl8El}?8%
z9PjtGVYiE_@lL%RaR?)Rg^wtGgWuf1AJyux&?CG%>NQwo-PYQg`Qyirj12CGmiho%
ztvsWaqaDmKT0yj+Kp~=~@I~!g1<|9;hR=*TpD7WD2eu(TJ`uq|k&Xwm$9pk7Dk~0e
ze9!M~DJ!IKg~Nq!OwpqjOT7`E98>f7xA6si~>i+A%gTU}9m>D|gCSyS28qwth=9qfmJr7VXWcyqV~BO$jsEOblYRgDv$47Scsv%aN(|L=l4?4Xd&lyxK_@axM8wf|NCT|Wl&O5g5_N{
zc>@pOnVEBhJ>Y~%%;I=cI>?P!EJN)%`Ab56GqZDOw1bEU<8-T~9+{U>>!EFZ09vak
zlalN4!UVcx&E;d6$Zj>~?I&}W5$#-I6stFG+(=1DS$8xrnA~U+wdSIl5+$YPvFOWw
zarf?BI3O3leC3MeaOqYiMN9|l&6|%E6jtW{z#YHEt*Tm>doNMh{%ZH{-$6{jnVDU%
zhg&HbTmr+Rg3G(>-Rf-X8(U&xQPf%WpCaWG84(Ziv|aX`S4Jv$BIHIYcSc^G!<5@M~_&1@DasdWLK)`MLo1f-hKQ?bI;)M1OaOZ>)pGy-KnbL@7CAX?Pgj@
zX!x>AMqa*rIX@k*AS-(?9br8{y9m!^rY*)g8{O8HHB1Y&$DYHtd)}0b;Lt5C!M*&{
zDY;&4WjAcOK~Y+`28tBXZdtPFFUZTQK0-uBW}PYbtim_om7SdyZU;B{V^t8nzbcWa
z9BZe-CEC)`U1wS(8)QI4s+OWcyV%6SSG;@Z>^r2BBSX_*z*C-DyV_Vy_J9@ShM_GglA
z!lGW6*$G4?CMFsRb$!?lVoHhs-BA@VKmTT>3aLS7pAz0AlgMa)HK>-sdzI&#z(|P5
zUk`}JCKYRpzP3eoQ=OMde!!B~)5V7>2?$Y|bmsCq86mCsQ;j!_hxMm3#yaswdV7n$
ze}72yf+r%vT)B#GQ_+LzH2fHW+EI$>t@*MwO-dhYP(C`6vYn>>g~<2D8S9sG4-
z-UH`Xc$lPtro=ODCMG|$t7j%Bx%gC`J#(6Ek26Ilb(7>>t)h`%aam_cta(2AVt1d0
z)VJn&`<%TD;p;M1cJ{5!O$#C48|^ZVWy5gtK5eRo&y4^^a^&uB;
zXiHN^*0GnRHis<;Jk+mUE^X%J%J(6l@cV7TRXQQ#t$sg4cV$?((zWZ#YGq}mjPdLB
zNoVxn=7V5aOqo;wjr0DdDZ@iYM@JVImti5tGiS~;Ha7bB_-JToaC397%U9@%#_FT<
z^P{V(P!AtI^on8)`Jh;d7@P*Zm|i^RmMfpitqJz9gq(j7aPK^fTs5fRpT
z1%!k@4t=707Y){S1P@jLxZ#UhABK>7>5B7
z2L}t6mkS8LXdCSoP7*lf$y`$E36(@P^tMKo$5CsP;MAkbRIBUjxtbXiepByRqMsF7
zXiP|<@etLjFGnXEqXu8t+U9hdT@gQh=1j>1>+F7YHPX2C@KsBAV^-ySf87C1KzKN(
zTE;7ZsEIHR+O6tSI$y{U?TMF*x6?aJC~iMnU2o=8_;&Bc_3PqUy$klG?d|Os7$t?a
z`}9}JH(I^VUh*c#)rwwk0CmMpzvW^)mMn`xrlvixha2)`6VVo7Zw?h0EjDcvRsNriqh1&MhLzUSb4k^)LDg2$f_
zhfAs2DbFKUhA0JI8H}YU53ZDP+F>f0W2DpV#%4QccZS0pR-ZpO#-fJGdb6zc!XBML
z*b5+C_MxKdlsPV46i?SKxyQ_$#GRb3Q^v#2p5bQ)A6gushp9w~*o@ZhZBz~C&sFCd
zVyX_THZzLeV%+ldoQj3+$1q7>ady5MKzC$%jEzSp`;ebvmJ2U24Mslj?Ci%w(2mQW
zfMaiR%?gjYL2EtKN=3|VUAMK_j`2T#CKh_ry3IIIs5must=q756`lX!C+jrk1DMP3
z)G3635B23$313p3Vw)F7!f@*|gm^_nMDE?o#nM&iVoV$1wtcz8?YQ`cv+9qi^ZFlO
z`e;m95tCq9ZtR0s0wgsx9_|Oab_*H3BaT{qa=a-+mNi0%2X;fTo`C_lVTCENJsD9E
z@JM41h$uyb40czwVw@$37^H(H?Nhm_5+(2urQUEN@MR_>Au@^aE`*-ZehjMc^Zyi-
z{u3;~)3+0c&b8xmvsVv}4_OXIYd(~hhmXH3ker~VGCNPUB5FJCDIHw?Q8MuqKEmb<
z?!;n!*>;!9gabuA9D6w$=hCaHR$;^X^_~~gHES^I3bc>b-;mM4<7|-aG_}EcVbn=Ybnon2<-{x`|q5QY_?cLwJ^!g9I?_R$S
zfN&r+b*0FHKO}sAPFX=`e>%d{x*~C7O_7xcfoO@tF(l!qa*uv%U1HXjQ6QVe9P_pb
z&!EeY#Qp^?N2{*OB}Rw4?h3*V^G7?DQ&Y&~MD8Ekc!;NwFJqqc_xG0}SL78Gcq3YP
zB3fW;)vNMIko2eGwThHXNWr`sEVR6J>(z9T-d%vEDTV;%WG#eI;@xDy$PNAr)}gV%KJBU)mFC
zc%JxRxS4ZhKjyfxui_xMp6*~NRaGbI62g;5G1e0)5QPI)Ir_d#(hhs
z8XU&;rxjEqxDj+~sFjxIVRL{(FB-d=#$a=?D6pcgfPUyLVr?OqGV|m6esJ{Ksm2Sy)(L8%|A4O^$Y%A1bj6VzL}5
zcU~Q>`Fquhzx(p#GO%#Zh^B-6g+O{&K)P17nwpv#&#v(sJ!y{>TUv_rOiJ_BOZtJAlpF_;P?#euT0Ts_d6$!XFoZI~3#fv{{YmW{O-;z*o
z&n5)6M(`?#XsW2>Llq8nZEkG*%xlydnS!44CU>d8&8ILVb`!0jvrYvSb4N`}m&5yA
z#ZsZ;POMVO%ZrzM$hoJcq9}+Fo}_lBcvZ+1-G~-uYmDnkg=9jGm{*E&GU>HD4@O2x
z?2^%Q7MW=uK73e@5mlCukXYCzBp_&_o|>9+5MB82$7o|u5`L-aECBeJnMpb|CAE|C
ze2o_&@_Wp?2x|bI+#w-RSI#3m1MKF=_b2KDo2fs4{w(qKyy?(`M5Pki7JDWn
z)y>)5j1qTtOe;`J4$jQos-WTKmXWfdZXM8MkbZrNz~1HppL>?Bh?v-wGiQRB)~>l}
z@zVwj%$osixKh@wsil*lR<_CW44KejreS>HskiL$7|`V=>anr0mV&dy#A%qy5`5hZ
zwVkEGq8jjgKeSg$^vIf
zpLS)ThLK%2VRqjr`32})eUJOE20)nP@jkC-{7W`ZrC7DQW=)H#dA)f7#TaKyZM1_&8e!Qa+!jHHR`8-2rSr?PBDcWVawc>l*TiiWK4Q`7{JyH-u)I<
znQ}*ZhB0cWeIo;d^k+Hov9S+`E|8P2!fYcvecJwZ`ltG4A8+qFp_L+jzsDyg63m;!
zOCPvj<<#Z6c77|yO^mI-_NR(4^0C=M|B|D>q+J1tY3409Wq~(?PffYRiPC;|u4PWj
ztDOI3E(icv-TFg3-SoWMRkOeNu3u-mrv$4>I_P_3WMp;q1FxD`dy1QFV>Xfec1c@-
z9>iC#uExd1y~5MueeD+Y^XE^f)3A|dSbeS7owC`duox^{$|xEM@}>V(S0{qqonQ`5
znJ}H&F)Yw**$v%SVZDN4nf+_8=<(d;W#j7IwNrJ0>HeC*{g4`zQF{`Ji{wD`Nl#l_9d%~I#ZbLY+l1qTxo6X)gT&exI6Zta&+&PC`K
zXzF?FO>tK4iW9{trC60M6_(h|6i$5Jnw_0(m+XDd#>y%mE!5wW3HbU=mu7}$LdoGo
zAgs1h((~UrTmR&TesOYgc6bT(OrRn0sz+TQy&mtT%W$a!@HGeDe9a8N0Ss^^#k-yAynNZw
zct-;59E%k8P0clRz~tjV)C}&mMDi<-0P6Qxts#U36BZL=edpTrpKr>j*{VhZ&~eO4
ziULLUe^}|1`T~>;)v}t4?*paFf7Z?2ha6))a+^%f!WT+2y~ts9CL01#dRASuC*;eQ
zFP}f#Zq6z)c>jK>QQ_iX$IedSXYCggE{I%CAM}7)q3gO-KtRG{HPn!I1AxTyYHJkr
z(SjaZ)KAODL7OYy-a}cHO+#fxdg9`OF1yRa$c!5|ypC6W2YWJ?Hl5T@kpvIpKj^h_
zz{^rf0c@Y^akL*Lh~#nB8ES5BHY?D)9m*2z^s+zK@WO=)a@+bm5jd#|`>bxW9N>m*
zLbqAICal&M;m3h5T45qUsHEc
z`5V=|Im20Xxc=pq^7ZT2H(e^^lZi=4Xz#xKr4J9FRdD6W*E?dkI;oA4+a-ABd=Y`*
zV!0>cF@#p=Ra0GZUvFG5FYk$Q+WYgZEsP_CX>OZ@`cUHrF`~WYX5l><6_u{Ty^RQ=
ze3OoNU=7~hr?aM$Ju0>b%tiNS6F6j{t`7}nffyDK&jM}9;htD3I@;ep8vlJ2$*D`jZ}ewX
z6q{2LG4F#xq1cAUYh8F+pvSOt~=OX;~TO-5K#M2lGN%_S3%
zsIaQ``SXsfhE<)9xG$B_ar5FuglCV97rqBjeB!Gd=~XOze8nL%b@la9*jL$+x>+mv
z1~5-)O)4tth1MIsO3^hQ?l1gtKVaq5dG!Srn#=xM@2~Ok`~LJR)KsbVk_bfRAChys
zuvTGgM^RtJjouPxSgaB2Rny_c?N1pVK7IPh*O%Ij7#|TUawhcii5QQteDwcGr~gN}
zfAuNUW;mbgAmui_d6PRdG?2;~6Z;pY{i$`Z^xRX#DBX$v-#%rQmR5zyo$@6U{nJ-b
zmXw=|jnln*w|B(jzyUdQLExpg(i)KIi6L+1~|ZniY;
z?RcLJLmhTpzQPR(xT~J4WpK;+ni{Vp1$sWirj)KOIKw9u2g}XIZP@94W1UC}M5*ZS
zbGxwj4woU5lanJ_j3Qd5XJ&cI*a$pD`
z{hqJdo7NM?7OQ1hmsI#B&$O2<&(l&L>}|BIpqBadpY?5R%#<;+B8rL6oO4P>mw>uV
zE9m$*NTmpE0Tg0dzdj%_DTzb3oKHYt|HDz=(l)?pI#G{uD+M*&=rN9Q-)>+G9D3Ev
zt`mead@{0^+EA67OGON|zJad$rUg>wRd%2fJ1^L^xvw`c3R1Ao-?ujb0_tG;7-7Si
zsZ028vUG*Vmad+z?nuxL*?afyQPERznY91(fpwvM4TssCj*oU0Qg`0Hdk6U5#nqLV
zfrhjmFe;Qu^6MfZx+0Gbnx!(}9NHanMUD^4S|Wh-R$&+PwDc;P-(;07*Bz`NyLy&^
z=}lMO#joye>_(0jS@ge}Y`EY&2vsCnSdfRO$Arts$Y>e#(a{<&@ptp{^Ha@XRqIV`
z`+B4WAO01TBbNqlSpR{odVh0H{N3TKrC{9A-&)ov8e|4Gn|PDQ45e3@=FWZTs^G86#{O!@0pxN!F}-@N(5_5dIlYidLShoImA@Z}vPm!&5Wk|Ltd|E>aaiX#AEc!Et
zs`4EC=4NJ^s1LHlPX7wg%j>j)=dUh_WYBShL`G_BYL-Hw1x0Vb0=BfvQSv)wn4?Ta
z(+1kMbF93G%8iJcI+@)}sV)E&Lp8O5~j%c~}AVAPxd
zYs~KJjeo$^p*n!R#NWXNTCqFs7lXo75Y{0^Eu8>kRmRAo!b@~!VLEm@WXkX}toPygb(2u?%6fz0?`g)3*2P=88^
z3sr%yl%;A&Md?88U>V~Ph(Wh^dZbHS@Iy3dk%N}tB^*cx8Sq4q5O{@!sXw*3)0>d>
ziquzvr~{|vTfbwJ3J`MN&nLewC@3f_Twz65_U6qSn2vBc>FMdEYo}Z)JgPnMS{y)x
zU{z4d>NfKwrPVA#E%xOAq0rXW*3js0a@~cg=AX>7_51*V_&W>mYiE6(RsR|jB9?uh
zi~A8ydH|j*i|8Ep-&FQ-&IwcV86>
zr85C=&R-I(tq!ttzj4eJaTBg^B*wjWW5zdqo-Q3ch)t`lN0`3>2!S9NE5zpn*5A><
z8t(=tPFYLUVXT=`P^nsQX&bOHFc{i$e=>ydds+I@JO8;B@6;19_qP~d(5~v_RII%r
zND~0_%6U;tOspnJE@G0PqoYH}fEZ#0E&^U+M4z|%jn@yKEZME~<%EAYmk~%tcJ|Z*
zT6HpMpaV?}4SX(}KgfT+%t_a+C@l%4@JsZ0eFKp3K)xxs3>4yv0|g6U3-VI=gTLVr
zbBVq881{{&33^KY=bcPI;*rTp%Ca2V4MTa!$G_e$@eR+}M?aCiApS6r+8DgvR{35A
zF#BLlZq4SF?%|~(G6_JQQf2Li;?@IIADlVnWR|V}px}dFVyAO7Muy@;E)TuG#Ntg3
zTZn^SMN0R)=;0Vy?}j}&=pFconwq
zEgV7e@FShDMQbDuoh^PdX3o^^Px>~wp%8sI@6Rh#Uhc8eDXSAkju`s7h!e#lF{xvNwG7n+6Kv7^NH?
za5!Svezh&%6#YyC;CHpVvy=1iUJW7WK{K?X(S;_8*v4S?qO6Qmfl7~~}QNA#KoK
zxD+f!Pf~&1e+|G9Lv3Y}eNS83(Xlm7B3X2|T2nK1W9?g|t^QEHsf;0k=klMZlWa`!
z)u@^~3y_7V*cpkQoGj0(YCYID_m`jPEy_{=KrXLtnWJ*~vI@nOvkWR`TdO5@sEx(E
zy6Kra1fFS;|2OTwvc}udrJ@oY1eZK2qr%$lAT8Ys0;H(h?$|dnQK5)XqrEwnW(Co1
zZX(*d*B$4(7M6<>kQV80`0-*7?7Z+r1aPC&eWvcjX?L)~0l54S$uwFn{kmAn`!M^A
z?3_I+Gt&QXa&?hk93PuYu@^wtkXikW#aTKC3Fc3o!bND7lOtNiPjWtp`4gNBPvL)*
z^Z7^q@NaP;r<=5JUI-g*>7eyWtiZx(O|IWnHe%v#&5XOZ|A^kpg#}o*YLke@dw@P+
z6gF2D*%m)S;f(iABq;yTL5fwY58ddqDek`CV7X%#2%m#n=CP?ocY{9u1Bvq*yW*
zvO%T1e+h_6wPoV*j3~>9n=&S?cXuY*+;EG7nC_mzpYh)@q6doycGHJDC3gF;L31!6
z^53QrJ4pwrr9ZQsZ1_A)^>=#3V6HRq=wQd%#su_jAS+;Z5)$@eR_q0U8fhKBdJqK>
zu7-xk48H&h|ComWiD0f)M#!T_GRZdTz)Oeyt`akNZ0$~rynbydEX*n*B6@eN9;70J
zweb_be^k`XRMVY-61Z{3oXlM5+gWMqWr9Q^4MxEsqeGrW*$k)n6E2fJXsBR)PpL#wDT
zsjaiK6Ew=R44{)u026)Gh}%X2%$k~g$a{xvrOI4a*LUde*v5bQ9{%A&Yx5bz5~LzL
z{$C-MXt8hshj~xDQ
z_cmsz7biVL;5)SJ`YgnQ#NVEu8)aN@e|ugL;EzY;g);~lTT{H4hzK@oZ(m>DUgq1k
z(>)F-&cT$@MIAXv2Qe!|4?$U$|D(}cMgDUPfcduk%8)yMlss0xT}(bXSdSq;f=L>1
z-Q4AK%>p*Dv%d6S?Me5eM?vIE
zRfhHjGN={dm^M*$fk(W++=6GuI)bOgKFU4WBsr@n;G-2()yc(A>uRUHKc}jz%VE7~
zhPC86LHo?0x3N%CQm#L7iVDdV*;`rbgz9(WhE7M-f!W?MvCSjHlOdDrNj;%6`^w5{
zkCVmnQJb124@mzy{IsMD-pN&{`m*)yoh(+?i=@8oCITaas)_UKhBK|6(!<0CzWU**mlR8Q0}8k2YT
z@bK^myyDpQk;*_a0HM-ZIZWUWHvwa=sHo7|?Ip=iFE7{5>NU??=4>|{8PPsd`E
zgNQ-EaGhVvxkQFYm8{hKoIOQwqd_|IDn-VO4PR>{KWO&?ejMzz;t~>5_#!MU$u)8R
z0R9O`Y51P%>Sn5?;VcqsjEM7$PYmJLB}~Cq72x6`n$3hbKh*wzsX&
zoRm*v`Yn3Q3J&wc%QQ07Ds)jHdXh8(`ftD9h39IO0%XCg;2Z-0^r6|Jn=`9pi>C;2
zPq~YZF8==8J0OhcXs36YJS1e+DK+yiT@eZWoW>}v1WL%i!RM()iP^zTAs<=MQptZN
zEThNE=&ry1{8Td9c^vAP6zmHyjPv)K<(@u$I`N^)s_1^xRUD`>wHIJ`2#E&T#d^2p
z$b=-xg{5K2I7IA`w!k?Pz-#)no$jUB|nigm>{K6g`kkO0WUXgzM*ruPTvAVk2
z!+&#mc#vBZS5I}sV1hcis$af*+1SATdrTx}CAs*lQ~E{EP9WP6Pm;dfH*OjPPnk?)
zceK*|V0~kQgrF7-4)fS=weX
z*t1NxsJ2iND5?g^+bn_h(Wd%;9+W|lgW8k-&6gB}axD6D-@PNc%7P2jsg-}Md)JW=B0pAFCw#P-3CYP*&0)vOQ(=(08L-dX
zTkKyMah6Iz%efzId18-z$R9m=^!oK{VbcrN2&;#$i|G6%^Pbnd3Dfg%Zu)Wyw0V~b
z-DI@S+qVJN?vCfw)49$>A(@|i{mYw(l$7)(H!j<4|3}V`LI?5}zh~O$p``YQcBis&
z=nNcmDLY13j*DU$)K?I(w|`SSegEM@xG2ga*q4G`^D-4x_@_^!-F33xk9X@u1sK6s
zMYxdqs~!06jA#j(skC0zb30tEorrd>8#E{#*EoYg9rxdF1C0}>*tC#|%)W_4*gX0d
zc4
zV@*F0?fAc!tBYz+5;6lfyr2CIC(PwF${a1hW4<~Am-qlVLrt}xd~|@s_M&Jp*<-u=
zTggRM{?~*B7VD_pCB(~5;nO&}c26~j{`nJG>$?$1Uo>a|X}~J?wcleqLkadah~49%
z6r9Y87?4|7av!9&9LQ_IT1h$nc~oynJ}I5AKeQi
z?)#^;?OGs45?}9+p0$^$Kkdm}EQUug1u9!F-4kdB;B&;nQI%%H-aLYBuEtiQ+c4T5~3St{}eM^vG
z1w7=;B2S~8bKRgX`z)KMwXP
ziT{N;k7^Z8M>ynkAlybfPqx9j7sD#wVVi29J3l9(Q*S4s+&AN(hC%CBOjzS?4BP%VPQe})|eRuDQzk~G2
z%rFvTnR^VjC-7VMziHssj`iO;m^?iaxTTLQ9k!ANtxJ1u=3kx5zH|EP4k}7M5kMJy1`e$-5-5_?C-eyK1tmYc#yZ10|m+rak!nRQ`
z_b^2AJ`X>?Wk)=Hp|$8y4Iy|9EAiei>)c`EJ8@7yfY8L%`xhstbt7mDVH{8iQC<>Y
zj!+3YrjuXi<9jw@w>JKW0q~D+azdC{l%8
z2DJJAMf0@ncs~096Aznb7A0>cy6g<%!Sp=Y^#3XW6D4n~s~b)J5|Apy;my|neKH(o
zXmy3#-hA3gB)j+<5Vpcn0iL@Z0139Y+Kv0NA-1?KAK6!Bf9rl{k*dYZ>kz_=T`1lp
zm6Vp2HZw~tr=_GUF=`3-_V!*~wGkDq0uw|SjLMDamf%2&lMHyl)Ch-8DO2y{ix)3+
zs2~iARKz7)X7yHFkb;{Le2PSh%8DKQ-(ZQd*v`@JR=DmAc+j19Ua8oj@~(O
zrztA$-@pG4B6-V}8n4$d<`}!PKZOhUFa`=;7u_F`0sIKECy67J)PhPvgiZ^zW3X|8
zHmEK0N+2X))F`r`Ac!3AXy3sG-#Myg^b(DBbOf99MZ1n7X-fwO4c+L@TkQp@w<$7O
z)Q*{htsfH|DS6UolsZfglybX27#EYO+ah!H-Rs=_APpDP}CM@Tp8d|xEquR-rMu#j&t#NtFa
zjod`JVy<&1d_86*8iKlMB|M-Y`VaD^WO`Pu)lma-Fu(VW6oLSC)Ye^HU7&SYf+z@%
zIjuC?@dCuJUcDmzK_?yLR3;_`cu-jx9e{}k!y&Wb)F#t9OPFTzf|EK`l>8kce3Pj4
z^;hSd@`DZ~EkSP9{$AI1ro48{pDiRoB+GxO2@uYHf*JJsD(eJw3hP
z#;%@ATixBd=`@ZZ{AK#S!EA3W8N$eW#>WGY(2djU@U90
zSy9o9fF<4ma`jD3=ZJ__x3*LTh`#_3hyH|aC%H|E;!Q7pE-n?0QM*^KsAyPk-xji;
zZ3nGw{%yY>n;fU;^J>pJLCAA(TwMjRlqVuX4s{h#nm3Y@Q=zX9;!xPW+nkcCLjiEw
z_uAHByy2k*8IkhFhA-k|GOX%l*44p?d^TiRbSny9C+#G_lI`<86c5&Dz9&8ZtI0WB
zloo*K+}xbQM&Fgom!UW1Dg}j+p<%awQ1`-?T<9!&8p^nMi>x0k{Y_lhuQezrC_yT)
zkQ?f<3{XIme9h*)4b?}F_Mty#SOH?-y((&ES~P?JHMH9jdr9jdrK0{k3mQfs^tk+~
ze0A{Op=Xm9N%`nx1=#E)$b>iBA+@-$BI>%GUJen7#i^<8rsq`tl7mDW`FMz-fS%`{
zm~PF?kfFC5MVy`z#Vzz{Ln)0#mu!-jHyVV43Ib}iH|~0Hz#3e#tcq<-*md9+>6!(p
zRvd)EjbIvfiL1lb@a@~T_3iDY!AqAQItL9Km|R1@@{Q7k%!Qxo_=s7Ty6o&ab3y?c
zQV0@#kZW1HN3{_^djOe=1BLL(j?9^cR1Q6nGP`8WjO8nr66S0b;-T5-IAT7_+{174
z_3Nk+76igUTbN(&1ed=R;u`++Zb&`FFU(-fzfpB*U(tGQUuw(0N
zS>5|a=el?|p`$OQ1`pIoP;yNxDyoKy@9v~!4Y(|m(R+L?L1tM$etgIo^Av=p;n(;Z
z#%5gMXNW1v57(QOlb*bP_pW_mOCXAai_8Aky9>D3k>E=C{TDw^Gd#4hu{q)%qrQLb
zJT#%`W;mQIptP{klp)`ZLqq#!O6`pl$pX
zi_zkU`=Z|Q`s!vRuojTyajG{WKk%hjJ%}&U@DwNG9{EuKTVQ5l(zc}#@Rz*r43{0u
zf)slI5VLz!^spxK^BM$%mz)pRK5tBugo{*6of!i%)yRtxf)9l{j7k3P4asv*0wF@O
z@OS=QZjK22{~SHhz3(W4NstRs&>=VDxJ2c$GkhUI%9X41o)sJ00b~j~c`Z{}IeG{Q
zMsf_B0a2wsehv!jqv3o{>(2iQ*pf4)qXuXuqygqDbqb7v6<%|-~c#7X#aXcuQ=qen+a)uO5CAycMY
z@g%Dksd*3Xm{^s!x5wGDAm|+ivovq4H*x5yxH|1_FD=ktxFF<|Et66Gu@Dv^?SB$>
zM}F@x!vSXK4Fft|Jd1N5{Py;On3|pnC%%j(J6azuy?c5M
z*OQQ`=Cr?=l%nj{7SlVwC1KPS@Qtfc@J_ZEb>mnAghU}EUiO#p(b6sD@vEG4RrV<|
zEt9afYFFS0f=vpLIbLXN1T^wvcQ=CGr2%bXk^4<1;Vjq=u)aWA;M)vD(KwBr0dP+n
z!K++*3SrZ&llYoyy5s_}J+zxG*6rRAT
zU7ZAJVE7aMnR4{pQ1*-309rwadkvaG4#sFBN539aI|!4~03{611l=~qWj+PGu&yP3
zhxsnZJb-L<-+Dxdd*>#6%6rJk3+hW6zId@{SwsSjvpq2;=ZR&X72XB}@5QDDRvE3J
zgISm%?kmI6WVKI}?HuSn+V6IChxRdO^l5BpFmc1_+PDA=G=13EWS1NN{&3~h7HD3;
zN%yyx*j6y0%s^kIH#xXwCvBRty0E-5pk!FjcpN#bm}ga(j{Pi*Ug#}a`TE<>hdc({
zgM`9DVrZ=JTyFgz1z^By!j^#65zH)?dN2X<5L_~&H|(RZPcEaA1Ifo@jt^%*e1mws
z)9UE2_m}==&fetEbx`0ojOWQ==h&NxYdWeSd&Ng%R#3{#*j7d>-LyAO%~8!Ku7!X)v`#*G@&^vQ
zae9qbkyXV)W*LC0Udh~I$g-P;_kYth76mL
zK+nr;>B7KpBN#=kf*$2ef?BTx1n+9KO=J&-1OUFD!NtjO_}+rY`2gx6H%~Yc2@~KH
z!TC=`VA{@EUaCYW=f6
z{A(7VHHwc*y^lVd}aa*(~sZYrqqacFWcS{-9GBF$g1OgDWbAq~ZOiFI7
z3&vu8fL9IrA&R0RBB(E3>;%DnanZtAY2UhXkC~m_(yU&s|1;t0%*+gchk#9V?c<=X
zpT}26KLFeWFBdu#gQYkl`CeqD+uJhPpOaM!?YvOREe%n0@H$qUI)0FyzkGRB{ngyT
ziZBTQBzTTM_#N>gWQ&S74PpXj3lMc#M)yNnF>XAYyZtm;`&Eyy(FoPQ=;eYlMtLQ`
zb^Ih^dPqoVgk3fh0!30gOqiryAS~>-GQ#e?3tbcf&#IffR<~T-+4Qw<01{VAGqgW7
zkddDL1XN&WXKv>&)GudKR3NX_G!m*XJKdL|wzlDWx!r4Tf1i~$&J@mMWMt%!`r!dE
z5H+>wxjE>-_=0O+J>wQ(_HUt?nBZXa=+hT3#-Mrv=v3pqrhE8`&;1m1H8>1HXrt&b
z90CbZ$dOxDSD}FuK9z(b-u%*@d%p?S`W-iSaD@rHUL$Gpq21W0sHmvXz-)bX%Wg*C
zTX?hZ(bv$>nGi@V8l)y
z0e*+=x_3dVDo7i*Rl~mg+}PH3?Mx3B0mA-bRG@;Tp&>->Xm5?0v$AozZ}@8_bl5NQ
zfNWDkYF{l)<<8`*`b;3CSG>6qVH-Gp4UI)geH
z9mEO$Z<&}W770+Xv!T}qcrS#t$D&=AKU+66D_nro5A>oX=jEM3gm)V^e7Z{}y7-1(
zMOAfbs*u=|_Mo?FT_IX1&vMW~z4Y-gldHp4Q3OwlN~$86&?x$Cl0v7@1r3W36^YdoDwYGDeH=L{Flgoe|gWp*;4|s%Xj@#yW*6UL`t6nF)
z6ZYujFvf`qJz60?cXU#Ag!MKwuP@Bi>!K=3i=Ac{`zK;tGug(W6k5r@7QFUPB;y{_c!P6kNI3Jy$N#s?DXX_uM1bMaHFt?%w+7E`8T<^xEL7XNwKid6i{FpI#H_@W@BMm9LKU?f&=PS(
z)lv#C{K&jGY)>=}ME%Q2;ew?HM8&qx;yAEEFwi=+bw?B{*U3G+qckfi`#SsF4FU;S$S3Qd$O&AjFRlG*&phCV@Z*zfH;Ebfr84W_2sN9AC6^+~YUhM6m%a)~_
z(h*ZT^(B)%p*@At!Ab7I$E&t3>%y3gvxU+l{Fsd+-QhCcxxE>HUV_lXqNUMQu{hnb
za`EDNA+74uFsgKmgEoOKiJa#@hbx3;y8r@h}h#A0B0@{lXm4F^Jpz{JH9KaiD
z8e1&4Gj)7HVf{5|joRsuQb(=?1o#ot-mha}ZQ|mODNJSEDO<@^h-?sXXo6R^>;P4t
zX{{FXve4p3AhOwA&#i(PLw2vkZT!O(36HHbujWu4S((z^MwY9hdk;Cn1P^xkN=kcv
zbVHUmC9xB8{90YNWTxNvioASb21wd{k+i3GK_g_>EiYb+j*X4wp`)gz9yAbeNmMe;
zX+j|GNVJdE*ln+HmN+iWk5q`#@;wdztf=$sS+bg-tIPhwhu$MdOtlof{|7%idxrvt
zL?9iq*=&Q0qXKk(p1Tmg{LLFmsI4dq6bjpeoCDg>CO=$Kq;UtFMlbi(i
zkxaqO(kt)*H%fU$_cgE<95@WF|Xf~Y1X2aFCQ`_%vDe;IwgfOD^&XO?fwWGxM<
zJIyJniiug;=G^7AxR#_VRAuACcGIg7|9$H%=(Mu+vW?BH6LvX3bCW^f}ugcEc0
zy?oCr5}f8MD>F|^Glw8yXJ@WL3`dEJ!wy;@1{-ty4KjXW5^wuT%@7ajFW|0nv8@~A
zerWvB)1l?EpZ#%$7@vUD;_!!8TAJ2_2c9zAlj>Ehm9M4_e*O9>8-^7z`UB1dEtKTK
zR7%8iX677F3$pLe>7kCME-7$zb)Dbq&SE}ZvX<*~y@bcwJy~Ebg*sxAeAU#}%u9&pwmd|u1YR%DNpet-Ahehi1-(NVYRO4S
z%g}cVAsJ9ldN{#OiS@frF^E^7KdRh}01aXTf{lKF)NA977=Yae&{MvsYx&srFd
zg{znDFY;E+Rgcxqw3KZv74fH})MH%OUj01n7uI`8MMb4JkaA*v%5Xs(vH1|r40s@K
zB9fjy29&e&*X~p|H!lG5gH~E0+i`F5_{>Zzcnbi4!8-s^{1r4-5`T>A32kAg^!jjixo%vHT&c%x578lwG@26uH>SlCKmj>G^d8JS+r
zOP}5)PEOzhB5u2@U%!4m$=m>cgxuCqm$E`Z+A+Lh$PK$UBTl5C&?X99E9cMSG^_V<
zabj8BF1~NK?=cF${YW!+g-X+QA+$11Y;4w~W*v$_OKM&_y@37Wv~HO}Vv5_VW;~lF
z(2fAWKe&*LhVS{EYXc+B?(RnbSH2(2huzkIu1NH@ez)1ymJyu5;0S!p1LL%;ObT)D
z09tb+(HHu4L=04^Y3xrgA*w&5yPUy-JlQGfsnGx?m{yr%26;TZ{sgkj
zusK;Sx&bNy-B94}C-Kt~7
zlEBe({FRC)0`HRA7dB6I&+j6a*EzL}T*{a7{9z
zq72?*$$1atggcS%-)DMw6lUW0jCQ2;wmWa!?u*+jP3|_EdX+}%BiZ}C7iQ%Wm6KIB
zLQhroh9$i2tEh|l&Yf)M1HF99L7pgi7H_B7IA3_r$e$l;$B$7u(8Q2ry2LO>f7&QD
zC553np(M3QMk@?q@1W#~++MwtN6&&pcC-e5e9+d_-u_fY#bC_}`eO&8?c4pOvud}N
zD9H@F5i4V3(1^_8{WPtcy}T+=iCdS3z!mu{~&j
zyv{y4(-6r!`=h*Eh?lo$TKPG`%s(kfJxk9bsds_$TDRr3v!9l}KfP%$Zqn2wuc&8BfUfA&(F^f?|QL(A}~9$>2lParXCd)HR$o~
z|FHHRP*r8yw&(^+K$Ktt1;N6A0Rbflk_AOY1O+7rm5e0GL4pdRA|{F~K@kwik~4}V
z$r;H=&N-*wH`clToO|wl@4x&0Zq-^==?+XZCT$c<@=1#
zhg%+#QLh&28m6?Am3e5sAIC`+p1YA78=Y{>oSdBHf^iwWc*~~<6JEEa
zC@Xm{@$r1_1G+~Sp1&JY5w7^0$A=zgwt3%k+CvBnU}vx3d8Ll>X1cG;&mEfR-
z+uhT{eXsG9fgl^(J+x|3>6BJg+1S_+oh&`?Hz2hFnPWUO137Z7*dAyyZ<|Qs3~u*T
zdvA90oqNn9UVc7fuxQtL$Yz
zezb5osG$X(ToX+te-L0dPGY=ka;5&}z2HQYoB@2rot>RBreYQ69OiqjcyT;fz5jg+
z4S%v;$Khu(VHpWJ9@4CVNj9bvSrg+gD6?_^#>6}-4ao?`dShuE{?e(C*1&*9H2u7c
z&dW?sM{)4w%NK}amSB3O+`j!@P62vU2B1Moru#rwSN4t$8C2Ar8?q$3bZIEtnxQM~
z*RPx0x@tdDMtTJ&UTlM0g58;18{M>Y{>jb6Xyt$d-9el@)kyGIyIiA
zZNu)}AnagW5ftb+{1=*n+pFGfJHS)&qk)ugsxWwbT}p=dq7#o%PGUu54ZAxW)khHD
zV6KigZlpVH*7dUqucrBAV((Mn<-_wmrf>G&8RNgyg^c
zgNA9jH`Q3cvwyj};G*cdlDDs-yxJ%oZP(6SyZCL*>LqB-CEt-_0WSQnfiXed^RdU(
zjT7?Avi^602na!+JY??TLh)iaO!RpIvyxK~zh5AB5+cOJ%i4vw2JqW3{rP|JBL|F#
z-zFjR9BOqP6O(KA6QkqfFPSCOc6K)IC2>(dM0~GMd2O6wcEvBF9Tt4r(`#(=05~@c
z>c~Xqm2jEb=47sH%-w9&*K@s&VIz$@+Swh6WYF9108je*PTb
zGZo3RvzSb{hpczZrdz7xx2;n}mJO>q@J^E!VP6fE;@abfC?IE=4Cspw6U
zhG5$LuxRwMAf6+6C2U1ooD=lyC<>sxF)>&cD{T&@_4`@zHei>pswBy4w~2s4ww76*qneCbW_7CCP7x?@(@vHqNji&tR@|sZ*Q+Q
z1hzm7gM<1gXyu|@Y2mG6B|a@4rw8XyWf_m0%=DQKQyLF(x|8##b#%
zw|YeR!1~KaWK_HUunpBq8urk#vs*$-=HnPVnR6pe&;X%<3V=zJY7{~Q35U|hOAylo
zSGU`ng6b8g@RvU8xNK?g3dh%30o)68&DR*D!EZxg0}X=s(=FuG<-x+L9n%Z(pnkxT
zBFG0&mf;wuYr55lPx8*j;J|n|n6Y#NM~%$a4&ozi>aVM^xejvMC;P9>W=!P1_-l{)
zHL8(Pl6)pq3^@8_T9B*=IIllLR(o_7WF9383Z>e*I#hI>a;6~e@j!f*iF5$6>FMcl
zm>af2^eCjy+gY-+v!#9eT0g)k32#NIjJu}F;vdkQo#x@`U7LIy8|^|X4k^p!wE7`)
zbCrzClOD5ez6%y)P?&T#M85K0vvqqy$ucVtwAFC<AdR-rX&OoUA3`Wb@8w-FoPH3=Z?~B!{1MWXPE%3VU{Sq4dhWTlid2(=i1F0FpfU
z#un!0)KLK~-7DO`gN)?@D&!fXPA^^_9(^7L3z6AScXZhiUlZ|_U(5mjx4x;VReSjp
zbzMWFhC#9}W#%KH8EU@4IiIMotkNNgTvcLCqOSE+qpod~;|{A?gdV6Z+fJV140>D8
z>5-9>!^rQ9#1TBnND@VW?1q=!NY-U~e{>&(g@r4IA_GrAj0j|BZvMrJB|#CI4`4(*
zSg9O;%uB^8IM~_!Y*Lqb@`P*(3`88MI1hvP#L$pIKkc&fM2k*F=4f!+*YgxNnx@IK
z&wgfySg2%ln5HcNRsVY0F{39zTnwH-)a~uX&dxNth8NtG=H`f|9mP1co#NU$Iw+d_`xDttol?tvV2AFM
zu5N_EV3u6eDAEwFs{88((!jtf6u1Uoi8hyijs9P{k*Ey+4ypT+1c46r{t8)Y9J=o2
zawqS(mYlOFdS}(;Mw=!RLMP6jDnz!MV9y`ju?6XH7wUAzaKoQJr>v8}?dy|7>r
zN0pY{^z@O}kE;y-SeQR`0+*C2$sL5m*ZrPFtj1Uo)poryGL*+6YZ>`|aB~Z`J&TLu
z7-%(hla_QLckxl0qeRo93P;r@g>V5$2+&;iqdj2OC5AE{+EJ(|8hOs7ptbSf!2>pR
ze~!wg#zufN@JD$TmXf>5mTwLsnd?1&>(;4D5rqkN0iZv;yM?$QAeP4o)
z;cJuTgc6OY)0{V&EYA5Z@SUU@8T*7c7zVw2XY_^ciEL+Xqv#12j>49-eTBuv$nJe7
z?4Uq#LqQ=G$D@ymkGFS((n|OxRxb!VjUb6<55H$1QuMnD$XHUd@g&9zFHUyXrb>pDmX&$cW=XR;
z^uD~R+O_ko#@Rbk4VO^NNIWX%%JQ>%F&~jG#pb_8)Hd8e%Ows
zRC4Shj0RLF3?YZ&Ki38f@h_X-!k9Dx?383_g*VnubMLSX%M9&mi@2t_G4<*&{i#7w
ztIydDyxm_AqmBN)a;ecPi
zrejV$2Ju0`eAcM8)s#D2l#u*Jcq@@@Zg$fsaIZqI=ZkF6@)U@q@pjc*&pRbWzgwr%yK6tPHDc}9y
zv*s?3V~JMa!I~Fj5;BH{l|PfbGcp>sZUt~3fB4Yp%$b_|_v3PNQ{#}9?6%3d8xe2(
zB7#0!Qe!hiLzlwL$=!)8S?;8Gx$~;~+`TOX%k!J0{5|f$Igp(r-vuY?6&1_&Jn!l*
zkdX8=-%fFTc^MHTh7E>R_RF!{dL{?XnS(DaA!qiR?{+8ILf!)M+r{(!%ZFeDf9C>h
z))+BT@;4IK6!WAumhZWR^@RF!yO#%#{pxGT#)g`0)nC4JEzpEnIN-Fsov%F;2t&?yt$t)rj2B!%0JRoW`xX
zeQ4dNKd*?(*TdG1ojE)_s=+W;VPt4%Kbl(hvxD1qvmW2`yoeoouOz#f{vwCpot?wR
z8z|jDwa;PO#P4_gdNow}5waoUzkVGOhU?`uRFI3!Fe@VK#ipMdurZxG?CWGhytDdi
zpGHVKm>;ZJT?(J3r+HJ>2hwiy?xDZ`Pl{wL!fwvWFiAUq02
zQAR`;$Pk(FXs8Hmkg#AmREr3eR7>yIug$vhN#sRwMng(9g!}_+k=MX3%S54{5*k*S
zy)vG%wvr3NR!|Vot^vaBx24+1h(sQs_){EUPo6xfv{%5D>%95zMLRWXnC7@$oU?2h}mkTj@DF1RUmPTT&L*yJ>=Myw9;P
zv%1AE(1I4>;Dtt~k(OM?tP?pai;Lxu^dN`=aF-AEVW6DN00IOJ;$rMUr2i$lp(}9e
zlo1epZEB7FDp&;;`tZ9cdID~uwIXMV}
zN33_b(?@1Y1Xvj27h=RO^iP-_G-g|FIH428^rcJ1SXnSi{)
z$|}X({gQjMH)~oGQ7ju*5M(I|L5TBiztY>MC)r$ChwFzA+Kd}ry@~*0?UWmq=QGms
zzPLX-AGupRy(5>j<_?FGlX*s4e)M3F_5l$!r&`mEq`kS6bp@iJm)JG
zZ$?4s%{tR|N=n=d!0i=-zK!kGbl#gU;AwRah1j@EVOPp_7ax+2ihXnTEUwXMY5r>^
zedfnxWv^XyJNkUsgr~1B`>o|wGIDnirf4BtMU*;TDOP(EgolFf*BSR4-`V8oS={cV
zsIXjUGjz~D47GBVP!?xvBM
zh&>!hY~<0LIgd@kK7Rb((2z2hXEH0sE2)(ldygRCEzLpivuIeL&vUlEzNA+nsE8tg
zT~BYIh<<4_phh35=JRl;;FegiCkUgg#vWnarx0C~09N2czMdZ6+B=2+;OBeKGA!2H
z@;h4K5y8WYC8cO+Xb7Ag894y02-wRsBrdYJBFo;tL5d{!V~wjqG#+%`nX;X;+9)Y%
zYTk&l@pLz)O?>3*#QjZC8SCpSYC_+h9Vi^LG-P9zN%a3W<-m??xhS5B%bmM2
z)QBtuHl~32146dfTlAaKEMdf~*c~Mksr45pPI(G9FE82;i$C^qubjwypiJ=|)E@Ea
zA^`knZNh74K*huV)TX8j~^;uv`dju2Fong0v_^K+sbn=S{dA3^5N&_2SIC$L`SecD7-Re!}FoA
zpMhO$8;dsAPe@q>W}@(U$&aNej?vJB)!4G1h$;xG_x9Ea;%D(HJ+S}5c6?yU1j`Fl
zASETQUv$h5LY?jO8TdgHQ?Dd`cD&^YBsW~&{eX0Ud62j;>
zl98+;Rz23rO%j^*#oEQUR2#oXD-LdC=#Hm%1c8B(3_HQb=CIV~3qTVKddMd;09sK@
zEx}=X6mw$2z_rz`1A8OnAt~slD1oqe5x%^owb~13&)z@?lH+ZP9XpasZ$7o7=Xhtg
z(7robu{c)k#JvGN3Om?a<>lUbq%DL!d-g*&ZJmT*Ps*5Wbz;wRNa}^*goV}=Qa|XT
z5J%A2Day|e*6JCGzK(=D5-1knsUF!~gCEBv6s)MpK-1jP%F4!(Ik+uogeLQmi5asI
zBmk0{(|*vCFYchgUkhssQAkgyI=KEPyImb!IG+iQ*>CzhGMxzzXQ>IoJ{3OQFcc^?
ze;bS+2zKBA1&{@c=nsBbUj^nk8EzV12uaAW!iwB`q6Xg*XCa6`k15HKLXLdMAWSwU!BI_dc
zm_#)K-kkY06nVJlmFbY&1FJjT#Coy6yFmOYIhv>B8jcN_g+M?)91L9($I;FD|OtCOOlvihs?Qk^#v_p)&~t=?~5TUcP`{ULn3q_8Os
z#8O=HO~)~n`Jp+@f@ZkJ1DM%1&zUXogNp;Y4F-~kl#oq(8Lxek?3&*{s
zJZ_QU*L{N8Bz>~n|4SfW{CIm{V1UXSFL`;T!QS!lox6U~Gcj@NNPSxg5HG&TIG$1k-|w<@>4N0TrTC36R(qj~`7_Om$N>@vUA~)8`TyriVMUi`
z-|XBRjvqqx(BG|t7WR!_h0YW0fp6Z*`S>f#-_))i!uKa+Klgl}s8d(it0%=pKbRK%
z$O-LK@uRr3`6K8AIYUYY$p7)64yBt%TAJGXPi*Y59H+|jY^TbzCYCQq%BUsYEgAjE
zep6xCe&jJ}<{#PwTG^Rnqfp()x>u%eL
z5)z^ZsX++Fw
zh)gwUevK0PiNm-Z`d_c#95$BYCggwd`%dI#qU#KJLav24;T^Wz{A_U0sTsK@jm1Ue
zR7?UoYs*ev#}xbfP3#uCYe$-56;2XDXOz|{A0S2nPpFDY02DNaDNw2YmM#aMzVk@@
zy?&cH!aqPDn`G-%1n|PFdrd$Hf@|1jarf&N4A?BR+lV5j
z4|HH{*zd~Mv({SU~+cCPSz5ofUbcR!t6m#`*5f;K*1F!g7XrBTYydU
zFdBsNH8Ji8tx)i}Z=FsZKi&+69fkq~kIcdDHWLgyD(3roeXhws^FcTB9-i)aXJajU
zzKoThdSyvTGnn>~qFdqGq%rc5l7!HBCy{_@MX)A0_RqV1s(=)n$hpA3i~zK2%*4!0
z@YHU!L{}qmkQ1_BSdJYVc*)e?-=DiY98E<QqMt~jrp`<#aMH58=LvrQCEgB)%x$xM8>ke{Xs~*n@GrWT(Oq7
zUznOA`Uk-9fxE_pf%}NDN5`Fl1+}h1tjZj^3n#pP6cs;lbGwGH>De9-t}xCjD-mDK
zKlT&L0G(-c0`k_zOwj>_+@CXhQXK!fa-|d?F;d$91ES^rSvIh%l8XCD;
z#nc9ZLP8Iqu0ggZn074B0(TncsY3b?yZ-${HE0bZ+cm926~!D95k`jE^?48oD%A?t
zua&v^E^&;46G8u_R;DhD_=HF2W~xxsOw1p9_wpHj#rnO3d?)38%2jB!k&&I8bNef4
zylzhx>R}w`Q?s*{EZ=d&>Q)7}|42{4%>$z)-%?ppl5RV7cjhcGo8^cDq=g1~1}oqp
zjpIe3@P|mfw6gJ-4H`rVkDdfD_)9nH&FWhSOpUcR3G=5%gyx4fl{t$e7PbMKL<@XFwo8*40kd&S0j^a
z!vkoXC>R-??PWbf7@Yn*J;PY_j#5yk>uj3Oeg+0L#|M9K!w0L$li+aN`9qO&NPh6Wb|HyxPYBw>9Gu#tV(mpNl-$mYEQ6PPwiVlK-
z1gjUX%n%q<&(`EK`JHcOpCx2w2E2OWc}0SKPxeAs*bB)ph3ME%pAv}lJ1mQ+t0G=i
zcAB<*LJ4hr<+Nt(E!~8qOOiQAP*v$IvWnXMSVqrDvAtaO#EB)u;$>1=`Z#RN9#i$5
z671WVg@^2kUgdqzf-hz+ir3_J$ZMr
zD#(FMMs_(B?dcjB9yU_nZX`=N3HuFt8m##awzij@8DX9YKkF%x1?7pqo@I6pg&{y3
zK0#-(C}j9RYsPiM-L-u|s7=oJpBNTIrjNk5M??3v{pJg{WeFbEM5yL8EySwQozQ;BNlGx-~f83xA(jD
zm3eU$xy%vhhahyvCL1B>T;nw~w~RzVIK0!=Xv?yny1TkwCdpk2>czteLkf}GH1Nw=
zTryjJd4|f{_el=~BbP-3o-`5_MdSp_tB*r$zcn7sC*^RQSGJ0du9{Wj@|S-9Nj{oN
zAjtn`mVl@xZP&z+yQ9s6SG-y}a(~ZabikwPs-y9pXdCGJv6lsmyaEmq1LiEKe-KAR
zzjv>Wu5Lh_C!6;VU`>C!A{Q4zoi!M%6ZwHAF;HHbtlatqV1(dGRzU==;;gx+8-xe7
z-^|P^Ha?C6j57{7Gy+mTe_rg|@Db!!(&iB%U#SfP*msEsZiXUxh=+N5E
zsV?B__sPuMelf^KAnYu`g;#kxOV3R_QNQK`h6M1Vg23!2On{55TUuEmCnuME$B$V6
zHE@|-zH)^KShHEP&%qu+OGlTAT@sm7iO9=nYO<;SbOQn|JPve2==|pQzY`X6f@3UV
zsweO2Whl5-t_8OhZSja#Tk4N@<{h+r#d_oq8pcLw5(qK*(~pah$xp|jW?SqIw?zg}
zdU`s4-N&gseY91Gzj*k01nfh?+B|*|zuD-e5QlO9si|T?1PjVTT-=^ctO=M@)_8Py
z7@S-3MCS@<=BTI^Hil%wR2GfM2nn2xxhwb35>ya54B)|cy0`RL`<5+v?|4Uk#HsVW
zVq!$l9LPdHY
zsbgsd+86Ps31_sJm9tW5My7FHwMREqJ1yUE?5>w_7UxcWv)Q(7qa%%TGh{@X@Hxhd?NTM%)aI`*`Nf4&$C|V}Z*FeJeploGVW5sIzOdUmITN{A
z0EUdS%XpWQUy|4?EU>jWm?bFc>z9HU@XB)a1L|nKxJAD!+=OI
z5|6t+%gpG
zvnOZ>)mt`89w*7jhT!GaPMO@9mk}R`vCfgQE>e)P+1xyd0X-mRzZQD%y*!YCw(YZq
z=woqe=SHI!7v-@b9`mY1NDI^K1%)xw`s2Bu!l<
zZ1LJbLK!P*c|mi9^r*Oqy#;&Ls~m^*PVd{bdpFe8Ul5K9fe;WZ8u}?JK>-1oIBAHn
zy?mw}My4SuvDWAy5{2Lv{V$d(aAQ@bt1fy_a;j7A=RIjXRGa$I=2>kM-*{|V+vCUR
ztjv!s&jqQlpv#@4Uv=MOr
zR+W|-tkuWzczAkx+gn>&8qLUK@e9kKZRMN0Dz~3@GGBB3(8`kESIyqhzPYZEcyygi
zVT_84iSau52O}nRk$sG&IDjqzpr3D}U14
z^A*+h?SVpeUxtd|R~~K4NCNYNmp6B6xIa<+b5r~&`aFC*Jbp8OAXJL1a;@i}0ZxLE
zlSW0iPhVDK=ry8Z7RD}bVzcLr
zNt>&pMk1>D+wnk$IIaJqEufV64T(j|_t6pnI)C--+0SGH(1YpewhQC!vMHG@Qk(F+
zg)=zW6Su(SS?Y%mzZ%)mbMM<{DR9jo%E8R6{^J#VG>>FVHf=!0m#tY*(S!G+{G(gMj>
z)*DMkbp)etTqL=;Y)Ui+=Pw5Bibk9>(fhPepKvb~YZhyeLT&EDiT)LDjFRdEUkJma(#OB_?`i
zQYHtMcXsCFLbYT`UMmy;9u#HqCQ!d9Q`bIde8-USTju~ZW^PdBOS9jWB
zYNmTu-Dgi1_=@!X|3Kv$_p9$f0)-+*L|3!_QNs?W(KG4}x%g_QS!ozcle@i`GtS@05&%%(o=GF
zw4rQjU_>lT>my+T1VDH99pZ)B6YUYz!8TN7*V&Le1;z%#
zdGh3s^75EG;bFp|{B~z2N!t2XKB0|Y8dpIYps9Fb1X_Tf7=Au?j|0c&b%>F>hEHm_QV>Edlt!soA=)~8xCaev@uz^C
zFvO8P8~h9ctq1=1|TeKnQ=
ztB+j^II=leAe)tF*Q+?Own{X{kp+zh=B=kd-Jo9FA0)W2*10j>^^0q)fCjEamrAWA
zhva{Uv+1dvB*HqIa8?PvJA&9%Ns$@puQZ|$kf=cJbINXVu4#>&+NkUXALiH82k=Vf
zIJI%M+RdH;nF-?x1pE^a6ew7*h=_Tpo;F|(bWaHcsR
zw5Z9MYkR-U=ibWvMcIHoXRTv4Tu34krsa6`biZ!K?kfkT*>oJ6ro
zE*;Y0JbW`eBqWw?D`ED})E$%X0pb;8Pq|5t3(OG%Z?dMJy*MzVxxw3?w|{
zO;?6&ShgfTo$AqZntrCJ5BUKZVODMPO?IoJk6UDm5FP_XKn5=&9ZEuf~wpXi1()}gOXH0K=9};u}wnG{JXCOTW53wDu2vR@Pr-d
zo9i}8w-5Kr{@Gp%u?Wx5B%FI-TV|)HiBYmMbtnvIi0J{PrI4gjQB%X%f=;6(2*X)@
z_*#e#)cM~I)UzwfDBT=xO|C7hIBz)ki%(TEn$Bh{bfg|QWMh^-A-Yk={%6-J(bqfQ
zjHVGY=Hh`FC-B_)pD^Qmr30Xj@InCF22u-{4jwcuA|lmxuk(?Dt05avb%qnFUp{&c
zwQCPT_;c&}Yo{);+P6pZKxNB(rp1hJrBnYOb@jioG3xh{($WkqVqw4?ZiDePAQsEZ
z%b^f`{B;sE3)KOBvy#^=|DwGivk1nrQ&-c`(6G~u0EJu&E`J?XV~|P{4&y_jj`rmC
z=?gT@C2QkZY=SmUdH1zKrF5n!v#97f
zuDP8@C)4a$s|{2FM24*hV_7Rh7C=EM1t&Qv6;DK00U@`>>_^s$6U>_
zgf-#|)QFmTvJNU$1^XG@A8hf>Fw%-Grr*D_&}j;b2F;1Ph@_ZQrVyt%ach5zg@lg|
zX|@4R7F4%ajW?A#X`y%?FmFQ|E#J#cTcP^3+
zjwu0s?PXx-Bz9c@L^ao?XZ;&V(h(@Z`$*dBSFcxx&bF%4sF1+
z`9jxii{+ZXe7Cdgp>%_L_6Y>i9M;pHYc+(&Zk2HIr^}XU8P#aO0CMbDF)Ss&9#YI-
zj&IV;u}>LGbJ~7&>*A(9Cs6kZABL$3Am;DIes1Z4(ZVYCx~*?#`e
zMVX;IV{QM=KuA?IGR!Yhyg|j`BnEef*J0f(UR@m43K$6S%S)z#J4mu9#!+HOQ8Uss2C<{4J#Z-M^D
zF%&k4g@O
z`k|pEdJfBUFOX`3$tpxIckuaF1cG1H-82pS?f*(^udJ<-4vC;&DlxDJ?e)+rk0H)6
zci2S;9oQ#yPr*{{9r66YigcEe5?CJ)bq?|4?^|0CoIH14Uc+gqjB_tFwd~qV2#P0b
z$v5p=7U;p8{ab~QvH!oU5Gsf24MC{p4i%$_wXjDzAfws*q?vBtUkXF*Z8wSD(lleX
zOxvlp&JCx9q^i^rv&S+vmW9uk0|FdE95~EZ7iCUjD5;OqG--Ou5qH?x
z!{t!y?%A~q(C4Wy^ynCn6~bfimi7?j+*1LQO!DxzKf^R4v8qE}rN2a0uMZ8_z!AxY
zw&Pk@x}^MI#&Pw4oo#ARj-H|oh>NwaR^YC0r8dWgm7r=dZn;d9%n
z?RJ-xq!Yw$rwioo*ixXQ>sL1MYR1@UH^p{ta_TKr#hS(36Eh;5w0?HM3oF^O3O-q{
zs>&|CoSY))fpigiNOyNxyvANZYeoPKm-fMf57Q)o^X%;fSdM^F=i&LQC>Uo891r@Vw5WQP
zpSV2RyB`lt1Ou_J_dO82PFxQ^d@|-eAvWL~%9s;?S%)+x#k&_p2t_~i>dqJdtSGzrBh8l-&Sr)Mz
zAyku7knONtETs2`goY4$SUBe?u6Og*O!9ZQ4IzKq-ws}UBFUzNp7;aD{;o%$?fGL<
z%0m2~?+Aah@&uRNf2;eEu0{HH6+$4${39_3Z))a`-3es645%hm<)2FGV~2J!piSL1(XFytQ%hOU5f#
zctJ8u(};F;pjH}WG;`R8H<`7j#~vni_k)L$kYkyTJ7yp--^4pUeDmf^h%?xJ1X
z>=P?fL_3in+||@mT$Q`R(bQmt#ZA3~dc60BIA{EjYU;;W6>n#_s5}`%mWxF*Q!e9+
zWfs$O;R~!lH3bZvq;#q=XcH-`L)wj5nj?*|P!kW!h1lna96cHy6I0&Qly-|qzQaKZ
zIxKno1SGW_9P7A9qPh`HO@a9aTm@l9nw{MMCwQSzaI&@WK%Jo5#Q1u>!vvFR;;&jC
z_E)DgP7VEX$CK;Q@g$XCny7@-1apXX<{7|);wUj~Nj`Dp$j64ONVs?>WXHvF;iPxV
zI48tH85Vk&0J%jFV#QG2989*{!N7AIsUH~`Kau~&$_j~R8}f#@xa3&9c8X)9JHEOD
zOQd*O^(~K{LGDzEEg4)i>ZGc+DQzZGTSwq?PITc3r%10cD6Tk~Zq2
zL9{|^Kb+1NF6R$7@O^tzLqoaf23J}-kG;EhON>FdhdCn0Q`$SyQ5z8Ww_9BGxDiiJ
z#XR~`_u0G3p3F=#X}{ZvN-7Kt`Y}}4od#;SNu6Pn&e4!H=2XwTd5SL0@HDz5Sj`yk
zyj%R`K~WL(!L3((^YOs~ARY~~LPP%)6wESaJR6v!Uvo&D!o8q-W~p%v;J5w>Jb42n
zpk56b7q^n0A8;Tpt(N@(0Te7G)baOvHWquZHSY@uSUj|oi6~<{{WzFlnnSP7>V=_i
zpN+Q|zI%W*>`EJ}5Ev42kdCfV!xWEMW6EG%Z7uV@uC1gbyv7}$!^8Wq*n#$3F)QGS
zbO2A(%-o2jz`g0TFY3=}2rlQBpFA1Pvhk1mkfx9921~24u9FE#)ml91yHByRyVBkl
zb9ub>l$4Z$MYm0Q;ZM(o1|2?AE_FBV8u;gJ7CI81kXAL^5->kfcMDF3566g!Nb*D<
z?pVrxE|_#zs7bS#Iv&haKpZg4v48>`9tJ@XCz-9bFz3__=^sywKfP}UFgeWwOR@+=
zt8ay|CH!vYAIHSl`3FwE;ctEw7+&J;(bs!_
zalWuHpPRl*#qiy7Z#D1D@70DW6%`fIO{C@AffcT_kH1zgNephAREhOznM7$B@0pfn
z(>ia7!ZEd<#7+GE)UQI!wr>0?64l9(^i$eV_2Jz_rAaCh^6tn_(WhA`mf7j%3MMA6
zALCVeu6bn8VbW>X^3#Il13J>@Orm77f51je<0&aYaU(@E_%>q;st^5h@eRnPMSl>c
z?xZhYX6+pf4Nrzth49|l5RO7Qvdg`=Zh3Fe
z^^#zbprMoY9uX0&55=m<`$^iXDos8|-N}63@v@?Cmv}&fA^D0yOjP1LS?p8y9s8f;
zomQ`DZa%(;(xG6FeQsdjt5-C2x5S#1PWhl3cyqb8yZfspd%lq22W8(cdxa;oF(2io
z3nv8Bb8^ruK}Tz36k`=2ytHO%uL6GR5iJ+AXs<-q7crIF^)>7%HX`{mw%H1@sfX29
zMM!Z1JiNR|yJ>gA$`Nm=qjVk_l_B48f|XislW{5R*(pBED$stPg^(iVwTK0~Lv6q55EGG^yQty7nX6
z48|xlK#TG=)+QQ{HSZLUX~kgxu7Nt3h<)~b@1IKN;DBec<-?&Y!85~iM}0YW(|O1)
zFg?H@3%>~7Y5VK~QN9Dd4m~i+LKwa1*;RP%ey4bIIoYiH8!81Ai36*+
zVVI$}_f31fq@ToGO=Rf~FA^mf
zF3M{3zLBEqeua0{+p;q-v*BtnLttQ4&Pv?-#HlHGcPXjHA|RF}*zXAPDnECi5;qdv
zY!Qd~QRu$jUoRP$0V^blkRVKbMPmtreu8KZc}p3GY?~+Rtq|K4V+o0Z(v*9*mX?BqK4+xP-+YjrnQ)r_w
z<;M@)M#W`DQy~DCClvvO!)E8(rWyG-oTsm7-D-H9sHM3$E+|Aq!^=;CokY>)AM54@
z26IW$O8i+B9zo4;=GQEor|r3G8^Wx4&aX$7|5SGT)u>tz7s-EA9e!K}6#?&Mg{{oTTE1BfIJIPY&y^l~
z`(C0QK^>QmpeLf6l9`%N{i$iUI2qMJ<`lb`r+Ohenc8@Bfw||K;JJFglU7l-{k+kX
z+jddsjkWfJPS-oLB6Dr3mOtOlC)gQ{J{<`55?weDQL%*})>+W&po#=K_%)0cE{Dt6
z%OVf^gjcE20)?BnJyFm@5I$u#-J4(PrRThC@L2Ar*@lyrRf@;uBMd^#>L)LnkP}=)
zUX=1>AP5RC6JfVaoPnAHfA#kBtee9!3k}Zr<}^Gii%W>_hnE=NW|AfGKmVIb;s3V$
zP>Ud%iCxw!jkwTYmq(RWu(ooImzU$v8~w@K@d*j|mJ9b%_`yv~2u=H4w-o6=_uzam
zd4Bx81b)(3vo9;dtukQm{(}>I_LfymWLTB0zprbHNmY+XjE8RwfI>PNW1|-TgaK6rV5o?Q#0%wxYd!POYqvPow21k8eUI8D<9|up41mGt<-XmfaIJy?WI{U6Z)R
zEaT-z8ofKSPcZR*_8JPpAaZE_jAB0jfNL%Pn_GPFxw=^B0SU7*$y;qb3W;tp#6%`H
zg(6;BM8pX~B9H>H8VneZgILRLEOJrx*3OuO4zUvg-vmTbej3S0NqxyNyuEkxaiL&A
z=)>hXtnBTMj>2_E`J-FDePa}~nQm{3$X+oSsLN{TG0nc=9jIzMKN|FyT;jur(c}4{
z4XJ~3P>_h-9=0cOBzRPqOgtfe32XWeBgD`o-khsP-eRiCj)NjzKIE}Balsy1SDyf?iy|Y6hq99Ra>B3R5_fc+V;qq
zY)#UmVbR7U!9#CK9&+Li5Hh_A@9OJ!Wv0Kdomb9Uq3}C>{s8Um`l0f44)|@>XoN}D
zQSI301h)_eb}5}QX}Aq-KIRdGrDDNiFtZ>QP4#;V=iNJZ)=Wj^tuK$ja0|?f4tBGu
z2{gmVp{}i6^TV1HOTWb;v<5l1kGD*{fH}YG|)r_=gstveG2JFFtSGetuN>
zY~b4RNIc5lEMl>d2@hm+(7r14WkTQFh(G4K=*c{GTNIo`=lZ;ATOqD%jaHZ>H#_^?
zrjjSV0%e0ys|{_JVCmgNXuaz0CSJI72^v|!=GHAM$6Nu}Uk+@a<)ic1+PT||c1|83
zoQEyfGU_Cs@6gHRtzk7K-DU?e^hfxUYD&6(2GP$s?zXo(2Na*i$MW5EV`~;q)J?^_
z#YaOY->I4|ven<>ICNuibxB&0#C4VK%yO?DOTv~pt;zhp=2i(=mnOrM`X`Dj6F+cT
z8@CGn!V>`}Q2isjmkW(_bB^GD5&by!ay>{<*hiDB__|FLDu@chA3uiKPWr`>+F$nV
z(Es}5F3&D;wK0|4O1cz6aG~~x_Yv#G^|g;g71n6u-=BYf9e-zaQE#qLQSNU9(wciXW7#{W?{qclcr5KXq=kP2@TfYl$W6B?vneW-j;O~NDP;-plf
z0Sp6s_eT+*o{8>^jGc7Rvp@DG{T#i#cw%Yj7|d3D=|JimSg5|2k09c1bBnp~{(21D
z88sg+9+rGT`|JWllWmz+(Q~;Eo?X~QPd~7@Ukgr~yLVN_)G+f98X&}(5f$|@$*`?e
z2PQNd1z-PEr!U2!PWevgXRb^=<~N9Ll=qvT^COPUT%$3Tr^WacnE4SzBuNn!8{3|0
ztm?pyB1Tw9Xi$I?M*&UXQq3hL(sq#_t!c7x>JAo7aUhj{TDOzG@qcHOs03LG!&$wT
zOzu!^B6W#Y{KBCdrhzog+>47l$Ov8K`r9W_5a2k%uyq{H&RsKBe~>%X>f;>z_d0#)?JF|op532=iY{YXNBS>T@
z-bjVpzQhqFw!wp#XIBjk8*1ikhgp4J>X`B$nO}?<-K(6}N8%G7fl{88oz--p-myas
zRNNL#l?-zTWi)Tz{OkW=?LFYR?Dzlij}|R-R}>))DytA>mI|4LsH~EeS@xzPm86n{
ztb`;aE1M+A-g{;5z1Qz~>74&L=l9*;-~aPCkH@*sxs~g4UGMAte!ZTr=Lo5qjky2<
zpoE0=mvM}7s|#P_Dsm_;UMiP%r(8B1sE%$*sq=j$l&rOJy1DjQH$b0BFt{8mJlV
zEsOhV$+ld=PhQwfwv%;1Wa3eIQPGtH6?Jv|QA$@ZBqpj$<=6Szbkuw1mg+RgMaDN&
zxuNSl9;LDdocEb#h@D%t=@ds)YA;%!f#zoXhn&xRa^{&@x>fTpA2eHxv4Ac^Qf_kR
z5at_T*;;ui9Sfh`1u_xH&{kfTj=Y~G!226aGyx1*H_p!8-?$rogG84hsJe!va{%K#
z_t3`8ZF?{e>y64oR@n}%=sC`)%50kZ_e%3S&)fPc@OZJ^;-^gOsyym(TZxYg!~Y7~
z|6f(??cD14jc2kIRj-d;pB`fk
zQsP7693=@y4wME~nPxlA_FW!iq@|)#kuUo(U;qoz{1{ag>mlmxd%0oYhk~YIALRoA
zK0jmnfas6Pce3kF`em=2?98JoVew8^qMNE##FM4mC-92c!Pse}6=h{nk>}HLDeLMo
zB3LF`(5hI}=F(rgzFTzQSC^}7K*n5Sj;T51SIFbpQwmR17zkG`<@7}#V{TFfKoEI1WrOhoSiE)awv~*q8
zAy_5I=Jr?l|JI6#-tYQ+4G7H96)fSnp^|Kx@}|U#{W{v-uh9ixu6`PKUNOI*+v6E1
z7}Z;BDdD#4zB)Ia5xa_=A3av$#yQ}3s#WRd4_rgS2>Pjft-CjGc0gYV9Q!=QZ4(oa
zb&w`0=qeUE91os4L;#5^JZx-(;Qy}?`mOGWCp4&CzI>L#4}b#H6-@Qw1cYxUCJA5@
zLpPU}2}-6c>lt>SQ%v5uAxDpy%}#F*6mH65R1*?neBx0gb1^l;H~>{&X7@C|{3lh~
zH4S?yfU<3#;^r`9GEiml#*71WH;AyXhG4pe1OW2YKw7i+>76$T-~;P`|H&f%-Bc^+;-yaWp7W1
z)eS}shfDiD$^Wgq9W)}OBKzfa(3Le^VDKL;9ybk~I+rt}e
z2Dexdc|3T8F^h;K06+Lb%R=i#BtPJksF8aiSv}84TG;K;@F{6NeDE(=jiyIEu4-!*`{>m!uHepvJuKu1^2Qf
zx(20>Gp;8&ZvE#Lz;pQg?8L+b*GaU9eI#>9rFSsl)FU
z&NzfE1F&;9@PiDL2rFzsdty60gkVm;MafM#kSh(UOe0ADA4v8Wocu`Qq_k-Rii=QM3{#5%w1faD-czvI|k@t-a&*}8`CoI;80Mq
z@+B+`i*J83x3HkanaKgOfRPb7$Gp%s?g5KNcg8QH^?0#4eLa|%BNZ(dlat>Oeb6?K
zd@b`+B?d{I>fm^YQ54rB
zm)&mk3~FjZciPWjA`xLo*5fA=0q$6$Ba0n*-~5sG-d>4~bIH~(RX`Qc*8cwE$MwjD
zo&L3+@aDMM6o_zdirt{Ig=@r(R?fl|{V^N0YxdZE$AZ_dUcu8_^3Y#)()UM{&BnD#
zTGC}yIvlR5#a@oAs;fy&yw;i|{oxAhzH7f2DVUvh?6_A^ArSbC`uFf~N&YO}i?`c_
zP1SGxcv@Iea@Z9PaWH2b6tI#CH$(4?svo|(wYGI)p=0+N0%(%+>;ki`g+W6jhNN=X
z9EKZDHXZ{Ve#M=Q`pwh=z|n_t0lL<#2w(%SnXgsBO%L@Y=`F3Ww=?!#U0F;S3(;=X
z`hH+d3;ZW+zrgoQQAvp-Od?xtIz2({Zx~rcl3mnx_y_b&kuy-b=NYaaM7FQXgSn9r
z*XO^befRZuIawuVWd*VAvMSKNfnRgyz|_+mfFba=8%E9~^}9<)l;boo-+Q;?p!lQn
z@8DlRcvUaF!T{h;dGF}xxOMB+s9_YaNG+xo!%#cLdDY3F_uNct2(UrpaW!>yyMp`s
z0Wv){QSV7l=U2YsqmlIqA%P*8RNjlD{B6`?&F?EUCN$eKPJN9BQ22JAv9&Yq8#0nF
znU|u}|7SG+x#S^YbOQi-4Gd~?UKI{5i~IQToyPRo80NAs9z^1cMEh;tEaN-23XCTH
z>d<*>F3rWMs$0>@EizJ18o%T}lcsv&LF2;00_NkYMm>p412}m42wFcwsA$bRRi=dVI`_qM0^g-wY
zff@*z*sVvKQzub#01TV)8?!REwr)en3ug4#0MwuXsjLJq=^?1(7{gv?RK#D~eu^?!
zbX9b9eqy}9d}hRQ$73LyZH4OxrKG{xFx5A5m;fi4&s;Z!25lEf?%vALN6=c}ShsJN
z1|T;zIf>+nfu#vEm~Y@SocXKcj(`b%H0SHtgW?&VP1{;~gVI;>X_GEoxTW%`eX|<_
z)4QKP=la9Ea41k^k9|{Ios%f5CjRzJHTkx4dk`g+r-u^%hT6}kd!;$m>L-U1F!P12
z-d`&dMY)$Ra~dnVo(L$pa{6>bn}hjk_Nq?&RqwjEV9X7!IuJtCBbiz|Lf{7n&j>L|
z)EoNxM?8i9lus4)%s7u6H;K;F5AvG^X=IB)R5J(``oW_Y7sm2}a&yJFxG00$)Km%A
zgrCKb`0WtO=$_ci{iXs`yF!EeY#FOz?kEE+w=1BR6bq3nJxk1z5Nr+JO-tvcXh0$4HM0U
z>P4Jreq7maZ}F)#r(IE1dLQ#a|F*%z*yQBcGy}KQCkzK7w&KpXXgnz-F+oALYgctl
z0!&;rGDrahh8
zyR3|6?c-mi!x`Z{c0h*2w)Ov0aX{6m|vxP~#!>a)ichDrClS-mtfukWW3{k*p>
z|L~m&?S`H5Oa8B|FlF$HxgMTnJ=!lX(%%6;P}0Jth4n~-Ib}JZgdwg}c;(>qffq+$
z#sx1Eh}b)TXK~;~{Es^TWBJIsK_YPl;Z>kAQo8Tlvu6(jgYfOjLjyH`I^m`n^azYF
zsPEKd!Tri6E}*G5xXv(X2hz2
zyw)r@V35${D-IDhJk?=VCh6=vss@A~6attvHVXD5JmAArscu5I**q%psAc%t2|F(E
zG9TjRemUS*(AlsYjtAj#r6*P$9ox)iDy9UB+bUiRm^ObET`n}@4YC=G8Tml4SWLr=
zHxLXT^eUmrhyN->-XOL~P8tuKP+;Ub!naLK62x0z`h?PU*A`>1?GzMmkYg|%3~36C
z-w8xN{L2HL9&E?m-8;lw#X7L{g1$w;9PGR@k3E=z8II%raR2!KF#hV-uW8bekqiU+qF
z@hv)+F6k+cRY%ExFIa;KrZ`aw{-bfoTwPiG-A0oDb2fYcqR3vn$m|NWDRc#WC-52#{rx_Sl^k$mIV?*h?5f#wFV
za5FRDG8kkyk^2sV79{0%M@$lr8;a2;J{pg1f^|Ry3&kv^s>LFAb-gChR3{ddm!F{k
z($Mfi4jcF$mHo$g`Tp{7n;N-!hu9R|f=I!Beiw~@YJa&LCZ1%B^XJwn=6J2oFyI*O5hE{
zXyCw$50eBRYKr_vkFMCy_5w!p_d8=@CU*XOe@!&FrEJvYN<g)O|dp
zdkdbdJ9yA-J-Ll{fP-Q7en?l)XJV+G%y+F{uGqiJhzzu_i!mP0By
zFfj1-Yd*cweG+mv`2sdG!`}!4AoI_SS>KKL0C`SLxH*UL^Z3a?e*oNGhE^={i)zY;
zn-}kBJj|NrX^>^t1>Mgo{NNJ`A>qx;y55E3u?rtrd_E5K$VNny=6OnS6b}ad`u(-W^(BQXiV|
z^VDp1vJPRQrr0ode6uo*M>uNLvfjyg2ciMEOqM0x@C2iawbCD>QDrWa+kY$m^-{gt
z8Gri_Z;4
z15)B}lVV+;A$e#5vXUh4qVC$dI>D=~Sllmj&O}J}$rF`tb9hQxY5VUq?cO^!LSb?$
zni`y-6TEOT@OVPOY{cjlk+!g(*4nxZM4D(9^5ZHhR8v#$9S>82QxnoFUk1JYr*mJ>
za3u44PTB~G{Y2_`jJzXiMKg!4^XxQKbi9umm5=PIU51`Z$&Pl5TQYO@tq0ghtHjB-
zPGH}jl6Td~#y>Ch9-8(JVTSC~dxBT^38~99hGC2Cs{bR^|jExOu
zqlk*v7i>{K@Zx)ZeuY^j&>TgudoNZWUhgSBiI|j2f(Ru)TXYRCbIz0A5jl#ZLgo*z
zyBCUVjFeZ!2-n(r0shCNK3e^N`+I0LFggq&qn0G{`K05Ekss0O7ppM4K;E!9kdXxq+2pIb_
zxDO^Z2G0(Is1mk1Ms6Jt&~EooE)tOuuGFEI>Wd=JP|=CJ?f(m3v@Vn*C*kTR5XaTw
z&4x7edn(-<|ILJ
zJB>cDF6h4|5-E7MVyzAHbTEwnJm>`%J#h&M>2L*+U?z;fA!v{nnb(H(PT~}hUQ*1@
z0|zCtXRaqmS&o=G^H_CPB)L8ho*m7$UP!EOa~}BN*`kDk{tT1&YEtjNWe{1e>?r@!
zb};ZhmkNhwA3lS&zFP_8E4{cORnc)&1I1eb1TLsOdS{xxd|?3eD>~X_&34$WcR*mZ
z{VcyfXE%fWNIFTNIdx%jTWUj*c(Q)`n^-J}ocTgX*^D9H-AMHe!;j^hT`^Z18!bED_tEy{L8+-WI~COTwvT)jIk#j@43Z;APqO7
zYa>2G|F8Om|E#eoB2$m}I~M@Yc*9p2A_IbS2At>Yh)7!8cn&VpOUD}2VnINQV^19~ZkBJ4fCcM~lWwMA%ug#Wq^yd!m-13ILtE@73UOCb7Z=iO?fl`+rgY3x?D9mFybpp38^3hx
znoXd4sff$^WkFEtpZ=j>Z2}dbtt3DNX+1)rcdDhigr~l3RimYC+Jq#X)`JocOZ{s;
zDd-Hh27>AzTBpGViswvZu$hfe#4j+SZmh)%lcsnxl>-EHo=nUbmz9@C(erP~%n;BY
z8t6aWQNsTqQcif*%ei@JLfTxq$UG|Q&!QeZ>+GU(WLKnI;IG2M%TY>j%{cVeMsjkn
zI-Fo$u#d7Jxf?Dsiq5N>;2l7Xw62eNP%}Jzx-I@{23#2jOYussP6n?IeSLW)S{Vio
za7}F(X~qD9)O;4pAZMRPgF}0_FW{6#PsU}a1(N7&Oua0sKfEau5nTB}pRzK|)t^Tt
zZ!=jkf|y?n;6f))n1OzD`m`;KMN#ozIkF3-3GB*``4FLmj~_pFUZ@I&>quH-q(+?l
z#f!*v90KH{&%PVC^v%mu!#cF-`70~lZMKmh9{nEaxMw_fpwy~VRCEHcwGsxI)s`G4ae*+;apzQ*w}!Ea
z|KNLwYOK-6|DNp4*8J>}*IT8k5ggAg7{Epiup2G^(;(>tI?o#*)obH_^M9X2`6P*^edo@`Iw8~8%~Xk
zH^IU36sN)7#+asISbmTW9S|%6qK2`5!63Y}8fn2e;C17#QZN%@TFFC!ahhQj0Nqm>
zAMYT3t=+X^-CO1f(dW4(Ij!FZqX|ktL`Zpk-$4IG6=VEBCX+Ck2oH~UBb1>qL@{V`
z0T%fEyHQJ;5B0km1GGJPu%{U0KxRW4jUy~lS=TSY1RQ2Y@)Wkek-qbcp(%U;%IwjW
z^g4q`$wLDQtoUooPk84-aj~heo3ivJ{V9th@<(_FEG%~8-EQB7LI~|<^+PC;?TsI9
z+pE=-^?+nb9~dUPfDB8-Rx&+c
zXHUfsI>k^h&)>d1ySk`}!rkr$r!}jer??meM_!LfP>_G6f=9#C@J7bI;vb$vBAHT}
zt0#g=7onxa-tg
z6cQHEkqh}xxJ=_0P>4<&B>!b9N$zF
zVMXatblA18f3E&x6{t?^+qhHC?WajdO%yhwFq$6I3_U9%QaKa(^?ns5CvdER2Zk+#htz&d4lG
z29NJaH6d72{rwH}afj~ngs{y2PN2T@;b%j*<;}kNRM7BbOiVbL!N`G;)783oxS7Eu
z0#;kcI60H$woz|!BglN+8LwdR_@Z$SzsXxi;SFmttPeG%u=vH?!X1+c5{Vv-!RM>s
zT)goVm-yjsIMRA@z(OeW`Hx28{So~mGVm
zro@2ajWB{B7X|JDa52bhX$g!al$S2l-?S3uO-$@!X0mSi{*-oJcuf7RK=34L7asJI
zYqA0%1JyNF(E{FV@aDm*1gj`9u!`%2B;1MhPag&5;S|d94l8qhZmztZhj_i7NwtUy
z-YK{j8rtF8S#XUgw8~e@tp+b3YY_}!79Zm11gVz)6%JvhgzSU*lKb6+Vtx1}sF
zeQCS^7Dy8d(_uYjqxXpAU>6YNbYBMryC;7RmYxgG@3Hx?^EWWyy>J0SmpYo=JH&+Cw|mSFCA5Dy60sFG>W0jp
z%DtQ_{_3aArdfOA?{wss1gtKOI;-gFT+!7@GUfv`dKX1YSkdddHW@)&MBg`i;~zXD
zs^P5_7uI+XO~QXK*If>}1_j}}=sL{Z1OSy!%c&1uf|RsvY%Gexmmwj~_wr=u2L|E_
z+B5zGnQ{9mFqMwq6ob%Fh8DM@+bvH#IR5dX8I2?qyVDPP#8FcZ{
z)_#_M3J
z1i=;079!LTJ^=CYvJ5HfbS);&bX|ci>nE;?F}>;$cT!1T+}@=zhp9yU9f~i0bTE-nE&yc
znhH`<1@N%0b`^dxtjqEfZZfYw-dHq9FOJA`Q=3yD1>-YC^FQY#C9m)K*ZBjClI}I4
z`?`y*5tI^woX!JVByDcMn^*-1eo9pXrBYV*f(v=yA@AJh&c8Q+C2XJ@c3DxWt7lkP
zh~-BXBgPMJ5OBSlNz-8^W1&^pu4s@)Ot19N8VW(m4%OQs_>U>Wf1jQNtnw@<-B*!l
z6gopt_uE8dQus~q?wtZv#_c&YObu#_Tn`qW?d=q}6B3`=V8mT<6|+FxoGaiLAUIk)
zu1>KDnrpB+V(73gda;xN?YlnjEbu}t5nN(2+n5VhRPV}+YuBIJo}6!Te4Nm=US%h0
zWg%NJ$=kP&Chef6E}vfjBH6gf=`5|O!A6&ru<-a7)W1cYG7bjf>X>g8^aP)}X=DQG
zK^1}S<0`KG-%KR~qyJcM+_-fNw79aOB0zhHkJC_7dkc9pIA*B&H#2L+*9)+>?M18@
zJ~eVp;d42ZP=u-M^Z@q^6TIi|jp!z`2(`(5AMc_1&SG&_>on$cjO
z2lu0}XhU+9d!Z>WesyQGwFzLuC(VTZdwOFBR^h4gbEDa-EATT>y>ex`KQj3GEY-eK
z@HuOXZQ0Xh9_0O@G=aM9@NYnhW}7YOC}Gkgv_P~cNeA@k8IXQ
zsP^i#JJXxkcPh8;o?^*ty`(wXzTZJnc003ccaD^eW5DQ#%T8V*jRty(ir#1T=j^g$
zhtAW~$e$#ka}
zr+Qi<_@$J(8|tBJ_{NvgJAJQLiN_og!wv3(J>~)-H)I8Q)eJ!3aw021z
z-QMehCU#?3MZ%g%!FjpHpS*se^lemenM&H%pD|9-s8-HM+z1dHgH&f06eKhxM_nbQ
zrR^8`BbgkhDjGt@1|2}f7Ao-JfXRy;T*FN4m
zA#pViUN*9+XlmLMp;~ts;v0Bey;irBBtabO4*6P&<&^a7>s~u
z05kLT>(?8`ZEn+o&2e1D#4o7mfbl_IdHL#9kTCYZml`8tP&2N!iIR9tzCGD(t5>GW
zAi7c{&9z5&)V_(bz$Q!$HwBtZy*#Wg@yuwL=vvB6>YermVHRJ2R@$GdBuH2g
zln~t8%9go^N4VP_9)|C82~Ub`dn<>Ik>wa1Q>k-zp6f`s92Uzcv}bjyDy2AZuq|5U
z;IQnbJU0&2XE7SapQ2LdqawAyN-rTKnr8&dYX|$}U~1u6MnQ@x2s7_3pkiF=$tCB4
z*GY0@FlF|1?FYfpZ3A`kE4^2KSsp&zpS^6=6JYv_o2Of>
zkfW&x7L}OTeQGUaPau%`3P4bG1(P#v%br$Fze1FD=(%`3
zB|b(qiqP*7tUV+ggiwYjB*>?jh_s|Nq@&FyC9?7TJ>ekn?+FK#e|LUe|F`z0o%E+T
zBAxoX-O_*ON6y?H#YTE&>s~{H%9)`;LF-r{{**7DFYVmZ$GEHdc8<$)dec{hsp4pE
z>>$cQlws6lw#NqPsNWlmh_07TKMuMfu298De?AbWq6eRjL=kz
zwSUNd`)ZIkjUJPC;puK`V3qqsCy;pR^l69s&-S9LLJL9mu`gQPsKsFa`&}kjq(7l-
zDJ(3G@zm$vJpoDAt{JOwVBU4QsqG%*n}CXm*OZ;TdT^SNk&&2z;vIdo17=$nhF`;S
z2g)boVPU}ZDC0g>b)e4xkkQ-Ue;Rbig-F7+4W@aoUcOXVdvRf#@fjhIA6DnY5@0=q
zscPdex{=ZDZk^@0%~0YTD=VCz7)hVj(Q%BBdF&?wSDEE*=Gc{$TWwDEZI$6i)2&x$
zgY0#e77Wkb1G)Cp2GvbA-i3+Cr@{M-p`EG~&Dw_%W)Ph}Jj+B^9kjKz6Bcm&z_|;5
z{_F!gbD5Nl-;QL?YjVCpK^Wj^!dAN%DRc93HGj?)+xFsRPi%j56#
zN-R8WdcK!!Vv>iFsTGDgU#;7WGcl<+W0-J_uyaC1EDVP8x$Wp+KvJ58xYZiRf2lNP
zEx4Gk)CZ0q|2(sTc?`5m2jJxG&oELSpJ!$*%+6li(y|Q34J04J!eBaun`VqZlwpCR
z!deg-M0#lv5kLGjsYy3>E_~rOq>QUInCAAo+z{V$=VEKppqbV?J^j9Ny`bA8@mqWh
zzI$*v@f$aWdWp~-H}<#YiF=>IQ*+(eQ-jO3Ji119p6w-@4>q;hxUD1?miPwR5Yw#r
zA1_-oA(@m5Y)sI@1hovk)o@b^U~m
zQ9!tGf(otjE9t?LR%#4_GbsWmU8!+8fvv@M
z`bKwoD9eM~)+?vpR3`E=pD%v8cZ<)*jqd4lbIoHp>sdvXr@TAz{7Pc49niYP8mnPE
zib?MrQG?$%74houAGYm6ZVw8>JuRz!e@n
z8ufy(g#Goa(jZBU0$&lyHWH0{si|)?$Vp0m?%`jDr+)Ke)QLWepg=+Q7BguN!G7V}
zFDn~TuSf4rVl>Aa`7EE$x*hbh(7M6!;Q~hcVz|c0J-~t{mJbH~Vvn$x$mlaaSt6+%KC&IP<=hMR1V#diB37gw1!_ccy(Z9P3{dQkj8RDaxN
ziD!fKJq5i;+&)Dp7elV>wG?1JU+zMtJhOA(PIJpurw4Kb=$Lc1fh7mxZz*~hI&Dwt
z2gW-*4uoIbn1F{KmO;sFC(_y*-r8K3lqPyGqY=R
zVU;eS?slUlQW+tjK?j2Gi^v5IPxiw=-j9gFsMA!`Fohd^*GOi8|KwY$~5D;HTS~9BYwqBSL@+!Hqkzq
zIe-0jQ|pzSmG>mg)!QTD^(;B~?r@ExV5XZt_lcpg#ps01C>EtC8gLMD+^7-uUfDhm
zXb2;(EzG=ho~Wl!E=$v@q0hnpnyyKv$M6$n&@aklmz_pHP$Ur@Utfb&KeP#VD?r
zzkU-hyKO5a09bOf8~d-$OXzp
zR_N3DdF|DA-PK-WaB|1`-(IA+OGo^j9vO?|BkROwr1>=SdCc+@6kh5urelZ%p#wOe
zuq(R0DTPpxkG8h3^!gNa!!|Zp=a(JxcYM)sPnRAcw!XnZRp-bCBi&D@%B2vtQ(_ag
zPJl1mTQP|mrmGuZMJ+2j-&?wwxl8SyF{Pi_-4Y5|xv1l*dcn&TBN>JBu-To)?a;k;
zQI3x4v;C}zbSJ2fCkN^BPVU|I5Onghjd&RoySLP$u7B@IZ}K&?KXc=T4b@ajSTcn|
zGYCN7_Ypt1Wowo5V$5vjZ1UHg2@MX@?PvX{WzNC~t@BGsI}=(Eh;}p^<^HrONL=&5
z;;qnUwC#G)=v`=QZ!gXBL-k^m(vO0IIOx)00s?<1=Ws)Em?{>*T-TKvehsjIs0~JW
znvVLxES!6_*zb3BHI4Pll_t|G7cNMtsHE1^m17smtRFi26)g{%xoc@;08N$Nj$SIhyt4S!XJW-?9
z(7?S;)=MC9c^47~D(sJpnv#e8w>Cu87zD~8-8uanR>9;
zK^~IJjBH02@7?JE%UeJ8Ewr!qdj34bY1!XtC>*JmsW;bDXe*MC+!4&J1%S2~}$z+`U1~u17m|Du0@D`tfvlvS<5>^J?5;eY~^nqXr|9
zgqwNeCk?x{7AXQ7|7o&W2?e3Y6x%D>(7^QT$m
zBbH}WG5rGFHhE@IpZA)HHNxIHRb9GBPmr;wq
z^GXIETlAL?KTF!$Am;pF+7@Kp)-oRvplz0#iBJntvUVAX3A$m#?tYAX^z7L)-RAwI
z5MiJJ>Jpv<0tT-#x1xzw|Mvmc<9;$%Hg5Ejc=jI2*^Wc?Jq3({V=Ie_e8v;Qtu5$r&Iq1ISwYH4
z+B>zt#ArW+PKga8Gns(e#jM3w2A0E{%u<^<_V33O9REQ$Mp(3RH_PD|M55%HX7!sD
zFw7jICpEIM#G^RNNm`z(R%8`jZLTRZ#Yl7}Kp;uZE-o)yuPoj)yJhu-#K$L3M6xGK
zpXRwYeUc;f?Kg5J2Me78MxCe*aYn|~+1uDy3^!UL3K%EdrKS0MAApI(si!B;1VKoR
z4f|pfQ6r~W8p4?nZ8*}-&Y%B|au=RH18+GIavY83*>d2Oax@s*nd3j`2^0q&bNw}7
zKw)#PGeH?_2Y!0f$}c>u;j&i#Hlbu)&w%VzH2q#4ai)rtFABAnnQYHTDKn`j4Mf|I
zE*HEw=pPbN3;LA+<-fE$-06?0-w_dKpT}@Sqw;cCneRnfU_j-S!1h3ppb!9up|U%p
zo&H2u;p=7mvwDV2ymGXU6WoRxFaUxX5AsB~aG=zPXG4*E#$EC4%P)o%2g0vA7DUJK
zoyb&eK5lDv(O{q(p&quAEJ#Eh+(kiRcu}%0qrnJvL;b*J=nS6w_?(2PApG|;ar{_n
z478-r;*#8mSRk=SFg3qcneOE!4@?n*F6dSYwTWMA4+dGJJQMSIUEQ8{7d-Hr(XA9x?h!Qx2`7mtV!Oyb
zhfdE{+4TO6Az|^?Tvh?Wu=lq#HQ7Vo2bnI;3K_f`;AKH$?M96<9j)09xQet73|wEV
z$BjqBd)*0+jA4lt`JnD$Y2HMa!X}sKM#lXSO(8dHpU&70%UEg=_e~420D-lRiH*9?2n0x8mxgo4kZ)
z-b6;~1#a5OB2%BBR|bWY~w0o*!L=Q?X)K+jQ@2+tVsCo>gCr9@$ft;~F?fA%PV>J|JeQZ~gG6Tj!9Vq@t|6o3<%^OX3z76ol0bTsan=TYiZ?$=!XZ
zEZUlkCVBH1+$Pr2@6H($ro8En=g2fTeSyVSH$+wSql-RdT=3(El>K`q9qwzxuSOIG
zJI_W|ojj4F>CNlwWNVx1cULn>l1Q133<)pRP0)ygNko!0^BpBjdT`dj&1{)M=)5Z>^x5wxRf)3)!Wu;b9_r@IH9%6clH{jMKkV_$1r
ziBd``NUM_@ddCz_Iy
zx%FNcFfF{@O2=ZBmp+2P@$vn4mczMZZ%X{!DI3x$Bn~JZLlpwj@UOcWD2^3O`94O6
zq4e3D(Xj~+zgFS$Qzl$r)FysTOHszFmOc7G%YHB>s*I`9$$c>q9Pnc*%htHO0)uI
ztFSKz30lLC==Ey|<+c3^IQjXl;VK7Q1`?Xr_MI4dLONlZaV}6U1#7>}X;GGf*}HHA
z4IeCr5@*co;Qso0_{$e=X_pkCtAo%oO{ITFYq6DzDlQ@6)2AU+nzBQvZ9-ZuMb*F_
zxA>rhU9+X{$z^Te6Vtk3X{3;_gc5-LaByD>Pa3ks5=E69T47aNkaJ!m{NbG!6)
z6KsK5DA-w>nc0n`_9AayqnFy*+1XS4pmAN$3yteha!a&%Xc3-&1)^mMiIm$+pP6NZkj@Z?Rl3VN%d>bNRl2IYSG+Yzy>+W7~
z5QYM!Xi$3YP0q{&3E7%;W*Rqq$^XLH0zAWA&2YN{(sdvv!M)kaTpOcW7p=mD{tLE_
zn1XmIJP0t&YGBF6F#3+g79T0QkZL17Y47Um+0V}|_6&_^ya)(zT(Vi2pIpH?^~qaN
z(}CIb&g87Ap8RBOkYkk3k*}T`Ldf{i_Y+AhKm&<@A&SfY)MI@emk=R%unq8(!45x`
zC$POXPLs>G2&F_T2*PM9L6^nw4aSZ%yLL%#N7xKTCk+#t;G-rUY$rwmPEgEW
zJ**8V(UrEttE&3-PN@0f!Ur4{`qHRn4t>zf&PdSniqU9kz6A(%7FP7Gdor~z3QCWX
zZfGWF%zV0ZB*^CXV;C<(u)=cqFj#0X-^PXmUnaD#aBQ@JZ~{FS>WQQ}*Em2~as7Jx
zPH3IKdbJ)VJ;+|#3n?LF_;_+?U8SWfqxM
z=%TI)S|u0pd5htN_8*?X1^EoCUEY<6i2-_LR%YggOV5XPvd*w;s9jNOHZFcMUgVo1
z8%Qd@n>byi>CGZ*&`H?jhUgqHO&^YTT+GT?9ARrp(c34|JR9ns2H!(9Q|^N}HRjOG
zX3hN`xVK*HQNYT$7yceLrDOK5wvmP#ERlQtpG<^EA?NyeZ{&Dm>ZSR)y(`U9LS$vG
z@8gxTj*AOcqay>okqXgl9#4KvPJDT`FY0F*t(eV)^G}^Rw~LpqKf{*FxfWLutLmSV
zV_*9zwcAf`CVRFOJ;fLKw?9ShzO!2Ir^bket?j7dCXtyv3AJQr2IKWyM(g6*U~FkH
zx_R5S#Nne_w{AggZ#W8v!K7iLa1glf(wa%YxEiV4gZ1(E+nl+|N@{#xV}jDf_*W%b
zD&FK38gkNyvLG@MZsPOhiu~UUia$o;FX%g^ZD#w^lmB6}O&FRgmuEk92QeeT$EEg<
z(43S*_BUs)JEXty=l1{qY09#E8k(*u9Q)gO<3Y
zI}E8`ZWWZ33Hv(!cBK}JQg&~)@D9k%_V87a#R+-yCW5c`x>M@x6G+6AslGRuNkH$J
zLQJxCAztqt#FP2TiSkU{gJyYQVNf@rAzLLbOEF>t72W$gW*@6Q_5Jd}Xv!B`2&NSC
zB>_weD{z+%98x%rCiE#Giy102;&xmtKNrbwg#2>)g<_tLyoZI_UksC{`Wr2OR>{w1
zVW%<8^1Itt{)FCiX)#va>GEY`1Ynbl%S^~bApHP~4(JDzgFrtJiG>ZF7?@(_5=b@l
zFD+Be;#(1`p?Xx%Lc+q4FhOZZ{oCND1iKnB_~|6}t*fkeTQjQY`Sb-W>82M3gKpk*
zZfHGtNW1up4mm7V&9r{|?qm_VI~L+!W{p9do;%6(_#Wk0HNQ7+^!Wlf1R(;!hjQPk
z&&0+!*^8o*KUzLhBO8MuOcxOCHs`H1VX=eA(h=^U`UqD+}7{f0`nb^);
zbF`huewZD=Hym0Lph_fl48_K*IM==M=Tf^Ng52RKXM$Zv%l2UOMn+TkpEMK2h3^ih{xh?2)i{@8Bhi77}K|$Z$C1iYx)bXE@6twJNwbX7hhAllfyI
zh*K<9T^fycB8K530q#u6*1I`WEV`xcN=fy#=jJ}xl+=F5CwdTbE-Pdj)?u82eYMkb
z`=$rHq)Smsd{a*yo4nb4s7&f_5Ca&>5ZUz(5Ku#!^L`kBG;)|OhE+(4!b1k1rP=IN
z!r9f08ucwv>z}%-)tQMDfh4OE5=pHWkbi4K!c6SDZmFtD$ZD8u-{%XvQqlJ??7jB(
z=OIhY1u)}Y+Zn;sPydE
z>8y%-Q0<7h;?4D0wg80KwJ?41$`ww&qnN1;Dgw(&6}3Q)KX_Q2Q@24DXOq
z(-{AB(6dnc7#CNz6U)lIyc2Yu7|(!zhp|ST$ETgFQe5g^tam>v(dKPTcYW=BAjQMW
z%V+sidOBjqo<7^#?pFBfi*;P4hrVfXRu(52SxiMjg?@FvMN9>cz`EOvB`60Fo5tcETB4f>9XpVK;5PYDX9RH~c`l~z!K6=S}`^A603{DzC(ge8g`m96BEC0&LNWP2{Be#
zUpnqFcwR>*9BJEYEkN$H7`!229v;w|g_NC=64}s8i5eFv3qtA$XM1~<3bD!!Lp~QS
zD9?m(aq`i7Zb@pSxsY_yPfg@bBQO4StIb2#BdWcl%*b@BtMd)mtH1YXjv+4{dY84E
z5@BOnTl1E0`xpQw1s75K86%kJ0TdYE1u*uyuy_5sbq1nTZ67hR81NcE@%v?Tj}xhn
zf|rcUUw6AX2hpE&WjPvSVG#?Y>lj2#yod9DIXzKSaHZZto*8!7d){i;VD!M+JDE-L
z1OkLQ1w%F?J`9
z{+d6|iYYpfVTBAAcA2rN)D28bM3Yltp7B7=H_JK>L5r~oy?|I78|^55Bkvt~Fi`%x
zQbS4zcAxSxADyRe?){C$cQ@kw`swrQte3Fv=&|br?$;UYVCGQb|C#xmHiv&pdvQt|
zx@+?3(Kge8>L02D76K1)_q*P)w9Ir0x|!v4j12n>NHcJ7r^VP0Rdh2nBq!-12`&v5
z&3@tb8*i}j7N3Dy3^3K*t~`lTyNF()O4GSzw!=NZ-ss}>MnBW6%coAuHhitR6>)VI43-0>
zI&yb3JKNyr^PRztJvbatHC0hn8zu?Ta&RkMX@Q@TvmfYDcPy;ZXZB&zw|lovbSvJh
zMl-}6lWv^5$KQOXtvA@&ax^nt(^lu_+tV!t&y0UvZY(Yi^q{%T!xJ`|+MB$(m|crl
zYEpWq20u=kYz>S(uf~gkJON|btd!P|$JmYD$2aI_e6<|(O3?FtA3puaBYk$VOlMo$
zdXfd{+0>NEKb4cR8TKGZNELmXz>#Uk*B4*lkZ#>}+;*Zn*jcV6Gkx&QiH?+3y6P0u
z;qGp!I1Smh?9~Z*Q6G)WW8Ou#;N^sM@gCvL5onbTMCzO`^hQ(
zmO#xR$R|L28k47q`mu+G`Z&Jm`{`k13GKGEEe#4P9T}O41(n7gmw~cLfZNU6TcWpg
zh6sgQyj6(;5TE~DdHEj~sUeBh=v+v{Kr>1O?51X2UEi^({4zH~SxJzmn3+K_v|{3y
z8}0{jiHt<~n7FhXJUH3g$(ig
zPUYIRSE(puNktUd?U1RGq0A`?VIySL#4^h)V>^;clS*W$%;Ty|Aw#vLNMsimU?)$#3^EwCXk6eg87v|*jHDV>XaIF;9JO`io&FQ!e
zMc;VW^Y9_h@;A1L_wU=NcB>f{eW$N+Df(S~?J_qMuj4nH{%8e
zNafG>h3&vi&kOLG8^mx4iyeMR;Q>=MvLhwZg?ihzaLRm(&{;h{Q={nPTH{z?Ffdeb
zJ`JA3=L_T}peTg~{LVmkdlyc@`ByI^x|Gl*z
z)H`#A3JSV;r2_*pnwdxxL2PV1;qMT(JP4C{Rw;tH3S>7@)OZs&x5-cvfNHo}nK7|*
zaR~(<^c;V~AOfez?%3r>&74;0Z-SJlDMwh8Azdt){%AYHfsou2x#S3ui+
zdMd}!hgS9)i3@QGAZ}o9r!=aM!vwy-q4hV%W2&maTzoML0`T|k$B!FfVa6|AdXcFr
zR1zH(RS34vJ6}y5ok;1gWy=A3M!_~9B4yj6kXIvIM$Dx6?5e6mS~~`3+MDCz#J(oZ
zD$FiWahJK9lf8O4Hf_40mO#cftuQwb0pnEd%Z$9LxUR4fWaP%i`s3>@OE74n
zy;m?eB0c%HR2@E%`Ss(CDF>yRk+}mtaX6)s%OGz9zt&wUZ7d@_J##!=VLunk#S#l{^;Nk+tq#&$EDHrH*SE2(i`Ayx8>!Uu
zq*vK`e>$0a>8=v5r+p>p{#DHeBYkJiD~SgL=sD*LRozJ(?=&?wv6~Q%u5^&58BcwF
zvZr~J$EF4a?vAUQ_hYj3Q+y47@V)dC0{V??w#6j8x7g)|MeewSitg_27v_Pde0SxV
z(5v^Bi6Y;4YRb3g5~GR9$nx>!VlGW4`TBX)HhGiXkwS)A~z`*C?Ya3GtC)s*&
z^Cwcr>r0A?ibg_n&4chj4bx8QT>(GAA=Q{3IjZz~_idnqFhWK!2M)6S{;9s}dqL(p
zWkkK5o%L&ezPP>ba$%>Ch=|*T3%dKu*~IQgMD&08@-9#$_Y@{&WKnVPut-ugevqy6MfMCbcTEYa%}U9$7FVUzeqkW=M%D7x<^->iNAo`T05$<3`~SqYv7
zEz4ApRcRQ6IOzOK9G~Av-`s;`8@(jzf9&xeLWF7N^s#kKC{j0XSi786cc!8E_KWq0
z1nrtqQ*{&C9{(=+`^12{qi23e2E}|sQo|nxnEBuwx7Jbuzx?Sgv+t>be(%YlrfT9V
zb$5ZndGFlawzsKzX#>UNzxa*}Kbj6`z~%jKRW}IJ4Y2N4rVsT})l(Y9;L3}E9ES=q
zC<4(5AhBbWW0WjPp;x2kiG`l@%3IU5{3#q-poMa1-LdIfRzCU}p(4zdVe>
zo8OB5!0*1G4KTZJ6!DhsdUqcfM&IH0@_aBA%uRZ%i$x0#?YXc)=?KW|YfFSr<
zY@Y#=;MG}8Dz|u7vY3CETHv)M5M;Wiw6PE}rgUOFc}Cq`yEQjLL=jf2SUlLh?DV>~
zV$U9*Y=P-qW2;eCmV<8LBg&&&R
zTf|t49Rxw3Eyz?ks6;chdiYCn!$>fhchxGbs148esFg1L8e!!TUtVyVEWdPTmzw0*
z=jf^`s48mCNra!u71}A=CV=X$ZNJwX)`=3M1C1qqO}&=%sU*zKjx1Ao0PH?iQ@D#6JYPY`pwA0MW6Lwma0*0!@UytuXA
z`V1rKb4aJ5NEjN;YuD_)^@0)B_Tv0?)-lv^lqd*4Zu*R61>3}_V>lUJk=Ge}B
z-%g1KrbP$+$>O82S3q%=0*kPn^kW^D8angv!75=8Swrj9lccrK%
zmCx9vr;9svUR(<06BiV~{X8`zXDbOt%rFA$>t{Rq`})sTZs>LSTclv6DUk4uxQiD@
zl3si~!5?gv_Jf7hz}L5W%QckX-#a>(O$#hO7fq)Wx;guQEqvnkCDqKFZZ5H%VZ{fD
z;Wk~qD(b}6fUzudwVN#4B#&dJ$_{NQ56QwWw=Wm8E-=dn&PqHZy
zjK<37UZH<3fv3>slb>RMAI6^n3Ku&TY6E}GjvJSSo29Yv9^B{MQ(nrZ=#5%{$}9iU
zZn%!IY%aO|;eJQUecPFH>Im39h!x+N0A5a`i_>;snw{$KYROjyQRNJ&&Q}{
z6MEo8p&-Ei{4|c68F{N0Fi;ab@o*p1JCKg#H4tL~f_F{0Hb|yPDwI^ezw?$;9Jr9o
zpb!WeL$4XnChJhs(tnM1`DR?ZZd$B;Q1a^v<{y-&ooyOf8dzp|i?;yl!|hf{?`y_g
zSJ?KdYtBzk(@Ybjb9u6+SzhU-xx2Y>s33?f_wV;B|LTbhDi75PFesoTzHC!#c<_)^
z0V8Xi`nv;8o*+d6UXjaFqjp)E|4W2*eJv_CXA_KoWtgoDy^lVA{JQ
zMM>rA9yr;8Z_e}$V=F;oe)Q`N
z;Y2Z&$OoHC_=JuO4blFXM!GDZl!V+eGR%KuuX$u6@r3|Q{^RUx|c6OT+k3h
z6XA*g5y%Odh)J?wl2@Tw7skm(MznkPHjlg_g4pmF=6{Un4;_W@*H!hg=j)mU2vD#n
zQgd5d?*|TCx8A>v#rpDLj!jQUh_kI&br1BNpK`a-KsWE1&lDb|cX
zAtBV@LB}$I)HE4eU-+HFZasnAhc{teyK?R+_!=@n*KdIq3J$9vh{<&OO`#JDkNMha
z6Av4ptn6&`;WFqUMd`1mTTGXysewor#Q0d9JKk9$3PGHS=K_8V>!!6r^^kPthFU*n
zelK!zLdd{2)A@R+>Ki5jpEu+&90$!FuR+(Ay~@n+{KxSKhOaN@>SG4x=8pTg9&)V}
zJG;=IYzU&QzsRM2h?F5Df5n`qxeaBC%jikwjgrIe*8FBAC0W$h%`_vX(-K^{g@q~7
z4$of5gyguzSMn8<3g>P@X*!CG1rIl3={Pc(EbOo3mwmTJTG4*y#
z+J!!N%nKqJ2gj~pj5gp)sH77opGF&_`W(k_7wA$58L9!Vjtil?%K;l0BUEQgoY)SaK_VxB+E{X|$m_4uF{I{QNk?U47FeI^t5S|To
z-BplTTwcd2!Nmf`UndgGOibFqzCh(@I$5S$^kE!1gyA1U6IZw~2c-fXS(NX_#esSE
z)$zJ!)9}L$%*+Z33iqp8OjOs>ADy={S5_tks#2m5Nn&YfskSR$6GLhLKmRmw>8aog
zAgi2gJwwqkIDCn$l6|rWag%%sZB<>HHO{-ZJexLna-S>w9ln^-BBoOF3HGq9TX&g%
z|NiIc=^AYjD;&jNSc3?am&aiSPUZA1m^L*q&{eL=T6XyJ#GQHmqR=VzoS0g
z&H9j2CAE2Ucz75vDW)D*HtGs(ZV+3PmE$=Cunw%{zfv?g7qUX_9GZpHM^bKy=#$&H#M2W;bM`4bf-EReDi}0El!BPR6;zMn1qy;)XQxF`}
z4KhZLS;7aoo|35h6&-h;W%^XYeSEnAy4;P76bybj_`p;^CvH1CJNPpe(8{Z=_B(m<
zG!VoR<^B9#jg#CVS
z5Z+0w+>%7(FOj_l!r?vyPNy9X2q+!Y_TBN|HII#5O>%1E2=MIgr&Uz3Lx+qtCM2T9
z`C#RL?p&gKF>KHpuh;lWtFzO5Rw-gjB`RWU&+x?F
zy$P{e=vWr1a)qy+@P8xpzS0og?g{ZssDDYI!I|FDr=t=+L1X7s2!>z6o%RXh*VmmP
zK1}rvFQM3&?C}m`*J-MDkHD8fNeI@R(3SW&!5R_T}Lglq>#nuxG4ZZi^a_}JO+#K$|gL&C+x##Z34
z*X-pp7$e~}mBCKoykO%#V6voVPuBAViozG0+Ku_T*FeH8HF1lMKb!Tm{br)FbKT2x
zZ6g#HbGO(Xm8*XxHwj4u_)y@@t1!iCdjYG%CN}~j^M>GTv@;lW*bbk9wk>dR%u?@_
zOwj~Y}Al()9VvLG0Q_j%ghX-t}0>S
ztN3d;;a%jFqLJiB55&!7A)gEiB7u#BM=)3;)6HU6ug4nhjj1T1Tn8x!>Ek%KQ5C$J
z`+|VY=?Dug$oUY%O5a9&7u;QhIU}KFK1?6<_?1D`&bI9S;gK2PHU5)MFM#lv!7`9u
zU+9*xb^S3x``4>S@}~hhXpEIBLAFegxSaRrspr(O@krnB=&?V$!~0a2N6+cqEtf*2
zPBHSf;4dV_eQ4Rs+A*m#ySEtXd}+-wUtHj}H8a<}@I9yYlmBvwSz64qGZmOMw`FRZ
zvE5KRi)OpK)E~xt(cZ_~{oVcX+*d>#YZw{vl>fLWnh4#A1hfCqqemZYA*xQ2G!1wf
zA1rLHujgo(p;ybhCW2^z^7qHh8<~xn@`8frXTKik4#?Om=JD;D55`~Fw8oMXW(95H
z<@59NHs{VU@q=8V2+$4DDEA^G32JOZ$RzSlj0Pu!Fs~uYZ?On(+6j>YNwX^z}o?t|7lcCn0CyQ?cv!zq$aB!0f0LAzO*NJAHDU~HYH2KB*#^Y?Hov2v9`RGpI63+Fh!(fh
zABI72EHX_v(7r0%YUu>=um8UxM_o(x`$I8sI?ri!m=Mn1g_)K>gnE)5q}&HF`4)~k
zArR>{O%^+;tBdV&^M(-6F^{CDrq+#3t6W7fwREjc0zadXbeByc_eQHj%ZNL6L>#MK
zdF4wclQzmh%gk711zzh{u8nD1K_rhJFm)3G|I3zJcNs~k@6SmPb%qCwgs@u5%aw^g
zRTPsmPw(S`7v=EK5GR>jZpm(P#f$&cTL5H1&zK35}6pvf)|ixo7aI`*g<>nuYacJ|j^{JAVTE4w1;|D;BL
z7{aUk=-Sn*li$AssU*o}!yUxi*B88D(heikBRGZW=4-ca`G@7yL*i0FH;*&!-)r8>
zoscOn1%4rX0r9~fFE)<2$NPQ%fXyC4RA6`u0M0?F@a0_lcvs&%TjpyCSJJpONIfV*
z@lh$u*q(`V3{@(Ba7xNhEBJ763Ir)0+!}Cb+lysMJD9rztys~EJ-ZB73=CNDA6mLX
zNW)|hb~^9fyNA{T(utX=S|v+pqJZt-sDah!*@*^{`%b^*OVckI*dA-qKR@3EsBZUe
zRVuB$cq?fKV17<$;-PNaDtc;Xr!(8ejTX6-dI-7ZfX>PTECMZcCYxPZu5y;|^9DFr
zHGyyeuo5mUQ75b?TuHfsICnW!ShyuqXDD-6C9w5C@dklb8DV=b;-q~j7}
zU9vTjk`WATOMEz-?K4@7%EexTRa^LvLi!%Nh)cuyc*kOGkYU9?ZwLMnlJa&36H3b*
z%eIK9DBI9zbQ&w%EJ`h$EQ86@Hjii&NtLU}4UubFLsGs@KnlvfhWh%uf?Y0LNXzMN
zZZ=?g9gM}ts1gLghaTlVQG(U+DPW{aj(FVLnIb-~dR8KvlLKP~!ie89lTrEDm;QeE
zbLm-FSlE>1R<^gd^Qx{Q)osE=E?)-vgSK1u@#LFtR*;5!0AvM|QGa;MfWgVk50)tX
z4-T;R@pe|eV5a0@{Y)x>3V^kw1RE{~2M78h2K}2zeiwB^o0*FXPitk?I7l{bq
zh5ZaVwHa|TDJc026LK6VLvcP|qOeCgVcJo7a|h@mn%dexhQPX9ng?)*FA0gVj_CA*
zJhSyvmZ>Fj`KP(o{kfAV^y9sB{&$%-Nb~x8UDt06Uu!M=)BVEh?xC1NLtOnnabra-
zCce%}10>4aE2t(3@2Vg^Q3Aap@5IL;?Nlb<1LYv%t_P7;5$kEyY79_FtJh$5L|Vgy
iPeWoN|K~qY&dFJGpHYcHcMX0aNnKU@Xts*gpZ@{`%`apC

literal 72322
zcmcG$1z6Qvm^Zo+6{HoULqrgf5-CXq1(i~|QM$WZ0Z|cA5s?Ow?(PtzM4C;fbZjywOh8M3Kp==8J-n}sK%BdaK;YKn
zpMl?aoxT4aeq6ABsO5w}Fa%@&#R;3+FhL-$ARgVnr|KTNI__~-b#VM-
zD7JIdz&rhf*pOdR**prp~iZ;b1@5<5H|+e~K;*M;e)4e8jTa%MAyzRSkhAzWd
z+h$`v4|n%gV?GVM7o+*wIWoyTrbQke9ycfmG+JJW-infcoYITDF=hHrCRvwzK?u+7
zGBx$$%8Hel5y75}n!38FscEIiIqYR6Hq!E&lbx$>e8(t0($&?4yfOAkKTm@rV(jsQ
zB2`sY^OBL*ukmeDzG=OE`?k^*_3H!EP+nzaWpS}8{xlr%#De@vAUg-g@<2{ZmP&oc
z?A%<2YG!@?T@Ac@7{e0n+kAY{F8JpT#ogWAc?VKV#Kgq*mXa#q2L(Zpa>jRm*`kLD
zf)wld3B%T3WI8v~2s&7g;v8KF%4ve6exwo87HV>KhzB|`oIb<<*;Cb&A%Ppj&E({)
zc3IOkxp(iuy%&)Q2?k+|dS1IEjJ);83Iu{n7W-Pd9ljF1%9GfeiqWgG_1#bDu*})b
zOx4IM&ro4Hoa4d0dR6xlDWaS9^ffd5+^;*{UPt?C#K+tWT)#jtHEyXy{c(=G(WmqV`jNt|!DkRO~$1>WjkcSbR&4OQ1w_^PQf3t;3ktd#{z{PD@x;
zl?!I0(B#MN_@JhoOPQ^7f>$njCM>}ngR0J}^*lMoB%B;>erO)WMT}gIyu5zr&YfTq
zhF`yb_gj|0oSB@IWMeb!Pk%bo9IC=j;i9uPTx7N~kmIs@?fUf=!SZzPwXq8F>xyU3
zo)yEa7L|yqC@c5&_AU#KmfGk(Xb|OHj}K1A
z#cj#ccG;=ftsO5i!+gF`C+wxpKrtJbj__A^yoX~~qFrV^>^N1A6VstyrILlTEEy>>
z>q<>c<<_qju8c~qcqcRSg-gfL$w^vTdW90Zz8FS_cPHA%D*A-386ReHAh_r&al`YA$DM6_GGn_kBPhg6&;#?23j5vbCHJww9V{VP0}+6&la|im370&E4(w
z$H8rW&u}vk|H6fgDoIgM%+c;-S4W4yyVYKjpL2qw@H?MnHD`_!7<^Bl4o;zn82M>=aQ9KUf%WdjUHyp
z;>R?jzJ8;=_r~U2yW2H3SEDz3=hwWJGxi>Y=*FEv980EAuBW7=WMpLYx*8kLzP)@C
zF7G=}FcA%(aqEYnp&>4vQha7u?5^kuai{s;Y@RpS*;{}AwqE%S4hRSHjBK(;?h;GI(NO%vqFF4tE
z#@;DGdga_uN!_Y&I@+815ulz`@@B$wdwIK`LHZSug#vF#lc8n3VL@@K64YBk6G2)o
z0f84j2YYZae-w@Rw2Zy0$-bq2YjEg6AZ!{k+@`wXM6cW2mysc%Mnrbe!QjkaA{U7cTu=vf59-0I7+
zCG-8Ti!9p1N?{*aU|E_9Qqx}~Ky<%~)vlkcbdejuCndGZR_KZsUn#Zw2Kzvw*74Cs
zOYVDr^^DdoH3$a_=1wqxbf%lP)U
z1!GY29WlGs>gydsiueJgDtg+>%lN2}CTmKm;#$6^7W|GCv1e+Tr60BFNecanWjdFW
zxIC_dbl;w)SI$<68JvkxD(nDW!so>t{RGn_LCWrCoiVBzg>5l&8djw!kc{hOSe
zVh(@q8yXs-c)d0nr?)z<$Kf9w9Q@_=ZvPyKJ+Gae9rn~cE87(7<~Yeci)b{@<=YC>
z+r4s~Z2^MHpW=MDSQ?QxMlMDL2a`2CQSSZa3-i&+OInW^is8Cb^7rr8czL^7J-YcM
z#w%~=`p7-X8}#z@6pU@8i;LyAtCV$;@QpioB<{VpE*Hstf!Wc~k?;0xtAzrX?V6?5
zTF;+PZ?6nmSz3ONvn;7p3Q^~`dBLq$dH??X{?QxZZNId#&Lc#~PV#v*WbbBCw^LUf
z;wmeA>*%yKkz^enmcl31&=5v_NDEVH>>>`3nx0(tfGJ}FlPQcz@^~gp^2_5bg&0Ak
z9-cm}xzE;O&q(uy3l}`4L;bnybOUM096m1QGh!*&uH$fW
z*xVK_g`bj_H}ee#F%qaU_yVd86s+)4Cr3w0Ze91;){lpW-UbGfT1BP+43IWaaJ1jn
zaICclY>_vS%h7M&#-u5hl!q@D7RDI(-Z184Ra!W6w`yTEIPTM@PlZKAU9opq0=t)-
zq5fE9rzoavZf-gm^21h{yMGoh%wt-=3E{n26C
z&W~d>v{4QH9}KYaLbTwodyU3a$;olxePGsi_nEhQ|n(Js%L
zP@@Sv2DSn*ewD6VNKr)jxyT%tbziOuo%*Vetg{3Pj`HO^tHjEozV-uv?zDjK9rx!gBZJiR00)5HS&B%U$Opojz`G$&~STsrRBYzq^mss^z>Xxuep3ggiMXTC0lrVaA*9{
zy5EW0UH5Xi%`=GT4q}469|3q>C)0D&A3l(YhJ}WOg}r;1T_xK=n+7{ffU>7o3y(Ix
z<&T%E(!t#5@t9qt#=+s?+tIQJOP4_jpEF*&Ymz39>u#tVHZY4JsoAM
zL*>{Z+%gZ3-n{FxrOQc%3Pvf8!^h%Q6vg8dD;69C{kJ$pL%0J(aH1!kKS{v<1fTy;
zVE($j3!DT&m9NctZlTl1XH|0;nFV)}`RUT+)U(MCAG(vIF$z(aM4Z#JaL*u~Fku

ii)o$zGxfi!?Nov)4cfX_IyVH0X2Z1_w`X~1t z6=U~|2RO%fC)?-#=09(|DicP+DBP`+yzzHe=u3ne#pUr@`)Q~d4`Lk(!Nk z#*H6rJGodQ5P_$>Caz`BZ@>LGQlF15bedF**SeElK~;5Jqo&Grdu^mdr_L9q4bR?u z48Y_oCk;WQGNF$T7Lz5&uUE43ArL1_$qg_o((Ip)mX3Ex+TDs_(#)Tlj<~s^hTaYw zbDKMFcH+$sxi>|h|JI;$wOifeOvjk{EkB^UU-MW=5 z6G|&&8!MHRKI#a&u1=Y4PSte)u!4f>BgeaSCpCU2$75q-P^;F)t7IQMU}a;I8Q%|& zg0%&ctN|Lhsxx3!NR}UOSj%*{~e#%YxQl8)sZp#}9VVmuQxjVNE3oSNTtt zSZUa7=k}P#d(21q9vz%Jdser~m5YUCW^ZFg3P0dSK0vonD3r+M$`+aX_vN#12gzGn zW)|OaUhFn$|Kj24sjjAWwB}aV{_9uaur-t4;YR%n+?hYv5l9BFGzBV&Gm(MKh;yjU z57(j#Pd!o5@Lo3lgmA6gBH3|gJ0aV#4}z%*G4o4H zHv*qzAyv{8BV2t?j&^PS0zvoJDNxnWQAo9QaCkv{es`GXPf~FIy?b9WIbxdr)WgQf zAEH9I*BDGn7b;`n1xOYE(KfAo6km!`f<*5QRJ0s*DaBi06CxszWpLWn(o`nNKetDqa&0UJwmt1ntz10ZeZBsYgU%R`2gJstpS-5NAmJJ zP->)JPnDOe@AT#PouEnR^9TBcud1d!0|nuHK$ePde3SX=2Xxl9m?}q<{QNS-UA%?< zGsgotI=wRPGhJcZtHVXMm}Ua^3f&2qNS>luSy{kg$Sp)ABx=>Pf!p3(FKJRek;V$0?RRK`%*~4GVN@ zy@!uw>w>}w_ww_3GyL=7?$)XUqJ2Yt{SrC3Rq${K6G@s~L%g_`#NoQM#oj$2srr6L zE}=4g2gSW_5_P%JVx(#!U*v%R8y{|UbC#T-MU+?v9^7x9 zd4`ajA%(SR=D>6g4$Had*@y=Zr0|1+iz26744#sT_cKR+1V{}u+W|BkCdGF>ANUum zv=(Xt|3-k{Z48&L6S+(@V?bSo1~i}e$ul&TtvM~tmj4Z!@Z5(mnf;%fWBcC zB5SXO-WT!QTFg*M`z{U;Tp{w0V2n*iw1D#V+R{>mdC#|n1ixAn@=j2-{Lfd{)aZ2o za}pmP6R9y_59P|99zN6Lje!a$zKSuG9M@-p2t;%fa4ebRC_$U(;<)heBKzqE7TNc+ z3k#TogU)DythH{xP?_-0pZlHdpnhlRMXn(=415-of=Afluk8&SQ}1&NUO|D)$9!qS(gz58VKb_Az9{RqPpp8SCEVAi^kfU+K`bv@#wnILFZHTr zsXw@Xf2@QlM?D5OCB_7}h7Rj_&U&u_7;&Ss!MFl27= z?PZyoV?Y|qJ(X#TI0$oAsa*T5j^ zD*u)D9{$Bkmz3QU_B;s)3FD|~0AH6~mptsQlMTyOk`zA~tQ$Gutwvf)RJht4?{6ka zzY_b~B3Wu71;nS#L@w$6g9jaPqPw{~T$=e;I5|0)nUmhI{>1E}>+B|L1?2!0icr*b zchh+7SThK%P5Pa9?dRx_9?c6e?ndVfB=#}r6#Ut#JKRmhK2*XEDk-e^HX;-x4=-6;TbphH1nIRTOyWHd&;*YL>pI6OHn$G8 zPY$L60LYvNK1EJ3yR@L8r>(7~8|ydSfZAN(VheBR+x%g0%=aA0!3NrCG5MM*RFD9w z^!bH{2>;Gz;$z_l{{>2C2xw@(IsZ}it1BL2ihE?~nkyDHBNDm)-zn+;390)BXJJMA z#3EiAqRadHa~>WIrkfWoY@mA@`&wF%Nr-xzQ&~UJMva2Pcx`9{RqF#9s}9$fkt4o} z>Xz1zM`?--Vn#A|?*|f+pYhi@Ma_40GBVPIKgN3hjdQc);0PpJuD@FsFYfd5C2Z^_ z4h0fCJiEW6#%`NQ7}OrVh%`9v=}lSA)zf33L5%R6-eK{ZZ+3O#5+-j2Z^|X9?j(o^ z%ufeb?W|l6Z(A>I)$12# zXX!B$l{gpOU#?SBM>({SO0eaI3DJDJXx2Z7eiihelFdiNoOHW64GcbSHI>GOF z-z>q$6;|u=@-pDm-L-Mi8#gjAadl)jZrrf2uy6?*|3@Gm+3Nrr=4{!dk-O^t=go3& z@4efmL_TX3o^IoGe+SI}Q1Otgj$?Em|B^KQ?LIwJ5WhQ#hE+8sqx+;@CuabpNP1!W zdeb808YtGl+5vBXa2Z0y^Zxz&S~E#7JwVW1=#0x6cLH_~P#mspq3#G}$K<(~B=`t~ zeSfwnqE{%DRBGqS7ky~}C_ONw^y{cO0em0#`cI)%oMTwProBLRr>`W+v_CKDVOh|eqmLM>qNt5*&8)~6>XCIG246+Uk~ zpQC;=@O4;NB*{~b2%GIMFx{TCEN!oZ)M0XA{xs^lCsnjGv$8c`ySBLb_kE6L59KhT zKIaaGX3452fJFs;1@N9flIHn7NVDNS8l;~($C`}q^ zWTdr!A1`(%0Tinr1~Du0%NG#rACCf5y{Vp!kB|SMmL4l3GfNv98G*ci6>ANRfa3l; z>Ned9psvjC-|yoyhqtjQ#dD&Fh>20itiiHL-#9zcVrU z5*;led6eN7#t4J}nIbnvu5{>y*+GXfZktm0u$=Gu3IZuYw?0F9k(5conx8fWb;oJG z9~f7vd{l3m5|ahyADOuzch+$qrVmW$qcNv0WDUNyx;mRp;Hy_6d?N6kR-Ysf5;A)p z&0f!0y5>11%p6$kEQUz@qJpj;lqh7Rp}Aw;o%o9Q`{2Af2*QD~M{5ht)W#c}91LO!OuS=Q zXsBMLbH?M8Ldmaf#@I(%*4Nl*Vzr8c5cxiqSIb931aF5qkQWQ#@8LgPn}dP;j}8^K5d3OFafiK!&kS_1?qWi zTW$ngUlfbgPF@CH!@|yiNiDx4hnj7&btw>laP>5DOUL7 z*RPtQzx5C8g?;*fG4ljc3t0AxqN|-iM`Zp9E16!o9`F450}Q4tH9;|}x>`3w)zizX zN(6uGjeedGZ74iIRYUVH4Gj&zOm_SxjN*8Ic$@KQlz)LYnhn%2T{Y8G+*LzqDU@!I zkB>gG9n~f#7D)E0*$z3BS6Hrz&#c0sGpQC#0sQqjiwt-Qt0{d;V&dX4wc^99Vq;~U z&y1bV_fGYh=EyJgpYeq%1%BNnDG-#6O-%nUpMc1e3bz|Ubnw2%mPR8Dk)76eARs28j~e=?~I^+8qD zv0D2if!$!aT>Tt&_Vp(jUtcmJmK~SPzWuM@I(uP4H@OXsjVaNSh6UE+m1?wD zu9@$Ham~2r?CgwTlDh!H@eg;v>CCylJ6cvE`+xwgs?H$#9e2`!bbeo5UA=AAiO&p| zUg@$zYn9Qr6iwZm`h*=wndI@F5%Yad&w~P^7BJ)p2nfE@jOmg9`N}i0wUu(~S+^w*dYDCn{Xik=&+uD3`jLk&E-qH{3icF}AIQLl zn>zDiZo!z2d-v{*SGh64%TIrrJmGh8 zBppl=1WLNl9pYrEB+Xjy{f(KHF#0==066~s{oCE$4RX)*1aH2=2a#S_t=^Ng`tUC} z@&YG^`+h0k$0YrHi{2m2&xGYMiBghX+(;fYuuFDFOx5ZN7MQ83_K#IKp$~dro+E_W zf9cYtRhoDTChR~jI>WOzXC~#zGuuIVoxH%~K0=>Fhc-XWt2XRA70q9Z0kLZVMa#cQ4O8e%L|lq)Cdf1%a;A2cv|uTz(`F}*e$uAKE1uWhLSMF@jP$)aLT-IUbPEfy zPvMa=ik$@aB@9V!nt{$(a{&c-tnm}vZsH?G4&>KCeY)d6Ayg+DVeMYK`l62C_o~pA z27oHIJol!L!z6tTlrOD(!>JdqxQD|8oSlJTywK<$Y(gJ{mEt?#VZQq+>h^Q2LNKf3 zTjJe>1UrEkT+f}Y3nZmxzM=^KKqX+Y2;n#K+`ELt+l0g}E@TLMIg~S{C;S><1J&t` zA`t(xyv=`N3I7(`sc%HW?I92g0Ko+?-ARQpLfal5>LE>eUT!Dx;>mu8Giw2ORU)*A zG2GKri%5jDZ6WcP4p)wL32XP~bBQbOKOpwn8Sbgu4~5uCcoB|&+-Y8@`-k2mB_*Bm z{A;2*_&ux~9EMwq{@@lo`JkJW&dHtI+EuqP7dc{ACtm2iAGJFX13GK|LV}x%F`}IC zlruORw@mtq&TJ3bs9S-g%cAdnE8h+M%I17Wtd;|2XP;EE+I4SzjY_{&+{?AMIg}u! zci#dh@xtltF6JMDuJK0lxJNpLc5}q)sZonyPj8vm?p{*}Mq+1Z0j6o4vhvpc{%u$E zm$sRn5?VJH~e%Rewe*Sz%D_}WR?m!Uq&9)uT3Y5i?wRqTN zAV=WIU^|pQ{qqfZuPekxRFuS710Ozm^hi!FYZOEY8vrp5hZuOocSSe14UQfEg!yg# z-Hch^8HE%>!NP|r99%}P-Erv8tIdfVPn)<{bIr!9IAqn&G@Y_wjqHay`BQt*0yX59JjD;~M}yA# zn>zg8rbp<+;`yJ|`$L%~V3v}ST3##D&H>uv!h_fU_SDIukg^^rev=8bzP#$~%QJEc zp;;>B!CRAu&DQ)RQQ}pY56m6n10YyDtvj46xO|i3cv+*1UigXI6`uzV1#kV%U?A89 zGfXe;%;J;(XK9k5{I0F7EdZ+f;Hm@FU04|OxxtMciueUCE9%%eG_|%I10u5LDxN@l00zYY!cnf)lMO`ly@SXll7ax0W>_;7ft%#3t0srzDE zPpm|iZaIE$=<8F}@)(pAz^UJl6$w0sO`ul>@-K<^0%!$4v>Ai8s9)upLnf6sXl7!v zjT$X`Lz1Uk@psrP0d~Mhea}a1;U&UDK#WhLBiDB~Vd{>3RKPFlNhiSX=6BMc^%SeF z2{_ok+4{RUN}f+iNwx{spVH|+0{RtsX9qCU*$9AY?i^##P`)39vo-zvDa>nTbAqLj zhJrB+6CP&IO0@SOC->b!$h4?JAab_*!mzbq(J&|abGv|sMG2MU{!fVNg>{$~0l3Dm z&|TB7yK^}xDEIvo2`AJ>MrlzJ|q0q|^Av1GzE#)VVPrfw3 zdPEOG8Awedlt;Mc^0v0QSuFKOs%mN#A}_6|OSF$juiHOpF*Q-v7uDpVWDd-fiyUy9 z%jv;qwjTRnP7@PKn%;Q@J+B~eBCCDB(oGHXwE_#UG5h*3yf}kq?M}RL5*JDd%z&GuZsbO#Pl}zB+J%;z`79crKo+j*5o_+Jv%!z zTP{oD1S|V4rB_t%`iY`fqK=3jXX}L>_k7Ado@l@DDpSZdZ>>BY>JB!4T zH9)KZ2GSw=`NCZL`M6F9Tyyu(9q&G*M#2Ar0c6E0*k0z5(;^GW$1%)SNOus0qMU7EsX zH)ONEo(J?hAB)CTffgt)m!-zaoeYQh%6N3sGqP3rxQXsoP4}PCPwtVA5mXrIY-`gh zx1avVBKvo9)5pihtRos2ty-Chva&L{9@ZH%z%5Z3kUZMz12G+|dylNuz@ZbzKN0NR z#O#i8exY=8^gvIH6!59)`klQEJf{u4O=AKpBEpgSRc<&unbQ(0=F- z6~iI{#X*FdopJ3D!W?=Ou5Isr&vd?{FU?0QgGylR}ttM{>Qn z_+Q0Zkl7L^do7Y8S83sZA}@naFm)wbT9d0ICFqn$M&HejMA1!FfuzjxJ#0qBd+zb# z2WBOR&dM9$CF)tES!uJeu~mwIz=Ifzk!SOA92HbzO2|9;8yQe{Xo8kyq=6JqCb!<& z$dIL=UzOctkj*IQsaI!a5)>7-w>BIcpCQb(MY*QX9AFE8>V^ODRFbsnV*W>Tw238z zW1~I?M-Gzfl({mA?XCMA4Mr3fTgkrPsy;b>jmNZl>GB){HMC7X~^i>{uAW z#>wqf9^0XPAwLNMzN`e@73$2io%gwOoD*g!d!`E?)-Bi@X7;hH;N_tWstl z1=%q$TaH{OYeCokWjCIgk^Q-Cu9lfOTEFH%F}feU(GoE8M>h_p-XRkfYlyIf|FEA| z@;flxwhU0bj@tOUN%;CT=Smry4@k#B5Kp2OAOd&|4K|;TGkmq;wC#Q^nM?bdIDJ?B5 zY!esW*o8=lZ!Kc8HACA)2~nAuuYN~whYL+sTW#yZJn6Ap?r%fa(gDFl9UoLh-$?5CF;-y|J-z zZ{CgsundB49NTE8$aFa2|vgxi6er6^Kol!qtJGZc()va7Ho^6@F-7g+Rx1~*&2i-WMQ(J}Ce@H>WhFI-|vi!57s zg~-#YRLn63LNgP3RU}>;O_cN#tYY5XzoQleZAJu)nvd%Cf*NP;M70_7Q4>kw!|`94 zU3~v%GFf&N#J;Bs2!F-a;d5AR-7?E9RA%${?XInrL7ppDrbbGvXlQ6!!kDO}sEJ-7 zVIqM}t7j&n%M1z6pFmoy>HuZJT}i!$$0rVZi`$W_!|9NE4UUL%J?>pRr#sJ%h(w-@GCG49SiWVM{^l&nZtxU4J7)2M}m#XFwoFc zJa2pz7#O&|ZV%XnS^8D=&WIIYo|jvePoMUHw-U34+ChyfD@=fJEf`9S@UManmDFF4 zgOq8GW|+##$%E3&@*HNYrTQ1Q--ke8aCNS~eIb~XNsu2L4synpkCM%X@)-*>_nRMSe(wrb)S z$8^BMp_pH`%xdc03=XL&ySum81BG8rMJuD%oIZjWf=q200?QRn3*SRQo4FToUcmaw zsm5RJiqd8d)XxJ=X&D4yqZ(xAv)!FhyFsoxU=CP__c*L}G^4s&Oj5FLLebC9595XC zCRqYaToBqx5{YRlNUepk+O7rSzk6e0BB^I&XzA4`9u?aBw^|H@;{X~k!m&6rGB1xR zEd&wU4$J{w&-c*vW{tQUQATW5Wrt#Y+cqAoE>4}&RfzfTZg1NtXfIXQWoQ4k7Q{-l z?dJR(6a*G;uhc7oIxY43)2Bs2o<oUmmyo>C-p4NZq&w@z%=(%=gu@?2a`% zOpUZ?RJunWfqv=q6aVy$5uIP!O0`OmVD9iRC6Ckk4=5Hcw!(eGut@#3%QDl{X?CT~ zVMeAV@;~76F)Pn~37-T0F>GoOX2E@O-g~`o@Kv)y>M*vqqY!|=B9^kqEucdN1rFsJ9 ze#>n=xvf->0UCPqlUcQbf&y$$Nm)^G@fP@89k3qmiq1}>xQq+O{Epg9i%Lub<<_EZ zpA6E$wj`34iwj!k-pCm*2yBDZQo{3yu#Q38^WR`{kQ4~9AlDxt^L)3n42~=}{xrGl z8dNww7=akg(+pMD^U$sH>wNUy8f*zv6;es68ARGPH_eXQ?>I=|Cs~j47XaoniS@+$ z2SeKcE|z*78ygGTKxe#o6(lENKx7qB~9=Ke{L-wh>uJ1R?a1D~T#JMCaoauLrJg zZd(2E#zpwMHVrR`{F8Hm=(go5j+n(*)oBdfqOoFa*%Lg~tLWc{S`f$3sR4)fK?o&e zA%*#cAtIrWq^jtSv0?uCM!@Qqqf?C6-V!n0OXaXjhZSu)XSPPH7b^i(}kDj*YW@?=5uyv_ZjGzgF*di6> zPEnYoYbyuV^*yIsN+kcEP1zds5expD=fLQfhp)hf|-C#HkB0fdxd z0F6IN9z5+s5wo(U4dmAB&qV@IH(i}TO(q9BIi5lIzZzK*$$j(YP40V``gqsE+kqgh zj-+)_WvTld&&M$1;*rGPDFWf^?|Hc@4N6M=JMQa-mYEfmm5}$jy|YIAHq_-2^pah% zNIQ3^my(7Zgv_79!;Mg)!T*ScRx`RV*~z1HB_P0?zPG0Yo5xGYKX!j&)%W#ALV2%jO-*$eYJ9Wo$O|y_uE{_(y3@M%Zr=F63TMsv8PBwdF zPlhWtm(3FNBz>#(19E*1wh~0PA*ZqCX!c7JR5ESImV@~14&J}ZF6`7p9@Zd$&yp&M z{)+-W)j3PhG!=CluM0rt(~o}BQji!rIP{LFs{^78VX7B3;QYa3-NOMPJ^6I#xLW_y z-DR}-FP4$adzu-D-6EzK|Nleu{{&$CWg_NhDfFu~VMV1N56x#3n!VVzwdhc}z1xsMEp?eLR zKA$4Os?x<&Km-_+#6Eh>zZ+{bst;G%0gjUgp;8-b!I+(25hvb<8=*5TZjvX5kSEK~ zDYd`J2&p1$cdftcJvY?Ie1TEBlT!d5(H;<8j4RrA(3CHVGu>{|q3*<|XRf_PJ@@xm zMG?ek7D$+OK-C0BiI_6xzBvUwGZ4r692J#;v;@r&y29k;e}fqXEqZBB*q2Mk0DJ+C zSXp~?+D#Er3d`~M2m_rw@d*iePuKymVjDh8e^W0Z|LL=+Y_a_Zw%hD?0$LWthThZU zAsvMh@I92ytId4Ef%bSDK(&8D zlPMvO{^~8q*{=^mR!=Y~1o-amO>c35E{xP*W<}BOJWwTq#9&?Owhy!B{u4%rn_E#w zyMW9BJ(Jf&MXRQ0jdpq23t+y6F-m-$S!iD@)i< zfGbT+7nnqV-+s;&`p(v9MRMO!xAgK?Z6IWx$EWbeijcqV5uOFpHYT1 z_4_v&7Sw_Jrkx5Mm2CHCzuwA;s(b(t7gdYNHZ4l29Cp5ak}tRDh@@UKvd9z{Cd9MIQW~2^6P+iG_;nFlv+q{T{9D@G z-5P0m_g}LB?nXAAJF8k{K1S!fflHxw(7wA>Bk?@oDM8CeUhTnhsL;eS3i0meW6vcgfHK@Oe8sY`ZZ%tMRB@M$BT~vv|Og8r6mVJC!9s$F$6Dzpu-B9TZ`Fp z{eq?{hT2^^S$#*=WA9wIEt;&~} z7z|Pa2!w2Ab|zn?VfA;UWk*|^!|`sAPLXyFSOHkx_P;7&KbP-Fgz%W3I|h z!N}ODzl5;ONlk5j#=CcLFi^GC$a6`AuR<69d2X)yu{|nc9@>Fkwx=%2e}0?-@s7

%r#SHTvl3>1h-SwS2|g0Alr8EG==Kiu9C}Y?s%G?eZWb9xv>0_13Ko^|%;o zm*Bp^8BlGjjy4lcbUnKOY&E~5QN}UQ)YMc{OR;Tg``}DMK}J^JxXz`bub->Ru^%f{ z1g#VSKgg)5HS_RkwtkY&&+EqA_cFQ_#qIa^4Hy|Jj-;f_fgol=a8=;wVMu*D4e`Y5 z*H4qrD^hq$p?Xb=(v0 ztzPP=RGIs4BxOQ1vXDNs2ER+!u5B{A#MAYgL+`C_<)`Po)T@W#t7tS6EiH5w2M5dE zk?TaDq*r9A8cR4`;=QEAmD_SUIw9{^C2;gvw}yj#iZ1Q%?k*`|)=}>>-mlfwfn*ZC zzT6cdgowL@!Y(uw5PN`*)yJa%f;nJ``8mbq75; zxnYMuAY@fCk$e?m=&?J}Gvq(VRE`G?G$=27xO=sKI2w3? z9NN0|)YP_7Ws?%{1p|)a^dFQc>EM2KP)rDGo7VN6F z>P})n@>`HRwBNGx?R(j1BRE>Yr4vXdZPr0RCo$HuB=Q=H$*J6&Gq-w1pDi5Q{146z zxQCy=&}7N}CsqDiK`uXS2W+2{o-14dKY+j6PS$dvcDJ@-Z<{F^8yoA?;34kbZlid6 z(P_R|?<6QF2#BL&g-US5oo=7L)SS>aZ3hdI$t|IT3?ju9!3GDj1pYkCIS z`Oogbx`QCqNoHndtfwVp7oQAmh*M(HzQ>y{fBzwwAZfa@Ruy3S+ul?a{{9lG*uO3d-0H0@XXg9Rg>7w}Egp!^Ws+t^2uAAi&;ojCYDJRAM z_I_9A+k@HjrcvhUpXZ~iQd6ytUCY#-mW{}pj0+4FD@$ismmqn0E)=^{Dfc{N?W4GV z{^Hjc&;4=c8+3jBVr^>4@ri%)nw_7>t9!p7ws0rm9>cu&!kw7C6fH6M&*T|ElO-ifn??kj_=Rc7XkPcjj>#MlPxC1 z&7Irfymk0Km<8MuVcfj@{8=T5NAA1h3GbOsmR9ntY$t6qbJcG~&`V&y(8K=c>mRpG ze~RtWca6rZJqAc$pQL-GURDM>T+zC3?qB`*a8-vC;5#n9v@{clVg(6x4FduK4&vfV zTz~`-i*uQB^Ki1Q8xKKANBAS)f5wifGh|b6JnYa#oWU9rF#HMc`U8l-4tpGYY!d`_ za3gR)C&rHYb65WPwjAJJh_m1ZoDQo0`k*muSceEv&n8n-yLz}^H9Y+G)2GyBOBfY()+CM4-Tyi{OrNBoM-a*13DRH>ba%5!aUR$f{=H{ZO z=cLflh_1bPvNMVo$>aCw1KH-7Q(J=Xa!(%9xEe0v?k@A`ZIx4pw>dL&p|)b|E`{G% zUP_aNhR669FTN0;WoCZ);X^$bmpr=cHTKh(ckkeSs#?PQ_J?lu z&##K2W3|iP&&}`jkJ`25X!Wtx=z!OKabu&euP^x$dBiRn?X!FXG9oN;(8VqK4MkF| z%F)r$0XYk0b_!qz>=ZK42-V!I7|s8t$xy3Q%yY|JM&{LAJml#62L_Ihz}P&zlvj7` z37`p*o^zc(m>mx_ZnG>fospEAtf(?(%b8QJ-8iw^DrWP@$BqJ;z2icCegv z)R)Fn>-=V64%z1d<$b(|YzmmrM2#0%=Fj<}ev5+0A(d3_IQJN`=gY_}ka!sksNu-| z;VL&HS`55G$^Onp3#g~M5d{38E_2SvEd2Xpu03ti+i7_RC9ci_Gmb(Q&po`Y7;=JO zdbso_f~zke-~zGt9+dBOVj8|{5)$!bS1-L;UReS)V0fgavPnHmt`be?avO57aoZ0d?RRkrNL3(=;Z4d~ z;G=%mqLC|hI6A36Tp~wLb)D$K(i;M=n)w0sj}Py=T}E`v-Vv#15^-*godD$&TQ1GJ zuYlnI--iRyk@>l~i&FiTE|80O&mcN-C`C+4n!sm5P;xY66y~$hM1{g&-9g}07nq?F z40!O>fFB{`k1;;ZE83%8P|Lfz>9e zx|7*(qYx^uD?zRyC*4T_Gc!xMXAlSM!HR|&1_lXHQIBjwn*Km=81B0-=KiO3Z0_ZZAyhTkUN{Lk5AQj z8>DflIlr*9!0zE+BfLd&2pw|8+FT_y<~>*QT#M4Kv9juw+b5NmeUs%@2)|{T1G4gp1*|6H$+787UeLJ7iIwGD^lJSP@lAyykuDJ3GK{(Q{ zTHn6iq9u-LDN?b3B7;vtybjxI|0_*SMhS0s%z2{oMu1e{!dU|$7!AF{FL3d+hxe1D zgF$1zz^nw_7|=5|kkSAVe^6paRv{mvw+u@iktj>!EF$&L|GuG-q^iHrqBFKW4We^T|zNbKeyL6lRb-MpZX{| zsj02S*!Ak2+e-XVWa?t^2G5E*w0U4)V1C{d<4Ty@`HYuLs`B$!dfF*9j>{#}X!PXM z7>GRWp!|@~R-ADW4PL9Wy?s8hz%dg?{U8zXaSobsS0k=%$Se1f{}4R^4ZYE z+_dY=KaF{ZlG*(yQj?PI@kEZ+=$r}%s0preevZl&XOR^p2XlWa{ImVZ^YCht1-~R6 zeI#ruN$W9BUs|CdY7XJ4HFt_Skse175fM?~pWRt5QUbfmuxME9T}ME!IX3f?MMzBC z#IPrkE5e>G=LX+pBOZfVbWy9X)ubmGXDvrq{=Ji|-&Kras!mOMLDo=z5^ek3QTS!z zmC7uCMha@$Sru z-2VQ4TU*=w^PSnq#wAgQjXw`8hjQ*;EvSBB$HE~A-38w4tBh>nZxR@tFT3cx=`dxf z-*q7W!i`e)f?yOHZHKXWl-L8+E5>W;iv~}lanW{84i`aCn$696fws9oGD=@rw~(s3 zlR%U9#oRNxM1cSJqV}HsAH2PJIMr>tH@-?mMJbXpr9{b;c~&YaqQOwcLdYC4PnA*$ zl^Y=>2??3!DWNh?nKEad=b7JU>3;U}?)SHkz4x=<<9*j3_t7n_^9V+5fCF%p1Sf0i>gR#)HjZU*bncA~tfs3@O7QL$=l z7Th19n(CLh#CGQ14i{rNHY9}Hi;U#p3YeXa0`_UK504diS7OFiTIAJ11V6#Weoa}q zcW_X|bwxa*7@g*eSal`QJM%C$%2A{&|_dN2n7c$7Mxf;XFtC^bwlOnsDg{I z9i(N&)Kb{#zt#BMLcIp$i<+96Qu?opy;uQ6jbfD8;{qk(u|TwteK9$VH{mk=X%H4j zpD`6J6A|9mi*nXF?xgKjCTDBQil8quGwxn=*>@dsl^lfFO50i;Z`=wO>#G~`5AtTy z-9{L=RR7IJj@?R-xSt2aVb+&L#i!_qQ5u3?_ff))+TU zztP;A~+A(xdj)djaUnHcjRm!PQNh*B15O7#tLE!^&jUW)%1o)3W8XjEi z{go*+H_lyFMmIeady9%y-16ux(=$c8Nq4tPI@G_dJ9m^N$8O?KRcq_yRxl%)!gt(U z--9}W*hcyr0x_U-|0Hr7mcJV}Zb)eCCmvZuvH1M2?y`V@xqn)aJ4>34eeQ1W0C4AV%KahrwYTO(}emW4e>WWec`Tl&mS zHvr&!>MHV`J*+BS{WkF%TYK7%WxnnYz1G;^_q*?Bdv2?eW}KNLS-=#e|Kw+$82sj4qRNyK-?>wj3@ z{`YI<&x7cF@LHnGRcYn$6;M**X*Ria{)y}*LdD`&+aT8gLcxVU74IoU`-L`JQvGs6 zr-c_4JrtKNJhdA-p1+9%N{Y<;HHM!u?Wfygt{sK!BPOO%YTc=QvPW`tx$Zh2!L3eu zqxg1Xyt_P5!`)wLsvH{;>f%uT>gbBB*9!yQz;|6m=a8~-;llBz#E7KN7LB?-70XM* zpSM%dYxAIxEaI3Uo|c=g`&8rUgZN6{Hh4RZre+8jGX}PE+CO^C`abf4ex=EkV{?jO zTG}doFL*Z*G`5@Cc1B*kV`gS{<;qLx@M@z}>2Mx)c6LEQ8?as+G-XM>&~qZHl4BmG zC?v@|ZUOr~ho4~!GB!3QAt3>dsb3Y!uy?OCLmMz=V)dK}T6KDEZtT12#@gE`&{$7z z*R?fQhRT=BzI0t^Uj@FFFIA5u{RUzYubu`krF!J(KB>jVy#2b3WT)&%0rmr z5Mu*4QbtxbU4$Q+?S%z9=_lt|4!ggRa&3Rp4%aGjZ6>D+0rKDtddG7AQN}`;?A- z(AiM{g5dWf(tv0={1zZytW#0e?E9EmrUs)-2j8#1zu-=(dCk|^Xft78AH4(V8lZZ$ zIR6%{6vLOQ+1$5*o8iqbYiP)meXpzxWK{mq~LqVU$mR}|bUkC(;O&;48 zzI>53I>SK&=WLEM$q>yF3YzWA?0yK7wCgOm&oC!PAmjpjM+#+H_rU%%wZ?sQEaG;s;d zRE|iLy^`yGAwg)5j;;fn`)6VLs)B;0BwpW|ZvzY73Sr7t{kuq*R5U%V#+dY3HZU^w zNt`b75Nlo8)w!2`spIdWy>xsK5qbWjV%sNxY`1~kP&dy#8c-&+&`C1wg3LQ)0X5~R zys0r{aYx&mRyB7MDLhqrymSW-4sdPJcv^V#kh_wqDjzL*mhmRlcXfk$yn(SR$#>#E zW*H>9@0i(K|K#pl+F1u_vhhY0=k#qIjp=!x%A*^P^rx`p+9jsFcOPSayDZ<{POqq# z6-x-Z^72|#-3`}gXYwnRR#%2AIy&+r1YzGEZIyZ@9gbKB^L3-)p&?1A$hcNP@}is? z%=ngWNkn_9#U?i2f18&VO8M^cF;OGk11%C9+X7S2g#1ja7@MC|1z`|dxey-bhIiDflwd=!X zr{x1Zzb)-uTwE+Ilk8thEcRL~2?CjxiL~A2k?b&QWF(mb;4pV>X&4|gvpX@9_4?UAEsK2&szJKbbt~ov1^?kqWd74bN zF;fU8km?zln!fr@E6>V^BE^M-v^(UhpOO;3KKukVnxq-xxW`ZGmi)@P=Sg|k?;-%u z^694UdP$Ic!_)z2VY=E@GEC}iPcdgja)syF!)47QAh^EXjH(tdTQQy!oIO{O&lBr?F8`zSv0j+t2U$t!x z;_G5m#eu#(rHGwY9Y!*V`hAd(bWSNtoT2gq~Xu zonNGdcOhkB9pb0A2l(u0jvS4P;y7_a%<3_=_n?yxNBi{WcbJCP7@C9$71}tFmuwsG zrI$E<9tkCo@ti)riTP}d5|Qza@P~2S*PwPY2?-Sym13y)1u`tpBCxS1BqV5X33Ygd z37Ipp77{@|(kI%@i+OpqAsh{@@OhRb4XQi|A)$1{Pr!FEI5SwcZyyl| zW7+$(xEp;DzzWfkUVJv;6dmL0QiX(rwYk%Zt(fiJh%3BS9|Q~#_x%OF(#eTidHL&Q zrQWw*aw7ZIP+gS|`4V9CeZ*6o7NE3#*NaS!ix;0c4IS^;M8d%oiT+AJ$h=+5ISVzRz|bt2j&HledbWq1w%G9%*_g7l0hxa@iXiW=cBm^h%zGbLTyYtO38(|2K&4B0?H7D`yM- zAAo3?gp*{48I%b)qdRFHr)WIR*xmz7RJe6B zlA!hUYz{8W0Py?EHS^W|4a3Dp$dTBLvD+=Q%6|0BrzU+)PRPiv~G zT28(19&2OG)M%|fM7Cq^7E%vyCZ?q(U2@j3LTtn5{vh#{y$UKn)5mk!D#}pbkNWI* z@ZfRof{upK$Efqa7g}&8Wd8m|X_w)jjdB70ni;3a?#|Cr1oISfiw2GNmv&FqU%YK~ z=~8b)>=ctrMuustt>fI+IIUGcx$-ogV;?sW3Qqsw1>SrK`Sb}@eS@H&gY4Poi>u>j z*yL~W(3-Z8yAB?`*hx$y`LPr`@2}@A6kIQ@6B{f3Cc0_8k}hN zAEb#*T#ez!;}{)%KK!y_s#^GET0D<*bP#i}{N$E>0Hr1Wkt0QxReze<=utW$GpFea zq51I+)nn9$Uk-d{3q$l0fT{W#_|jnpyb%gJiX`k^p-vl(rRMa+P{Wb@WrmZ1p&HqO zmbEO#3VR;A%eUpNmbaR#BI#Siy#3b^S)ODD!l?w=|5lw({3HW|;AIqW>j<}W24;(r zs}W8(*^fkW<@1SLndz{<{!&R@N{p0?lOLzv6(%(}nx2fU#&A9z>)=(Wjv?g=7d~CKU0l^apwM&O14Y6VZx2(h4D>xAU?Y85y}K$*`EG zsF~W^FQQLCwM|PdgZT059IWo|qoUH&(&p-8i4Sw^U{LU-Z6p-}hWv4tF1b@OFspfr z?MTVU(Uo<+aRV3YRUlus0~dDiwF)6c$l04`hmU^$E*}1wjeTV6uL<8xZd!%^a=pKS zrJM2w0_mkPa{NcppQ#ZV6r`rE?g®+00bh>z)6X|nI%zHM+)7TY}bbG%rcAZb$; z-U$(Ej;&9jj+gUn!`N(RYrbp!@9)JOPSZ8fSH@gi<~S2;kdlzFH zuC{v8a84Pe|GogjG|qw1qIxKriZ^_xbaS7D~@zG}q=GZiP4D ztuw`WbEia=sG%Wl(ODpC(>p${Xo@;9qUPI*eM`f~kL*Sf@$r>z&bc9Aa5ZkUje-b%7<1|#XD}< zLMctYkh**fDRZ^5OwF-E2;qDtL?85AJ?Hh<-Yj(62fSpQcpeLqZzEY0u~YjVJ}&t& zjH!aRL&_ZPkhkdbGBn1XAK=SdnUa(KmcPC_j$n+PkG??W1_a%T4mh>?$4D3NhK2^* zBWW`v1Wn~DS5Dh*@3baA=rz=TQl)c%-;hkS5=MZdk{wcO^2XsuGcFLdX} zC$P$8$qnS;>WRPGX?l4+zT78Jy(oN>)*;Hvx2}g@wyrPXO@U_1y0#UFGMZw0z~j>A zm6i7i*hzA5JYVt|9UMe0ZW`mCwF#p=h6e}l$VoZ-LnM@VU2u)_ly-zltTMZDa3&{# zjM*VI>#wnc1c%KJi)#gh)YpG$%SImv9IA5>=d^Y9?uES}Qab#k%IR!kJJ zJjg5Eqp4B6UuyMzOl(B<4ue9y#2K}?_{5sHw%>W0?^KSFF_V*zx=^!v)P1KruZrvV z^1NO``&%F6)zI%EP2Ak__HniCAj$JH9lfRhDPXVLx#*N4%ez};5wSUeS-R9Xw)TBxyagmCsbhb`S9`MkGeW5sFeM!Di;?PE>o4+x>x99_i{%48;1X&42|aA z3i-d|?2s}sy!W;6T^+@|jdoP5)6M}5Xwr1QfS`QPa@}MP*pw5Lor6cv&Q#Rwz8JXy z?_Zw(?)Oh{Uo5PT8Tla-T}AFMkcEW@Bs()xfS>=e2gI<{w6uneUr=flNQN#Z03KO7L2gqfxh2hwdsKu1o&frs8XULB{Rb=8~8QZaY_jq(HC}SXV^BznthujTO zwaT0sMJ#fsaYF9TGqV75-Mmbknp(O3*-^IiKiYLbY;LVN+18tBH=_`j$;tv(h%rB6 ztQM=l2$Xi%>DE8kDsk-)xbd9_Sx0UsUWdue9)2BS1|BdM$*`(k%ZCpi%K9+o8Z~@` z%w0ZIJdj9Fi-tY%F4i%HxPNh~7o#oqkZp02loAzPLeS^xa>sgQ&m{dU#LonR$(Q;0 zFxU>i>-~_EyVjm>zWNmC&X6nTcYlR;5|L_n1X|Ao~T6tr?AAv@_emrTwIj)nIUiB zkIIk}<=+fHew^}p<^Tx;1OlY0AX!o@Y6{K567vX6H%WFKh}kbi&nbjR8gd#zR9vdPyD~&Z?nd9ha}1 zCOh!gUo+A&+w$A4W}viF|GN_yXnS1#=75B~<(kyGJsL--Go&({7GG9;VU<7sE9Ll9 zOccF3dZX&{t(#YnjeY zbe;C#MRSOZZyxzWPN>#iRd+ljaw909bbgj$cDY0LQfRq}t!-Od6?b1|zYgLST&DYA z^k9$IXcjU1RVM56*qcdFt^#kdpH_Y=zH=upxoF$|WPN-Ar-*kSTqX+Lj$dnuvX$F( z#zS&`ZTX==x#7q7_W6Zyj%g;%Nb9Qm0Eqkx zCTu_fvUMj-O1{Rud$Vv@-t8%&z!C|Y5=OTK@);n0<*KahczcMS-|c1>So)9^nU+rs zG9r|UrRiO0UYuTgNUGSJ^av13#c^^P7x5dGh$f*fI5L`g3hin<+|WL+~cdb`HiD$MG7?N68@kDSCTdNVc8* zT56j>YAcmr2$ye>>zeO;mFpB@+SNm2=_bng(2IAjjPO0xM9zi2K5Hr`jVH3+5id*& zSvBNvswy!tV&r{D`RkT^*LBoOS6Xp}G5El|Lni$4YbIwOxcSG0%;6jCSXzQx z)yT-GWhA9H{RlqU%{f(2h)NnuK}sam>GMy}|D3VUypmv$l=udWo@Zheo$ak#%&E*Y zp14=q^EP2SgT4EI=OSpRsB}X;;WZe3xv70>EvH(CRr&s@Q>OKejVQ^7DpwLdCM1BA zFh_r~T@9q)Gn7P@G|CptocHco2Xt;GkBc+gd><-8uhoTfvO<3a(5b8M>EulP*ns&) zKU0(%8w3uLOK9$H`qozJ(KDuiduPrdOlS-Tb(QYcty>JK+bJkgO*$^Pr9Xy#K@e=` z?TfbQ3qBt~d6G}~oORv-YtEO_!ZF0hi-ssf)zuI|cq0zQGiOL17n}+JRU#-TNQ33E zz|q_I>gvkr&7wNI2QSG)WQT=~YF-JUopJbTD+kd=fbH1(>>Zzj2l~V2>G+?Fv9Cd{ zUq5I~K|uilQf09r|6b`ChuqnyrvA8A@u0T+p6ypQbL8;|rjH9+aX{_h&oskHmF-pY z^2aE<-;U&td%I^z&XPYgD@YI;VE6rAUtR4st{yJLcW^ti3Ei0d>s9krk%*ePc)}YM z=;>nfLjQc^dtULjM{ZW(n{&cXJaibL>fE~dw6n7WGY0DXqd#e~I|qr1DZU#9H&|Uv zS<${_Rwq$^Z3*gVTDcAhJmvJeN*Nvoygh;GKBlIoc6P#fOZT~6mi5Ae`jPnzx#r?7 zx;Lc0#SRvehta1C2?n1&?|Jo(qhdYDPFkssZHmXJDHx0{$$7~X^-MZsF@C;csPvbu zop77-N*J>A(Nah`lE1s(jt*l5>z$@rMZM&B8!=+j&3v5&BioRwqo|S#;8+=hAG-okvy;}3pHC=@6CJS7QJRPOm zY{Qfn^AY~=^qze*g5AaYV^;(W}8AA+r}6rzYbR>8oJg|g&Ct%#A6=d@b~H<0x_H;$-A5&;TGW}vJ8^>7rk_) zh&rJ#4+IReVrn8?LQ{ga6k>agvfsb|niHlL1A_2ztL%cZ#V(Mk!Hsu>?0V97HjWk z$HW9&in=uc8K9V`=Q#FDMEV;#4nez#oA@gT&Y^aEV8r9HV%M5LJn&rw-4?&-#d@Bj zUQtXNV)r$(kPuhpQ{*RQ}DEYS;dz*FF`1)D}hHXZjYR!h?R&Q~Swi`@>h z*3{Kw8;8*rLx4cFcP}!PVczl!4nDE>DMzDwdNCZkkUZt12Zwqe@DsRCT15Y{sZ5==$gm z42}WWwp2GVMkEp=4Gldtn zA%_DaR3A00j~>Ja>G7**=4)~L392a3s;O_ie_!j?twP-ri-|;}-`Ixp{jJ-d8#qdY zHV+Th{Q2jeg?ih37#YMJ_}d;~bFWHj75#_uzS`>lkw{FKE0EEgDf8m?a{?3)xP zA#px@cjYcfuF`j{dj5{%ox z&Oe9jQd|_PYSnIcCMZCb>{fQ>BX1^dvK^N5lP3?74`qq=t}Y9tn`t7+IX2tI>y4BY zq9IOO@U$Uc=@hs7hDo71a9nb2;pvp)3z4I|s%m~}ifG1RYjoC2{+nzNgy13!xo+uN#13_a^AQ47 z&&yd+k+~$heZ=4);)<1}p&sf$%6UI+|?9jvpl1!isGJ`$GjGv%#x16J44TwgYn94J$L(7SlVlex-4`jJAXx zgK&K5Q1;dZ2tESqFm$I1(J0#}h*Mpa)zlmiR)Gi^=_hJ&3UYF-iMpig0ovz0JUkQw zd5c#{@#&aAdYw4S219ubFY#?SV91!!&uwsDqk{rLRZ*7!ILZP+mWcqe2R~l9to-)( zSJ+SN+?gwV<|v=Ob%ZNA4YSE^1o`rr=WD(RF6*{1iOUe`ws)*roRWhO1esHF+b8}P z(%|#0hXDcmXG^l`fB1TmyAZ~XGXm(Ug zRuCnx$(Tk7x4}eW=physcINPfU~_8Qaae_H;^G4gP48^TzxV5g5nPArkH@LVnR2V8 zz@Jco*z12U9jZK%Kl)*2yu%fDaJ|ii3mB%Bh&9CO z3ep~)em^@gp3IP|;yB!N5{eOCsNF4WLE%Kzt;a;!jc)7O?AF%IRuHSiZdCM7VU8G| zky$XtS3qN(WqkJnE_&h3&S`$@?WttF3Got}DnE2DkIzq2v7q zj;c;l`7k6w-u_kGW|Vez>DhQ5Zk^A&73_o)dJYkgNf~)H^``i)mA(5!DikBsizJDl zKH3y2Y3d#4WKB8FWaHM^N(J^L>RVOyh8pWYS*E zpjmM~&3$IoSJ1kbN?CSBiH$*Vm84n>3YY20z)W3szh@Qt*}5a!@L8QVGy^#sB)iy! zgs$rTrQXrr-bWr?*-;xpp-$%=S!ZE^Z7@RNxkb8> zcPcUG?~~#@OHN^sQiZPpNNcZdaBw<-Em{CE@2hUeY&N z!f_pKw&n*Vc7W0Y@m~h*9z9NK`-MN*r>3L;>&06G^Y4e1iHun@tM^VA0mD9Cqc+|n z{r>752r}&%#RBDF%@@to&{9$PP&XJI;w0%>;I_#oGd`E>(HCUo3yL+H*y!pW;RFMp zLBo{zx_vXbWoAOYE8B4JDK^Mh+l~q|uzD07I(tLSNLR|}k#uV{Zjp($+9M}#aO6iH zBiZ@W_O{ctP~Zv%e!&&+#Nxe`|F3gcRiEM`{mkB1O~=UU!m{p*AM~sxAp;U*hq9^$G>=)ytPpkzt?+>fPaJ zTrKLRw2!Ey2u-*ojM;{J&@=^UC13!oJ0)>gyk)CUwV+^MWMrG9rC#;SAT%fUdiK_? ztOT{DZ#{jwNA**|77CxQz0-q;K`1D0;w<3XsA?fC(lao)w)1pq;r~xnKY9Z|H9wJ;gds@jBMC*~|gc^oD zdlHd_AR0fKDc=>DEsiK5lN=H*UZ` zVKqA18p1CaC?5$Yly=hlrKQ;yiMp=Ae#M1+?EoiLQ6qFvY+&U729h@=_W#-Rn-k9v zPwzD#*w+E&-QTYjy|T9aY2OKHCP#UCCiH*9tkglR(d;M6xV3U@hmdh8;540rq$IY2PkN6Fv?(UE}eAi*4;aHkTKIshQSI`Ka84}LX@F_ zSMOJb!P=zHx2Vu}$;j3j$Q>Y`I3n{L!;b@d8NsV{$o-pahFqVxH*x7CUDu`IqCaV_ z1)Y!-gP4jDR?O0}bH4XXG`bS9uQiKoM>-FVy&lj{>w{5LLT2O#guFi-+(dXg{)Z4a zm2<2TbVtT)y z%PAmK%evF;Q}jS@PpR|aBZKU4_ADKg-^-fRA zKBLUgC?Bs5rYqiOzE%QNZP~gtb@znn zl>H6j3+9vkeU%}>uU_dC$)P!LlMIi^TKdYgR&X;h6d?g8pi26#Cy7`w{<2<}iR^=g z6djgF8HtIzov#1A0(l@{I0?Qfgy_b;d)NJvfrf@As4hDp!5q#+9KxA14^hkma)rp# zgMyA`|9&_+jp?N9_aq7a6u3%6S))BnQfB-WzPH<>lq? z1u?TX6&pEMKx=L7R9~<;jyPEU0}!KKbb|65z8dNCGBVqUG}g>r5!c0?j7@2J^}~LV zk!G6@+8!*= z3iEYZ?t#oXRk)pO;qAC;%NbwdwW-hj?oIXG{HAvh86!h5ib}PI`Gh z;RL6^khMHlqe3KZKk*07o1OkeoIJFuA5nO|EopC*^OBNYwM@*+r10WoU}zM2x<-AZ zTcu191qT-AwuN|8?&YzL_FCOSe&DLA+Q-Jh4C2yO?fW0r>Fo#QS@~F4-d8Ai$yhB+ z+%gj5;;Qst+s<6Cu>>bNrlU3~chtAE81Wy3OId?lVCr0)%7)}&zmfRJH6;MBYmco0ynzSzStPZmzAps-&bBAc}{iVEajX@ppB~n)zHV-P_fdVzOL9 zPCpr~szpU%T`4Ja0`q>#>*7B|MG0MhF4JQn?EV5?Z_OOLmo2`S;pz3fE%duyOO8FC zUpt(`s7GDampg0|3=m$tZXl4)SnKaZF%epu*BhY?ARgqV}3t~)6MH~tGC=%%YaC5dJeLe z1$aZ!?tF$;ReU$Fpqu`dodkc;2xwu93OeJSKmQUUM$8a^BqX~=akMQPm8#vsa=t^? z=F)bnnXF@{FH^Q1#rIIN+4=8`w)LA$Owq?78Bd8FoM<)zku6&Fh42*MF6@&6r`1x6 zO5&8Zo8IjbqaI*y=?ua`VSuT=(87$5fg(!B`y%Bk20+hYlaE zVpCn$t)i>{BeqB4BynUa6GEx_r(ub(u$Tbrj?q;2U`G1x%SI)QolyNGg<{gFZ!}%m&+m+WC4IKug(@OMHghP)ZHxiua75VoCcm#EiQ zuB}-U75=WfT-{vYuK-f7gMKT`2G+Ac)?&fO=`5MSB_@l7}NaL5Lpy#Z)1t|O-A zx>5sTY6MhY-w(XI<-n<1XDz{-n=CEw!1!;`8B>!f7S!}7I} z)HyW_@p(|<-_z3rk>4E?N_>fJ@3+hOXPlt!$eX!3=yyWuljbl6>4}*JwGPxg2tSiq zS?Sf#K(TM%(ZIkVZI_dDUQViwf#Z2%5`zAZdM#1u?w{C3Vqu9`xck(uTNosOyhi6v#LpZ@F06Y znW>z+G;=O-H!g51)JYt3>utuyi&tZ;<}rkiUu}-vc%OnJQ*)s?P9k+z@UAPHw0;pUJ6;xq^Z&@W zp(pJ9M_di5+r}5c-xq8;bf2im#_NCjs{w->|J?8C2sT6F0rB?C$!W^ZBDovqX5Aj#$?nOV&A;ZF$aUr_U(Zp zR=|Q1| z#wifxH;A=xrwo+WSJ%QQL-bsLj&10~G3G|V5i#iuf+pADal*{XKzR_k$OEyqvO@HS zUs%19A zLme)jbak<^;$wC%?YW!y{nz*dZM#C_?z0~v@V$1`%z51#sAe{v%^d^dW%u zz^orTW(ZL#c9^J26=h|ZO;VR0%tz@m&oWOK7TEm>Z|@F9?Is$-q-{+99QJk zEFC=S19USi6F+ThdMy{-=V<)GOTMR@w#tyz3|b?nMYrVnU^Fp#QqxmXL?p9qOM7#3 zV344BLv5`klGUfCETz9elgWr;CBC$yzFx0lCC((En*;>=?dE2E-=~AeXy4WilE=qO zgsQYj2^jIqdsOGYR#ziq-m9%G)*7zH(^Z@`XK2#n4j+gb3G z<*{iHs;g>ziIa)1lH!suG#ogo<8HdDuy=tG<(3f0mgw|fxH+NH9$}J-+PeT204n^0 z()3P<_ii#tQ;5q>}JyFU5?Q(tG_i9S1o&y&; z<1PecXFJN?6Bie6`57grtn7EsOVsb;J(&Fv@LgLe7_+6_MDUuF$^aJ<@e{94)IBsy zT+2VRxr6Vu=oXUDRabfx?TBD^-ADUkVrz?eR|#!P!$a-u4twoho>#hd?F?CswRlIB z;2qn$cf%vKWAUgXa0sKC@wCv9KgOac8MgkFO0lVqb@o|Ec6Ro4jt|Gn3nSy>y-Rzx zZ`u5TWRom>(P$F;2M3=n`-GkpUmECqBMmHnyt|vXz{Pav*)t>0XRp2AG2OBfcJ~(A z38JUwW~Z=74bDc7z^w=Ke;vnD)zQ${n4Oiy%W!U4JU55uQJyRN@#6rEVXBlT-Ms4g zUGK1aQ~cmu6wXR+Zf?w$yy%KJ890`3E%fx>-wTph?6G!Gd(I%{Pl?)n3L{dGI(47Y zk~oB#Z9<$ep`p^|eXx`)7RFPOrU&boc_NaMYTMe{DpM<#f`dC;%B;y&ccu=jhqRf~ zT;}|oIPd5vUgC`blD9>ltto(b(c{JX<97O4sCfd4%>F)r@K7ot>G>W5GM959=|o-v zR%11TIXFO&3DMfDYii1w`a!~{G}tit)*yT$(OdFh5QfXe^UNyNR^sxy1A@!(wrm4~ zH+ZN{?F_yAO(*dpmo~gabLDBrD!(0apBM-wM{Qb7I&k0KC&PC;IwQv6|zFB&X#N3_e0RklONW zE-h;CaB{QL{1+e?RK)Vd;?&IZ0{8?FAcS21Fv@pVW55DZF)&DAwl6Xb5O{%R;>I-c zdJgW}ciYtm4-HOhWMr`(FGPNE5SSKqVTutumiDl)4ni<-%JO9JLtUSIdZCp~@u#1E7K{)IVG5kCAS6baRB3tK?N09}ymgHj-TE1FMZ`;B zjii!JQ6tVb5&H-_;oRYuA#Hbs-$2L;z-X^DrfG9)WE^^V9&GhJ1}Qa0q7j3qcg^p_ zxOV2N!DCDNJ)2i9SXdO#4yP-I?0C%=l^r0|@KbAb#frvr_E(~=85Jx1e;ZW7dK$Lm zx8~J?G8HzqK ze+oz2$MgAf(+FFdxq+4Nf!1`@)j9R_cmX=E{&q*jgqkg!>Vn<(Nga+$VRW&xkSva-m1PdWtyfB|bi*gfs%8i{jn=MD8Ef=HYKvRc^+b4k=OioV5 znLgqpo&>)Lroor2&0*(%n@=pGGMSw9jLal+??#BSMR}?U2=TwM?`OEDP&q*?lvYzz zQAHC5Bxc6Ld5H-X4DySPm|l>Rn+w5mbj?CMaSjjc67QuUT|G93kq!h}enzL!)U4Xt zl-*J*x7xBUoIDAIsff51+iXMrS`elZ2^1GIUhGXS^`87(0=90>GJ@+q5&b+W_;%OEA(ASqVG6ELz-Hf&Lx7YU5G~*rP zEHr%7yttecOQQG9iSz1>jM$l3FrG5}a&?m>0`@_)cu`Wo}&ZtP_w~ zLobnP`c$4ZBHgpP`Z79Fb%f>(juLlCT7I3O`aRd8Dpv<0N*w2{_wAeAw-3cGB+#Dn zKNqtn@jJUbzHezK&h)EFP|b!z3D$VkZ2TN6)xa2+wQYbGQ$gar|A6kLbnm@Vx) zN}(hu5Z*ZOf}Evi&we**WlzpF(s({%qxODtQup=MKp2OU%C^q{Rjxf5nH9K^3yH=#HiX#Fq`jhZ2_R8>=K#wXd9HJ^aqISqxLN z9+i{`wr8uZ)G0=FxH!TZGk%V^8M*#XT87GO%<)FYl%`1WN&3v0UP}>X7G~y6H}C~! z7|&=j)G-T(27mvKi}l$1;A}w|x9z;zE+3)k5L@rBUp3aMTp#G_u;k^nW#u3-DiT>J zwenBGbJd>|y0K9wWnSO4olx+ydQKHnn9uwi(Pa1I(#+!L;kkVHB{f3Ekplrgf;(ld zR{rfWf6Z*0?O^|nA)rTDZoG=orE`$qU=LA?8@t#T6BC1I$@uvA!!M&(e8#^VCpH8Z z$Sz#GC{29Cat(l&FAW)eh_K*EwH@Cp{Xp9((csQ|+=Lj3-8eTYXSZ-`|0n%MXT_te zKbRbz41&miOE+-iYy5`~eXzpSCu(qYAOj6XVGIMl&arF94h-2D#i-GkWT0h0U`KNV zQq@9yed~%xa?{dm)**9!f#XI#ftVzgQ^E|xHLK*Bo3x@v^-p51IsW>Van4g%JTyEn zl>FxvJi4?>D3uh$Bu#l}qkCZfJJ0e;WnUje{|I{>5a-crx^-IC{tj4l+TP|(`hW#s4Qhs33}N-}@NSC!Nzh@wK~ zpxNo-P(4w?gI4m77J&07@Cfl&!>VSiY>jKp7vJ2>_xJa2)!<6b7v!YfG{%}-bDr$( z0m1T0n`oNopKsNtP*;hwc?=$-SCo@0V_@_dJm&D^1mzZP^%869hty`z!#Rgk-?jBN ziAgJN#^}#z5?kAO?;$%oyOcO{AHc8SZ{ND9@l>t-Y#5nehh8yHoZvpBXWcJ><7nnuC>!;v@yH*Fg%E@bLqs&Kjlr z$duUk)mMxImVXWI|uSB{84E_d(Vy-}|@QgI|8bs@u1vhKdyk(%LI(GZOPyG5eECGT04 zxt{1Yx3#Cmm?s9bCu8${iP6jBwN!!UYdP>k|=hi)pl*#L=+j&mH!2r!ao02U4dPcZy1n^U(tRb5_u zc`UegNdvvVOd{Z)B6+!C_XlKz#wYXP zWXd37tF(tX&P@dgKg{pdg?MJ1S}{XbL`W!rSQ;aM{L^q#Ov4a5Cgdyufl1HI48(A_ zM?d!sIzA6FxhWW&pq1M)XM*pKtOS^4vYLXB_TO5{C=-zgvwWrSrkgK%CKl;G=+csB zR91@LcWd4fO8!@rg7f2|ek$p)-oC8$JWJCmrCxLzO|K^!oHf|k7(zCmnd*R1@5LTdP}Rf zPY%4pE*?M9?3-#(^=ZCiys%e4;-uramh`vs{Pi}g?yqK=t-pT#s;)*HiH!|oN?9uT zPI5g_Vs*>dve%Br6PX^_xUoQ=+Xy9D+1QvF8Nt;-Cup+J`Ea+BdgSiY?KeJy6E+J((InSfrcIg&r|LSYF*8dnuWG?ea6+e1(EiR7s&h2|7B*c2Z zEXV3|%!Q?!X}XDKN$=S!tGSn_%A6e?y`TPE=wSwmQ|m!^yA4Iqkn-9Q;`q(uym@1i zMru!9P@0WlyAN~l`l`)vjd-?JmD%i&#$=&G4{yx}^&~NWpb;Kc|7lTf^vTYiQYU*N zrg;52Murw_3P$E#D7VbtC)ykkkONtm@z9~O?nNzcWaNC%#g^=6-FHu%cogf7OA;Lx zzw2&R_eNg_tk(>xXCs6Hhb8cXml=h#|5eYcOPm329wq<(p@9DkV90VvtElvNt9YRHgU1ywvK?~i42wH^Cw2lms`j7Raev;3Qd_}Z2Ag`Vgqe#tp* zk;`nbD+`t-W3fAaJhQa)eMW}OWTBwT_ZLE1+5X}DzID>XC++Xjdx$68#5CaC#wxBJ zwPYvl<7WZqe({=xw^sU={-nk>rEDf6V|Do(-h0_p?WNT^sWPccqCqddI#}Hhw#4@j zk#8aj%l9$nFMjy&-S^6U748;6o1@z{< ziK#^szBD!LPuPOX=m(MNN@`l}cPnYG{0~W-9_oW_oPLjwNZN46g4R+unUM?QU0IW*1+C5-K<>lrTqtrMPN5Tz~{` zeM91s9BVokf-_s;WeN*7DKn+`9PO0AK;^{E?Pl*L>PE(bEeO>|*NQamiF^|(XT$1Q z*J2P?xVgDG=@KXNv!WB?`hh#8t0x&-6nrw9v73*-C;2l&uv^--&u_9hsjj8jI!C>0 zKv7O3?XO|H#{{Q`S*c4XOf=FR5>$wRO(i7~k1i^ytKWmf2&VsgAZ=WOXy1Ok{W#4o zvs8Q=r1>dx(QR#QpwVATM1WCVAXAlrjfTbnmfM(_!j!={+aG8+dyw~2%r=QHK%uLU}R55h0L+nf(4$2-+g)Zmbnm3 ze49rkpXKGam zXLeUsj)FD-H_|ML!+#bQiZKyW9Hkd zCz4F-@D4b2s$;Q*u>JzRHn5_c z5eC2M0i628m=$Xez0gg(BfOpD*6D*>bd^t^9c`O0%&)eyrwiDB4Zo!H_RTe`8hWF+ zl%yvg)Ip-xQ-cIZP(agG_^sDpx}OFtwKsB#_QGvCmd%rgiz|*2QzGH_w?yg+!A&E! z2uWlGX7dW9$VUaP)rrClb0N`jElxT~X=qmM2wivJF$63qA|i}(`?7CGkGuQiH@}p| zyK84D4oT^hRr*Wj|3FcA@vQB;HF>hm&hqgNy4YujJtrF#^Bs5@x6bZidvxp_eKRM_ zMNpV!2$FA$XuFF-?3)E;#!Z0;G8R;Tqan3{C8KWcw&N2M-PahYr~731cyUup-(xvDKjl{W?UNuI5) zo);{&v(FMBC3sV(w`nUY_noNvTw)*)k#H!ASc}K(MPNqb+!fqS6fbi=aQhADGTU(BmcPVTl z8YB4v%KCo!2uKL!=Gcx#e&<$7Y&!GfhmZNcANc1%wbdb7Cvv_TLz5$Ams4bfDLu8p|&R?R<3hHTvGsEXr_H7yZisFftGZ+MUlT2@F82Nqfc1Edo zcxWj+`kbS+xj8orBoNRMs<)(p{)J};C~*PueC@tHyn5oU;KJJ-{4|Qg%lV_b?jHfg z?D`FP`6_s{8~cLt|B8YxqUz_2sju&7Wu;DGfm5gde0Aiv_w494nB1@$@7A9k+a`|C zM$>_pPoL`NpWBuh+krP7PeHcF$W>nbmVliSlLc*H(((gcs^4fdEu*dZ5ADLv%bx1|tb&jKrqrH6#4`-2! z(74{l5zgjc+ej{UcNfyL5Pu)Ztc3vY-)7TU&Lcr;x>NJ>l;q^2%hT3~BEZ2I*>8C^ zQVoA=N!mxxlfr%CZ03zG6|Jo&IaHtcJsDf|Bc#_Yj>cSQi*{EabzJS)VDd_p#IHO5 zD%HW)58V7dCR~q0pJ%hX_Xg~@a_Rpb?J!xbC?83~D0<|W_pNkM_EMu$G;51}nQ(?r z$#}s=b9tgm#BJ*4<*k_fdWbc*kh$aouE9aZVrBKe5Q$zbY!}@qfV)y-@%kJJn89xM zXb$S#(dRVI-SjT0@>A#ZTbO7He(}Qa&H;*@lF}tGv=U#IexO7AQ9J$Io|O=b;8Jiv zHh}pjH#R0ddbA|I`bzeS>Ge-CoRr!hdVvZ_i7uZwx(6E@K{-^emrdbi4jhL&_CnET zK@ViEIcVghWX#iUZv25!{JmAH(!KzOh;Z36yr#a7F~7%zsj0yR2m+KBxe5w$B$$Tc z^*!Uc0N=Bjnb9Wh7ewyBSQGIBoXA?*9DmOaW1541TH6uXft=^fLxSi0|GioLKSuy^ z>>>NuPa}tmEUQrAB2rAFPDE`~Lm@ zhRyF(CT^8INYUdtaQbzZ2`6Ql$k|qrvpJxZ@R)TuE%gQPFD+eBe2ISB_0TDt^{p6j zPqhRUB453t0=pK<2Tr<`l@%Xv?;kIP0>AuhZ9WIIQ%UK$nG70Q$rz(1eN1;WHN!6+ zL8Wcnfp8y06Msb(D0t#RhpNk;9R);)ncj^NV%#(Atj*S73W)rvuj>Km90^(Q7+PPN zF;#hw!Gh@QK!i@kH=iE&je-Div6=af9c+qjDh*piFTdgYP+$15+j~w9U+Oa_S>GBm z6i_jUG*8w^kt;^8pFLqDEyy-H_oVdZ>4++%1Nrt-E6+zQE)?JCE8}Ivc6I7W)OM7( z|2pu`Fb=$UBxd~p@^5Hp-dsHaN*5W+-{XGQiQGY9WBFuNc!91O$BVE2*=G0QcEw(H zXEyI7gmXbq;7zR{$h?6i&bIodKudc;#tzkiU^*{V4v-nC$VaV?1_pEG+YHE=S)C@Y ztjjLDed-h=F660zD5>gr#b|-m^}>%gOLv*hoAbM`uY#bUTn3_WBk!dDlY{&wb(3fv z+LLdksly9Ap%0FZra~c=bJ#3lU}s}9+Ga?6@6As)wrG(aIB@X$%`~UZhvgm4MiL$g zxoxeTa<}f{?rtL!rON$3X%_T|q@&2cxiur|hpAy=$tEJA68FVgDNr9-itSw}l^nl1yz; z6B6m*UG1P{eX`r3aQ^O3ez_z=v<}7p-r`WbT)9(_Sv*OvOc_I#&qTCSP^(yedqdO$;qMwvZ zgtT~@n|o95bE_UtSRKz^c3uee-|F7?MM3725s3AX3N5Xz<+g`wi?5!Hj}b|H ziBp4ny@|B;|E&E%`}v+>+|Zn&Q~A>pn;SYtm+9X!lI7V*hceu%cqeMBr$@ID36b|6TvAMY#sVyM6Z22=358f8q_2pd=@}#Hv1#QMUGJ?YUO02#4e{RY1|MIif zV6Uw(V@M^ft>FX$+EljoB!~6Q9#iY??pE2Vr=rq0qVhlSfM5}@c$TBAu#Pf`BSWdt z5LW`+3eKPsHC0ssm_oFtrf9ueJ%8j`@14ac7-9BJ-CGpd(FG0?h5>;6NF=sS3Y&LQ zC%tVW(ggsyT5PoMj|g`YamrB3x4e3nvh1StEj#|6BF?y}Zc#~621U0H-hrty(QkgY zgm)eGrcPGn2$Id$jpm_w{D5-2@LmZEpMZd{hzM1w#n#nlL>`i@X?bAOWcmM|1jJTI zeqVC*@vNvpet7|gC`?!4lmsH=MJrx?o64&X2fJr_+T=PsbP@P41~S1;t|G8Yi^YLG z(7pZsJ!WE}urR`b{H>V1M^)b*Nt0dVKDGrk3Tj4^oh;t1LQll6$~>Sdi+agTNDE)dZF1 zX{36vJJTZquSdoloV&n|q1)$Ca}qxM%FUsceC)pQdh&p8snW}+>LcEUWn<7kd3gFo zZPx{^s#_3B{0yWs2%%?jbj*b%DKLV&@%dm7y?b{;Q#cY6Z#!ycW<}962%v*rN-^Ox zVDb8TB0ga2Klw{iJ?Zt6-Cm5ojlnv(_3AoRdv{IyN&e3i0`GQ?Kt(f=~90CD? zcS?7?jU9@&4mfnOy1ZP-vUmM@qLXDVYU%J77fBBk8$BCapr3LILSBIhJkOw7D>`~t z#A1Wn6{{uz05_&p=obJ?QCI>tIu!AhQU7!|pg(2ItOcvj$ErxnN@iHG#PBxs9cj85sj!CFFf> zYTzC7qLSm{B8H!SGdEY$1$#q-jO?7Jes>u&l?USq{FxKgnn)&bEryxTc$Cw>a)e&y z7l>K|)5O6>d;3fqG%%`jMxTij@7m+Po76xFa_Ud7DFUlVW3qTM<*IG}dy&EFwf*#l zY3fm(=_u85vWWy}OC#69CKK3=FfR}*Y1dobDLNQOwJc0-tf#tDXlC6V3skfgb}Q6Q zt<&zx7Zm3Ys_K6LTcV$BhAW#ugjD0d>nk3oh<=!SjnyBP1_w96Yk$kd)k}IVKTo@@ zhQX!zyJ0j^tpJc{gE91A=XUkcP`__LI(+NvcPT`k5#R^OCAMg_-hKY=&M$Z*EouIN zLu|R_ba$+kE&5#HjSCZXu>kt>vn-f>YUp!vg>v&oKm$}YJsn2MqHQ=>Yd0!+>(&mX zlMO7`vd`{h-M5IYE(Mri7J#6-j!Pg`CH4>9|A$^df&-62h|7$8lSMJk&3@)9nY^2u ztD~bR3)ZabtPEm~*1do2Kx>`9o8g=78(b=X@Be@|WKTi9`w$%iQC~rQ6QdbBJE$;- zLWj+IpIt772&w3n*;)U(S%C3*iJ0xgHX{9rcoc5`f5ImEHyujv8RE#EAYqz$=~8jz z*=xZ;*HcvmRaAv#j@`7dSU?WT#f$e8LQ8BxVj%qZo6)o;{fSEaB_is7MZ1|Sj16b^ zFpW%#uO(-*mVW&p^is?pm8FNqCZO<2uQn)%@sWR#>oOn9MLw6D)fk@wR{6b@46OUl zypf4FeV>w2U==%5#te@jM(3%^332cLg$qzRYu0gOVS*85g`5;Vvex16W@YAks!m6- z{&}-&&%Tx!D#<-@S+<4Sr|2l87@)Jjxa@O!O?SQ{uW3!x^w^kaObq$ny?;fyM}7K$ zqG@^WCVHc<4hAB~MiHZlj9!*WpjqHlf2{cc$1BxHSDY&~Mgh%Q1D{np5DIFh_4CddB%jZVPp(_uPa_$NRtVZ*8hK)AtsWkx5gcS^ z@?~egvZCFZq}QiS6=%XeQg6u{4l8ySAx^T1e2FRxF1V6fTiyR_Dg;eeW!Sq`M~bv8 z*Nlyg!Quxj*-Xu@YYuRkSevfo=?G>%ch7Q@-~$U2sOHdp|68)rkLCHe5Y1U9>}7hk zadCL?lx%GSY$`Fg!R&(n*2;XrKDN9yg8nHDw~3eKmA*u>Q3*E~GEkI4AN|%J6ntD~ zk-vNoCJ_E66LYMaAtb&47aEz08mEN?C`xg}F`txB+mTC(-- zd^&WR$|Yax7@c(%dWSBW0PlO zZN+u6;-h+P4T^|W28U@vC9HJ&0h;75`@bH6@4==|KzwjJR8;hmeUJKX1%Pqd+${%Ek4if5@$n%?#qA|7kn%wV zeEHd){jvI0sX_WwgV)4s^G7+_+Uh;pqxKeyR%8TN+}Qr(K6)YV zr|{c^Q<3s<2#pRcv*tE6H)}SGftnh{4>Ibn?gxp996IN*fJtbbi+NgV5Q0%^MEIC- zJoZB}mUAvv+Xy8RQi}iJ0?9FA^C7PDP#wT9xv9wx)0QloWn^TksL*glDw%f|$RrC4 z;$mT}a;uVfx{!zzB_`JCFOGLuICoygp0{A${rk_-ej@E>OF&l3seexUiL=tkSzUD* zDIrg_+d`1om|uOguknK6hxe%cE!10i^xT9{ud$`&fHaI%UL9+{81(-V!Dd*XZ5^am%`$L4)W37_!jsBY7tXU4#-C}k- z0sSAuk7w-1hMILJ1dCTD@FMR}8h*XDl4gf4VE4}1$=j#?*@VBl_wNaRq)IC&rP&uy zReQL7kvZlBCi~*krx?P{1qJa6nA?_|x89)!w+r+L*J>J-wOF-5? zBY5V_-hEBDizUI0H5S(|Kfo*=r&RRlQN`K-gYuOt`TW3SyRL-z7cc(uJ1XTpF;T~+ zxbsI?Ls=bh(sX})&mxnwJn=a04OgI(My?N;AZAByz%4K0!@=+-_Hr_U4uScP6*}|6 z^$Ae}C@!3KkdSwEZdWq4xp1Mc&^buZoaWB$A%3hk?&__7E#6CrW^V9A89f{Mk0Jlr zM;8?*+GbEhMLSOx;uktpM;F_yyCe#uTAq9+^|pA9Zf7@s?>>^0RX99&=}SwELPcJwlev)FsT$YSzE z8cq{`px56OcWQ`X(IzAKZ;dcv98`u@NCUXlOE!u6Ytni=n{GM8FA)8|DGC0kJRr+3 zsKWIv(?Y8#f`aBu_|*e72R(0j0PqjnJ?(qXvzL3fGR#bqez4piiOLcp?8GvaD;h+`0=_^40V*L*+ab#e|I8&fxVo zW5l4O=SP?uuVJuGp%XI53;N2$;a;y{@*cT_MO3g5LoLFaB#BSpn8uqpHC@R`H~JI( zn66`7*H~AugXNzBMX@O|vTGaDmGpb|;B;K~5vdr2v%8k1datuLVYY*62>AUceMBL_ zfEs~ByoS|q%+BHufX3{_i`!az>FME%qRAhM-6A-c^_etg^6mDR@Hs$Ej5Q7_Sx1PQ zR#w2Nytg=cRP7&9;kkwJ4#C^y)GOkw1PQkH)6CNEIgO|eH^Jv-Co z;I5vXa!zEW<9Z@4&85_x#KME%f4`cj_(SNo8(>3hI-2kP9Y6s6da?k;{|6utLlF)m ziDq{=|3W;7$T0NkRj5b(1GWm1P6+3Xg79C}U%gx=UgSC)H@dQ*sF7<8 z^s11CW%J@30-y5lsvJ&T{_F_z0W5$mKnQSmQvw8VRiUT7sE-6z+^rwU6=CS!c?vsRQ4^qCdB@aTaDm(;Qj2Mp#97NWuR#76LlOv&i6Rv{ZA{}JShi2ZGY!GA24^trR7|4IvAhB8Oc-XS z<4&vS`ivv~h=_c zMeow4pfTJdX)CPb=C&Ss`j)VXe9Tq#me-(^PMq-6`*>SMS2wE8Xtj7_r5IyIq-tQU z369tvVv44ndJzYD1`|_LE!uYOQW8;pfrA|8oxM}{AR#S$w_MHm_QH_E=3*w}5XF*p z<;>0P5mf?xUC|0*;Sq4cWAPrc74}NxfR33lyhVjXt`ko@Mt;O-TXW_+xs)CmB7hi0J1~BG=}dTxTbq$R>x# zXyJp9?-whkGZ#~vpbz$FdfhVEK6YvAHm{Apb{xrP_FOxe-X_P08hU7M8AbQbz356c zG%9Rqdi6JD!)4$UNxB~37Zh|@+Y4E5q=FP<4zjdV%D#MwHFI@FTaI2mD>^GL&k05W zm=yNSEX`*q9*5~b+cG0n*Iy@hpOU^-yp*wfM|vBbB&WB&`hlIazNPgfJq67?2}Q${ zJNK_vOE`ckzMAQo<@AT+Jj%npk1$;)WjW~gHdZ)GCf~Qq`63<(xHWE|(e-{h)mN6P zoeLm|S6qCfFF>4|gQN1t4|o&|MpzUXE7F5dgqrcD-0#t62bnB>{|F0}6#ozeFJEH= zRt!mb8o$p#T_e(gmPx*;=`JNnn==~`jvoBM;thw?{G1#RI7@mDP#=CO>zq&jk9q0e za-HmaFHgw)v)h;U_bLXxc!5k{!6egd?wA*lvUDB1_m<6bVSfJY-bJj@s`2a`90)PQ zE1ujiR>2(Kupnn|FA!8XbFTp2x5||RfMH#sJsUxE^d-_<+hN#E$g%Nmy*qWUKvksU znfdym7%s42W_rB9ieSBkUG9rLG?=fWT4v3{n9n|d9Kc&LR#)$4Pvs5= zZf)q3b##m$6KC#(LrkJa5vyqnuH|MJz`M=v0g(mRGgUe1c(k(aq9bqC`L)?VyjT;} zEc?U2zyQm7U6-j#Oabu?!wA3LNO$O&x^{hOqpaq~ZPto64y14PkWxFnxut(i;NO`7#J>r(o**aK5X8P2sn8{=is&(~U*T(H}l7lKh_n>+!3reC)OsP~Swq zhy2@fb|WvSkKn0C^Zh>Ij+g-&Y50tu(uy=1@d*hDVR|*cKDm%SH1y_HnfX{}o89W-a#SJ*mnZ;J>YKkp^z8i~ z8GDZqZ)Zr7Ku>@iD=hhR@pQ^F=SRML=}irn1#&vhcVaC%+s+|T95lG#tV~TakQrWd z-#OEU{RGi>x0a3*UfsCtz8E7JC!FqNXP~WJsK6H{Cl$hZQcl7D-VjT@2)=?ny`AwM zi??J9QT)twuh$aLM21a3fgvAa8-$bSBx3_t4XrpB{- z#2lx8$6WA%MXj}s4a`#{B_$C7(Sc^Aa)rcWr)f)SPiPQFc1^h5&|J#~MwOnfE6x3! z7cP}Pq7uuoS6vF|^)d8BqBIyoF3P5K-Q2!d9OSLiUT%KNi4SUld{<@)`_Q|HO+8&-~2 zV(UWfmaJEcT(hZ|aM@TExeqe8D}a%-q5&ZJq0>)9QUbV>F)dR;fI?wfX!h3 z6+kPp-NR{^-%K;V$d!sy{m&?f_{$5$imB>9Y3T;`QuqGuzk^M#s=8WH`UDR=V^;ffYTeC9%f{yGN^Bw`_>+e(; zneQF8UR{i8cq^n?Ac&P46 zgdf1QVxcfOd-OtJlo{kGL{>k4;NG~%AY3g4UOULa++NW_T%UN`b)Uey|}%stQpRT9uJ70TKjsa zvQjZs(+=h8EIIvq<{%Clmb$t%gPI93$B%NXrputrNO%zg9gKuh%-cRr_J@!^f9_4q z1Zg5OUpd!diSa?h#?dP$j%sr zx)VY#a23$xB)R3HV8*ZILDK_{#NosGC~4p@U}tUp+&=}WPEhFubzqiN2X^W-^6n&N ztQNa#Zcq=Gxuz_!}D+juP}q( zH_Z3Py9+z8GdqCii~|W7PIygF-EAc|#11aM-D}##G^xDI_E$h_dV|a7@SO7$-yweMDP!=ZprD&Jg}ieG?V4aAfs!dQyVX z?#o{1)s$}DV52=KpDTMjq%v9QxhpY0f~OF_eZuny8g^Nd3cM zgQe-qCq9I|uQjnNEtPz@i{(2<*S&Z2xn5pM$yp|N?i;_EY+1+Ph&SE=#qe-Lyu)yP z>6b5k7-VC&IqNk0j{0>{(ip0kHE^C9-CeTDDJc|Or-dpLF!_#uIDe2|{L1xq_TH_FSUS-ygQO!fx`WN~^qf1-yQ%yjNE zCZ6DKe)D$Oc7(=$V~t`oW-!B85Dow52Nbv^mkBmLp~$;JF}>7}&_}UAyqa!Vrb%Xcdh&YS;+MY}|a4NiHM-b91Kz&vJW9U%7%{ zPf6(D0;HH6FSZZE0JhuT&oA>gEoMIS?0g4VE-su@K3MQBKQ=;ZFm(ToGePw9TA6%U zQ|>gA{XqsRCl60ZRJ`dKQk;VOCx({Wqplnn02Vz`98I<-#6Ji zc*-u{h-8_C#yn5}+n&?>m`0(e94iB2pkT##!n@Xp4|4&ca3vudJ=~1;tn>UB1hF^g z1R(pVzpScCq}PitghoYin?ad|WkI;xUs_r^2m4G=B&ujTA$kHq3%Q-3WWLf8B#-_& zKi;X)Kk}Y~D^v9bhAF4j*-GNyzLjM_N6DXQ4Ayb~eCGDWJR=y1C?y~+3{5#IvoM&7 zP-6}Ma!#yA{}c^9Ju#+rac}+ad0deBsjcrG!3Z@>ZnftEV-PKkc1PM5{Zm8mSm;sv z>!Rt^(3f{d_l||u=~GMQEH7!aq8_oCnyXTj<2&H@QB{au{|n7Aw&*q2%S;)^bYo&L z2oN+Pi0zLR9#;FT5}m7(yswwPm@1FAXMbunA{d-jb}A>R5N)Yz+}DqKF9N|t zQTlsgBI@bWt5BAh_YDmhRUCh_5dfoOR6BI4*u_?E7&2WL0&R9hv=) zcP->BheSoWCcjryUOC2kaL(zz>>WpoWbc%W##JA3E}8ok$5QR&eZcZ~`+f(P4{Th| zZI8MCY-_=i@oe4)1rG-s8;%nvs3pO`Z*F`$J(=k1>)THs$!A<2givFhd{%GFG(&dQ zz(V~v8yh)`wvNvAVAt)>9`ranIRV4c)HUM(YXrK`=VX4@1mjruML+OZejar=-Gx!i zhAr9Vq}Z!nQc`7_=CYWMOuafj!XYlMhvX@atM@U1l5FHSt-)48vU8{GmUXN%*C|1n z!V(2*IkJHp^S=VV3^RbxI!t`a;rj#8e`IJV_G&Sg#Xs<|2ht`@`g45T?8b(Y2aKN5 zZXa?pH8>Lno-!O{lF2uYN>4*4dkH7+#O<+Ncl>1TU=#!;*GZot1&p5FFsh6j_Kp}vp$rCVXW-MgNoM=GqlNc>Tj%m= z6gt*m$9m)U{pkG03rI@mA`ujYytL1|wlqGI<5mM9YiJIaEH0gQOVOO=hcT;oRfQCl zU16LH-~7JM*D^~rr$RU2>-F=nN%+xY0E0Q%_91A!yPRhh7E+lO;h$kX zqt8Hibs(^!Up7-yOFh(e&O{=BiDF`~`q4htK$+53co2pQj-DGC=~T5j>hPxl5;P&3%cLxU z6+6+TEL}&vGjK>p=RUQd{kVxGV$e>z)xZJnIqD~g8G}rzE>^`Tmze?i;hpy|NReW8 zRZ*@4xRQ8o{WLxoK7YGd(EdTq%Yvs4Jh0(fcv5s^7!%t8f?t)$xpQv^vY!aEb8>BH>d* zW{!G+2Z%;T-f1>po{zSqxb_~-5a1NTPU!}+>_V624*B!rdQ*7yC zf@;fX=dUMEY)o5rv3yI`*w-1pGZp=|Oy$?S+}zX2G_bK$pGo)syNwCv(OduXg$kQE zzAH$UcK`nUaOe5Xk?Jy2C5W*XV&ArJZ!~?7tI3^hRQDQDby+9~a6ndwY6xNAFjHK3 z`SK;_Bz|Uo?LtEQXQ?MAq-BMdyPfO5|FKg^sXOE}cirs9&t7`HyVr+7dl9*_)^ziq zv@RM89*l_p-nUP=;aZrSfJx(tVP{m!nryjVUtUZWY4PfpMDAmAySLQ;)1qkj_wZ7@ zA#L2-bu5WHDk^>+l@j~2z9N4WBkT`Xl>-D`p1QGhTND0)+mI)|94nK zJqqySKj_EL-)x#mU%YBPIM#;$UI%ezV=I&WoEww`4^bmJi&g|u;gEa?zmZFPMq8u8 zfyooAKGiX5g2zC`(Gy0^b+IB~ja@-7!KxP(x9g02Yi-Op$!<%Fmg>67%G;-2z}Nz~ zB&1V=t*6aypuNnStPO1lKkf5YPvHgef~JN=SIv@$7+R;oiMU zjsba54KtW&>$QVD_BBA9?$~jio?PCae{RTYYTl52ESX?SzI%2T#rRnhm5Xvuh>gJ= zC?K8E?|4v=larhNo?PGTVK$o>0^fxw7M5+%&gQ)~HEnsA*Xr{p+g1=cGdO+n%`9Ww zQ3+J*I7%r0k*4-x+usSrgfYT@=TFYI<`F-xHTthNZ$?EN*6A3uo`$Nw2!G#VqO)yl zXGb>GfirI^Thq>akyO&|(rO_ka8Yc2&)iej@pjLpnbh&t8{K`qV@cL_T(UA~;uX++ zw|=~X%XgHHYh03_Cj9T`%;L) zk+I0_yda~h`hB`r!Ia7zt1v4o!{#IzAv=@n#cmB*78c_A9?9Q#dIWo) zm&dPO+{YR_CEoB>2gOCQPJXDO*sy@HQqZjKC5f7-({RAX5Crcx&t<>wc}|%XvO7HJ zek?om20nj2KiR`fPalFbL|t9fMCfG1EPG2Jn&4PJ8&ZL47~%;%#~N@{;qLrqoY>&B zXL7)|4pp;!gaD>3`&i{jDJYVybAfH(-{|Do%EZ=zLpVFyVgVfl<~8+ofWpB~kGEcd z%EHOXNpk^-a)gY#By^lPMK$)wgVFA8NKHn(WAf}rTtdyvCxB&B`B741fYdEASm#n1du-38KT;o-|r?1A^r;*Fc&L&*r5 zR!kGDA0Kx+4o0F(5*8AIiVuZ8DGRvf9GL*AsU=@P(*9DY52iq%YL04#=SS1?2psTp zHK?|Q5k}GA_uC&o@f5yroBG8Q?egmY-M~TW+WoWwaTwilIxMi}ztoNy60o`%s6#2i zYnVycKm~-@w~&w)xS!_R4#V8o3c(;~eL)yjA-$%mIzN#=={8-#hBbUT7tC2IvBg(Q zWl%m!Gk^x9kz*Ny&@wJA*YV7jUwwV@tPR+=;s`K|qB|K#Y*NrUu?JyhJQ^3Gi`@}b zmyqqyRoo^JSm8rSeG{>*#P?rc)pBM)$egsrGv@W{!z`b;5L&|e_J-(L$9uNUvvs}< zg6oR|5!`NW&0MLaHkQ^$O17O!uRdnKW5~(wG#JmMOnzcvJBY9JQ@*>fyf7FgCzH)qLj~g#E0AjA9gjaOv%l`8=smN5# zB-05*=z9D9;a?ctzoAf5Q$rPlhc}!mSIud6#rVRb>u4;&!&b3#_Cc8Zsh;^_(`>Yy zuajO$sDwYJ-6tXIOf7HD%@sF}IZB&+75DKi!k7S?P( zx^^P4f<4|AbfxcxO{YtGg7`w*aM2zqT2m+i2!-4OEzGE-zT%s-bC{p)_B>yRZtC^x zBZ;f+FST-&^i&NT#f{eaihCF&xa1^B3%e_7YNp-wOqiKjyk%0eB{h;CT}u`Jew%{p zTKS)!W)rz(&DTr5!G4KaQZHKk39jZq-57dE{>&*9tKCKZk;QY(TJ;Xw@$Z!1%I%Rv zz_C(7(yG6bP@2|$#<)&hywz^P1c`?7LDg*|HJW<#vKDcK^-3c?vY3o-u9CP0)SthK zpOzqHxrmk+NL+HFhhH0K2^vLO8X8g-40laUl!Yt4wS@*1j=V z+;es&XF=D|C=uTPb&Ab{)YUE3oo{cviJ$GrG%ZtKesGeVU5Py?sO%!aT{gB3i-Pxq z2i7D^bI*f<`bS5#8phb?l-iRcqGB#2dw^IMcx+UHHKg*lb>i-y+*OtPB+EHN$x?%! zS8mI5$hO<_K}AC&Ofu%3OX}$l%523SPB8>~50vPiA{rg*CWdJaS{Ui;zoO|)6qkt# z3bF%iPqvRW)Thl?oH9PO6q^PnbNZ+DdsAaG2orZN0=92keu!M2RT+whCH@GXX5wEW zf0a8=boycP6$#}N$Z$RpRJ^wC!DPbXVEOI@cgl&A*P51g{?MT{G}y&LvwhL&IR{PQ zTe&nl+7BwSvX9Y$Icl1}`jj*yI2+|Wu{77Bcb^(MH1uKvj$?2E2MSGO7=(rz6$z%O zCW_dNs5tvTxs24^vH)g!$@1GD|3=;~AYq+h@w(>^l=tD{7<%7`p|&0{2NY`{9&+tOpcJmAmS7pog>_46-;M4c7ZOcNj&nI)xDuEK-) zhp{8}$^jZKH|8=o=tQ6fmv)AtUPI`yn&FwSU`~xAaSlPU#LD^H)YpC26{copZ0ziU zvN&p_d6HGw)^oBtqj6V9OgO`c^W9f>uIA?LVtMY*l=&v`i7$O6|G_v-uJmuQ+=N;a zjX}x+EZ+z$hSc4ZYSgQzfooV@PuOLH@qR&M+937Ew{=>uE#g zZ!TcA3n9u&z6{g=*fM>6Ddh5{!kL zKi2DjJ^@aG#zN(NADt6Ue=iU&E(FDzIPCF7l>>BOywD16py|q=H!?v_|1_y!%?>F^(&wG4peClkH7yWm5gWlyp^8o<~Na!}jaS zw;1bQoB36Gl%B``<*852Xb}GH153g)cI@a;h;kV%*%Bs4hsezkt3DSIhhTKM9Y}}8 zLYV5ZpwqrI6Tzx5Cg^Pcql}s3g{)T7Zo&uh&5km$?oE6uv)DPHm8l;-3^~peeEBlj zE;rFj-I{Ho-&164Si|JHvBsOIHu$YMmU`-Y-|6vzwrhcA@Sh zOlP3YK92>HK_Kb7S|b!8dc|(8{i1(^l<(?)f~!GfvHtvd8j|9f>VIi{(*M!=ES2J_ zkjAu_6dw>58~oxdT>KgUuLM z%oa>0XOFD#<)??VxLOnfyK#5vqcA&v{wOkoJ~+s`lDJ`whj-$OENFA$kCnG8VprRliDoLwNL3loHsZ84evM-xpSF*smR_A5g_?@CjgZuXESufc( zm6m3@lX7;nxr+Tbzt*;mr5ehGF2hlFLdiOxu}94&3nxAU$){7u-NS5JRvdTz31rar>YZ-+`BbNAH3Y&-H-kM0eBh_q_SoJ=#*8{$}9BuN8xE$)Yhr~OD&gZU_~ zlBX<+JK}y99JBkrAogE%dMtKB1U0w62%hi})zBO=ja~l{(FMF9M(cp6IHB$Vp zYbe6MoEZzLGr~rGMx)a0A(bj?vZ7VXrQ;r&2ylbjVm=eQ%$0nbS)+X|+tOFx9McM^ zz4)eld<+AAaV*7CD=k~N)T=Fuhr@Jo4qQDe{C+}!oleyd`Pc{Lp+Qe3KRbkph(Mg$#2Bg}cdwX!FHTCgh2w5leKgD_&-M1Bn z1%{=y^{+(c#w(cI%NGkcNtL}#B}slJ$Lf7b^N=is64ffj#XwB&Tx!h@;2LrLXoAxRX6fB8N z5Kiswy~cwt0$K}W#E${Kp?=>|@sQze2+svYNqQHb{KRE}?KdY;&@p)O?+pB!}O7qbKt(=r! zo~K4a)s96Xfdxt=kP5FK+>cnf-!q{921WZ=sGz`UlA1$6c!&Q_5`wzI@YvWsCi78t zO`gos3*X1@YbVf1{$@LNPfOr%?%~tdNMqjB_y{@w9+|W#-Z(WE7ACf3OIFHO367>W zTil@hK>rScF>9dl+(;7)(%xz&r*!HQv5C+0l6b25G;Ux%f#bS8po1{OE>uSE?$?)I ziipN2&WL(x}a*RN?Qdy3)@^`1_hQC{)1I;xj>>> zfpG)tFgl*z3sjQf*Lc4wZydbJkPbyJNK=vG>NvA=ljq|C6Rb-)xSI69ig8>SRC>Ggm8zQ$|dvY%y-^Sev{m8=-`$t>F;T*@?&IpuTBpVh!cw5AsSpD0~9^)O-DLmcfo4C$NS;yaiQDpB=R-&9%}ZE30h#KgX$#Usy-ZfSt;Zo#*J+fi82VXneATBJO~8xQ{e76ssg~gnX;FZHKMx!{c<$Z@_k{_J z4`nm+Bx6rjR98Rr&9_D&;40Qw}EOEdTbF>qKE%It0B3}ED4u>Ci^z|5zzD`zB+Q0vy zn5A*;5QfwE0l&}}-U*nio?C9gOBR5Lk^7sS!`g!|shK_B@qtDb)zk{_FY(4$t<`(n zDSab2WJ2+Bl}J*;T$6zU5HP!@W;{-Q2y1wZoOR<-ilPG7X8VCe`YHIJ_rz^kw0r&p zk3dKWa&0unAm0>22Y}f7Z;jaxDmj)VCYh~L9odL2^a?{B3&6?;sRQrn<64UDFJ*pC zr8mTJ9K3+3RYtNB`4oMEeYK``BBzc(}Nr9k8&dYa3y)=p0cvtYY-w0j?#c zrW`3xN`H}S8uFbP47~(tQPffG?QfC$&n5uZe4DXVPJen=HS7FXPWFU zK_XM_{@j|`2mrxY*x1o=_$;lATR;F-7}73%y=m%E|B*FB;U1nHX*VrryzVfTwD|pG zD(QVvX43tcO_uz7Z`9q}lXUR0&-4RX_ug?|wZ-YPogr%KJpeb9^E%RF-ke#pz%}fS zynK1#b6Ql$W&zkm$b-UztRR^15?rv@NCX#PxbkGa4{o`;oVDX6HNqAF8ZRwOx4Z@! zUdgJqZxiklajJd}3#a~te`^b|^BvUxLz`>&Zj<}$n5y2>2yIH1_tx#c45vMi@#a|IBPk^G z3A2AL6<|F0P=(pHYA4_^;nXhdSTd6{v&Kt;dudwQDSmb>J-v#5P=XXNYnHrPo~pw3 zLsMEPb@}_*&(l49Wg&88@6DL;I<+vl=yqab(z0|0pN=|hm~wksx+wT}{JQ&n=AY>r zGvMCU*VT!P-S=!6_CO{f;N{mx-Hjppks3R8{LS@`TlN?Peyuhu!&c~6l8^BkxRk5q za4^jZck}#Q!9#%p8tti!yytL_i;IBlNfb(vm;cz7{5o-anmx>fLJzmysy*E@I=A#G zWus$&Uzv(w>-q%{7QaZkl}lCVF}{Aq9AVgY^k`ahDUfSuZwyw6XYP=(iaHHlP;6abZks>ET9J|2k=WZSGFH?4_HA!MqJ)vrRMhjZ88>%N zUfzf{U$wNktK8bOP6WVV4j?IR;6cM0LLtcW4%1}BecTv8fpON!ZWHI()B2_7c5>{O>~RL#f2weR5Xa&gP89tzi~!eK%sNrc|DvZ@I~wW-^| zP+!+iVM^9){pG|l!0m&{zcqKCK66G^PR`HA=S?w5Qk*4d01eLl#nLF5VTJ{&zl^L8 zh6V;sPKICgbv_JbzbQwi49E8L0oH%Vu&b+AWZ)_x{If$9W;Sp;TA93Kl`j4hKK6zw zQLE6;pE*0s5A6GkWMQ`uM5R9Mr1hYhj+Q^jCaCG|Rx0oDFg>~D_6~O!ultM_S44K% z^L%uZ6>!nF#yIJY{uDv|*vU+HtBi92W>2>4P8 zT!Q70Pz>Q-hp5So)YNh+k_BGpb$j=LNMQQFBFn`T9pc2+$Vjw$MMd+=4D%Mfml;~0 z`mk5C;%DuuL1@o#;n5aqh14@!>HEjNU+lh&Ou(zVfDW?Le}<_!j!vquff`%bzE%=M zylQSYW^)A)q$PKNcT;V}($A+QV#C8@N4{f9k;Q)LFLX9{7lD3qkzKr$5NdDOhS*t;XV59nX{gP>q=f@H+^(Z_Uci&G82E>Di-wLkSP_G z`FBo>0MW!Ew}aCw<&fSo8%mQ>7(Ne}D=urPD8gTVupuQzFf_abvs^IZ%|n zS_`8cu$5jZb)0=Bi}(AZy^D*zf6^BDkx6pJR5cH-$J-~$idU6ZPte>kHGPz!rRDBc zte4b#rs0p`5mgGLHB9JT19-)b_*_U+Z4*BilGgbGF*_-4FYwGYrjGZjT zmMJc-RPN#Ue4r}w{P|X|F@46Ov`!Z4G*Z-MRH{Af{BpCCp`1?_82u1fGh+0F_+?K@ z#7%U!I7q&n?4d6=#BB)O>`$e>lJgQtQI8UO0Gdj|!!G^>mdkLqj)>q=LBo*~={<>h znVC-H6-^1nvaieS8%vSj@l_!UM?*2WF|E=IwuFy{Aj(T zHg0ZAQ72-AB2GMw_Me2&e^nAens?|@xD;f+G*y)gY*pOMW9ZGJ(GoAq{(@}H?Noy< z$Jx(}KA*H@$~x)2fRfA~{c}-HBI(z-r=_LAOGbDSZqFv!u;-M#H1)$Sg2q()dc}FN z4-K{?FYoTIt_LeCfH|D~=EAlqcGtGHc1VF{!~9SbE&^;);&-{xP1srnO(d9LvLXLGirB z`G5e%I_8~b`PqW{<*|Fd@<0W8p`%p7Vq4 zfQ5MZY)@hJWX}-qj}jg$0dd+UGGBLGA{o?t=tEXIdXlWHc*LyrZq35nCtujPci00-x46aiWlu!E-WEfuK znv|Mkr=t`Zz6d2a3xb4z^9=J)a1gtnxCkKVxy0MWJpr*`ARd{pHRIj{X(gV{!^49< zx$|3eEQE-8 zRpUF&Y=YRD57T3&7?Vm*yqtYqAH{~Lu$xXYx$NJD=$1L$qzUwNREl@+5^-mEJ%1dr zPO>smQga2JR`s>D*8>$?-yd;ux=*9I=!}2(@ImkPL0e+P4GIFRkPpHblo;t%^H?J? zP1Bk1=foKsy ztec&L>?cL4HTEV>u6brwvz9A)Ao3nLg29YmZigB5&iZU`3a-_J8-0UrzAzZKv9WP- zA_A3yNf`5@Z+WZUHpK-P6r!kAXWdEQu`pD@Y#cvQmiuV# zVIVB&nVIZ@petpwE|f%n7l2Cfrg#+}ve#+{-6GUZ5hRmYzcSL#`}T!9itCG`paQbH z)SWT`vPk|hsParq?0QbxSi?^T)~)9(*XQj0GS)R4vuD)b#MU6X_OyZd?LI0An5oL; zu;^&;#LWB5Gc{sx4L>RskX$$X3Pwt)6Pa!Dl?h+oU~^*Ji-kS}# zI`O)ataJE`(6k8#>ZOPwj6BHS{hz*5cnvu2wOG{0K5kW8s zhGnZO^a?5o#6a-Eu7rh+K(Qz4t<0&rQdU07Zm9TtdAPEMAT5STN@$~6)`p-!4hZFWGQ z7-UKHxkhbTz&BySGW$(KV=$8r`tNoB}n%apzbDNsT$fXl`ThJo_dO(iM+BbxlbYog4B7XZ7`b1D2 zA2{HOwgDJ7BBnI43+M8%DrS{SNY6*3K4`<#+Nsz?C;8pk)zgFm3P`dh^Cv0^Ipr8u zKy-l~R4Or5|JQW$MPsiHHxz1^zf#oouc_XX2HB(dha}K`5J5siLU7QKmq)FkZ9(lf(k~CWOd_oL!U(9F$>G3` zwh?%q-Z0FR>-Dw{lHc3u@HlYUc;a1UgZsVk#R%yeLgUapfi{LjqDk;PAv~kk?n&On zFK6U*Eiuu#ywyq-e4%{TjFyjKX1Vidyg2SJP2h|a&G3%Xo{u6g?Gh2uF1AdD2|;x> z@gy7ufv%`reo+-FI{eG<=VJgD1{4GGch0d-VTpl44#c)2M(>bgio@LjBq>x$7F zj|N}>ml1(GM&r&~oBaT(UKZ!wNEo{JTb%YM^9iVzat7xCQiBW~o_EVMlrd>~zr7YF zfzaeV)CI8N3fMcCt(@NH1)#k^IbVBjyNbY$9b==T3Gkwlh=bg^`p|_%n0La6`j5_= zqwU$Z5H)Gp$d678*a-~v@EqVRA;8BMkB>el^%CNxh8}hvu`vKbz<4lOwdJ2O8rzGN_ zXr#83zQwDuXG#=rJ-b@c@tpW)*o$p?Hex7h*LDbz`#{u{{e zhKA@MogD3vOPs*Uu0Y5#s5P%li7f20jxOT-rj&#&GWwa*Qh~%OmYr0+(5M3%bjvO4 z`xX{zq9L(?}Sp7joVc3Wz{K0bmkmTOI}ii};Dh zr-6lHn}EBAuFiLLnNH{>eqZ*63)dJ73BPA$m6w(EoPZ9uEeqV1KsjiW_SviavJ^wxaU0opJ5iqvbjD#1A!O9D{5J(5LkS9LZD5|MfA8$hGs9XvRYF zIhP0m)X5iYJ=}(IlI+VcIX=N!ZhM?{C&y2@%;KUuZAZ;)^zg^IYPl(g{T&z8J@+C* zkavq=e8ToOPbS~-Sp6+`jx)n5JA&~kp*}%+L);ixBcV%;tCA-Y9nQl{9%f@8_Xh<9 zjrwSoCAT^}gg*=#vJ-4SY}-}@<>qj!FLdm_+>4;u2<=<55XnhJQvp)*++2|>hzEg6 z?sm5hoO-SvF*DqjrJ2_S7uJ@s;OwaeYK-w?^2_KYSjjvvLdV6nXWBUvtJ8HQcgRJ-*^jp~fn*cvI z(@K9_uG`mr=@JM`&p)0{(=`>o#R#FU_a3zy9kHR~iDkL^q6^!-M^A5$ zUL$4VEtLcqTzh;|w#{=Z;(z_`WCcxa^?!CH0w)8)Jt{nA0C`SO5Mgit)t4gFT0mb= z_({YybQDw)35mbPYCgT~l5xxwH3EhyDr|Auc9ML~mYic6IOuI{?||`{xECZxz6egv zVDY8jnfoXU{EJ&KHhAK>K{?xfv_q5_=;0&COPm+)L=7@McYpULmLLnUp+mwWpxcWB zwU>~H?%&ZCZbcg^WEmmy?|GB^pNo7!u!^5?3;9_9y{t@05 zA3qw^yj+^gx^9p)J2zM0$)!As6@w6RKapqv4Wih+sH)nfpwQc4%;dlY{28B_p%R3Yl69mqwY5eiF1~06mHe*_CPon5LW=!5eA*$-k;mQ?VROS%FU}$ zk`K9WUT1C!K**eOc02G%CQ(fYaS@9`gJFkYaA;`Fw-g3H08j`@0Ry+ISdK|_i-4nz zXzxYVrX8@PdSH#r2T(S|zE{@zLSChlkQ-Shn5M(VFcp&@?7CTQoMVZXv;Raw`9?%5~z-O1%w=9GCUD;_(z5w=`5?U-6 zT%eIUXSs{QeJM)PVH5EdN`Da&x|@*!uoApY_?F;{O;MF~eIHCp#ep8HUJpB0f}D9; zf-pfX+{dA;Ri(}+$ud#N>|pinW)yMsUz{BVIi)a{Rawgoi%akb(t~1`Q3U`KydDXA zhpFo<5f|klB}yrPgkg&cJh@G}#K$#sbP5PfNgFRgip%E)IID7bB=1#8F}SCQ@pINk zfV-y}FSiK9OJ3fzi)NBdC232phrEtpnWYq5n<%>#8*AJp{?^|fU%B#cHJF2) zOQ|ywL#qcaN`b8+li3Cr7a}|X{))nk3`JZJg}-iOq72D7Kd_XbzNM0EtTlo&gVrTz=DP(6%8vH z`Owam#IL@z_O!VidkTrXYV`=d!LczyY>0ypzCX}>hvo>fGC8cA7K*9ukRmn*6GiFS zKQ_$2sG^ou=SL~T4pnYi?Hp&DrLG0zF#rGkcik1ka7KwRHIjI18mhWS9;nz{`Zon% BYk2?w diff --git a/08-mcmc_files/figure-html/unnamed-chunk-51-1.png b/08-mcmc_files/figure-html/unnamed-chunk-51-1.png index 00e0f7afa263075ca5c3ab92ec6055b77129d53a..014653fdd71dbec5a4891c20763a5eea20d8ebbf 100644 GIT binary patch literal 57815 zcmcG$2UJvDw#?5PtBClCn4DY*xC zA0ZHA(g?(n9~7kUFYZV0hQiD77Z0@T5eQ~~;$M=m$rWP+;vz!s?rn9K*!dxM54FkB zx)si%RHY>)g{wR~bTf$o0nYETe^EMIoH@JyR`k7+>f8%UHHVuHoh7b6o4;J5>s3CB zx+2P(eXiu{rNsJs>e4SsQ+O)c^W`E^pNHFfc~7uow9j@3HaEygEmc+HL{zFyp_M8{ zT18|pH|4?^!T6$->G03H7fxqg4&SN!kWv%h_?&n+LPC7=kmQ6o@fC4R`XxE>RhsO| zGVv9Wh9F}(d_$M`;|TFhBI*D7Ac>ly(ld4?x{i*H^5_}IT<$VmUf-XIowyGzXJ(DG zHeJMz`QFA|yf$K2;vgEQ--`N}XJ0lnuYT~NL{~d2YPyjX-oImOn6x{N48EVN(X2XKvqOz0}_N!Or;2a-nX(Fdv|QUL*h)2C0H(?BDb~qns!G{r$&Io=V3|wLSIkpwx(S8M9eJHu#`#S z^4;yXag8du+;a}1@mIXRt8ItHHL|)@3_CBL-;I=lFPj*^xMc5*?sg~tNT3soBzTBL zmd0~odI!3dgmIL_%SZe>3;A#C25HRUF7pd}bA&w9vfn5(+gij{#*BaE!Ufw47kn|L z*PbswO-Uy4nN=n3xi+=Mo}L9t`o*hPMO>FhsI%X>Etb$Xe|B6Ma-O?%=~e70MD?-5 zttYWM8Dryh-8nm}RGZ=%i>SkharAGh^H1fKqbl@G)glU##_;Hb9?yM8-2Rr0`@wbt zVW(FmyW~Eu9+4=2xLF+{CN{F&XTD^$N}$`#j!jO7RgQ<^Umj6GExZz2%Ks3(#LJt# zGoNRyhSp!fk8iI{J?H;CLVgVKIGMQV6UB_QytXz6syx<|40Q)vr&?7QC3a47ah_uF z=#Eff!Io}}qvQL9y(^O|y;iGV-wrx~7)Aai^IGUH2s+2JD#3g8>W!FY<|=I+9Wjd@ zZtQqOh zIEjOtx_mcJm`fqJ+$Hv-KFi6eSJyA!53X-*rI-1dn(CzMgPK|?sZb&;5`2rO=C-N5kTa|<=md#2W9Lv(cA&qw>oS>73MhgVnE%+F_2{aqTg zm&MxFWox4Jgq#=ig@!2}{u${o3(m=r_eZo%r=|ZeH8I)Y=-!?0%bOl@#%5&_$8L_2 zojq~9ruqH*H*slc#wv9yJ=U-XsSbg8_F_zh85!^eNLo%O8^6Ih48f%Nv(2#k(reY^ z_4|fT$H{IF`jAxh=gZ;FB6gVQRK8%~psP)Mt!=}^J;|u+R7PV^6C&iaE5BMA5HQ-S z$LVKg^ZdBcO$3F7xhN^NL1a4imQ_DLcKnw=wfD+z`XQFa(HFvTEy|QSIyz;nR4}a` zB@0d=%0kPzO>Q?I^h`!Cc}&t34e^FY9HBdjsE!FI^V*#6(_Yw0MLYxGI7 zV%ayGY}mSp3qRBz&(h5tlc`-K(Tlsy?VYNrCC*YPzZNA%RV9tVEPcE2=Mj zkFDvZSY(2XDOxngLUSWqPachb7S6VM! zEYQx<$Rz%hoBIeyF+1W^#!Tf8KO^rtT~ly$R8R`(xT>DoY@#Mw-PfRxp{f4(u5Im0 z(iz&}US?-! zH_0m*53jAQ{dCLpS|pkl>n|iHCwJq<4dUG8atrbE*Zlr{4-!fodzWj)a8FOqlf?_; z{%_tKi)c8@%$#+Y338iFg2KWyMFUR2Mfm>w!IvoYO~WE!UOjte=6=epL?N?$ZRB0| zi>Z%FwYB|dkOId^zqCHRzCPEhf;)SA?1eBygMVcbr!t9a*W}TiSDC+3mg_IQJVJiy z(xpAD-{obgM$M7rq@?OHKfL6|4Tg}>eZymZ0}D=NL*l9j!mg`Eckdo;?bd3@oqr+h zlC;+j^V&P-n!Wd|XyDGoTLwYfvG0q+hTn=rn5eMaU+{Q5jccjLCbyn8{c7G!fm;Pl zb>DfPR#OjOvr@50?c1uykJHAxBz0ET*4{^VetQ4@%L6vYbPPsCPENJg()3>OkTtsV z!XxignW(18z`($pY38C~HYYrzC2Q2N2~ERo7*tiK)aJ5_xS)WdA%so}ju3rJyE%_P zwYzS1{9yG^Ul(MC9)^<)p+AoJcwbqTp?D@3Bc?P(FY|;u>W)9v)o{Qc7mXnP2F#dg zDm1;-E4x`2y09r6IZ)J;Yk6|co{r?=cYHZ5#6dmU(~Mkxc$1A;>#&PWt3nn%6v#_} zTSkQ7;0T0YAW{=$#d7m5?ra?7YIY6|C*4b~;!DF$18`L3`F??sYRa-3Q}2~xxc#ZO znwsNw8oA8HPnU8|Qz4{_4%3v(JxgtEOYP4cS4D62bf-Y@(|)oX=FMHTQVYq%xmkhl zo@do?LS#kZ=Gwg=KbqchyaC+u}oc`0mB2~F{hEy7VeDgH^)!|^>&FHh#&ofaHdJ`w^x;oJi;r@=8y!8^> z&9dD$9xJ%IPNEZ{hP?@qD&nU*s|Z>}xf+kHK1*S>wM6ibT(%yja@N{vKPOT`d0Mk6nt=J<2ES_1pRc2l-IcMtxr9jM z7T6!+<{}PS8SW?FFLH9$B`Cp~%PT0ji_k-8Vl@s9Dl?vJJhe7uwL2|UrCquAR7-2> z)=|>}X=gnZghpUeL+RrVlRPOVLtkQms z$0_aR<2P@Pky9~wbU(gBd7^ky46*+1#0d|l!?9J^d^k>75@GLNV!fZ=nsv!!xsJ7} zC&7TG8BoF>-Kb}m>?3~@m!Qqa7 z`gDgwnaOL&u|Y&c-t;I!`Zp2nC!&qChPPV87^j*o#2xC3?k2b2W#@1kvThpv74^$M z%(6d!@r(a4lw-FaI)UZIPqM~TGK6%>;jhZh7Zfzvl%^XrokQN8t$**kx<;<=mVQ;> zac1`kWck8Eb6qH)jfHxD)+n35-|=HXd{?>mwxtff+&ce(iVES=NUTJpx4IXHc56Re z?P+ZM`qP)Mba$~cEF0k99}$tM*jUw~A*Zx&maX0gYkfg{g7aAKwLm&mIk`ZiV{jhD z0n7-*OzKo%AVKlt)2wfQSfsoVZ^dGz1JX-nC!@|>53w}#y@85xZRIqOSU@3zF-y(sVf#M{0eD4u^|wuOITHi9n+ zqOC4pjLAmv(^wjY)oGz1x;cJfS|fF0;+6NF;lh$PYNdgb5F@eMpOmD3>NrALSas_( zJ}D__du@8@Z_aqlTUskCE11FEndGpkKcCh%2W+^QPa%A+Z#CR%?eg5{_Mzk}&;R~i zfpPZoWemOvl@uQCRJj_s^v4x}7@-!3J0fLJ6R@}EfxK&OoKo2`cq&E{lhKgA@x z{5Qu?BlB_iSL3FrQ>>C66ZP+1U0t=bv}6L<6`~;Gll?k^pn2jR&0}9w7+(p6mu79v z`lhpULB6Hy)P*d4DW?{u5ar(PW~HlF>03Wdca_K_Z{6w?N*|tvvTQ}-yoB3&x$7F_KS+<$tqI;U zZAh&stlM1H`^&OZhvNhiF!R-AgwKoBzNC9uAtCaf&ZdUR=q#SCH;e`y9i>7tn~|Dc z6$Yuboa1ap+mmJK zAa+O>L!5d|BND;k=zcWh{;jWx(iEeG14qtLB7DB5re0oV?pxT5iaLiKCpmH~R@-Yf z!-a>32f&3H|IRIKB_*XhckZBH|4e8hNBCT;X9+9H;sMx(p8h=+{ql;suVYE${zR&H)?=-03;OO?CXOSS;ww<3-s{oWaCQ2=)E zq^^!!Lfb=aj?u(%e`%T9C@d<{$69#Y*YGf}+?m!$DcD=x=Ek*iS_K6K4Y_}mC#j>G*!|kB?wfb8S04Ebbv{9*@1k(LH!e<*I>ohm(UV4<+jGR{eRFA=gSK(bJD(Fl1%t}Y6- zR3^aD@~yN~6mAJY8h?*pwWC{D`V*dtQ)1eS`A^&=KiJUxrmmtyLi$o{XnrhuZ}}?~ zb3b-T;e1zj_eyjlYe-0lGWyo#%Xf&(1qziA9$tMKpJ#4uU8tRbfJn-?YXpmSh5? z_C~1ZU@BW(_XT2*(zx&B6lf4x78L#*VS@u zs(5|fmRh`xu@4Y{f;rFf#>R%cEF43HQP|{@P7=Gw*n;jBQQ-xgch$ z46!zT+ruTSsQ~@e2rIT^wy}dcOK+-cC-+Z+RrjC*5c+ViD;lNzr$wJoC*`%*rADrS zVUaMrPoU%#-e=$kF32!OXi2Lyzu*h<+Ev_C5ms`#k&Ev5NraDEdisxOpywhZk0Z}< zKY14sG2Y5?@7_JQ)hl8lCQI_zEDi<-@$v5NFIiOL4TgSEGmejS@ReTSm5{iJyuIoc z7ZMVcENihfzfwBH5MokuN=VUTv#(~}GDYnOB2m)(8i1dR{KjFd-b>kfsEUoA_+EXn zol$>TL95w(8TChxTE5Cf4?AOjH1VpjArXjY(qv>_U1_SXU%zIK#(O)*mY0`*`}QqV zL6Jl4M>q+>XUQzTe=Su-%4Wv_HsLl7&BLkuBs1frs_KpXT}~5I;^ZvbY(kasQT3<7 zb0Y9`=Ioz5%x=esn^E`(@J#QH(|%9}P;~y$oYe#XIzTsS|0k^M|1a3`e>jMbJ`T<- zu_!-QxLsHE876bBbjbF|v6>V#=ShaI4p(5)C=r>O>X4Lj4`-oA{?QyiW3xK47E}C2XfQZq)_F;_~)=fLPvKg_WBDf=y|j!+;ty4GJulS ztDvyZspp$kWgTo2GBPrmfXA5{boBJjx>i45kpbx=L!lKVwYU5$gi%OCL!+>uU;}U@ zL`0z>2Q|XMzNf`GI=aZHD5pUuTt~|BDZ8@#&3FCdYaj_`)sg;?ZNsyGlyUzzq%z48$o)Qc*L6MhyPMCnrf&ThC_C}AK{ z4n!WmvjTMZP{5!(=YnWtlG_zO-TYm29jMq?`swjv_}fG7vN(2 zXhh?9FI^hzvdiqAb$=HXm8y6Xfp}GKTttb?U0ZX%S)aJKr>78=Kd|r&1@QHu06XO# zTzEnM(omf;5iy1Y2d^u|Nc~=Ls#`PTtN5>7)D z_N&A3e^gArEW2s+?qgS%-?wk6hIK|^vdNlr{=0D166~n23r_BdZ+3>3yqx#&wpgu2 z*sEdUs}GEfz7k^GD~3B;-)*^7ybL6l?pF3#d7WHY8GX!In5l4PMxQ}EHa|aqW@9Hc zEiEs*&td+_Qr&U7T(*Yrvz?fP`{=pRhfsbh)rGoBuy{V9$Jat$$yT8?8Xm zZpqJZ@>q)f>r$FMg-EA^ZJ-pd#*rdk@hIwlWn^Gb7FY(v6ee|m2L@wq^kXFsaq845 zlD$Oa(S}@ZB0>gWMbvL{x!o)Dv5bh4}fh`FLQq98B-$Hcyl9Z=XU)0X+#hig;KAoCa-8@q4L+m`48 zX$^`|1c%bBoH&+H@$>17OQUrJg&w-oc5n0>n_RfDNcon(^vZ(zvo&2u(LQnt zBtr;IHDdt7c#Lyu_Ljs<)4H1{MP(zLhYp#PYlS{2LG`)ZhXC40OYr>3S+{{Hu4O&9 zl~WOymtltKWpthTj9VqP2B(^1UenlA?K?@I@Q{&_(S3qdlMQDp8)9K(Y!V@uPCAuY z3F@F#;+B1xsQep@(45ql+vHf1f4Zy^LF+7rzl|sj;Z=DPJ{q%ZGZEd_` zv&6ze2-b_y@4*-8%+BM;e(tDv>Tb8yuQW1@J!{jiY4&A9#hv^4k$z2+tIcO_ep0-j ztcuh9(qdllrXQ8z_va5y`P?%@!{kn!A`xT;oapN9jcGQKTxA*xqbp19^+{U2QO=7$@K#khl+n(OgD`$z}Zc3B%wkbkm+|&6$!h>*JNZf`V!1GXiYLND{d**MH8-XcSO?0t z|H`s9(nTJ%jjlHcX~s~iBFgf4Z+4L>e?4399i9xOIq8EZ}OEOe_2on;o|7uAC> z=U|t6Khw&}(o(|p(W;9dP5afWQZZ75v9hI}dv~wIF(43lh5vwRLFU^ju>w{AP1*lR zG1Z6t2;yQ5pxT7N7r*|Z2s_KAj@WPdo-RY8I*yJOcYK#J0oj@o=1qTL$`&~zIQ{pT z#{o}CUAwZ}cQ}Rypw1JD7ONyh?3}M?7q)Et@Jub00?8Iur-}mM=0XS(%(qYm5KUfd`2YmX!<6rnU4)QPA8=-f($*y^EXp&LzZ$_ro zFU z58OZj-E>uL@Af9_0)?L9V1#&i_t4296Zapb@0OCWKuWKT%#R2AVp+Fd{P}1PoNd9E zXRQ{PNQ_RAThF)II5CXt%DuRsi4RN=B(nb;W2h0eKO2;y5MpaP&gz*@*q%;!rlcm{ zI7u!3?w0GSf0#t!TBIg~u}-XKbl%v@Wtw@?DyN11dqL;6S)xCD_}DxZih?X0Ctwk^ zWc%#dv)i{{(in7SJcfkGtf}+;>1}0YW%PS`UR`_xX9AuD>(HsxnW{u9bM_wytZVfT z1SZ)9IuqfeUpR?FS3N1^7iCWwDVa7PKe=og@nQ5A#ub-B&Em2ABjYjSbZgaY1E;$f zo6kjxh_Ep#CgJY@i3*p1&rG3(O@$zN2)x^lEK9rWef{kkTCYN9R=6TM&{Iy+uB~7R z`Z>l5pnlWvn}3%159FzN-DEf$9UWamuE!3?f8a^mX5pYa3=QMY)60G6%`a{ zdCw?4SNU+TS(MABCvKt9@eT<{*K6d5!cv({Q>RLmlxfR)B$oh#($hT0n2MYmNm*F~ zuKe0ox^8YyFOy^>9)e$7j5=0MOREnEPy-l-h8C3sa#6UOgoHFHRCRR~iHkI2p>1w1 zpIr%PcWByHG^;MG&eZ5+9Dlm|gYZiwTc&i3!n3?~&$ls`~9p2rZmPaGb zChlBa*T{5)3?maTU{fW*%d3nNh8dFnQ9SR2tXZDR?wl=i9Z^bd4<;gSzswZ&cMXUu zx0Pf^yxV}#F)13bx3l9=jxB~6UOZ)x*T+O9i+;@;omodL4Sg1YPZeNj{?Wv@)Nm2B zq11NVAi83REKwB5w7xu3iz@Fslyc#v{MA2w$%U*3)4I)V>{IJ^z`)gho2+s z)?juMFKR`lY;OKtU!VE#AwJkJI7Ep-ym)2gcEdPs^SuY+i*y6(Y1z;bE3x|1nS2&o1Ke%Lg}(RFAKKG975_!KS56{n2u1u72ki$Ts6W^{};1EXGZvpkx@aX~`N;462-9G%SFV+Pu0 zMjqufGMjGhlIjoMO%_(>uleH(is#JDWhNw0)L}H_37FENqN3fZx8Y=!U%%Gu?Ngrx z(#fk(DDa}}K)j>gn(QJrIrN}lgub`P%-0%u`$Ch4MDG38)Y$9JgzLH;9 zXlMOeYIb%uDLMJqt~2LF;9{+IPOAllS z^w*(I$@cb6Q45HQib_knQjszB(WPSe2ssrHh4`wspS{XMB@gi9z{zH5ls$*|5+k^M z4odGG7LWCIS*+LY!kw_wU*lZI$@5GJbV?u1LROvvPxB@f5YAcYverHeZlS$BD%%n?lv~ z^C_TkdVFe|MVVb_xVE>yC#Ec%ZDF`#cOBCMV79AEF-EYtwH-D|l1dp@D)7tc+h2iz zMWlVcpV`fDvM}Qs`uCa04_ynkgIQTot9Dt+=;P6()azP%RFufOPzk_5zn+!24E7ap zE?weC%}P&)%wi9f%I3w#VookY)`q&e4_bd68zC<^hrg2lafair%y97&Nv`mDP~E}jbt z@?ER26pU$_l*jc+45(}kS8VloZ5wZwI)X$wUpoa%X%@DK?|J>ZIR$xsq`lY=V99_Q zwMND8SSnAEmj>zqK0`cHV7>53#L4nSrRHHF@u$9?V*a}tSfaXZ$DPXe?BuPj_kO(8 z>+exTRqby>QKF{ral>M;_{XuixAi+aA3l7bsVWwwc_lM>hZy@1=q4sH!KE+$kgAo! zB>Vd#gZNAS5$y$pP;OYyAu%`Vi(SC`c-$tApJATemVy|qywm|-sonX!q2Y6I5DFy_ zyN!NsQ9@Ws!GPRaKuqf6g~eTot$IVY9t^wzmBk8tFYWp9;?J`(GIrKG0S8D}S)Fcg*MxhfxWrzhm5GA$kSRq-qn!HY`=*r= z4%%r|=3N&G8W#q*ifp7j;{rZ@3|cBN-AfLuO-&(_Li*^Zydsr?>J0pDp$d=G)b@ zYUqQB&lX8)k3O_ez%SunlTu$47tmCjv_T^Pu5Lh2S9~Ev$c{tlk>D-j5lo0jxEJ*mRDkXE*Yx>r`)LE#Vq2*( zCppy6j_{*T5HG`v_IuNW)o2vAp4<0)hrX_KSY)U9B`-99O9bKvEAbe{`>X^!)QIQD z$7-cEpAb}&TgvU!A9Z{bvG2Gab};eDw9$*OOWazErCf*hLZ9ptPA^eqP76u*f;__h zMY>?XrPcCTplPcZTp@{|+2)vcXN--Fg=X>`7F@CvD?r=vLUm4F)&38Q_y!bq2%4cy z(Y$(}-@T(rOgJWO)>mfP7iAg`_(*xDw+e)|b^A<^fZngH%&~YCJ8aGa6~GKI9P{QV zTtcbrP|^F$Z{O5KNqru+n-o+^nTBd)HYZ4737df(`C)|Qe`Q(a~h>{=Wu8|%>_*L6_+ zF}{D^|JP||X6EH*Avrnp-a=oF!zqm3{_mpuKLi&A(z<-57T1X;jBu134w-$!9G3b#z|S906n4 zsPF~D+IgLvq@mG(;4tdDyl}jWPe073{dZM;wy_{tS?}lKC)0S`ld8PjTp+zku<1)) zxqX(vmd2f{{r!7eid31?Ra}XV4sa8cq@Df!*FMKYQgvL8F9f)^exhOFoDAD3mcd`P z;VmN5U1k{^uHqq+lf+N&Hbn6H-Zm^aHa!4$noFuP)Z;YCMlXv779{%i)L$++ESD!G z84Q=Z2GR3{zI}^pz~^#PBEM;5a(?6N-0@QM|3!qRf8P&L)eRH&IKLYvO;KC#Ch zt$P!M(3+YWtAWCb)kZGBI$%zRlE4}3>8w(_C7=VoKc8>N)=4|E@*nQnI!DAVzBpFt zUWL1K$xS%a=IA0Dxm-A~h8=xx_E|0#f6d9U1+R;jwHHvAc*)H3faLGq z^`kMU_B#%Z1zZ~6Xk_O53o`vzJTPx>`Qd_Tm^4*rvYxXWDayCn|#FNqhO%oFPD3ffbUcp zm=C_EMl#huULFCALYhrv(DpS}4B;ZX&FN&=*x1%DVwRiHdK9!FbOd>a!=2fL$$=jcp(vL_kv zb1g8n+k#y)4*{n3`NWn131-GGtTZImVyOouJlaoqqPH$Jh z_bbb9($cQ)l6}k02FejYxjZ>kOAmu*v0t6ev_B)wvY{%MdP5D?9{jR0CC|C0LaPDN zsFTt*9kTb1XBGfU^wO|)-6%GrRgzZbd{PqW2cp-I;yeI7nAR%T4KftT?fCUhl>}|C z<&oQ1->xq80u{$&BUJ$(&xg>^4HW9x0V0z0TC_CJ*xj)J%O{#>z`VGgR`3IzlEN%v zSF?qOk}l?^aUe}ndHLQ#5q6VDd~492j*{H(dWZ%ib{DPcD$bIn!8noWQz#%*6ff=y z@y+|Dqxsf-yj|bTzPXUrKPRiz90Ggix^WI9tb(HK>?4K%Y^1e-fPMS+E$rXEN>A`_ zgApAzM?gS88V0lFDIh3FbQ}a8J1X-*@}}L?&PK()9yqkd#>c@>@3zb6sJ`}_o)6_R zN{^|Myds7DyP?o0z$&)6KsYc3gQN3wOJV^^D{5|Tu7v+AOw8Vw)UpZ3o51LQ`vz8i zfTN&%-MC@9I9ReGQFcZE(Jd!N*lWLKA{_HsaDS3dui|}KW{UB+VVE3CYb!|ap?bu* z;ZNV7D5tr^!7&AF3Ne|%s$^tj3|c#DX!Lx4_6y3B+Wn_KmAKEq9u1Wdt9MqZ?TKQ4 z)}CEw*1*E4sSv=WkM!bpgHXB$KaNx|pMjH`iGND}pG>47gkb@2e%F#FMY@2leQ(|kJ;6k<7QWsQ>kwgpea>9uddugi4 zCnzb!cvlEf;H-5;XR9w6-uy(oMa+WaXkCzxuBL=iwLszx4jhL_+aL zL9Qel%FireE@oRjXLk>sTDu8;mSI;nqF@6@81)4U%}gaMI@DCFAmyug?OLJvE*Kj6 zpF11tJeTz=RT-GdK%#U@!3pS2+8OQwNw>WfX1*#=z`&I2OAc)_OvZw9A@@zy)Sx&X z8m>TLo~&#H(p`ww*9I=Ir`T3r7S{Bk5a5Z#rrE6}l%QiqO1Um8o#Vkm5%s6*Na%Y} zo^#R7o^6%F?$$CsPVm&&%S+JP?@}9QaglzXPdwF^#8dq|u2aMt$KPO_XB@)l+-Kv> z82J(Jn+b{fo9*~baM~?H3A)2aSp!6PJIUdcJUI2`F|Gkmm^4|6WToH|Hf3|UpJXBI?iQHLqm*~iZwK~fh`$e zhA9Z)3G{UAr&z=nf0Fys(m~YtleSAy{@dV_l((0$@nkyt?k05e*kGZ;^nwz~qF|7X z8bKW1C>%?Dz0NfrM0%%@xX*fuCTHzHIj2?N+{!Z_g-_> zegQJq5gCezhV{L*)~zKhiXz9XJ*mK=_XM)gvhOB*6;aUt?~1;3+c)ot_Zh8HTc%2w z-po#%o0y7peYkpwW9I$jk{J;8hZ;Rv9&38$xjAmM#PNkP(5(&0=6J2Th%(L|TDq+8bjAUBtvz5RdF9H1U(D}s#Ilv{2!Ac!5O zxVwLdnMdA!EH#zz;6cD4d7mI9et5tV86o0x0HXKm$wC^{fqOivC7E1 zJHP3-jA+1<`*eKrl}r7OG69g{m#|gd z(=Bmf5}W7qW=_}6ZZ24edpyCNm1?vu61oTM*Zg%>`d050BOI z$WNfpD}y?S-BaMk*8&4K?9J4BI6GCIR!Pfh>oi=aokPeY~Z7T#!d<( z!~vVVRfQC_5!r&*L)cSVQN|ddn>5o`KK(I4`b}(XdR#FU;fczK6N^+nU3kgf?j&%N zLX}W0DIKu{Yrqrkimi}pUvR6QESqy%KPDGW?20BloXp>?!dxq zX>$n1u2h$oAf%f6<6jzv0suWzr^(uCNyEBO&*h)wj-qgiM6X||A$;xgS#nNy#L7NaTn#6ur?l0iih;E{zW03X36J*{!=V#DLK3*R=4c#}7H+BL? zZhcZbU9r70x8ed_tTaUF`l`F>oz)fjdi*+Ktmy zQVM6=SWaoTB})9@9HDHx`gS_jew5kyO57MZ|6!}mwYVhona<9FijoMB&9NuNA{uJM z#`EmThLEeP^kXoQ?1!^oH!cU1aPQAY_xM3FDJsfS+x~Tkmow(BME3%9JyW*ohVI!? zVWu8JI~9L=VPKF1%D-p$sDtP}_p+_6EmVwg=VmwD;8FsA=-lG`?sv9KpOuw0 z;oUoEyZwE>dL`{u%hMNPaXo>7U_6Tt?sS+4_y_WXH(K1~J8|oxvs(s7Bf%!)cM7mC z3}6MJ=L>oF-o4)=OT#im9NRmr#1YZAwPamRRpnQxS<%#`Nm!4s9gCR$K(j4d7klagv#)`?}s0 zQkjR2<%Ep*&PXsaRM_w4Ha$jfUA5%wmd^)%*y!aUgPGc7B%a&#s(qUA}bb=B-Z=iiO?A7-;*7}e0?N?Ghsdj>|}^hp1-mqlqZP8Yd+H?&lS2}^cb!S z2y85tfx~^V%$?~J;)PR0y!XL`5SFPgAGZ&RXHDi zf&U6DqLkX|kYBDR|0hBgAfsu-A>m{@u)GJU{Ll-~q2EG=@KgZ0i+Qd$8XCGpp|Qg6spfFDPySRD(0Bz_gDdC3x+lGGDE}j6 zOs^|?ZcnxsVGn)|me3`54B;z(KhySXvX}8LI%Q ztq1=6F5N1K16G{dO^8Y0KgI4(+v|Hv=#mm(s^!hH7<6)FYDA29Zx31k##XThMi3enW z;1kd7)IT6ny+mHLnpX1*aUK2-A4l-N1Bd_D4@UTx@m1wr`EVeQPNR_JcNVGPM{3}P zx5eS$Pv3Z*X&5U;h#``S0wJA7>?HRYp0qUYU+q#WJJ?_9sjcm-DxLgf8fb8}z0LL>7{yC9>uxOm(gWDDqMolsMeaGY8afcpBfZ0H9t z!0Hw|;5z*L{8$d4iW>PNNZ7!DL5Bs}9$N`3VKZL)dwpz3t~scab)lC$r#VK!v^Boe z#n#3jI@|PwVJh+7n~UP#--<$S2d7*_A>YgM+jpe= zkS{0tX>%KIA^NG6bLnfuc;xmUQ-l;3wq$LMGro;6L@mLiqiLO&G9>VG>5FGB9(!A4 zWaLuYY%l0Y5sCNBMad<_#N46BQzqc+*ROBhyaD2(v*SYec*FI)r1Up*o!56 z0gV3-vr<>>bUZ7Bbb4YGKlk@b_jcx}ELLc)y3`K4nu2k_bbw)Z{nPS~BQaCWyX!B> zp(854--pTayLJ{ltAb)QI5^+W-?@ZU&&*8b{u{z9oW*7H6UzYnR}*z!FIwTx2Py6Fyd`nFnGAz(N-$@I~6 zGE#5u*$93`4oHmx(^j#Pk}s;N2RyC7q*GUJbgD#VgU3y0Jq@`IxRU^CGP_?uXsFl7 zOY&lhQ($aseI`hWe4}q40&Y<|POV!e6v$YUJZvK=LVCZ;;b^5HJj){`8uFtYg)P=| z3k)Q#*uwO5;MnqYo)-=5Yk?YA;rk2B;{55f9QY17LXP1bnLErTd2Difm!QExu>k?D zi&!VlLRay4-mOBrNzlyXku_iCB6utDW6A|QTwG!v_!ni7?Yb||A$$O{H7vZi%fWt+ zgMGV0<-wCD)$fpx-M8FydE@k#Fso3f3a}q3@ADoX1Nue-qtD~lW?leEIuEt;fqF`e zDKy^mivB@+&7|GNyg!Z}8pRfz*6zB(gFG0+*?{xvmQW2J*oRJH$F;ad8x4}rt%`Jw z&I^x9k76EJ7ttj7Dpb0+e*AdF@0~91=^B#Cl}{pwF6%`0f$HEM-V&<#LPI z5l=o6aB#BAJsK)2y)?0;9*hy;g#M}X4D-yuMZXaC5MdkKhl*`x;@LdQO+T;Sfpn`a z5{|Q7UeLLpq9XF6x2p?4*lxa^;I71SP)xlwl^@| z3z*dj)Y08_94+188g{3Cd_`SD0~q_)yDv`1=~qwMX>muvlT%VCRbRq7!o3r}-@gKG zlG(Yr@$vCU-mms-MP>N|*c-y6n2l#L#fxkzx~3N9s})@CV5ITCt&j}1>!0Llb>p}< znkcioepOVzuB7DTv|AT#EevSlWYm8c-Gp6cd-Na{P#e!V1v|Ukj@N0@P@#ZF;J9ih z(j5BbMt+d^{v7e76_6;;>npU15zk=b;%W+8`nbv%`12{nsZ$%83AY~{C^MZo(~-xT ziZUzEj%lu?on&{qX7eEYYqxnf{;rbi-imc)9o%H_G#Q}ctt+u3InNLFO2f~jWC{z3 z*c5ejZx26Ku*#y5p&vy34nBT-h+sG41x9qaN+t6)g&7A?aJ1GsZ!DraaWZ%A9ABO` zD$ssSGp{}jI1x$^)*4g2IAs>5Wz1G*7-vB;C}-)ofZ;|r~{dQsR(Wo56exPeiMkkE5XiANA4XS)*= zU4T<|Ei9?2xvNYC3Cs3P{R3ppfq;cLuV$~?JGSRoa#jlDNyQZSKgJ9xQk31S-;cAb zwKy=PPVnyhV!iJsq?*}a^vJ`cCTwj@p=xIqU0{)C@@Gb7Z5-vTXFnpH@a&gYgDu1c5uks$8+NdKud9YUJ=+z zh4%P8g^fEipvX^ZXGek#$7>pRkWJ(IqF*UI zpa4)Tq8CtJ3)sE&RtD{_Cd<-;ndyD26yN@8lcbi`5l+PbIi-*Xid{1fQM0qKd1$d7 zY9;PPb(1H8LgGqajI!HLUC{%h#cg>d5;(!MmTjRS{`t=qg_4B5O?XU=`O+uPe#y)IHHJ+KaHYikb(z+Sb9go26h{H05& ze-ga=%3UW1idg%nlXUKb2fTA+$Wh zILHFT>G1M?GS0jG-acRH1Dp(mc&={LeWE!AAe;}h$r0b2paFOV;~@!gfni*e_W2iB zr6Bq^h|kU)n7z|vxO6!J%%q>Ag*f#(NAOYJ+1wSAHArM&q4@S>%!_wO&3 zvBLj!nx6`Jd%>;yaXKw0hmnan|L2}lin5`xe+w6$sJsNikob=tdTFo3v*K8_XC%$R9f!=Ke@FA2{To}k+Y7hMAqW3`_{v~BsjK6DZd!J{r!7Ap|xwkDg>~V{m zgJWxZx(uz182VOrWDocoefI?c*KJ}xdho!^-2&)UJ?9~IzG)a!Qzwwn%BA+?$zP{D zFtr++m^3y40rv!e?84%8EwjQya@-ZS>QVd4#;YNSFaS9J3&Mk^t!|2 zdJ=+ygv2+WJTNm`OuBa*UAZ2w=5fCk16Ap``(octHDyEceZ3cRStLAXd@gl)UMK+^ zvDPljx)0U`NN@8_yTr~duoVCs>pWEIC?8GKJ{&#|jN&JT-PyyYJ7if_BrBROsXc;Q z0Ml(AG~H4lAb2cI265t1C(RD{Wg`5U?S!i71PJ?a65SR5FnwV z0lkM0-@QK^a8*&j@ezFpojCRH#Jzi^`jJ|m1+K%o_%bvs*_FsACwcrg=H3ISsQ&vkVOLj|)zz-O_6pxO=9puQIndqYe`-eZ<<7%=M%CRv)b&E`KX2)~ z8myFRM7BGtvomK>T9bWy41{-o0xJiN4>D3)fh#gs6?RsMIZ+%P6;<|hP#b6CPpwlG zDy;Q=C$kHSlyUxqgo#N?>qvX5wv2>?1cZ7-%v5-C@+;y&siw@Rt2fk4y)?j{U;k)2 zhU(r=W2e?0Mu`r~Rs_1dG-_|Np8TkHR=Xhg>n_?$&fDaoe=|=bLSg^94H@xZ8WA;m zhz;rPL1&Czi3Y!|+Q!JeWaQCT-TPnnFt+u`y>M7$@n$@gL*|UH_s-Zrv6V=Gl0)z6 z>QyfmDY$wj`E8gX$zdGu-8#t(`~NnGU$@SmH|y2QSUa=17)sQR<)~mIfk&NS^=v19umPe5;+`Ok!H+|E z2QzfPDtpT9K#kQkG-RsMFffcb5X;bWv$qu$H*Y$QW#$x$d^MQ0%OXd0)olpvga+7^ z3RS4c?0!DIS5#jTdiP%;%juH4N~D!P2&FX}q}&=*yDYxvZPybo;@rej?j59xY zv9zK3z4`Wb(>ygXkK}o4rX}oDJD7#^SO3c7;~lkLGK`F;I8+u&M<3$vf5ss6uMJ)FS-!T*Ryf0c17Zw~vQ*WZudb2?>q=k!3(R8i$cutj01+K?Q3)(k zl+>I;U{4V%=CRj`Y@v+DM@s6)?{A*v<>f^nrj#{odOo-_PDTnXmo~6;+DMoSUmscGtmZV1C}Q_ERI>uw{`IS_?N;PV)HqF*GM%#LE+2Kj1>e z>-(eBQDtz@Mbwev+BJ`wx1qif<_F8th@>g?W}$nsvcsZ}-apx5{o_72*0q5d+epfR z%_z72c#EQBwe7f+kTj^CXZd45J*iQ2u|EPpNX!F*^~%7reJQ1k`^D^6W*Q;M>5a#Z z*e@LJ;~U}QyV9P};&d=>VSp`CX561XCzylXemFWOUyb6!&6_?CO7EQ89msoifc;G) z05PzsfEM5T22zJWtG%M4&%1W*61QEodgpLM(`xN#I^F+KI9PIAJywfe`tr@w#4CNK zpys#>|H4QX;OCf(C|lu*62*r-d*Y7h_ilkq1^^w zS8i_ZjNY=b;}o4m#RbR$oiBJ?mC3WIk2A`SK*I%V^q(^@_t8ab z8H*Wj4yFE`Zh|6fLLx^?0;D&_;YjjfBKGRr1Y{D#LC)e~ZQMew_7_*HLFVM7>G=Yr zxxfaZj1}&=5&?9~RW5~z1XKj~ndIkWG7wwoc&+yY0upe*}NFl#t(Y_<^M3vXdw zi!QMUt2FM`;NT*)>}vD=Ym0AA6xlBhT%g{5VK14XlgI)zGpn+EC?@s={%gVdu6gXo z-b`a=>cru$L4V|m!yX_(J)*n`ekmXSw#DQtfc*n=R4rC9*0 ziKHTbmJ>rD$Tf58sAytuG?O-7y}F?gq*iwJt@WPf&!4i!K?m?TcyLQLAyF%?GT&M< zjqsl1@=pp;`i?>T4tumhgH8l?A}Z?k(;xs8k&x~crc#6Gx)_dLbpms zh5tSJ=Icn))^C{3=rH1h?EFu)X6e^=dC|$+FB!I~TG+1G6fJ8vyr99~XmEGuxXI#d z6!C;aNO6~!mopz?|IarFUf*YK!y;zf`>m4fGdN&0X#kmln2eGkO zjwK>LvgqizNl0?2|K&W2BN3pvec|DqGD6dln!2n?Y(~{9JNNEAL9O=6bWos-WXpU| zbK5%pb#8z9e;;OcIZiwx2qzFSvRZh_0RD>4F90r%zY85Aw(aZ(_;>T5h?LpnY<83Y z@9+CKmJsft;k44p7IsTtzlHp9&mPgSfTH})2Gz90BA|)mii{-d^5TMZ<0<8@WOwovNriELqoQdxqVq1lnWll-047_!aIQqF z^Tf%M26+fz@o4|%*yTQU2 zYEasPd(JWB$WxUcJfgPeVy#2CZMaO1KJ_jG*;h?Q-9wKu0nU461xA zkC+1CnN4xPvjsE$`9dH{Xb4Udz7QAyMWI<9Me`k~H$uV-03V-yVh0W#5(trtWXBpy z@d{6zLuoA6)ax>3rXnHZls=Yab(M`>wUY^O}2G%#OT@19e`~PTj z5S?wsMzi|IAC%Q+JhxE3N!(cMbnUvcaXh3OIXSl}_U_+rhSmKC2jnAm_`|8&sh0>R znUH?naaI{@SrkG6WFupJ#oXte_lynR2!(#m$$99WUlhkI~k^KqE zZdSJwqytFrg%57Cw)ub!B#3t`?!<``lVYIz=L*oW_AWJBl!eW~A!n86 z?8)!m7xKCDbTHnI>4u$q{%Sf-)7keku-3?cvJ za78a?78;&K8c9|HA@FI#vGN%{A6F^_$}l<3f5?B_3aM)aoD!?CP}uY=qhG0%#FY#i z8@s%^+(F$xra9d|OyIe{;-RvQr7UiCOgY!36OT!0&vRMnUkgI+CifK~y*JIdl(cg^ z>enwahtlR4%Yn&MtYr+wBNHr<1$x~E)uKb;O{4+r>Xem3uPW*{KM2=7eGnd6Q6?L=+T0PLPD|j9mB{8t?iD$PZCG(fxe;mfx zg_ti=K-6MCChcV~GXpxCU44rSRd{ni=FCj)w0V)=zORt$>PlVTd)~BV#BwYcw}%K} zLmMXZA?^#fT1&2AxRt%^=0=54wNQZ+5@Qq+g{B9I3CQ6*dK4K`Ts=QZ#vo!r1KECn z?Qbcc8=9I-d-rzzsja62=*}Y>O?OdOwIT3T9uiQ$4!6S}y$#SQJh zzI!|*?sfvvIEUM`3aKcA_3;GShTI>aO7Ji3q~Y$4jSk%>_H}7FEuOyf=+UEgvp>dh zS#d5xLhmR{;7Gmh^YL&}5^HTR&$)9huC5bmA-*h9mU$s;Wpp}e&B$_X>C>P7blWJ2 z%T1p<(0+|-cmlF+p>TGb{YVjNm#K=DP21ii9`QgHtd~;jZ|@JTr!q3cC=w7b)}JaO z?yg}vN8T{lwoWmh5$rtA!^ejww&7WB-d`-|>Y4;agvmx$H*UOX?=#cQ^%XL07$%dXXd7_` z@RMX=M7jOhYL%x{*9)OtyAqR=i&u`m7tr4|&KWQi;Vt455PdbcLEttSB^L+Ri^FHW zEVU~tD$1?hF2B!B5UeEUK`?TkESDw>TixWt+I!?^rDcN4%EZ2Wu^riKO}cm`VN8;l znHhBjT7zO92up{hjC|*`Jp@A7#0u8qSKcC0fEIk)dy@G5kM;Kj(j8ZlA0~}Vo@w`) zf&0<6^2}x`**aR>aFp{J8Tx)y;W06K0GoJA60U2=2XeEXKYzPs5Nk%Rc+1ykZltg+ zcX)&Ad6ZwWNNI{L8K_H14FqUL$p`*&W&C;brl`ZT!WF&#kCIHgrWTjGz+FVwHf!k& zT{(>0{ zW8rae>{5pNIRK*$$pub2T)g-zM&Y|$rM;rue`o>ZhWaP0GYjU!Tf4Fi+Vf?YZ2w+z z!)^+1ZZQIkP97rVNB)k#*KeL19cnv>9$iIc42|ev$mE|Q9)$p?9>)YwUC_esZ{qQFJ4@j9g#XJ(TzkG=dw-Ci39(cZ*HH9s?j6t zkqEkWdV^)wIrLA^lZ~~nk46UbIl=r!v^0Zh2FP-KMVgK|_sO~A^Yg)?%hm7W_HQFi zZ)F!D+SjCaUUErA59;GC`W_41&9vGbY9}qSQuk-VJlUaVkLZDl!0V|->gH>!SqYj< zVXtcpBR4t+)S2(Lho%R_57oVz@XLXLf$ir`96x@Xoqfk60e0OnarsF*TZMZSl z@g`7a06L;8)J0c9PBZhKN|^cm2=u&fhm+=FPk>*Z6(zGGo7}q$Q|$u*)5ZKYme&X^>p@V3Gx+;F; zN=-y>9J_Zd&FeP@$VnaVfB3p<+8GW;2IyM|L~?9#ei`#uarFAfD#7p{qRVNBI8WLc zl#Rh5!UHL#-J)cB~JWKTaxA^dGw-Ik?UQcqKT?gF4{;gfN?B>XVl$06F z%z?`4JhrpLh#W`g#bw`lkRqlTZ zEDJalBlX+Yu3fuvqs}rdQYPR#_eJpj{aXsHe?N0zvZty~>hR+#JRJI}^Qy0hh(n_N zK%^J+Ro@cT<8`Z6XUhDbjjaY*nSbDbWGAZ>cW?znnOKWq&ZyE2b7*L01nV4ZT$lsL zH0t+bR0lz9#>n)Hk~KwU-oR4&?Tf2Ml-2Dkx0>E;p$uP~>zMnz4FxHsnk&h8Ajb#-;&OSnz(`pug<%N4Ai?Z6a-SHY3` z-<1y`l^29|;DsQWG#m5?T3IHHM9+0_*$8Qk<)1aGeqWin%jK7`Sf#h2(NdMaPJVJz2UA{%xnXuh)-}kT|UcsRljNb(YHVaTYC@8$<+E5rC z{(HQuWJF0qQqn3%9MAd|8~WW^_V)LspL2!iiHq%X-^I~UNFFhDJ-l-@ZWpOq`}09; z$lIfJq!N;_a_u8ZD@51pXRxbEU4Zm~*`=hbzj;qB7wl=}J-?q#y0J*fMf>&*LIe$^ zsE|TClH~JA1z+WQyc$d_)$P*QPjDu-Wt4YZ4tbm=qkJ!*%}B~efM;sC`SAXIE>u3X zC+v5RYYSRA@*0PZv7R{cpf2WTe4;>~4&udpSTvm5Uvt6uQ%Bn8YbjWzgw&a`Pc-7_rbyU^P#baFg<`T-*P#e z7*nvX?lEah*fP%S*MK=djF?AM)Uk!7>(QGR68lZ^T&d8^?#SEW^?aY$m5>F~=A-C8 zk7+95H{DNbe#3c@rztl7{=hHq&>i~1ZwDQG-&2kwethytjoyvSeGAl|LHZ%eK$~Ox zaqrUWpm{;X6LjvW&v1(cR`fPC-6E6^U|{fnRf?ZygYaQ+5XF-p=cO%BF74VXZf~DY z$Q29?PYKqa$G0zVNUEu+SzBA{1`94tr&yKGJunQ2dhe^+EFatvO=;lerOp|_5b~KS zs->zryU+n`F6+t)$SDvF_S{&Pb9x^j$;8A2{bNydZlXYVuC6R`sC(=tbkajy)53ns@$%kIZyjL(l!!otu#ZxF zPmTbaCHojO(GZEGT(=Ro)0fUn98nIejnbA2?i~xSd>{MCU~IA{#3-tEyVrL`)gikL z{xBxEd}p$|G3l|_x3_YpAnZ<5y}r!`TPeqIit#>{qT9rg;_Kr$>;C3?ELTAFWT*>Q z&Bte-O^(HrT%%WD)uZLZEICwFR4|jH){qAe^}MTu$E)gVc3Kewf4`pp{4}r4yId!J zWq^%{2pd|t1&w0)6OLl)g9n>OENyHcR3%#$Vabl(^B1C|$x1kcGZW2`qw2h^P|`VU zAJ=Zp${V&6zj44_YQtYwHkY#sBghrXD#GKiP;~~rHTv_4%|7^hH_E6EvbylkPn5zA zn8habtNkE{O5R4&=1r{L#YN*^C~XTg-dS#;_L49gO2}eYCQ|sXdC1BYI+VC2W}M0$ zE8O(3Vc219g)(r3u+-_3Rrk(ri%@@-~&du3393l;ipxNw@lp}?_F3(nYODXUx5-&9ubnKQydSod(+ zFspvJV{HZ@Y$yo6x--cY4X2v%#x@tNd9sD-oe6Z)u&D3BAe?!W2q9EzX+&OBv3Hd4 z(kB@6O0>KU9S385EQY?Xj#^BD0JX*S{$GR!4?_6mGtg$(7IkA_b&)FdWT!HR>sgV_Tr119W^|D zO4uQ|DLuU=i_AOm!CfrJh@P~Wp*CO!oZ4dI0T59Zd{_FI@$`?ob4z0DBdUNoUO zkB5L7yMWY)6gZpx{J{N$FU>X5c}WLsBCWZv)65j{Khm9M1~)M| zm`|5;G3b~L*=mW2L10soSYUZegYhn-bLu}7YyG=Zr&=}aCx-e$)A)F{6LRL^_ZPp< zTW6JPCnXsteriJ!gI&8FSFY2VrqIOK{#N70L38PVo$mvVtdqiXaggFPXEX-wW@>PA zL8H5Dx|~x+WX<02@3l1_M4y*s8jGfy{J}!d*k;rB^2?WC<)oLga!ScMq=G~1dWC{I zz~c72uB~?0Yl|oTfI}PwFqZ2$#&YuH$S;{%&VuyW&db@vf??Tm49cA7>%IvazgQ- zS5KDg+`}L+-T8D+rfO`B9_ShD8EI*0QBknKA*Kkb=#OJq18?&b@Ut%1Of}vLN=sPX?=ZPE!>c znZE{R0z{URyC>+|lkYD43@jq&2TpZuFpmZz;*#=dMh*-CK8G3-@<7#qR_MK2V!4nH zRwq4u8p7pV1h1kmPLphlN8r6taF}B*Xm(t2I-A<7A%=ng+CXB0g%(37=FaxM6x^u5 zNP73$X9LJ3*=QtF0%nkn0+e&fqnKW`hlZO4F9LZMKpTJ){(e^0?aT_`HqjZ%WuFR%^pn@1H&l z0Ti-5l@%3_Nd1CrSK=jo;QtG+#ylCQ{=lT1xKnNI6jCk&9)A59*flYsKE!M?KVJ82 zzc551a1;)t0!UImUhFlF{>+D ziq{r(1Pa<8q|C>kCh)1nbIu5X zo-B|Z6Qc;OXaKS^ie!<};3fF>eW=rAu6j8wp-*vObu>+@;^4u@Lv17G(qdnuA{UzE zuUK1O>L|Rbt?k2N(RImotT{M1es*-1+S+qH1B2-sH!~dCk1Wo54Yw+P_95M*NF;H! z(2FG{C5_!Vo1oNMkHGoCk{PnM!n;G0o zn5FiO4YogmW6NDUe%Eu~uLUelhb;yL&8oK`j9$;?Lz+!$PR@eUYM&EY6)sdLQ{l8u za`<#fE)(q-M0hpbJnhRAMSs;Vk+liB4=7wiImXuiunPfeiTPjm*Pj5%%JXw>r|@vs zW*3(2%;#3K9hcVBH;3L0UM=QxKkK7eBXpMdVT8J3?6GNe5p0GwibqLA_8k$(*QVy8&^6+Hr-gj{u@!v6y zZg%?6yVuLXx%Lla&5`wKP3p z90uSYT*O9SKg3}9xkMHHhpK`*-=V&ClMOypo!9S()axTh!bhkU zv(wX?c+aX{Z1_jR;H~?e5=$s@(wP44I_=nJnTHPYHX8{`t}W`$NrE#vw0$$#Q9KVD z@)72Y3qWzkpeebO(eCF`CU=OO)uNM1pLd5gR-N4I_O`b6wz*DA!>gLEL2~K_$EmvW z$!bcyTA~=zrKp}zqtCN}G4-MBl`C@#-PLyxrbhX|k=eVEav`?cU`_S2GH zyutl%-{pE6wGYd%MQS?Kw;Uvyd*3;~QSJ>?K3s)!)a8XI^yelolTZPZ7tKyEv(^FbDn8Wa=ws*Zm+t2{iEMs(F_;g>Gt`0 z^q^cw(V)42Fr)XJGWV<^w7|=)%%mAb?sY^x8Q6!ga{Y|VMEI_=+HHr<2Lr4{CzK194S8 zL?HyTwk2apIZ5s?cXvKQ6K}MJxVl2h%7#b($Gh_z*!Pesj~{odet3>HqUP<}xBO6v zp|J)j+SlhgHYhEoT~ZX~Vkc>a%oVvf#iX$0Mfa@|UyWSt6#gR4T%n~iG+ zgg6?W2Ta9qg~fpgZ#7H1Wt%?oWR0XlTH3)Ahc9qNN0Bs9p{l8!bh!oJ5TEihYO#Np zPQ=uA#$F#Ir|Ck;DT=qG5-N&5(bc_zde?3gIqu!Q9Sf0?va+U%eq!7{F_@L5AS4;^ zcG~InQYlxTRPg2>{M~6)v$CW)*BcB$HF*Vc*7^R3AShj>WmJu!@ zDC#o5?IeAQaiU4PR#k2Xq+rv`%f`lrZ1E9VtpLs$#40(5CKxLmC=13Z!vve{fkuugb(wncr zQn~2P)DGZ{p_8>kOX!|JVceCHvgkqa(4inFH+OhxtlVn!WJiu!s|*C^KiEp!Ox%AV zq4>!G0#W~U4WN6iae4robeD-q1jZpuaTYDVC~X?@W+X$MTw1s|SkkeYIX#q=Wb?-h z(%{jgL+}!;*903(x~Hl-3KsRF>jhZ&tWZ|DxVVQImSe0+d2dDhdc_&mHZ$A0D>5=G zQB~4y8!5e(ykQl58^Q$cfkgdidJ=(^X2_EgC%n&lWuR z#l|r-_|20KDrd=}Wz!L+)zg0xvNo!-K=}XUH@7K_q7}VFDr9)L-DplYnOQi?yT+~le~bAM^EeT)1EPl3K&q=dEp(l z7*KS0|9;T&vx!+9yKg-vk#1rYb$4}L&j`5Wl1andyUy;~Pxsfr;IR#p)od1>i= zgw0PMs>aEyAR}P_y=!fq-B!Ypl&`3)%;xgtptj(NGv1JdsgQImVWjEgz-O4&$OdcU(xMeaWq{a6)2H zJHVogaRYph|1cs5kHM%0-HIUAq-F@W3mujO^l-87aR+v1g1wzA!wfe@jrcsn-4qG>pN3GA)XXmf4sF&^FXO`Rq=nAQQnE#iM5@D0mc zuY<36FmIr=j6;4$?Rol_zJ^O?&_ z3rgy0mVw7O6?9?xNHtU~S%3q5@ZT{c@FEo!W;>QO;6O;X-t;@~=! z+h%uzG(~z6!U35tA%YGrcB=5vzxUQYD47t@5iDnWQrg3PNn%lClzfU#T8R>h3IpD;;LYmJ#w(^e=V%LzXQD+{ zV$r+L&bEeG)-takIl21IX*HNB3vV2e2aqM8?0}5uMLD03kZB?}DU*7tga+aogdPxl zFl4{V%G8XE?Xk)xV-WwCnVn@DwvPDlf%zZx#1aBE_T#6Vr{4`^=7IqsZ<2T(g0ov4 zR7di&0g4&J9g9knJl*G7-oG_%lEf-TAY%57mFoi)Fm#UKnNgs@ImM)TwBVwQjAy;R zA;ZTPyD_(Qy~7i2&K!b~y{=Rtx!pFX7aB^)A+}?5BKFx-zkOslZB`fh_>9}JspptR zYHqX#TX@4;WC8;YbfE_TGM?FKd2eTxl!!Ar4ZDzZw|8$%?CDSZ z=ZmcdCEZa?0{DOYcuAx3=TE#8-@i-P$P{Q0V#>4`3h5(;IX=xX#mP&gXo=XyL+d9XSK6g=E z`qdwf8ASi&0%W0gwj+_Gi8Q-4dQO+OOTP zM;%yNLV0Un{J0N8x5wN!(4Q2{(|h-VVFf^2+}Fu)NCrK3j8=OkxB3Y%^YfFQPjLud z#<&F#(Xy*%Ki{5#-Fo=W5~764B90=4?C#wULbE7{;xgQ)r_Bw$`E{`k#dwNvD<1t? zQxVJ{^0UT5Z^hQToYiUzVXHkl&Xqs@g#HWUPIxlZ(c&^fi0#YPLGxTl-ag$*5hEmK znC;jL%nCJx4WlSCNQkqWl=uO14%^PuJEW#oTG!4Q=bKD>a?K{*Is*zPw>m8?QoE{X zHL^zUnDDA~+xv^{e6sWc>6BLRLQ}$di!Tdq)y5PZQBfy^%k&wDK%5AHYlxuL4rUM| zDqMm%AuPf?4OwZG#6sBMG~BeRyHNO=_wE;&z`!Mu`M)fd=ON$|Y@Omu%D?we?=ZS> zA7Q1*kwrUtFBpsegtZSCt6*JV3$^}D4BJ3{5vrY;Q0r&$<60;;if>You0@RQ{tpsd%N?KqAID+1 z0*kEzegvx1{cA(D@&wAts>k2+1QjM(eUuRThxU~3aa4v>5E>xDRn>N89b(HLb|FD#NyY zAy32XO~-xZF%hXigyrPV_O`a%+XgBvb*_|>E4_TQiBBm>{FMJA8Ghm}uF%M_bR_IJ z#^doUrUa;$$B4P8m6;^y-MjnbMH4tqU`bBq;r))>F{m$!WjJY|na2J@aJkAmNEG_) z6ypQyAN7a900I{NlhQB&L z9jpBu9$rGn$NR=#B`zM`pBvKB)6N^7M$6I!1yK9>gquJ9kJ@7TepHD&Uqx`%+{zr# zN8XH>2k}U?Iaqx^s4Q#O8`!N7aUgClsq^4J0u9*K!?G9ydTiUAWIR$jxSweId%-w`TBZ#2qZazbnSms&d9bPq(~zI*pZdd zwmZUA_3r!>^mkPMs!TJ;27sK{!5wW*;sN2?CrGIs5GFxqYE_BG4RH&Jqb}&|x*pnFxeD zjzM7IU-Nz_y0bi~-M@cb{{4(CUv`W;7iAP?)>=U{m1A#axE}ZnaMV>t$h#!ZbHZ5dd{%hOtL<)&YA=Pbpw@G1@Xveq!B@0 zOS3k$nMj*mpMariT)-nBAmDrxE5K%9_vVu>hb?F7LFJc+>?|*TII@F8CG=maFT&D( zppmG>8;mJxlzFCYog5kj)-I8FQqozKDfQt(!ha*e{yOUK zz!6#Pa5eZ`>%xkO(d1BiQ`FU#?)0QSCLy`RcV<1lB~rHS=lj(9@LZr01Pg+pfgc4$ z&r(xUhn+WzQaDP?;cyPVpGVe7u}&6m^}G8tan&?+I9cWC??0Q49wplx^pc|v^ii~) zPbTZvFD~V!dX(s-1<8))$CM6C+iv}}t@_8jk~79BUcP){KXTwIs!o(oB7*U+@<~*} zkfRSxNWW2-kUi$h{YyhPGQR@lf|cWjfg{6~dG-1jAv0si%#P8l-|pR2&$!~Roky;G zZt7anmE3Ibi9kU<*pu}KyL7U0>mJG(>>bBwCJ_czN~j6HuJb39VK zOT}5V=%KQ@?-WhJ!+tIAEgH=!!-vt{?|L-8!Q6GyuX0t_6R7=UxxtM@L2(a*s9S0)!GM7_#E8 zZS(bJ&=@DC8ZW1qC_vnpC39^X@*lQUUpBaL>X&{7G~yHr*RMwmi)QTCx_NWSqWw)O zbw3mRu%oi$=g;AOd47dapFaI85?(WN+Rb!<+V9O9>%7hNcOpz*4?YQ=WN3|JVzB2V z0z8iI-}>~!LNkUv?q~iAd2Y+{JHx2uBZrxoI&!KaF{cl{`I?#<^z7ObzcnJ<5%1j< zdHRO_X~aJQPnW1M=4F@rXy>G-pTp3=R@azffX$Val?Z{^J3-R;;$(%4n8ZZ6g&qNJ z?$i)VmIFPzB@M-%Y!j>-3~IHxE=Omudc43>_TWJ=3a|1$=0R~WG2ulya^ul6XHE;{ zAJt6B&u=r}Wt(rZ9ly%T%8HYre{8IP5DQ!^2%-ugB|)XRdE2(7g$0|uS4zpPBj61% zPco6~x7mh5ly8BE`OwqJ#2~xOs3>#=3|is$%QTeMa&#=@MxFf<3Ur~#zmJw(?QE4; z5JSRr5a*+rH!M=>U52?*5jDx-YNffRuBK6YILdGX616U8{7pmGVwd-Pw3To12b*xy zT@$0x*O-9Z7wTs&z$}#!897>X%~0wYm00cY*p^)uOuWNey$i4Nn2rkD=20EICStpJ z{!ofSj$Ct0T}I*?_0LKURQ4RjbY9;PZ+N1X5b^2A_1xd&USiT;{UNGKqtJd~vZowT zjwTZpzCJ!dtB`Ed5}g2QJM16hThPq9p`l^2YJX|0-Ej0{VN}#`w-iP@E7Yf)B=t|@ z*bvS&YSO4$fNEiwh4-EKc+s}bJSWifY$r9n!P#K0;r0}O&jBv%1R)(i;9lsJL{yg{)zYwYUX0jLR(!dPCTSVE)uKY{7G0JV$-MRb1fcN zbtF*kG!Wl|6rSjt@oy4^pfxT&)xL8a%$DN!!`CF1tukeN&N(cakJW>|?2Nd#b*HuI z+G=m#?Ya3sq6sP%_v_=B&+4RivC0{@+`td4Qix!z{Gp(tMnhBctre9^TUP}M$zwt7 zR9E8bk?0=}Q;Eh25Uj-kQYs0BkxPHtW_yF#cn$bdO|{Xk-`=R+7`Iwp^{#mhoS}qS zY53(z>dCW#D)tJb3){w@ompg&LM)uLtSr$|>40+{9afvXBe>2PJI2UMiF-ufXxo$y zB?Zt6_AWlTxv-$xSCJN2Q8d3YX7}Q7jUxn)Em0BP#o&95o030-2&|#$S|=wAfF1KU zPi>SRy=bA<=OO zc3#xdv^$lpn#F}_2yKDf4;&DYf*P$l-u@$*zByIyqRAxPfgOu>g?&sU+ z-Ap3OKiE2)#y@{sS@KR&Z8Q&^f0)F8g!mbGksntkNu7UgP<4VK5&}SSI|bOo$r+5m zfVXd(k}(w0`V&Dng|R(2C(h_-{Wr!jQ&LvhuUKenXk5Mf!60i}={MII3=r{G{bDya zYw1NI1wjAIhP8l|HN%i-fx=B+)queibiQcES9(b4sQ4N{Qgy8jWe zaO<2c?!*7yq>cXyfSb1yw}He^rgrt4>?CEw^cz3cmHj=Vk)}_h|m>V`b zlw{VJC|r0~ydqL&R~Vi_yUveNv2$&;OHsl3HyKIA2MJBLv)pLgO9s{6%7SdCBEkdV zGB;}I@p5+0j<}>mUO#`Oo}Ll)eCx5_-=wnIOj}irEto{wT4y$r5?`)=)r0fHv!}QU zv+Zh*FkiYMT~?eoI%rd}YcV<5ZK}>Mpl__%%zUK9tTjuQjG2Co8hHbe0W4CJia#(T z{W5WV``;PpOo@Ux?heo#6c?BL85&|MiXnNX|N^cL)RQu(6a+=4!4j;s|bR$J!T0^Bjx{G8Uc=`Y5#;|Nbi2Zo|gU zIa=z+!3SrTyWbAdBLzvO$D$Y|^zOVFEswMh(fDCtfbriS`1{qX>hWfap$0G(pYE1_ zaiv_E8Db;&q#g*BE$gXm(PS9Q=?g_m7eNd$z`|4?gfU^Z zgR%J9?Cd*^j*fYUp!0t(0kfcCQeoW86kXn($3p|^d+DjI%9j^>SPUH}E_>EA$q@@j zad2btw#}Q7_r&Z{p%V`oEG+_-U>Jv}0$c%YMVP-oFO)RQmkbO({W6{SeVN&1eR{H& z&g|6GezE)a@1rQ$!Hh1Xeuhfx1VPSQS2Zk5Rn*s4y7yTPCm;60qqDy`%b3pAlTIkR zDj_ShId>+)_v$**~u*^Vd}Ea^mHCpC*u} zC244q!hNdT^xHr!q-f(@PR+f$-LV5VBLIbg|C+LbNxe)T4F6lupAqnve+RXXqP_hx zrmzsRI3jx>HAdu71=r16w_@&3LhO-l_YA+2{cb|MFT=~x689l-@zyq}N0@b|9|u4g zT*3Hh7pZf1N3NHej!rL}-={F8`5w4aMCDcd{Pa!~E1b7?M}gg3;91>`n>GPh28V_w zz7rkGMaSU0oteIE++n<8V`&Zb+nH_K9z6|SnWjIV%FoxRq8zOiO+m7MYP@Cs)vH%; z-W=#@T0+K0P+0T%CuEGODgE+AOxF%EsZ&*=NotFuN79<%FRzbL@Yil6Ht$E*Z(h7u z(Nk`y+R)yqc+njbV=0E3Yb$KO*v^>FHoU37pKIOe9L!b24we7KGiMkUo|8HsVn?TB zMx*Ak_yA7xllVFf5urm5|j|j!?-Ime&uzLpt1PjgtYL&HO-UATml;x?y z%C1Lf~?=@(X)e>T^YI#?Qn>8Gcz0VzVWLI zJbIs<@Vcqtj@9K%aQBcZ^9`N3ba^{7J#XvHu!N-8^SO=%#EBLlcT)E1$luBar#!!X zNqpi7IWX+|`RcAaZk;@I+rK$R?QRPGnx*5zdR zr{mNqi7KuKdyeq3H>QNEbPH7_UN=%+n`{3V|57;mUSW}PZ=2mTYJ%z$qP8QCy~-@~ z+tv)kGeoF6A+mk59qo|ick)6Lc=z^;O+#bfft2wxm=%so4Uq)}^KM3=ejU~_Z$9AA z4@Nslf0i)35OYs&-Fh3$cG7%{QhY{kZi|f%MG)=j0;`V<#;FTxaod^T6ETzM!dKE+AU`q#dE@JZ$-Vb%kATfomPuzcKRD{v5u&*9;`c|4G)i_VgHA_gO&~la@Vm*w*-db z^gzRB7=typ*mHU3Rx_K0Z)1frfu}!*I8M$DE7(q5Lo3T_LCG2Y!9=WwQJ7Fp{`n67 zUTN)EJw{AIBD~URE2u)tuqvLMdkiR`{wnPAUk}c0*|xi`v94cStfk>uN=(dj(;0wb zZTB4{d$**`^H@-cy+I{I+J@h}zZwP;onEATAcX*tCg$d>+BMON>F#o8 zGRpdbOJiTo;CYD0Uhm||Wf{}SiJ2kaQg81o()xzRmqk~tfe@bNS}e_Eb)b4WOtY6{ z@4`3cqstu#+c-XSQC0~`g0PZf=3aXCe674_2(n*fm6enPYV9sv`sxY4&!IyNj6Aq* z^M#$+*};8PS*j-iYtJg*%+SBBrBE~5sNt)B4a&54{3hYi z0+5OK)3ZngE!Rj!J%3({zNYRlNtGERu6Gsjl6+{49i z`xJnZh{!&^pa7_t>f_r#vw_qe9z_a65{9quQI}iUk3M)>J*z@1xw6uzFBeC)eY#IWtOJhqjaS zUhmkrj4cr@i~8hmGjxH#0Q{11%7=Gu^(GvK@An~oJ&ZqP?dvl!3N3}#Dapx+>E~ip zvtG?xBZD(5eiJGC5`^Ax;m6L*aovOf93R_E;zHe|eCf5Tw{Vp7UaUQT&p)|!kM^z$ zk^gta)csfB`9Hz7e0$nlue5P1ssHf0S29c|OQmR~ zgvs)hn%)^&R;fXt%hLw8u9>Hc2(_ueXs@JXI@}bwY1_+BDl@e~JOg`#9xa8f(PO

Dj+=BX@7*uA%0s>QrqGL>2rPE7~(uAHPX@3(0(E7{9BAzc#Ye z&e2vOGYkYJ8~QlNl1n^!OG85h&~kaJcuqH3$GyFbf|lq)G1cqw7vbw->hYdd8g?)S zz8k)0Yn7|hlHT&`*M2(QPocacje=IvK6Q?lHAO#+x(FVMLGYN%>BBogR9UL2 zy`%b#;V`Y~4}7WaVcG_?D5_AW=ui> zp^%N2oE7;64xj~=fTr)y)q99@fo zECFmW1lNg0iOmLy`d{vIXRI<1Z*RE{_j!ZNri)KEe)-Ziz-BV7$9$=vrvC#LR*l~M zlAR%#JBvEVlt`4pqp7D;iJ+;p=1;QQwr+JqF-JHU5y^=MSJI2t4_3su36)Cpbs^r7 z@FI-;Cz1ACya_Ly7{#1%cj#&J{tw#RN&= zp`{d+gat=OqeHb<^yWr?VA_xF(zHNfy?V6$boOO2&!!l)XoDMrD$127dl!!Yw}zA! z3=Q(GQlmckM+-0*6j%WjMl@n{Ftm&)WdZ`CcS<`!euFX>Njo{$pQSQ#X%@CE%Wn@6 z$J_AWK`dBj_n;tJ4~33*kQi<69M4#qq-aO+`Qs0t0X89wg{;4f#zGP z#T{QqlUhM0@@Z0Zk( zB;j9Fw8Bh%p@Ku;zRnP<`)00HTdZ{jka5Dv$qk_dK`X}Bm!;<4|3N@B3T9q|rcNDa zWyifcQKA#24HFYvxhZb;l`9^hU4|<6vRWZfMiOP#KmNwz;tP$U-_-q2mP6O0mi*^A zqAEk=8gq(X2}kDU2I0pX^1R%9cgODCvkz-idQ|cX7)sogI9!r>?M{~*Y-mxr?axEo zK|6J&tFMn5>4_ukLZ46u-Ah5&&l(hN492$a-rY-K?+F8??6K?dZgYdF`VSw5%$-oC zB*3*^eHb$;8f|4cmWQi(Nq1Z9`#-q9S%c#eNeNM#=g~1o-kR0q(@EETAT5yd+$(1v zR?>BxgM*TS;!alfW%L(}vaCi&K3~TLpRpAlio2Y8GFbMQ(i;xox|QYSTgr(s@$q1z zV=^<9wvXEu6dD%&+`4TGdGePGZi>n5a3BX?gUPRc^WVCaiN*)7-wsU6ihoYSU+rh5 zps2X-&+Njo7m`Ls{62UJ?(+PG2%C9QuGqqqq_gpBQ_?f9vV%(TJjaj67#97o_1xE~ zIun5^_utWc#n0w(}pYd8Vi2u@C-nfZ8 zCP__Iovtv{$L4Ze*s-mmQsyNSwb(gdUmleNjxjN;AKeujNp0P#M9xyH&4yyUbHRaU z5%hvUu^c_j_)IeHD3o48FV2sUhpUO!U&@(Mi};QQHBBRz9sPWBZO4ljeI%|YI~A4a zJnWsf@#GwCVReDEQ;^hu(!M7s29W{v#OlBl`5SqN*KsU|y?xI3fN=#n*M=FSmcp=UvRDl71!U(r5h)jM>r6 zW068ikFm)Fa^;ALMQBn$xJInBrWe|64t@rQ(UR~8N3EiG=@l|R+j_NC=D#)f<>6TF zZMzS$Se2p4kgzm~L`BG)N|DH%xs=G9%yXehD2Ww`k|d#$c}kKg^E^Hx^E}V&^S0Kz zzxVt0w~zfEd+$Hq`=9q+NA*1Sa}U4Yb)DBaC_gWDo^3u^7Ba&jDA)Mr)-?vGv*^P| zTJCZXn_Q&(OnSQT^k&jHll5;-PfF?zryayiL;4hX0|Ai2eX3jpQ8VpU0(^Yx zEf~OXx(!SJHI z8O^o(+r*=kNHTXP{sPLY&Q?C&!&zEE|L~y%lC2D-rWAo~m;bQf<6WFB7fCA*H^D#5 znUMSLC*W`~g5(wOb6adx)&U^(+}vkqKcW)q9osqF9Z+;F%c9YacYx29L zu{;3CncGPXEg0MK(_ z1l`*UP}DIQucAJ^pIdrjWe#Ot#>`W#2RCo}-MsnK0idCc==0=(lP9fR24dJEJ&BMN z8Iu_J?_r>;oqX+>#eIK&`y0)eamy7{v;AGxS8?t2zc%j8U@!&JJ&a(R7H2{|=U?(l z=cT5L9zJ?hl%N0F7cT;MH5qP7ZMUI^R1?G%c&*{E)P=+aM}6`P?wFJBUitRB3}fKl zrEQ`hInk^ap6DF@jTq$ri)~4NHgEyFf{%x7^xE>)<`-v7a#tEuRW9@KP71QfW;q59 zBcM3KaW<Y>KDj!F6i*SmWLfrz?04@;`pe^dj9Y zP%%_daq0TzE9pAvFxs}Zx^x#rlv(Muh0G$(Ifr^u)xLGp>~T;0@p6&mTwO@;DHIjU z6Gc~QYuTjYt4%4RU%3SAtiM_JcIaBgGJu6EhHf7{dVhS~b7pkD%uqgMuEhsbcU6+ZtBv*Dr>cVZ*0q#g~Ol)Y2={29vjRzr7ta@N>JuF>ToL-BX2r2bc8 zVqY+OcBy!N+#ih$YTXBD-(g4!paVX%^TV*U2EVW2gYnO=zCdLN|IMkS86wG5(p6Yo zJnM2dAm0L38)8%^&Fc3+Q!(snTmt)IyrI6JWtiVN`*Y{Q)14;rUU<0Ro4?1z-b9Mu z=Yx^y{?GZ!kgNtTKBy;^C1>jJHQD-z&XQ^Tv{1+ljA$3Dwoxsi_!qh41}P_O`)&xXBCtq>}z$kwOO}s zuluZw2-d;D;OpM`ggG^lhw)bpZ<#lT8D*8QaPmUa9lDN$m+;B-^qiEJx!6RfEZu&m z@Cpr`LeA1?q-N4;-}FEMq*UEK&U%ySH*Rg&(t$J*o$`OZtUu}wW*_ns*Gyabpy9*5 zgPR7i6v|WNZv3ZO-h0s8EVUwXtbON0U*AuB3?BVl(%vsEB_W1%nJg2igoPonh}ZQl zsS<&H>_YcQ3^M+1UE5vcgHYs|{P=U?3l+nGLm0CCC@;6PlmsIW(uXedg-{?9OAEKY*Vh_$JV;6j^GglXfbW<#} zwVSaE>^yd7GL44h#b0tcrGd?#eb%=3-8*{Mgm~MFFvtFrf~swp`;Dh3mybRj^PvVU zt#DpmiH?Mr%oa1@v@@0Lav5 zCw&ImF$9EXC>LsVylJ-Redx^udxrRW9W}M?5m|MakRCLS4H|w|wNpVAIY2<+QeON3 zQGIPQBN<=i=63wF5pqc-OjcofbGfkTNALP6Hd)Bh!f`BorN7{-5R?JercSAh3{}NO zrjn11$F{_g>9>enJzJB0gMD1KR79h%qkQ%rzDYY|LDSI}5O+dC{o*pqE;^h{UmpKt z25C%UbYz!e$BuZ-1js&R@1ai=&h&Q+=ed>o=~K<{h;%%A)SEYV#;BQ}DefoAcT^k+ zi`yNI@&0!3pJ2BT*43Jqouw6i$8jN);_?44*qYA2!qqp z+r`Emr=BtilwEchQ?FI-9VuS{I8o+QkAYy?jqcAnPEH5(nWR=^#^B15o7$R8^5f9Y}hT7h3u%HRav zKfn_6q*7wJV%*9sV)6YUy=z8GP>?%no67=?!2Gt!!v8kCSs9ZpzA~|68|H64*>8XD z{ESl?kQ4BM@IG>kv68mu&d`AytQ@hJH*^PPLVaDT$Ya&oADmU1b^=!4wUH^P?Xf3R zr6SveR42>K_{Z-zN=DjWoFjV*_*7-O^GcCA`@o3;8t!1QSficasT|#?)!V0~pU&72uNA&j(uzdzpOvSbNmW)t9sHeZ zSVd6~8zJB49|VuAPn{TH1wYn8_1E3OuqrNRN-V;BqQb(5cYnQhv>rHS zgoHB;9J31H0{~{q`T5#N*{xf%k+fp>`(LDMQ|q9;bdkrW!miim>SoUun?&wdnO5sr znDX!aot8lv3GEoY0|#=BmP38<&oqz3K&{aKLh|rZQsCTrwAV3@Z7PfW6rWn#TdwmY zu6NSd9djvJS#?|6BsS~1Mew-rX}0(@aGh|pq(bmYKwl<=%U!?NZh#t|m6C0vG$c2Q zf8$zJrf&ofC~_iTZh^bn^6J%MSXk9)yLWfj?JHMu^tY4jwyxK;>1BEvGu;n%6g4DC zr(L<*ZghQK{VF+^YAkaoEKY6P9l9w^ysgLAtH&w_2R~!blH8}3$c;}!HgZj`N3Q&K z`i%MV3hW2IfBpI(*~Ae~E*K07Iejk-msjViR~DVKt|FI)c+g2L#lXI8Cx0!E<-!oZ z1Td#wU-9Vu1SmoHh+&+-6kdJZy$YbMGDseCK9XtH6D|90nk0d1)Qz;-Qw z)9`5|r=U&e+rAfm{q0Ndl39(6RJoN$9gEmA%o~hTc#Fhi#+Tjo|wCTET*psWwY(?q`9u z^NfbSQrhL-A7wDQOx!^!)7M?D)(>{YXJYrdmR#T1c+lS=%e^EBpfnF!GXGxXbLSv) zeaN_5SXh&GqFjXh9?7oG?~qOi=K^MaJ$T7|ZXE&U1=S}GxF5k!LG~U@{B#l;=v~cm zXCs=xclyA*4d^jL+q# zq7|X}=^o7*(_~tP5ezmf82tg@4T7$I{qSYPJYn7ZTxfrpIk@Eu+8FWY<#`sI4oJ}D z_DQ$uRm6aR&ERI|uael@=o5PI#%PO#w9+PajuCFKI91zFz1hBib} zotb3kf%#$w&)&Vns6j+Tix!dO_j^rVh}jRKY_kw<1$7-4Fc(q5;FBjpdP=*6iK$nD zZ|ng;BSTCRRig7RnHnz;cQP_1QHi$t<~LeLvFgQzLPOUP^pzIZlKBr;os6N7;qLp7 z@>X44NV+fTgg4ygXTU!K{hIJDu9z(@E=IaUj>g=BWSs=mg%~1r}0Bg}6o`D=!Y znyJ$SZ-{y_k?{~r^>>Ow=j;4|m>km2tTXy3WF{aWur}Wvh@`l}H5SX58StMOU%`;4 zP(l4X+J{pp>yRG+5{goYF(}QZ_Yz?rLXdKWiSqBmMLuZzIud26VeZpzWul*P8z|)D z)7n&&kzini%atBepIn>_EJoAA`+19158Lx1dllj2<|vV#R~Xph?c$jl78-lp49 z#{?d5xXh7|mzN9AHi5#si2j4sgtgX7O3io;*6~&#^j;u|CnY(q#mDX8d7OOxwdEb) z(0!cMy_J_jjTcfH4N&PmXEcI+5#}IHdU|c(xx&lG7K3^Op$iyf&oA^vI>v78StH_s zgmRCmdYSOJ9)>=0G;LrDh%}(0$Oi$ay>dF^9@r-D-!ef{xnqTTI&R}WuB-B91vi%B z32pADceAOI#j&fp;xBlmTynp#%4dVvZ1;Etd1m7%AxnWfpAt-70VhVmWo~LJT-?zL zoD;^~l9DR}v5~8hYYUuQ-!SYzE4YQ7y}efL%6$<{{hx|*E$8*3 z91B}QW>AbdINZpez+|QaUVwlGrd@Kx$%Fc5R8+RGY4`!!UiVOeXCeMU2Y)Oz*Xk;T zj-|Lgzxb{*(reioex{#W79VWHRHQe+*7ABBqilD_X}|l?XB^FEb5FC!t)u5cdE4S2 zfnL3O{188Xz{EG_T@eQObtuW1$vS$VFmr6(+SS+BHzKQ(Pq628?0eJyE95+|%Tfv} zr2N0mqXes7Zj`xj4T`--I+rzaZ|#(&Na?2G%LOt zynTE8g=D+)z`JEPE}w=R5@&6a;Znl$2ACfrPF=DsD_N2xRFFpLhFZ$qJ?E$-MnBhj zfxM~j2MUkuqMKhbpmpohu&i*_LE(&}?kyD?-?cw@95;>pg6nR_4fB zEmTxg3k#6(eCb}k?d{9hmumT>J>7R{!8$KRmv8mNiQ7-!QhYJ)kf6*nt=`?Ul{&s2 zzT(eEg7!kcoU>ru-PQHopKT6$=HI!nUZ+}_4J0b1B*csD?Uy57nVQS%VYf2 zr?(G%9R*#$lQP*~9<$om(E9Qg_7C)iw~oJZh@Tnfj-=%ZDhgy6=*Xdy6lG=ENhPDz zwa&cW+3Vno()^gYCMWY~`~+TpFvfRDxm~0MolrnO^Yv#iyf1(C!SWi&3^2N?`D_g_ zjP$_U_zLo$JBQ+)>~|M(7|v&qR%8)VColf=@LZl&yK?!bm;4isi^*?N$|z;DdjDHQ zT3aEh5n0maFdRdVHUyt8WGEV4xw38BHtzFbbudtxO=QJ_S2hR>#DO`oC-~&-o0uND zcKd7k@AdTPtANQ>-Q7DKv$4`ChQ6dK9{c}EI-wEYb(~1l+9TP-g$t!4v=AMLi7St& zP3KUkVeUdt=!$+8=LlGfv&##WvO#a$7O&eSr|qI73H2OYFH2=kWAG81sNZ_%&`8ZK zs%B+r_l3KhVUc9`3C@kA5v+n;4ok1+$eds514vaaQa3i{_~B0B@L|NH%wm;)LJ1o_ zK(i4&!o5*zdqZ+xx9gn8YMCJiIsL}eCV{;=s z62PqJY{8xT z<%2+PAb%-&q73Y@s4+vN+P~`U@J7cUp!YDqg==6)+%$3l4Q)|{(DNd zm)vI$kGLn?u}Uxae864RU>0ck(c9V7)Y)`Vz98xxsgo6;Htx=aEo+^f0Ee>m!7`9t z{sW*C)_{Mz&_%FWBGL%-w%-CcU#zfoqNrmc8ldo!?OQoHYjRw>`l}~S-c<{bC>ZO=1NFNv=xluS+LWHCG6=<0^l)kpMTru zXVtewOf$=gxCQoM|`xfpvW44){{`$zq+O5*ZP(f;c-E-W3*7 z!v(XqGBOX#4eSe1!=q^X2|}Ga+zJlz^0uU0!mZ`~UJ;kw&?iZU9 zHZidn8F|c;ftfwnF`~sqiV~dYJvRPNxOUQW>1%1Np?umz&x?J>>-rAVoSZ}Wr!mA^>GqrE)HqksVe?MJ%-RRs^(;D2xd;_F*3TSG=@ zry!i%Z1qu;)5>*5L+$kGJc#FDRb-w8H;RCT$h8tI_wk_y3LMe~v5g`TMbe@dYoKsP zp0&XEH7`$)`jPX;<@3lmA8FZlKXWhjX2qRxTVA+>lHo=rOnHOu7A*H<#hdE)tCA5 z2)svK>yM3kwKsniFXy{rw`IgFMJ6GQ#{ypwSkq)v%>Rsblk zZ-aE%zMhKYmH5p_Xd{=4KgWm?cY93@<(}OZ`=1n8&4Ib8glv@uQ8;{d11*!Wd;wq8ijo#tFtGpdljRc3t~`z@k}M3e#rIg zUZ-n+lk3^oQyG~)X>1SvD0+!RKBoopn&$qiAb;y#a!PNgtSmRe1bLfmlV$3gEMpp} z)h6;Ko8&c3Ry(r$t@DZBO&~rj_<2b`<1D^_!(ym3Sm5Aa9P_O9#6_4B`fzy85AYVVY_V4BiKIik?-*!p*7oT+@<@}{%sdCc!GR!9Wy*EQ z6h-~%cdaT~9#JPl0gu16s`ap?|vmoc^=U0>s zKxjCz|0t%kqD>JVZkUdtDg;A`f<4PKN)C=L=(!?l#WDlnJ?)*(xPALCf<(?&1|anE z3tCcy0kYL2BRM%`wA3{;KB}Y?8-4s!aX;57uwl?}8?af`zo|YeTj$z!W}i7;1lbz1 z_OVjfva8(EQo3u0F@_4>k3ysSW}hgl@d+C6-p-^CaXF308n!ixiVs1fp}>Q}!t!>; ze@vCRd1My+v=rX7MLjQpg9p_J&#JIU!9V`!#PV|yEi+8LLFeP#xznZWP#R`(2+J6f zy?0jRySK&x!vnW&-HH(RIgqyq&!%;v6#B^oO%Pd-=m)BTw$>qZAE~J!J9_@&=@4?u zYSXKyGh}}sFAc3PzuA|WUYBN_qXDWJqwH4Mnt>lXb|eO7Ox-jqgRSJwc8%H6?>{1j zHl;njg2$}cf*9Hy)H>j~N;`h&6CubY$Sfc@;zT^G3>)em2dniTOIX;_oJN^lZE6?5 zL5A}dQy)D2ps{>*)c8Si4-8~g_oJljT^w=%1~pL0Asn6nZvTuD0Rp_5m`kg#f66Y+ zA!!pOzOtQDlK1zQ_G3RzphoNb4+hIM>r$|48j=i?6p=mF;jG#N=au05C%k{lSk1)k zIIj%*asli5oc{F>WuQ;3ukRUY?pE?jLS2BYVrE90dcq)2=+{9{UIhgOxCwkRtLN?c z2?H_kGQyu3#@2$F85#m05Eqlv`PUXt&$W@(G$JU9Aeqbg@2saV#v;XECLnr|mtQK` zd8*TJRkg9<<<$V|rayef$Lgp?NhFEFa0(Cj7L@MWSQ^7#;qVtdy{ijM$%Q`YH6EYh zii(a*`*`GH(L1~2CVwj|Oi`{!X+5Nnx3=2B%35(36X%&}EyEtLN;;u!K4}ecBzNAj zDnQ?!C(6@WR^MtLosr9+A=&MO1Qb(|%T`*ZDJ`Hl%)kz|u#m{wfNr`=uop&o^wZb z@bB9s^bTNuom^)+f>Z{v2HGsJ5&@(o^2OAfVK1FY%3U-Akc{;fl3`fL0^^#3sJz~O z3VV2z>K1wVZm4$zBAu@-9ZYJQs1VOj94VmXx|-$Q$hmgWcG<~D?t8Jxi|dWMVInSf zhK5Moq+=6ydM6?u^c{B_>AuSL@PVx2-QzhG9u$2B)mF=Vof=U|OJ6b*8O_+nCi0^BQ_Rx%Psua>4~APs4j-)%I9zp6RaN)m#SfmIKw47@3xoFR zi@Uq@x{fW-P&;Qiki5c>!;Cg!{{729iKF9rt3ych`MLD|J<6y_z-MBCudAowv)0DB zTD6inB$g|S>J$Y&6rfJX#ir9mJ)^HDyk4_>yzG~MY5bxwt~uQXIXNYGQ8NQ}ZBEdI zSWx}OsGj|aTjdt?_X8P5IwU8)vn`oiyOS9oJQg6n*nZu$ z!_qg5E?s?{X1>8Ib=?9n>IvGSEGGW8l|E_RhjKBehsLb$-T$br1vHPTuXpwHHU9?k z+9G#kHhM6+>gtXJCX$XHK}hnd=xm!EiH}t}#k7iY79i#fYS%`9>fn|_q`3uW5oh1;Me`)1y4Dh!U z^7g!Np>oR}f)_rml_!QU6K)ZUiz{EK3Ntd&vKJ9>Xb{Kx_j!=)m#&wG(J4!CT~C4L zLW)2mOz3GD@-EK~zt|(^hCv5V+hfw+Tvs4*joU_Qt22nMvTjSi0R$Mqk#HZ^6wkr1 zlVo#aZPimLl3yt7Bf?q!?1;!@;PhyXTz$QXb{_FbN@zw$bht=P8`B=+@%7Rvp)b1g zOwjV$)c7;OEC$YwcgE4Gs#ed%wTdV2aKHEvrZ}RGzkR`#+9?9?==#CJ(xfDSJLSbc zNyU0@IZz+-a95um?)wvsI zX?p7Sjsi~C_vK3u3OL-SzmB%MlAXD`3z_%PnZ#0#U$^{y96Cy5=qxM_C4r}_r?1bx zZCfquyD^kS?0iavv#?cLI*MGbQ?R;5p&@CKRc)$=5iacf(S{`E%o2;L`*igg;CVY_ z6(fK^*P-GD{vk~;-7uFUL~WQH7^K^9fzWv9kR`4q3UibpFj|qq+J)T-DY?kUC4Rsi zato86F$#a+p?o0G$Hm=;se+#$8&HEOi@q;HSBrt@qs&%D}#HphI#t%)F&d z9wg?E0|UNy84TOflF*BC@G+1i66+~CtkO_0tN~rA2tmV#1HLNlhz!ib1UOtfH7e>- zN47I+v(f^v$8qUTojJ4CwoJGTAaS-dwgXT*X-8&{%^m_2L)aG(ckB=)#S(9ipo6uVHRo$FH&P4{HegihE3=6i&m5o!oW zvbz?MuDlZ+KvmTr(vt}2!O#oA;oD{1@VKmhQ%!9xoIODC{?&*}KRk!!7_XVV3s-V; z+sDq(5?#DIGEpCej~!2F7`#o%b!z(0BP(q!<43OeFsAHRJ7*k|c4W8I3&BB(4PjEu z<8Tm}^oNaG&U}~OUIge?*&Rj_x4M_i@UlA@F}xqAY$hmxnxR#u72AD$l6D!trh zHCKr=SUARUeM23T#WdcId{f%$hKBuQmbbswFv}=45sPAm?e9+;r^;0sfxYrz)?{lT zc{d2DLjIG~oHFFI87`ifC!jbxd=vj?*lNU!>nJUsLHZE4XmE zLpEofvs9ec+S1~-tlU$Ynvzn##4hcHsmScCLyX#6uf6gexjqKP)Nab0mUeJO|AG38 zhsX$ZLZIu1lcUmNPX&Z_`b!jJngsUzfaooLlK9hX5gYLcL{u7(D-%j|ZPxlY-XJqJ zx_0KeIIerpcGEG9ORo;hY>6m!G~4yIjM^=Q;e&t}KSh9E&e{sEI38qo)MX?z&>0Jv!Ct106aKVc?%J~&2nV7Ro5x&E0C%fZkor~CB7aui^U$jteY`Lxng7_ zO6h3`i^zgkzJLS*)4}MP)El#>z za5@CHnueMh@L5bKrN=NP`k9KJM#AB)c~Vg0kTxnj7d}s`@;F@FYP4+!))2go} zSo%WnA z3e;uWsT%1a7OX8y+K`fHe1Xl9uhGw-R{n??G}Fa z9AptpeuY16VD!&*{CEbCg1q`H##h}N7@%8we)zJitE(#l*wP-y7~vQG_E0-qxW{vO z!ar}ta#*m^XU_eNq^r64Y7r;yN_j`-%;j&0!WnGcGLI_-O4J=6A6hQ#Ul^qjLDqmd z5wybPgZcul)XJ4~n>Ohp>Q1l2RpJGTfzPR_a;H!Gb4urWu6^|cP6h&JfLrT;T`zPq zJ9dDT`+bQQ)W3JS>ul}z2Ro0Meb2P#&szC0l$2$WDka(2J@LFfv%aNC)VL(bXUwgS zYu^Tv^q?+v1)sDHHd8>;*ddn+j9XKO<9K-~&XEb~2<8M6KztT9`&Tx#2G=Hv&ito{=p*3W^ z+4RfETLC{K!Q#(=oosA**x_&@`5)-r6cslQeIYXseOU^y?{xnrHlBNh-HA-y8PrZu zoJH@ZuD%_AtkvnrYksAh=J@fH{k0!nzkU`j%o_B>)zeM)eEAx<*9j%t7ZR)wNjp|N z3hD}Fc~3Pa-f(Mf3qDjSX6Q?#=nW&Fo8W**NySu_6-#~~3MD3{jf8PB3d94RdU)xx zldHJN)(ENs2)tt}`wE$vf4Op#z;*TYaNNN zVX>H2QSoEo%>8_`4{e+^&U5M8{mapEg~|~-&4dQ;(j}**rZzS<>g9D@glj)7Jws*l z2QHI>J6w`KayOH14OH(K$M!yqyYp*dFmQbcw`ENKH}9W4p@!Gm?eQHFhy69h-OIy% z#GDftX}i8SU5i3wD#tZ~;|ij!mv2^{Un&&%x*|!pjU+)CnCR7LmXe3y5n^DEawZ2t zPk0>ze*0_BT|xpc%dTC^#X<+R)PL!wd1WXF!XJiG z7l`H=Ek5OTVsb^;5&hr%mCY(*GEwH{<_HiS*v{~{s2gA|9PbbUGQf8Wd4Jg0xlYd4 zwMEvOVXws0UV-L!yP&-(X=x%NA_v(|QMa_V>hp&pwp#4o#;Q2C%kYZ70$t;gh~g*uk*ttKUp}x=l&PhWcgp1F zt3)l}VGAiR>R{>vgqj>H2*pN7a&f48Q4-2|$m65D)?o)3>OXxwK7eS4t_fN#1)6*> z%y+(i^%+k>FtD$W&w&U^Dg`2Uam(Q<6e%#Wj#0ZLbA)9xIzCM?YD(Ine>^YGW&e*) z&=;j`CfNEng$41DiJAVcKy2i`SV082^k0Q+nS8Sj32yj=N%4~ zO*_!ZCABEo15qy6P*IL6#Cqvqyk?E60Z!TkjUNRbbe1Phgi{|jA7Vr?V0Yn&!-a9?JF5NE)XSIPe#9dm1m`sXe##|>z_xzzhGOQOHKM^e%q+=WR78Jz^khBEy9{gGNE<}!VNEapT)0U_l) zc@@z+?N(Z1o79I9+y#mho@n^iCjIIrkV`m9FCxZkbt2G{&mdbAa>;>*7dUY?0>s%o zX`*v*9P0oK@a$;Jm1u(`&f~VP8Hs_@vx^s!*NvN@B@~OuJwn*<<;WP~`2d+1ryztC z^1y+!1ELq=k;NfP0EzVz77L&W;q8(SLdw`{J)yTO;s@rLPx4IP-ZSpq4!`bU2e=&> z6=9HzW!8tW;0~SI0cQ0dJ+`d=atk6+0ocVEWpl$e^~bN*RJnS&Igs)Y5vo%%F}bUY z=3J*>E*LwDC?UA&md#PR7t(KBExfQXCknTk1Eq}8A>r_mK;*dK{Z&=1L3O)Bo>~LI zNMoku8gwVVjCj=oh3QFd(a2n-y)3j-Jf-XqMm-y^QhKd@TmPgY5zt`_P@+Td;gBVG z^r&WnPT}=SDf(4&gDg?B}$!gO7eExqZ2?@#sb; zw`eT52?^(=4#nadL1!5{vN0+Nyhw~gK;rM5aAHDs@%5U$G219uvSC-xxEluhYOWZ! zFy3Y@CT;iwH|QQE2f68!u^;1Cvy>O2H@XNHPFzOdKhNMnWyk-v$#)a;>`1GYpdDL}yic#{ss6riv40?Md9!~DG^{4k_$vdov=ifo~H6zEBfo1 ztivPo>)Bz4kru2`zvS)~Oq6g(qN7(zYLuS(A^6}oA71e6RcViat)R>hOiz1hJPfrP zycX2dYT=Z|oshAV$7hF|Etp@BhT*xc48fe}7H z2gF`~pq1e8TBdqb!$XQXg9h7auH6wz$0u0gn3$QNNqKi56_JLqrLJ9 tChNN*X)gcR|4Y^L|EG5P7d~Z~Q*ZlVgt*R=im?(5Cj1g0m)f1NE~1oKtT|Z zoFpfS0}MHbw};>PpE~EyVCu@mMz$@;jq(b4pGj_7tjtB&O0RA6A*wl&%0>Olkle(|&7Pm0`@~N7} z;n7iey4)5=ditlbOC^%;6$nnVmA_NH|B0Z1f{NlGu=7KkjQITTOyAaft?zDnImJ=r zy%0_cEl(ouop^m!NBNXA`Fo7=BihOg>rUP#OpW+zgdvgN7loL?E-^-LeH#bG5fbfI z_L(7f=j?3!SP_VJ%v>qw@lS}7Fa#O?C!bTq%g3+C`uumiP@CyYFdWr9Rn%{#qeXGm zprCKjCAP&hUNOU&V>o_rk@VcTuFA7#N=iyDhdfOEKo;%dCc=P$x2-u^2oKqyQf`_S zYhxuVg*7xp8ORvb79A?|7{VG~@UEsdiwhD2??#dPtn=g*}Lm=sm@dv?m7IGm6VjUb=y0YSy*`Y_U(70eS;cm zYFz^ZF)=aO&dkH{DL47}_&gq$Hk%e_WoLKIsj8}$F*Gmm2yU(H=^ldNpKgpWa#jh*I+LAiAnR=Ip)okB$%S0)GZg&8YM0Bn8Bmz-uXn@))7C*F~>{3F0jJsGHd4<`?cN(vk3A1}#C!?O_4yF%9jp#rG(rOPuKo03ZvEgtH~Q!!>ZX7L(Cy^Q$x#K^$ueF zPFy`H40+M9w+F-PwV&K3CNHwLV1D{E^^nV8*4(g6MwiJuTGy7&^g7$B4ii)jzw>-6 zYLwKz6w!XoA4%x7I8Z7dd3(j0`qCwx+mU4`O-;?#Sb;WFd{k6aY%IIqlTr(f`}gk; zqB#tz?g$v@7l&7qU1Dc9c0V}IG?*HD!1}@sIml1czRJ2L^Cn3hG5Zbq^L$nF z6mn-OsxMC$W!}Y-XGwrS%$irbO}stH=pA?OX>IyB>fP`WrOR$RQ!}G3x|WV>LD>AY zvN9Kae?&X&Pp9+y@0lO4D8}9Nla-S*M|&R~9&lAHfA2_@QL_FR9v&VY&F1%{(kTn} zyh1#T(`?%1-o-E(?5+LIfj>`1|7`!548w*r$TPgGzf955!SKew+w(`6bz_;;&V0X_ z%t1-7>ceL$DoEe^*jtEo3+~g~@7|psO+hB&s`qTBens%Zu~HnL|F*}XR3}d|@b&8x zCq&>9SbB$?`#yxwmgavq49&i!Wi&Zv-u1kzQ>d>l^W|Ev)$ne|Nir*gO7)Dc)2OQV z(S=spyZ+P``lo#i6ee!0^T%56Z7!P0;$XzYaXDFX8C~(N!_M(b%=WcDC3lT3hBZz) z5f!1{!#de#U`$;K*gl(#ckKxy+uMCbD5?W=H?hK2^0$_KD_6TVG4oMBd#c}M(}(U5E@GLotL6ao_wNl=}YC08e7 z8s~~5HfH<=#l@hMWxY~)l}`q%f|N|sDsEdl z59(NdZPt-ppzrpaV7tXI(?(x6JA9UUDM^fd#@wv$dmB!s?A#+{Y#m+}h>I~HA7S>X7Rb&i09V?2@6hYdd|OzkTbr)XwmWQ5ysKgo>S9>Q)c zjbP9ZCM8VAl$xncu3f#Fl9B>(qj@KiR_fuyBEM>V1qB8Cohr}Hz7^h7@7Ti$^9<2| zi+<5TDBhqTN=qGmQQH0iI+MS@nwwip9U*Srl>hjlYt9Kh9A}-a zU;U%UV`b;T$VvsyyW#=GI|P>>c~etU#^J*FirazplwG$;_xE!&)M_)c-Z)M}@ z({B`rQ$F~2UJ9N{`>`(>I505axwmPq3aCRu;Mu#tcAAigK@@ty#Su~bMdr~XKk_dI zcE(o`PV~LB@-IJ@ z-CbnIpYqi&v0hIKCx)8Bg$2$W4Hua(L|N7^^rzygcxI{IJYF69rW1uoLLG+>Kb@kU zZ09qFXT`ll*x2Tl-;l&c-R@sT)#x8a)i|wxLcw@8y|2!B{{+vs9{Y zNHLCU)2=oZCQ2$D)WMgmy%$U0txWFe+uc`pa4>$JGC2MsKPzjbcm~e)sWR)JM#|Vo z7X`1wire9*e3(A4;bXFd?gu$J0nE|iH)pJvcKKJUt}pcLnhS7G%y9fm3GNNUo&tR# zCw-VcGS!kXiivP>6)Yxv`gBozaQg3GV^hYi zqswmnMe)CYgRz;JQbJsGc&fnV5>844^2(VL9&nC8n;Fo_)65ZxGKb~yUUpyGEaV{Z zsH5^MVpjUzTY8v11mXe{ey9M&3GmSY+W(jr?pWxSpKVmB{RonijiD!P^X zma?lcBzSI6%a->n^Tn`?2?=KWjc=kyQEAfCLG}XmgYC(X z9L*o=*bKQA1mb6K_#Xloid}d2?dF!ekz!Ws-=EpqL|rYAw(=QWBvlhZmTPN!q>KiK zEdtG~N;cLuq}o}4an2_vyfQ?)EPlKp?=k4_?|&&ceK9X0B4Ta2WzBkKYHDhF`Yf|% zo{omHa{H!DFf~_eYwM=9_tC+YWpAz^a{Yz1we@JVXPXc zpiIBo~Lz361kwYY`~rB!Q@HCGT}O z&Q;v7!=n<8_8&8=uPf%IC5AE_*(P z`&U;MiiP_g)TpGY%7o@_FQGTWL`~->5@}n1(@{R~Awv9=1jHZ{O1EOYKd)889sO7` z@aNB;=3QTQTo{C$WQ%{n*6GkwP>>9CWK|+f3wO+~d_>$a(0ws32L5syu$gTRM1Ba` zsNsSZ=NF1`R0Z(Mltc7^Zl9Klii(DYb7w0leFqUjf-5;YdvN?tV*?8r%>`L;fU(N9 zycb~P%ZZT$Uf*7yMjm+ICQ!ckqpj@2hYxMyM^(1yMeV6Ddg1B8z|hc59?UuBc`R1x z_e>%=EiKl}5h3x@O^;JXA*5I1h1{CBp*`9^n}w7v^W4H8XEk+oD+>!x?da^ALKsu| z6B^QmN4##cBq@9A9RdF4`lk^|;U(vn6$tic^ZT$}ot=sU{hggfs~P7y|Ni~!RL#xo zM-J&dGbEuNw4%C}mO13#ZBWHaN%{=1gOdR)|84K=?4%tLBY@O7FE6ipi>WmUvLoyU zKQAvYgJ`AYkF$Br9je7GU#tm&09Xae$`V)Q1g53!7IFWWy!-j_tF2zak>1_{ub2z7 zByWZt2&5ex>9W7>}3;-WO zrTHo7HP7xl+%{1uH(~izSC2FWS>|O0UG=;3CV*%pqJXjox8X`0H*DidBh0_ArV&B$ zTKuB4%Ek1pceKJSTR$3!ll7}vgPvso@=V-2QPqdtsCf&>`0Ll@dST5DG&9Y>G!Lxz#B z_v=oaKgM5L)NWdUznJ~1eP42yI}tv3WQ&wGIe(d)fx0i5r7?_A>CvO-e(m|Is}9Be zaoyielVaW<<1wHSOi+WC78V{+^$pQY!eU!UjIis{`cb=W2aoBPR-R6&RX_JA?vgJd z33BWe(S_HA`DBQ85@}XeGBUT2i0)tf)&pf$(Qi&~lX{YQ+^EUUR^X3qpL2>KbOS8S z!5pKuus*{_Fdo@;sOG(f8E|kOT)P%MOqhSLnZn7@fY`{ zikXREt|dJ!Lf`T3KcjCM@lb^1drFGV{Cw!APv>L!^Sa{cc2?z?{n&(r+?)vz?R9c= zV_F3Ui}EUCpK<`O}1o3Rh!!?>PddNC*l!7w_E<+bCRXfvy;jFGpr&c-9 z2aP>B5E&m^WG7#1JUrd}mc1{==(*(4ECjI7dV)h=GO>Gw2Sbi+qFY0bti#WCR;S|Z zPQw?bg)oSEuT6IiXWx9}?Ck8|;Gh+?f-^jH*vi%r9`$nnLn7dmvg6tuS<25B($pM_ z{MG0BLS0>b+iOl%L7^uNBD&E1UJqS0H8m9#`-#NO#MEamVZN-i_BRS3EyqQ22yZT; z=&jwCyOg$a4d@vdz31x4T&1nyP3lF2+mnr9mijO=7_G!_z6G8u(mmLN{WkBi#XsZT zbwwex0&tEh794HR+DbLQ>|sP8N-oUbSg$y48R(wpg}DZpfkZDtGKPg2Q9uh?m+!i} zv{ZXykM?KCa5dh)_jhIt99yEpFj^uB0N1wjUkOYx9^Kpf#r{Bp4S^8#t8c_3CTsn} z*;MpYQIfV|{5QK{G>-0aO@NxJIc|$A zuQUb-Sl!!CbiLD9f4*{apkr;CqQEy)&sy243WwJ{j<61;Qq3r^=Y7-LP*>11@CeHha8-nqzDPJYxjNHe&O4^o-PD9 zlX$>G$rmosH1P@}5c*QR%|8K$0>_wxk9yGFBk+g`+L`~KU+_`E<9-Rd@+-8KWDK_l zOPjxRN$cFcd$4zU-=>1bnxo=dqsf9__LTU~P_2Xg2tCZ;;p}@=OSP^+f#H%p%$AeTu(qI}?-vDm1|ju= zqp;#ZH(lK@&%H%5+iLT{>VuvvHLfabev^`Tp1|rN8N%n&_E`wuVvtIGhwNdfS~TDL zXr*RPAGVJ7rVU{@+d)cjCs$=AWF{Xo5_WeJk8=CbTMa!qA*POj=LivqSLd94{%>LB zCCSX}-F~w~KxO&4xw+}->9(WQW{IAg&VBlQC|ko((f*gri!?{K$1cHeoIm8hC^8eUnT3K7ItqEC3}k_M!fm1zfiW-Bmp0W-o=UT)ee+86Om?0&c1%4w>9Z< zuY?mam!}{3YOx!;f{xR~%;)jckWgVwa`HFS2ap65K=E;k?)}1|p#ganPsz>_HWSFR z-Safh2Mg;4JD;B?BYO_PAW7bwW{mpw6T8kS3o7ZAVrw_Ia@+p>Gd8HbMbv11W+u7h zI&Rc^e|zOntH>2M@*sdTzJy0eXy6D=6Jmm}E;c_|S{{~KuU$j8WJm&0b@u@eLQd?`2QoQbH8%8(7SlvRxv!R93P{)XFYWi3T+fnS`q}{#wYge5rZCtCQ8~zj?8u}9;kZ%~cjdLM`_<+y*f!%mxPC!RDJE=@G@dF zxnPok`=q$r@>Aw|X=?rTZZ#!PEoLMG1x7u1ZW4$=89f#%sSNZxyNB9$b9(>=^|G zMY4x74NZ2AKBv|roq@Tf_9rS7zmO%*?_BXG-$+lFn@OOR6^9=riGBSnjfJiQEB|S& zb+146Q_xvR>4fypM&+4@Ep4x)rCs-$Ao5v~=tUT6X>HA>hMk2STNgyd{@b+Jwx)S% z)%tUb=@C&qWVO&(7jyISBG#49A|#ZkE>TV8<_H(rPxgniobFTtF-wxz$k_P(JVeoC zCTv*N+}vDs1ff9z3RVhgv(~g2vpHZ{Eo^LJvZ8hukrZ(E;lug$T_fGHQx3fcF`j$# zWQ_bVEwA(*!w&XK$mLlk^nC_8Bc#i3$WzM8x7XUl!-9j0`>j~>uX_(W_nGT3A(+y> zU%eKv8LD)6lF?IrbE9vxW_Mot+$E>{fIKeDb-&AY{U!$wL(W>54=a9(3y?a2uoEgG zbYrgH=rgQ=kOXPECh@r4JvwoH3E6@^L+^u)ROD{bDMY)bo8Hh=m{_(mRq~z9nxnnB z;3y_npqwghc&%Y5rTnXD6^*%aH zt@l1Ij*fvLAtJ)L=|}}c_xFyfR zI9J6Fnm)!aD&@f7ybk{uF+{Puu1vhr((CAvK7sH_3U?!9K=>F~{sILMJx&M;=*rO{ zt~G+4Ds1MwtBWw5uA$e?BoU(%AHSm8*sEY1M!?t^KFIWO?(+5ozCCBIpZF16d=P8> zv#pKm)~)%8N;q=)9z6N;Tgy;E5Le}Vj@oN&e+@nAxiyqipjfj#vAw=dxuv2}YC2k7 z^zox8u4c5eo%|Ao{o=6>s8Ux%VAe+F1Ht#$3xJSd0wM+2?o&X+jK3mkjThRO96j;^ z8n!peU|_dXe!9H;r{5_@Jw16(OloCiX@xe#Fs#goLo?j6D}5{@09fZ_$;Sf77!#tR z`dlD!3`(^AhXWd1dJ7tv4#c4s98*opn1e=xz~6X!M<5&n3AkwFHo-ta*sIw{~56Ne}Uis;9$s^+PXR&o(@;8 zw!|(@O({e~z@*Q9y4Wl@11d0GVsw_XGeYv!u|2}cvUG3DdpART(V#TDG;7Wb_g?6E z{g15?;e|J}PRL7tPKeSRqx{(~A{-oy2TQK8iQXev7usuATYojp2_T(}RaJpdN2mYL zR#SsL@ZsafAnU=A1X1)~SeygYhL36a9$~WyoT!co>UMfQ4b4OM-Sr}c*vBd=b!Kg4 zt)HLq#wt~|X;ZQq*zGNrEe@h?>+7rxyK*UgzOy(L70?osF82*ldBxHSat$AwMiqUG z)BZMeu=^yh=JstmmpYP+FI$wVpnB{t6dO&qZB^>oj=D|uMj4WtWFaJ3x_Oo@`||aR zjNjU#zkbCBM@(r^k;6#U%j(6dswyx@FxO{m{X1GRaDRUvw5&2$-G3O>_Cx$SVER*)msijhr|mu_(eQ&>$zzt;x2fBPGG5Uv z{_eFh?;|C~m&OVP2Avf%rlE|CuT=^BRLP=WjbhxlDxI-9UJ%qv^Fby+%%+iqi5q|j z61lJd#O$mRQat&{pW2}0=_|n2E!xFHie`Np#1fR;^e4rQf4+Z9$$FL{#r=hQD> zKHog8#OnU*(`ueBneCtD{=`G4aa%7+H_>lBot+aaZryL*wDJjje%x^s4FdAN!(H!> zaG3ZKkv)`=X{@gYexL-?gqNu`nWgUEC%~_lB(0Y-HHSGaM_ze3vv=UAf;8wo4Nr=i zns8s;Y1FW0nf+vxl32ysuqy;LyXG#<(eb(h?@5xp90c#RgA2QF-n;>lMuFHK80N-? z1`B<>If0y9OD!Ddv#Gd69vc}cW&^NxX?mLJ5}|}6cT4S2u1Rww-~|&9RAP9|hbx`q zvGq16fyC9hX@`mvaB{x&TuR#_}{yYfy!C7IeCq4)3^kRC%<0cQ! z&T8WsP6dTmyjmI?a0it&oIxi$Nkn>HQ^R_XTC$|9Z1YW)TUg^YKf4M&)`PUyYHUHB zv<4UMg8=E4KQQIKwbE-D)rZy4h&a|lSCAMHmBa9Z3X7tCm+B48C^5g3o2yEcuI@k_x51zQ`v;k=saR&Mibc{#+V0h3Cz@qo6J<_RQ*(e6gqR|Jrm z1_fG9c2{(PhGz8I9zQ(Tqr7mzrgH8}{_H6A7unS#E6 zANA!6n@=zHgxoZ+EkL%&+h4NLmG+;0Dc4EnXy|17zeTQk-U9#)t5<)qO9l?wpgFj? zi`ajy|D!^z%CfFx#ia6r4|UDJV0g3A=lc#8gab zotd`=0er~DRkc=4RWuV^`Slz#?Gr3^tDeG*;wi5 zXw^)k&!C45)YQTwBGU1WG8nu3Gx}Yh2)^3AOSCtGRv}MIKw1LsmX`kUJDTTUfdjS` zz=gDU$Ph**FVVxwPZH+&+#*RlNG5*jPumK;u;MylQsaBRS|TkEkNvD15-@@Bu>l8x zz(jtt>J9MMz>NR~4Uv7k;3WQ!JgzpKiI7$3MTk4kcW0?(B$TWj?%_s@&BDl^_vUIB zo3?bO0B?g}Vw#?PVWvL}WLRs>MsMpzyT|@ENKM^y8_!O;C7FHTJC;DrTtHo}pbu>q z(FA4_Y!rI6W?|Hlyo}<9(;Iy_oeGC`zCNcVq{HZ?OGsT^nbv3?i;=2Y>>0rRknae4 z#^^deer$&&_$vwNCPJd^6EHnL8Jd+1Z1`h+oeSR;x{exiW-=K787P zOP)L&@>mOuwe77WN5qU@cY&9I@%e8tmHvP16nPHSHD_N@a%=&ey`I_&G_=-A<#2kU zcQw$C;1-Mq8)D=eLT0J79~Yt$#Fm5D2@Tz?cmEU$iPjk5sZ&zmMn&Ie-xSu&-Tq7F zohj_}6V-T`fgvg(-wo3m69bU$R+;tQY7?s(cq@SAgeBHlrUNrl%ZUG|f||(`mdA{N zjg3Nb9XTTUO(JhiH=U@ z0zw|KOiAQ@Vpi}<7`?m6>fbj-MY-}^nE7ZkFMbRv;;zjQUz>QMSBG>Nqt_FDb5(gy z&lmHj;A29}|1V&nWT5xa-Y7fFQa@45KWyLXKQjB0As!UQMwB3s=TTidzk0L=o12R> z9@DtCiF%ct4SrX(-XSBdTmE$cTQFL=(hxi1ZJ5#JY>u}MO3eHeJ!z<^`NjDRqB6K3 z!Ltlh_+3&)ua4KJ=`Aw*u&g5M%6bnQK&03nZxKLe;;kM`68{AUdbo!&h~DzMb0x&I zcqdIbz~BE2Go+gTK|5#Wpq|Yy!|YmwxAgXeb+)&YGcb6~yB7zS$G37FZVJSIyR+$i zC}X>@%&H4VO*tCJc{qBcA0DNpr8DrBL8xWQf#y7+(K5qI%IJOrERWm~7)ZP4&x>O` z+}s|)^PU%_1zi?ClY<3yw+D`Jud@GSUmU}`077vC>CRO5r*m^0h3RGtJe~C(KAb_y z((vE5UY}jHt=^euJh~$-LxieQzOrF>B#l3eXFpswkTlfRo@@Slu(#D$c?ogF(%J&l z6CQI_ruaBf^Uk;VFcP1ohhJ#6!?%0e&M~X1smVWjL`rv$oPy%6-B@k%gMi)Mw!H$t z`$a{oY4P{B=~M99%yqxFZ^j?-KwWl zDhU~lj*bQ%&CpaPf5r+m$bRdV;s6ck;@)KUA|_V4>BVxLslN3+(K7oaGWJrBGf$qF zyP)x!I^VNeAA}MU<0TrJ@R$K*%`dlt6uGb`(gz*{;ImCF3XjbzQ*diw*gqDneFl_>-Zo!^TWFP7azUaem{J^GCp zV&DBLpGb7Y&Yt%H`x6XvAe@6bQRK$ifHwb;!ij^^lXD-hxSeNF8^f4S?DZK&p|)L| zJHlQQ7QZw$Fz8#Sx5&;eD=X{m?ZvwRXZ9ksG$LlQ^??rjM$f#i4tDk_hm|0UsK!Y^ zrkH0w^hv$Fn#`vPZhHUR`!N$+yVO2-e?nt|^~CYg};CQ)qb*p+R&pAlzJOf z4bVxhL-sOE2Yb~6kSLK`EN*&uTYd;>RX$XI1kmk@brCR63xeBPd&P&`n2aPQuy(h8IvgWo%IB!tX<*Dlvo z31#Q_lP6cb(`(>ls8w_a)U`fwd0pmuV8NRtTgH6WMA?vHN9@L7T&a?1~p zMs2KZ_1xggk(V>(nsn_L>5McG2+_MLP)uP^K-PaZe0*i4vHEZ~Kw$KD0(ZKjS+Qep z_X5YQ&bbZGR?$B4@2R#Ir2*^T7xBJs76edsHp`e~`OKL!AXN>Qn1_=;pX*Gw#cV`^ zOyad)j_dvW`7{M%Sz2fQGMn;*8w8y~y)DXwj6Nm{3?M9m= zR7{2nzagcMdHW9q)pCgu*>oMa%0_W`z$LwDcS4V;() z;#+YYRtX!e!W3uD=xZ`TpXBeAxsuyj@C{tjmx4_;=6epeOz&L&@;DlA2z~mAPy+eD zw6$u&)_ZUJ6_MD>zP>{|074dz^!Pj_wfem(-K4I%WX z*JzAj%xr3Z$<>~QCdUT7I0&4fmY#^i=EA#RF8%}uzlvrXF8!LrJuO4$?%s#jSqzS* zV^4C{=!L(AIYWs5AGP@;cN%_6&0p=wmN>NSQ2?Wj+rGVT(Vr`)r! z#LCNu;fAu17@>HZSzwx>wqQj(UK#JPoGrssn`0Tk$Hx}CEPhiGKPdZZXRFcylcgwh zORUm%^nRZn4|1f+i&`&9;{$v|BH(|^WF9#_hisPnMFhd@2%(-!zfUu#nn(g*EZB#e zsWKZ6jULx{tf4H0d;}c9 zymBx~VGgwyYs(S6fJ%oZ$Wuszz&pW`wPW%RZ{QcFr@q`fQOnFgq9rubRe zb$Kk#!5BaVITqyFLa$9YIKH8<}A`0AuG_-*0xk+GYx{=OFL@U+kXL`zDBX_D>=k-P1SZ zuToNSxi1u^C5i>LF^PyBe)KEV8fL+7tN4vFz?q*1RJn>5#=iFkG~_aj|s%C zU8_T7j+kvN4a2A}NkYMa*xGL%FzQoD;txBhQIZVgs@{IynI?Cv0-R+A))y)UD`VhX zipWwE?v_%y2$djRbCsECOcr8ZLuH=ssxF(g?D?}&ju-=R@Vy_cDBVrq}o=UX-nl;ukLXv-nz%I{q?^YWRRw#?ppTVHiQ-N8{7|g9+}wpTava3 z0?DqSK|4U#-BrgM8Fh~NOZ&QI+UcDaYO5YZ|@BVmIn8G zQ|mP}hRf|!ZTI#;RVy5Q!OH?u#>$!q;x?!+>Ke|%bPa)lUa1cO&`$fEktB9iQ#)4n zW~EEwUO^?!H@TT;HN4rgw6qiy*XqTg+?6VQH8S^oY9>_SPYzhK8<=PWCl0Cthbdc=#@`?RPg` znyIAM4tr&5&GU$pi%UsCfgUixcwK-eYx-!JHC~VB>(itB`CvQpq`Iai|N3iRTA)TH z=|qw0K|JQ>&Df1dbJzE49rVIi6XTo-i;`zVQOG{E=5yXKeREpirj zCf>hY+&|QlSi(wLk0lvhB>+1!K-Ma=!Jh7J<2#qHUN=0ta004Ju^TZhrg#LZqpKUQ z$eO5f*zV%NKy2uPYbQ4BrP(gS?erI$?Hxj?t7{#J!1js#mB~hWQW@B`8NilGQ&Cg* z(UQKgwXlG10F1Poz|Gw243z8hJ1oq?W_C6%_`s_ulgwQj)Jt#w76L1hZ~-4o6edaWsCd)Qez* zX~|Fm>-a6^dRU7@hrA9#Zp%qr7@3C;cfD^^K%p?Sa2H6m9wBd@Mx2TVvXmCjmI+!~ zo)o-r2xUU#S0A@J+ra)B_~^#h9ie3~Hwg0WRy<)USXOst61NuVMBKibMi5AZrBZ&s zNS~KI|4K=0&WSZBh3*MTk@y)%8wOxkLSXzsnwJb@FQ{4_b{%yF>HKhek^?m~5&M3N zUi#^s%Qh8Lm-5b?YRAroG^n6PN0M299DRDnY4#6m9%va6B0GOW`wYcrvU4D1jh`I{ z4-tt>==JlL?|{EP)f&#t#>uyH-IFe*B^{}yU?@VYpS^INMu`=mt82~P@MM_yl9Ld| zz}Cbh-L|I5xbk3gkf*}yw$FPWKmU-Ltr1eb!egUEQC#UCZGFtfR21s(jG@PTt#CIM3{sgm{3+OG-Si-^hHQ6c8 zkx&VIl{+9YHQKGD~6A2>aW$yasSB5$~9YbOQQS(VM_}!&%YmHFz!5! zVTt>{d5#TlNirYZLBJ<}e$Xm@w2K<$|51-GCYmH-$mHS>t&4|q{is7GXQr)Scct-n zTpX=t9{1|}iSFA{!n@qzir#6&}IoBVJlkidQP?9o``x8B_gb_^rEd=CMOoFw6YE!@Y>Or$IqixE-h8NAq|dIra9?)Ya8p zueb%mqmLeZ0D;h!x_T1?TpZc0 ztxNmi^JS1XMT~zYWvNYabC=+iOF_IJRf2jzO}*r>&6{(yN*nZEThF6>bmzmcYUA(?iAN%sO zwEb9H1N3xEG0Wr622VcUdFq2VBDZ@U*J3Tx_m{71%yq?Dm4Oe00yX5&TmRPDHbhaO zl=y>~%L3fUQ1Gut?(cV!&?Yd7?(U*Su7Gbxr{_ErMK;PU!2G|bhlNnJP{a~zyc(6$8+=ay?QjNY1|PAyX^m4SgfU`g+Ij1ymC*UyM#Xmp$c%Z zb*ee4v9Xb8TMO1hSC+WP_GnjzyIwxf%DQI1mowfP6fp95ds$h`Yk~Lyy!A-MOGimf zFlL`Y_&9xj1qZ;l^(AW*AEUU~?11ILV;n2k_gjQKD^n|XhjnciQwCr;#XN4T{SR)_ zPXK!0%hhlY!s^DCt>J+Grw;H~jh}ZxKhWlYew{t~I9D859c-aO845jBG^k=eDmtg7 z{T-`xUYVPto}O|}*_jnyx(7vbP^Dkvb-0szhVr$+$QkFJp6u*-C!q({)=USN>*^?v z^<)GhF8W`%7mh#E-=FbTsO~+eRH7}wY{rm3uMebvr$KSVdVGpBc(7=F!?Z z3CHVbb%Y*;VcbK)QmT%QyjvKG1X=&aNnAK_{rf{HiYa3W5#@`ifkArircsS-L~JwWE?)cuynm( zhJ>+h;dg1`J9P0{LdA4UL#HZp{b|?X8|J0@PxL!2xT^M+Lcj^I^o=OBvkRjizjfns z2+!HG`}k5J)U1mB>=thHs8tw8%zX9QHAc5F0=bX-`cN*230$!I(=xqWUtdyagdUQe zpY5PvV^a+NF=gjg2pa*3;M0F4E*#sk+2(zy7HPsgJHG2#s=z@fow!aLkKxo4_ZGha_z zMTOb#vVhId4{F1qEa&E5ze4E*J8et>4n+kMAd;vZ@J0Le$qz)WSXZjnHZe!lzC3f_ zB;xWWbPI3#oA>1wJNvn_XZ^^5u5WlpV_>dU@!7VxA6b{~7Es6R_f;ovQ88=G3EY|j z9@neBkK29C6H4>gQ{U|wthP&D$Wd(lMKkhXen@#_;{5hEy-$j`jOlf+;1p z7rLh2ehCUv@ZJfo$(c3ajFSI&yp}^B-rYuHg+Z8EI*5=?XV$VXHye(9861wHZ#&Bmxu@MCNc8 zx|5IFw^5BGTEW|wqHM3FcSYG=@)5f7dIYDZm_dH^=B;0KF0Zd$)73p^SJX_keeE1! z=)k;%ylfzh>>)T>H|%Ba3BxezpJl|VS0;a&wE@Ix_#=_P3zFl)BlnN^loSNvcVS$0mnz01n;Oy(`1Bx_jojZvOh{_-J_1oyPR5!V} z!rr~x|IsL#k_RF>(9L%)@9WEI(VZiWbQasCSMeH0?up$RBQn!?n1JHr4eVA|8YtxD zC1&Q;ztT9;cs=CdXewpa@;ue{pY83-T>3B0NI>sMj9APoTA}BqI`pJOGQ{*2pxXiw z-&@+0pm02sYmhj>^DdSOIw|vOZ3oK~=D45nUICXyRZs5f1FDM`(>hOL6;%=nVLZsa zZ-unHR}^fwW!?Odj#*sVd7ALlm`)Psxzw=T1q^W3xtf+x;pw>S$$q>J*7MGT3NAKQ<9=m&)f1$& zzv$;h#k4BhT`h=mUMDt?S`U=SMPC+lFz(Zt9Yo>gGQh2lh17LS#RL!>i;(YqVwGxl z*Q1q5QS%IkwuIhZIM>;Gh_=ChA?m()vn%ys$h^)qC?3oR69hNv%<<>AcbDzt0w)Ji zVKKs}X3=~TZO-8`1@o4i9@rnqY#fO*5Vj^I73Jj+g|2%?LE#fFy~DyeIhmuU=LWdU zrXD`3+3!?WNj`T*MVcB|Fb}y6@enWuYO=rsI1Y4yJ|3R`GSw_h7dSHI5HIBXE6ix; z)8Zc$yP5b=4(*RFO*eEf)x|kzy3lyrDrUdWRd&yyz-L%_>`}D)P)&4UT8mw}SrAcNrFUlej2>W)%z$}xdsIXO8zr8GJMnGfXh%uv z(XVl5tP7XnNEX#r{uBGmuXjY)=5_@}X1_pKQRXu=e3i&+4g^Jb>pGa67Y0f#g?q-D zxoQ^dRX}gGysD~dqmS7Qk>?sNHGZ2_< zM?alK_*7;do&|b`nAel5ayGvu_S)X2XqC+{QL*U(JSS$AW@#kKWM_6Jv7j28|A5h( z?n9i%%ol|$ea|nzl8Gk7EWHA&D6|Wbx1W4vVrOrT*H~R$J$vpPx`Gpcx4|gIwWZ-g zqZY8`@6V=k9j->%uC4+qQM|%`o0pUG-mPDqfBt|TR|vMI#X(&Q3qNvgEkn=Ynj`vt zR6)%-A_S9N)^W)_)mvG)ip4rId4AiG_1`=90;en zQ4N6MHs_xov#LI4|E=Ol`Cn!CxBkVqp8mJTPi6iK;dJjcIt8G3Ydwln#)&pIXB+b6HAkQVnl%&WJ2^W`HVvoS2c zGgq~i?=kM5o0Grlia~h%<10NC86@gH63v}{II9w(DDYyUe%*dj^$l4c;ptM&c2zA` zkHNAD653mv3)(IlJu`~2{LW1mJYQroS`v<(Jf^IfeCTf9))VxsY%zXB&oiCkzVvos zaBJN}(&%|BzzE0uiZ4#sUV6Ydb-yB z-5uB3=eoGucjpWr{ijZNQDF|Tk{oogwOu>KCLl$T+r5hPQk4% zc$CrGkPz!V3$Q>f^cP3WfwBYqq#SV}a$_Ehpk=`v$D2VuS`3t?`JNnkd3h*f1v?la zDV-(dt!!!I%T=&(R6qyPezx&pPy5O|Mah4xYae14uGhu~JVC1^f{3Hc#)A7ccu4oBG$+JGsiiUS_M!NKa>rpQi$rRFefBIwa^k zug>guySbp|5UHX9k8c?&GHFh_@B8jyYR8LgOkSWf1uXxaRr8lA9inwT?l$0Li8)J$bBT#vzLz2eW5>W!~Op-_vYbP@9($xqfsd|NQ4rS zh+Q&ddPF4>m5{lTA#pi)v`c)LjQYwQcF;7tDF)u-z8GO1XXX2!>Fi+0P(E>&Ok zEcxvbw5cc##`~@Ap;0*D_sPkPimnAJN#0{Ww_aO#LEM~Inpz;MfO-#7#(MM3hi&G_K;Fl9K9**w4|h|X~GBBQ0HQVR=MPCFN}p{SIEg( z>~3l^a1BDE3aNHjA9!8@K5lgQZ=Q0Mc)#5Zti7t*{=F<22_FiU$G!&WEag6P(@jj8 zC+%RiI?E(QNyAsjjqjaN;qBjAyt0wMbM@$!v9TRL`lVBOK`Ah-qp3PZ5q{(4!3t3_ z=qg)`Q`p@Y{hN0N+&0{~65=fN4GsB=eZg=U#(Fw;`Gwh{({ku^!qoSmioTAC?+!m; z6|c~DRSl;GS=eo{ko!!s-!hwB_Ri}HC`=Vtw{%L7J_TEPqIf#y@GIkvLByRD9xR5l zp_x%(HFQ7{43A4~3MudXfKT(%r3n)2 zgT%Z%O@BREAMC-aTF-?%ay7#{F1eW^$-~{)+uSLBo z*eEW+k6m_pTJ41Lu+W|JH_h9_0ZN~j?4_gY4InjnKK@`hAKTGm6;qc@8rK#I`w)9| zm~H_?Ki8mEQWJ6Rmu?xS<3M#dxq~ER9!mQg2nLpWeND}`VN`f$C;TJ^2c2D5nwvC` zN(epq4d-WtM(ZxF0oA9x6gb@tdHCi(F+*~j5GOk|XV2s+dss9>@#5pc_z7=>g&}_F zMaNQqk9<92mxfF*(nCxfwT&P_@L?}a`S?O%T;GkHGJ*`ZmWq$@@vRxA!I?YBt8e9b zgTD;ZTFTmUM^Bzys;=hERD$^^g=c$BGSxtMy~AmNzWzNDP-L`p+|@uvLR)3KEm@~_ z=RXIvpOKc!<&e`OuXD*@5Nz0 zn?dTiAZgE+=ADUD)MKJ|&Nrz~P#}e(Jf$&zDlH^i=-|L^T(qx`Ph#Fw8RVhoDX&3+ zkL(cW4{$3R<0muQZG%6^Xpk2m)tS;CZ<39aNrjiy)B-=>ny?^5uaxtO=G?1$AYlAL zDaO`Tt9fvxuR&E$Ei})f`$==EI9H@bV1<5ed*xr5l1;JcRQa@b=0=+PAtyX-ntT(5 zUtAPP)+aG%=mV@1g(_r7WL+7xl`8Grxz4raPCv&vYuk2Uz!Rom4PnDJ&68 zEW9&sCe-Akx0uUud5(U+d&&2zg|5wB+uIi?wg~IE=7ZTK17`kwvS!_Ov_(Nc*kNV> zNqvr*G*Mrn+eH* zftiU~hlqBcban!N8109Q0treQYX;WierzfQk*Z=g>tCmY*Qj*`v>iV1=L1|?sN zBn^{qm6L2_!#Bjs5br)Iq=Ja!gv$#i{4rRX?f(%H@P8Hu6A1qcL|(m^OFp$C(p|O0 zU-`>7WMzAv?z4T)A;!vjl;i#QlRcknYSxfyB(eeOC6lf?cNM9kY0}e@?!~E)<|rHA zG!I#M9s_?R#NYxVFaM_4a@R{Be7~-ewpuz)8PBh+1YEn3FMhX&&U=(=GcA6)@ga}Bwzka?`6IQ=ChX5Wqx<<2oxnv6fUsL zBtc7bI{$8|&#zyd~V|eyRYGs1jQfbFBw!4KE(Ydor+f=p~c={I^4<6&1zfdDFOs zZE74gGXtf#y@Ln|FmLz(7t~sOfcDVXQHmnxA&Hnb0Ri&>A*Ss)vwuo`RpPO2&A^}l z(~9Tt@bIb@Bkuc3X|MGfX{a9G%?OB1{(SDE%X9fte6FX?pEp??)^XL$%~(FM#jWzX zl3P_}CHZo&7wz4*&x023jC;3lhx3$6JwYdKWW?mr=OgaNPo8w1ETQ*XJbU(R*$IdI zj=~Z^?4khM{6+neQ1PeIp4tmm+ZE?8%#1pg>U!^BZ6q$m)|rhz9wNNsuD7OfQdbYE zjnk%NEuTW9*XzMReglON5zw#7%Cktrg=TN0v(U9FRJ{1{Zhl521z)3l6&7Z0(2r`( z!3#NDUB4O=LNhlwiqOm+-4q_x(PlQ;+9!@DIIdXTZ>(9&>{s{S!{c1@UN0gnzy?Wdzd zVDQf{4s=Quyc6D+wEP+vKe6(yqxN@N^OCmpwUw^VT4r~DCAm6V_A4NesPWds9aEz} z*1{`juCU%7~4z!^{+UNb1=Qt+ovZ;!03oN>o-xssPA zEjLuJ|MrW1otX6EuXa{A=~J5-Nh1R-LyvfKd475&A9^QZG%9s?|Nb*j$jw8>Ksha^T)U!BJfT;2GI`h?G&Tdfbjr?F4s5M^QowKc9Kedo>=3hgIL zkuvz=))FIxhNiYEO0Tc6o;=yX!{HV;zo7Z_Em-hXWw6`ish=9C=xLBd9leHX@}&yTEn-9 zDVEsh*>J-B@0>F)#k*u6{X}f;TH+U(dPk?kEq0~`kADGS+OeLuu$X}KMd#|(PblF~ za3eTv2X-!feN@D$Qcn<$P1C9xVPa=zXP(6X2puRNjsGN3+~B=x@=c!el%)EmrtRCe z&p%G`_S~>&k_(&KpmQ3C4o0t?VA7M zN%F$)OwdT%*bg9tHFile@Ajh+YsUI!0eVUAs73^?9wfS~z?|z&3z5tr zA+s|FckSN2ZhpKOkDQ%@V=-L>zvEg48LvyI_*N|hl7IQ~rC#{w=*uQ;?#}dKP%~hc z8a*2D{yTQq%U~l~?_9rtWubct;v@BhjF^rVX6KgnXu^tA3B_7QtC^_vKs5x&9*BA^ zxs!Z+x(bdI#B((zy~hr=pw<^9t9=g%xhHse6}*buqWk~kowgnr%j{HO7C7-?deQ28 z#D&JkkGoU#wdP`o*{Mz&xO?Dp@zG6`TZUTcGi!~~$>h!Id}mll2s6|;jEo{6TA;sL zhFO%dPl5xuz2l_IMA!Z4zGe+|L5anvbYHf8<2VU$W=EH2bEg*jbK}Ga1DpOu7W0SE zAch>(SHg0Ftk0SIh``y$=@5AaH)rN}fcUC4_&VZ8&BdCw>;U4lytRXaXZ(+pJjdpg z_HzHhhmXwF(ocw;s@ZO{$u0PX(^fRn3Bpvs_*GShPwUAksWpFxd;`q4Rm-S>TESd( zxDC<~S8Lxtj*V??OdKUmmPl~Z5!%9|9lM}S#Nkf+{cD!_zq9~I!}(EGW@+FD`vsnl z89DxdKyl(Y&xpTrJP`i+b9(KCV|?c8+Yj%`TA7+TrMt9?F=};jaICMTWnZV0QjT8v z)1*Rwy|b*M%l;1^3eUe3q$mog-%n4T55udsVz<{;sK#?HNA?_HkUVnzbHTk|pKe?A{k$j2Su+~^3Wk~5 z^?Ci6>guaW%H(pjG%V+}gAjOf1 zQ%}f2t`1zaq68bVq7}#g8K(GuiID$0&RVj6oUAYI65ajXdp*l`^eMBbJRKccjPIU2 z`SJSon{$uIq%2?w`)*Yd_5RrS zwJbi3mqSDQgq%cBU7TKDzyIf3`%j;)LJQ*K<5J4ORqW}>!M;UCMwG`NsXQA+ajQzU zYS9lJ{-B|Y9?<~{0%}@*cbK)Ociak3I5<4_i1JHEP zJ!}us;H_SFY<>OZFsG@QDv8#)%tBKL$Ymq5|GbiMQaM3*CtW~I&Lsx0xRo2|!;a+& z{{}C5e_vm8R8$%wWrrFT7Z*+Y|LLN{Yq25d5S->^Xn0_<)iCJm?WH?#AVbRpwgO~y zhpw~Yj#E_DR+BHN!p7zs^1*V(3o__Cs_qo&1zcd~NO1l0O0lovxe(*Bru8)v!` zlDp2FC{HQ9djhfx9-fs^bJtuX6jf&2N>@iFf)}KnW}OB3q9>r4x*CH2IerZ$2zsqE zzdIb;<;S1dMV>O~5NqyTy4A>on7?^tO2WW?SKDwJYU)O#bSX;D;@j!!et`-xRtP_Y zIe~$JVbmXxnuX|+M+=o?^5_b<9I^%hD^N_~g^e;ZhxQI)70~MyU4u;1%}lw#IH28R zY(yPzlWVTs{i}8hNS8em;wr4U#1XJ7>-RG@+~yKr#h0t2=AwSI5;3n)n z#LX+xG~#D4z=BKy7TP{%~i z(c>qNCr}Vpct35z!xR)$35-ojnm6Z2;h|#vs1lz&UHmQfW$o~16G77Lzk@rFs5ST4 z+gl`oa~cVH!>E@eOBI0 zD`h8PsCh~L1-q<*XK}HuJ8fs-bmgmxU~%*B0ZTd#_lDk_GUFYw%x0qA-dR8m>d{td z>}t;D)bO_O4#n4XgZrhdhpztBwaIDNX8eF_r|J7G3&3cQR&>faMWcl1Nej|2lI83bD_bRaZ=6skd(3D(e%qE3!5H08_`0w04=ZOuME&uIJH8Mb-^UNujV1 zdUpM=Z)ts;A|*wKGZSmp)79(^X@YZl0)PJ7O}s@yt1BOCut%(`M2PWn;7j|0lD~*N zYDHC*9Fmt- zWoypP&L*@sTO5P9Acg0$4>~d}=?9E-b)9YF!l~GbjMI>>I$O_0)7f%6y+uR)%(-(c z8Eo#=o*r9eWE?wQ@|7Ipn6+8ncm3M6J%}bQj+_#?lYA4m58?!1VEnpPhs^8=wEjsV zA={~${yMm8ENQO=MZsLZ!X4+OnMrdFIkzUGbP=s0Q;wuM^2Z*cAmcXvH@j?pH(NIy zqt|2823D_&b(iP(S!xZ>I4!qzTW0^d8dBS9DsZPyKIwp^Akp;KtSMQX75+N>`xC%kPOq+1IkMt5B+UmP9|O;;Ywl2DDI zhUBhG*j&FTiCz?Pt8)V(Qg@sinN%YinmQr`4!YBFlEzua)I@tbUHROrYc5j~Hc8*w zx&RvmiVS(=7B?D%idX zF2V!Wt4o*hIQU@VMOJDV5h4Q#>w&B5{#Yg7X`kD(CxwTMzIZdQlK%WCH7|ITrml7A z2|X2duRvl_(K_G;vUq=|8C;R|u?9V}jAjwRjbK?EY@Q=R9B{U}QsHW8>7toy`{OlN zcWJ4XT_;*r{(AQH#Wdd8;}TUerIS%?Sdq{VG8YV1bgg}?5+4GV0`oUkt|M?(^4-&c z>nktiu2k61)Kv9Vt&a@GBxz?|Z3?{h(u39!c};&ZJHP4cQ-_HPoj4nK+l=A}?Ut_v zH+`Z$efl&rGh>{X4T@KX+{RfYi>KU%yn==JAdMY<_Po$;?Ckfd;$7K2*w`S(5_$-P zrk#B~zKNvcL2y%;oTXbh_h?&!R&L{P1=wHvsXwLK<_B<6`DsWmnC~b*B%Wj4nqfmD zVTS~n{SGanX;J8w`C2ChnKk~MacB#4!Q^KFc= z=GQZc-TceAao#*%&m40CIP}yc3Y?c)no~)9I%ZE^?Bj( zga;+a(I_h)J#hK1oScPqT46bb+q&mQ2oLPKOn~>1f>v#Jc{S_|m?M!m}Y~%3njSVBw39%_d21lzDu-ycmqIy%k&l za2*dXFR!SmsF08l2gm!-`2V0~MGf#ZV6QKmf&YoPGEuybQvnPba#Z16c16kx-1Dm1 z73JmJJUk}3W3}%uM>5Ef_2neM^Y(jnALhmtp|wbf3G-(!t)NRirsyA1Im%a<_q#8+ z-)Ua!yrpGk;|_x9*7NiZYW`Oca!7`mYKT~Mo^Kbr|NA^i#U!8#zIz;Gml`al^1*@$ ztwVSN+;T<%(zFXDM8uujdc1SPI_UZ}9ZgN|PlkIFI~MAdln(HXMen5OvIcec`SWL3 z9Le#1fE}knDDtYO9mh;D#JILkA)X7|7(F@Kd?%~zSX*;Y2O87=82%CSqsiNZ`B9#` z7*Lg0|JUk;sx@*!Y^`Rc+yFkm)_Js?w@E0ekk>uSuJUb0PeZmjCajPrG+_}uBcgTF zDUUV+#+vwsZQHjyW;Y6^Bo>I+)W?n)AC~NzHgIzt2=~1Bl8MXxZ@uh@h&!uGvw#+5 z!~k9`5!ba9+j0mR(3y&x4TDpy;Pm~^Tj|9nzwU!35IY+Bc7I?9(Noh-zEc8v6CCir zs~T>6uKkro>Ma{H?(Ar5yRH#zy|$>uA}?`VY^5#Oyd&FgvV)HM3$%n99f4o<_4jr? z(B?g|E!p>ff=biUZUklxMh8E9_|Tme@+hTf`D^+t;tpy5Jep@}SB|lMg~x3o>eV?_ zO;%Z-in~+SuMw(~-Lke9DF1gLRsJ$IYTz5aoY8lr2&XP2FtFtWX5Vq&7NUlA^?kgFBn$q3W>7xdAP?z z^-8O&tI5eN&KC)&8L3Hi%&r4E_8cyhmaB_YxmU~Uk z+B8VMDQ0qF;w%$2>vxjSwC3Y5?99_|4HoLFP1p1Z$W9xrft z@9)+oRx+!6=+Fo0vZOqoa&Z$40cN7h-B}}7)$Xm0-@c6*Yubu<@OXaxYS(e&rpZUz zFOV^JycR999X&nY*7-c@6`L<_!LLr`EwsH0d7h(@IZqwDtF(9nXr%@pj77UqO+bEG zb{;CE7!?d)aDd?jqGWekC>#;Bn(FCyoHz>EO?P}q%3-d<%$~*Pfb4k6H;^6v9BA3C zyw^uBkeA4OU2s2H^bjuc-qV!ZHgC)~O`R_-;>;I`wnJDTX_h4%E-i|rUI7k2EWzPn zBUiL_p|SjGc!+(J%>Db5&-n^&s;P0gKY98z5Q%9oz8feDFnZA*m5?ZyeJe$ye>(6( zd_1{ZP{?R-O-(IM><6uZ>hS)K^HXTI{y+#BB{x z=tr+0>BWzY8=FoXmtUS4?CCp!W!7alA@jA>4f3lBRm1Y|i8S?uwKVahM(%z+6jM$d zP-YbO?l5#?#%4>OxH+Bt<}IyN8E;?F}WhKolI)HG6DEiZC2) zeb`Yywb?Aw>e=CeAbb?ZdIwF+FQ~TP3io7T6nC(m_a_G%hE;n$ zj`m`xa~{ooTe*smerW%|<@|0Nn6($dMhCpi!CK3k&CVmCO$l~EfU#nbq~~z$d=+B~ zg(Up~{|3HRox2Z(j)`DqWdQpidMD!+vuG4%**JiQcz)odQDzagGX@_N36eHPm99tk z^^=A*oDhZ)M~`0hl*=@2 zO?9#dnemlgd*EdYW`1popvq^L#e$2^5INTs6%{u94|t)ck~j{1DnZ=mVodPl=j};& z1m1^TVg(NJz7=n+2n{ChLFj3@v$toNsA0_{Q#+=MB1JTi%_^?Mge088S}EIxjyB3d*4Rx{LAd+ta;y8s=9d)}37Gb`YfK{(m9(02ek+ zUi&|<$lwquNER!0=>IDOpFDc@EHu+BMbt+m|0g7_!>6v;Sp4(Vs%n&GLWf7!cFT32@z!>bY#GqSQ)a>wTimd9wgRSw1|gv?|XUWkcV&b>>JbR!S! zB3M%e6knU^dZdE^3sO(&Pw7?`j%NJ&__2=O>L!m2aoMCPMQ>RpK_th1`eeMy>|vqG z{*q0Ef7H`m&b%?xg-S7N5CK3I(}M{ff2eqc>wI#$x_-tdRicM5zBV1Ude~{A&rh`@ z&$9P#4ENN7H&J=Q#_fLxN=s3y`3u1yf%qbTPAtSw=AjtA0%0Z>m#o_9e_r^}989P3 z!mOmV!)O{*f6MV?S(+@SiBwWbB2(UB-tv`F27hU;w02%JxN8E8-+^oGG-(gA?y#4@ zG=z6YDeiC8_SXZTJ{<_~+?b$2LQQ|=t#ER2IurGG^x-lgq-#72D32pp(9{7}j=pef z2nTNE+nTk94@ar!86zUvPd@>>u^Pk6*!AL3SUNj8vByC*~!A$`4G^TEG zs+%VANYhSVt%&C!lU_d+9n0!@e8`Me3Uf89LPVSNQv)md;60Il^VjE%!kG2Ei;D!gX16P^6zW)* zN^)H-3HZ2sH(C_0_pp(r4D{;$?Dv50IWguC)uGdBi?Pqeo=SDRKl3iDHuN3TcnoH% z?AAiEKInLo6(R^M(yOct5uL{+_$z~t!mjt)2Hjl0K+KKUylvOjXfo8@cm^w{jddew z@BDhfpk>A?A})TC^Lwu~Xu3RAq-M-+`pvSS0!b_i1i|1dl*ve{9T^$nKN(kJh%2LJ zbytbsy>q8gNN08RJ9&0a&fN6^+uYTe;b}Rt_HfKsi`TQ6iHVunbu2qH%~#OYq_nR> z(3k7DSer&V1)&~=Q39l=5Em3`$0TG^!5>pf!WGR znv$gJkYmKfm4dt7EJJB_$93$OpV@H^OLd+D^Qt?t2%R}iRJ(WExF&Fh+C^YS@S=QFilCI1Oo>aR~*J`e*O9}N;ejpkg%JI zDw0p$69cp%z!;ug<7KZ7ls^V-1ZI1aCA>W45K|yJHEf? zb&;}r;AhRRK;fVItgPH+u@nsQeMm?cMQ0_z zo7Q^UqXK?az54j% z0(^{d2t)*S97RnH4FW=iuFS>Q#oy+gqB9bcz>ADOp=?UdB^d^K{htq|5^RpOJ+xZ4rtNB?E4tV zUoyxL5(ev@F0`?E^to$|E&+W<_quJtaq;oXNCIx-!!jj#Xn$1AurW1@Nn9c|1YDM) z?=>=avd+wW-$qE=bDUEtK0ZERgO9fC4Fe~BSj2ij%^#^I%4T$kokJs0uJaMTgvJ9% zk`h)1nsnkjE~e?i9qoi8e*gm!NOctCa1?lWc>5+HJnWOg{*oqPs}NZuA12`pud+5d)KhW~(ar)rKLdyKxruJz@5-~^d*tw!%1E|t=99gSEJRJsHuBU+D=QS4?P{0f8`cIf zs1N%V5%M7H;X;Cfh|GzJiRrW`-i=8Y?OObh_62G}tijBC;zWDKXs%F4*2GwDyG{*u z(Qm}Hn%japYyCvu4hq8P!heErZIi#q!8@GapYI0EVRu|uWT`RTc>1Cj@~CqCzkRDI zTn?GC%T6Uf^QusXvK!ZKzZJ1r*{8VhP62G#Uq254z0a3~SXD9)H_1drF~P^~JyuwV zk;ADxBYy=K>ST=cWLsUKqwB|bbT9M5_U4!K!23szhB7dqjL8FN{bxF$Bb{z&R-U8vHr>-$rRboUrWDJ9i3FvYL4-eaH zD@M(d^`}M#jY~J3sAw|L`HuIM^K!>(Z@_Yg>v|n$XlzSnl2NC`WQ(!XlXsu~ifJE9 zYkpnA?$rksXQIP$b58gig{M}NU%Be zM{TVfQ;nWd-z$20kluDbeF{BwpzpEWl@+@c<)%pQ32u@xnBM?~{`@o78`5bdpA3?x(2(K#=D-PfCIn;xu_Zr-_v zwVN;~AH6CyF?`KNiU+QT(3<@L_cJStB?ql4?zcgPMmUio$#f^G@xL4bYX_h}K z5F`y2mv%Y1i6Yhx=o?!WCv}z$<>Rg-4gl2!hgbGd6Ux?!BH6SY+hR`ac zvGZ))MO}i>_vuM(V8%9HVnCMnBxU;{~^aS5{0iKXnUzKAQB+|(7qlLBq zW`c@dblsq4n&CBlef^6UFXr~9rlw+QCZGEy_*z6edo2OrN>iMcG%(;HDkg@C^#Gr? zJbA!_QPT}=Z5V3_90?hz<_PuTfe6==#la9WZ^`8j5^a%E4}Imk6)Q+lru(bRGa+bh zfdE{=JSH}F0Cu#UG&Hc?A7Ag>_wB#YRE(C{j)|3<4&m)n$X$J?VZIxyz42(6knY9F z92-xGwXD9bbMyR*t036$qDszFJ>i}4VdvoFtb!yPQ-jLhhCmq8npqWM17g>oPY3io za)Q{{*m9HQuw)XBQQbB+@?qy19*WOxd%}7&V*P!(}oHygfaSk2s}4zGB4ADOJ|*+kUAUC zK4vYP*AP^vFWPgc*+lBe0;{x`6V>~zO@W;Q*0!mO^fGKyY$2bEHjh%wh=FwWpxvO* zot;;k177PbB6TuAkKAL$z=#Spg6Gv7(m&l^9ua;$%g@_<&{h!d$lWVz;ie%@6(59bqGp4un~k z2>eB~5lY`5P|$a2BspS2)?4S&+2JO7diwdnx_*c!hhP4~k~iJv5Z^}Hodp_nLy7^% zJ$eL%@si$O{!N7eP)n2HS4GW!H{demp8W^Bn-z24hy8ZtP!ANqyaawbMbhq)5}lN!g|voNitvfyq2S5pM` ze@AJZrM^BGM1$(<>v_d2qch_Y6A>9P51GnUywZr~!t4cC`n?1APi7pPKUI03R*pgP zv3@FENU}%+X23P#+?c4u2e_FQvX$yY*;!dxB_r6k(7r#Ed~N@uX9Lf2pAW35G{0Nh z|FJ6Z(}`Tc#`N%Qn)M$?o_QGUx)5~a(mo#ALD?hhtj?!V-CKqc$9nRnuKLIxEB$#z zVw`B#e)epC+qhh`;y!--qx<0k@)yY(kSHFZ*6=8P113Me(FTp4_jN3KwRVsi zd*=SF*Q~C=J!m~+Q<(16u@2B=;BNCAwnA7<+Q^LrD*00c|*h46Hr4-!)B~{g!8bb`$1p++w zegZbnvTwM#)WB>YCG4l3sqVFd4usjV#ccMj`1fm;zU;D0@dspmzCN(@9M&yseGp4X zid7kO*KIKP`34D-X{zRhNbX2ZH|AU7Dd#P> zeWni!UifWH=f`qfubLD;c4sbOONWWzVPy0*E6B>;i;h113!;4&3_hn{O9vGb6?GSF zO|vl}F0MF?(xu;)>bmYCgeW1x1aC-K82kCj5(O{y_ja8U?=$BpcY?8V;(mbeT4jBu zeNr#(6?T5mfRUKgy`ZdjkqjJ^VVhPb7Uul^J@oM5goJZTn_^97Cvf?>bE5|s2=77` z78MAzjx?OX2XpKiYVcc6gr<1R~~oWa+EGs z40E!qs8h^L@Clm00&7L3+EQ(lj@B?N@aHR$E@lD3FOP5z04(_!qwyH{4s|yn( zt~>R8@%UCBZ%mgPT z1DyxsorUYL&WpxQBM&0|kpsB1tI%deJ1yL{Id^U{R9r`5rh3+O)!6R(_30~bZI{=O zN@Cx9S~fCps@pRelhMwGZz8Cdb0(4r#drAwn>UShrg6>AwL;dSTJ<)2+DnKxT{v&V zVm~6ir)XRk27MJ*zI<_6Z&2Ngq4d6yTM1cJs`}w18Q^Da?a&Q5Nk!7$ai5Tokl^6f z&-d|CEF6%&THTK9@}98uHgtBo1&m)hE$aR04fw8OqkL8Vg^pcTWO%pcg$unkkuinK z3Jm(4u3y|WIvlu9pKWe^u$d4P8NCHqieTo$e(&cy;l@x39Yi*#_19WbVtZS9WuPVL>Bbo@lfnV zkO_|e3;#*A{l?i@v&0nN$7tHbsIN7@4z}cyZdHYCui(u;6w8Qu7$o}uPO;qym$PeE-gf{wpP~71m2hA8}+XI0~e2` zh`r^YH&IUAbn5FhGhA;W-w`tb97N8|)F;t)b`~Y)j z)}#(nrfmjm>(K*Saibtq=pJwYEaHvLh#lzp`4ir9Z8RzOX}c^&G&?G-y?Vt^CB|>k zC-2#?)GR*#wj({>>Nnnqq|~IM!=kn(WM?m(oX`G)2M^NG`ClUwKNi2`~Ia6%`=} z0tOS@j@ec9an!rPYDjv`@v7fQadowJSbCzCs@^JyuX|bX%~jRwDT|B!qDKV@lEL=V zEOy}D5>&X|Kedj+s?TLD%!K?|d7PJ=oJf)jwtCQr9<-2E%asC;deDl5R2rTMRaGM| zxnNK>tbnk@Wi*>GFWkjd)&4?Syjk@7x%4Jjz25xE$&j$)lvEP)fiAKZ z%Muwzv@waHw)VQJ{hd3%kr79CNwum7n5ENfCiy5ZgY-w!NROxH+ zNAhU#9>zoQxwjs_YuqV&DeK0jPVAL~`Htcvh05%*&vK{AD%;oy3r9NTfVas~iHm5P zPYY=6aH<>8qP%wV=0ZQpKfKoHLQJvm<#>>URA=OQMIBbgD<$;=ro8Fs*v}pxRfds+ zo6qba@}{D1Y+`Qm?+Sf5Yw=?p)L)w*Q;w-C%}u(H!ULMg@|}8=Q+avHi0JpBA5A(M zCr-39W=t*IZ_22H{(0fTc{`TtlIPuNzue2zS%`TY6eJz5VqZWtFU#mvKpL-X(=|pw zn?!UQWKeGvIDz4=S610y$d(3tLr@!K_zOvrZxzP`@MzgZIPJ(+Lr&tvgs6^*i3w&= zTORea*yQAzyQfcT<;;BEet3p`Z*M#zaZh-r8(WF1?X@FWdj^~bmJHNwII8A<_Uf30 zv%I}1t4aZN=i-( zpi>gJ!rPFfLwp45Ec{wtP`e-k%sl5fC6FBg0+A zSaF=2+v?=qC;Ct;Z`r<`wFP5=FR4+VWbMaMzLATgJ` z{#=VN#Z?2X8~5)g*BHLY`4zQlSav7*mx*8{tvX;iECS9edgE;MjxJ*sD3Ih%4<8G= z+y&c!pBHXspD{Q?ottm~s2<-zc62ou=yUqC*dP<3dRu{CQE)|Hq>T58Rx+J25Pq+5 zbdARvZ8kC{viE>QfX+0Z4n4IZja?KJjX60!4OBfn|CGgX$p7ysj??z zq%)6c~FkZ1U2TXf^Ijf{wR({}(FRYJt)Cl5R)H(TYeq>>U;meGuywdra4?RnTm z_|&Ou&53bw_w~l%K_!o01F0QRWrkK z*0RVnb9a#7$uq2m(H?r815*M7l=6=rIr6UkC_wPlr*1!f z>`B%4dLvM7mL7EZ@|BX3l;S;1hYm5($B@?|YXTt?a2%5-aTsZ|f=s|M=Y^d}G9S?W z=AApg)?Ga|6W;CY(A-W&`UFDO)BlGtbk_UujJdDTR|Gsf5S?ZlFK}E$gk3^nawwi{ zX?EJy5S~g&GL-HbrgmNIC7I{jSe74<(e3eY9S!ssTp$%5n*G7HSullGySq%agmNQ{6fMOEFwVSX$Xp>cM7f#V$x#%-Nzwk0nZ zI;a^4)z|*{jr#E3^1?R~`IBwgpCp_gceuK){CLG!vAFM`)@;#cK!??d8kwycneapv zM1+W%+b^3YXpj2=1v5V*rwtRFY6>vE#y3vMbaqyCt((S|{-oSN@ue>#T6-FE=YJKh z==~EyfF<^z0f5;csDp4oMecvuN4?VpdzS3n8oZSkP46Bq2#*3k!tcXB63OEbTkD+ z+HR+MIm}!WN+n&8^kxyN3>&9s%)vz6Y1PD$EJ_N3c6Y^=j;boYzsN^5*r1)v)Zf2& zP$|OYaeEbT@8iaS^7B2)T^$LVq1O;C)}R~wt)zsj*SPUx^QYU7Xc5dSeJ`S4;V;xe zds}tv$yLnicW=c|;pBAFM|bWdqS9skx)c+pe?**MeX8T_S2Oel*)G1ImHLsQsji*_ zX(KY5xoKdRKp-7Sdle1Sr&kKT!KjDBgO-AVf*b=UFaLt}cL=FN4L)buI}knYJ0|~c zaQUl#s!bz5K4`;cZ^-YX`$I*Oss}CV-wKEGGkSKAbXs$~4xc(Y_l#R^ZrnAUWDWq$ zFA&rB=PS+Oj*NWVwlKw?Qs^Qgb@K%S|E_JtoMBE!$tb21jT#v7gYKo9wTtNKf*6yV z<8{ZFrR^KTra-MQGYMcZSWXSBNU3X{e|%_@!;GO7=cBRgn7ivP##&m_DDxz>oPM*| z1z;D&1P~Jd^8COc7>j--OE+WJj*ZuhshdUCAi}`_P{+nIu`bSSf|_c!3U7818|M1K zVaZnPs}KPo|JeQ4@UWi#)=h4_U%`Lm0zsh}3C7?m<$dIe=^H_jEO6$`@z%AqHR#XR zFyR+q20B)LWFz4eWPRE?#{t*94-;LqZzH0L8;G1R@w(l}kDW{Z2d$zAtdgf5ZKE^m z9Q&khv$i%$cZg7w3;K*+Dl73V+)_eH33w0ES1~C206jf-E4VN;sma#){)*uK?&Gis zc+e`uq>9QLjyt4uP@iWOzG?=E@xQQUmu}e=wT<*O9Nea6NCY z8YS9`hglM5?bh0hLd893sdMuKQ}c`M?cbA&7;lJ2hTfFA)ghVl;QsnO;*M0~5~PWe z{$m9T>KEQ`m)oJSSZGTI$BDxo5Oi1EFg7uKhA?MFN(Ow%t-8V#djJ?j*5|I8S#k0QVf&Qu zygaQhSwCnfs6GGITmSS|mFPST&AKbIwz`(=(_%;dhOiUItKl6m9%n}QLXC-_qv%eX zu3ew6IECiQ;xuKu0Nj?ZIPpG6Lb!q;Vzk>#PUHDNSOPCwSqcKVr1TgTG5W*tO%eB_ ziQ+F`9_BQf7t`yds}Bzi;k(nY89p};9Fvv*g&EWBLCK*jMlMD0?4k1Y&oOzmp_jNl z`l`X&6m6`EzOF>S{We=tn|a8J5-f8GrWz5$Kk7K4D5?21qPI&(AXKz}s9Na4`SaHA z&(47=vKG-I37gNL)Ugs~ddr#?8y*f1Xl6J6heOxL7qg2|&7=*9Rrl{*AZrKMG#8r} z_6G4XV^rq4Hp59i*;?`Wwn+8~yx0jzNw+3%!G-aU7J#&_>PE#CXL9S-Et2qVA9k?w zAObG+6zfb&L=+Shh~}}2sj8`ACdXNolRkQ=)|ah3jV?n|UpM%Nt^u=lo2#pf9vHnE zK7H@d%Z3T!N_f8h@1X=q^2D!aPndC716O|CUu!&tfl<;Tw8i)!~wELGk@qcwAp z6!Q62>dg;|Z=Vb_RrywOPfc^Mo+(Tmx4I@0d9AaS=7|WAm|sXFPHuMNn@HFqAtcmf zv$+Tp6ocXz7#UkoEMP7a>v^<73v~*+6|kz^9mm2rmc$Ht7 z&y{Ig50&_eva+GpO!Maz7y=RIFcgPjMx}R>g_&N0M0nqJ>#vnbZ&!KrQP-c4|2joO zDJes#FCM+f!!+N`lttv^oGasIYZK-&D!Z3y?$}F*BBnjh{!#Q5`YB!y#=44;6xdO&kiHNk^`imXON~Crhuw+C|#6g5pU@NkI z8(Yqsi-IV(B<0>%+fpM>z{&Ed$|fDY<;m|^w~H@g?9=@{n+SOk;NwvIxgsTC^w(|c z|F5|(567}^*L|X*2_-4QONvS;qR0?MDpN!mlOf4GW>%3(QidcM3K8Lr%wrK{9+J#c z<~j59*ypY9TgTeR@vXhr+JEe|?mz4C4EON+UDtV?gY7g%-}9aKXw&s0aO&HS!^NIg z!gio^mF!R%LAEWLs+QHZzv?4Dva38jSeLgoUyS=eUwCi1<|`dmz`EjAYbG9RdQ>Vl zEvxao=VfKNrL0Tjl{sd2?HsaH3Qq(~<$8f-nRl=T`TzDlqAAtgBPyVQATXu+G7d}< zaI87l2^O5syUQ9Fny3c{4jN8E}ZOd==Hb~LU1;SN&GLDi>)1OxT(;e?xVwzeNb&0q>u z75YT{pVj=pZCD>=r8Lq2nfhy zIe-YbcmKMykDOZY@4JlK@P#0uxABp3Il? zO&L`yWRGRz8tjyC$(;MV-s2DIO$z>HY^sH_d?}a*+|f++(x;~RcgKC zAs4@VIV)^g*(!Xm8T<5W2Ch>QNo;fK;?$a7E;@3 zOra#~M}DI0sy+;5CCcDKhYmrXhe&bs)$*&^*1cu>FFY4K0)otG@RX4){e3x~74CD; zR{rYi6FO4y?c1g;Tc$b*qOPrL3Xl8bQU~LB6Fnpvn96D2;?Jxv+s!0G?hO_u_wwDC z9bLM$n z9ZYNy1ttyE<wpFTz1sICeX6PxgYxp3Y|+wOAm zYw4CB(zvR5vX4)ofy(9zH!e~ng-O>Lqo0iP`HxWW^z;bOI97o8ZkIx*aSCR&tv1BE zwsEb-Hmu`R6p;&u*|(lRXbaZ?AY4cG1&4%W!5pBZM25W>?osFlS}j_B{)7}fxg3tb zw_yYGxu~ek0#*f0;AKv24oboeku zKm@BgERY4$KR$gbrKrpH1c$%BEtwoXjmX`i0RJ-gg|q1``@sva$-WYw(2{UiQ#;Hc zO@lYDF8tB%d-sm#FY0czwGp4If{C=MP`u`pqXrVlTP2dgNYCmIw|{shi^6@ZHEWE2 zr*6oZ8d!dKa}7h+sMGJOB61w&W|;T`?#^j5&uGbGd61miWV%+&`xsp9(~rN*YxjOg zA%eUhu{!wcnkU_?Zh!X-N0T|D6sDH9+k@NtxBWa_~H+jJ4ZCrFP>b<>$=Zer74qN z8MrKJjsJ6ZX_Y*YIAgix2F-pnOkC)3!Xg@!n~F&a2P)X5Rev zI^5OHAsQw{op&R+gJIEw#O`S+A~wD`>>bEKQQkW&?{}h~Xhlv(udRp|UE)i#w*DQr z8!fojm2u^Ro5YlE)^fn}Dd(VY!GgT=**CSuYkJEzJ)S%aw2(n~@uF(@@t4YKYP;I> z3gjI2qnC%+wXJKkhdtn1bmQ5mD_qRk37|KiFb<+f zXXMpP;HO&u9Zt~SlsB<6xps2+A8XBf{kCK(DRAA8xTu@X4vv%+axl6H(6N?=UOFcF zqirorj=J6w1{1R;Q&jC=;U=x7rZXh4Sso=VrV3y_EG;Z#brkoDD{3>|X^ZeOhoqz| z=KlBZstQ+8MfTr)6P5hxXw=l)E#4z-X_k8Z;~58iF=gYA5F2(>?KsZB1^1ImV?`}cpTR3nVtg#s`4wnVzGl0h8kXMl=0 z&v`CAQ5sK5kiQ^PSgkSd!J`a}-naQjzG$f#iMVRq;y?FzoYKR-TQedSy;@SsEK0~8 zg#b*0*xZ+un}GHiw9FB)W~(^a3+W2_=ndO(-(b`D4Iw$X&5tG9AsM@)c zerkZP;I`;ycF+0gu^e}e^pSqU^81;tYCpbzs+LH`JrZ`zu$fW!qq8X{`i@hZbH7|a z3d(%IyPLB~4JK?(1FxZV%WfiumOUdthNdI+xzwP3*gPu5|Vtn*75FW!Vd-XUX8>mW$K*`(%?`M?Q4tIX6nI zeAK;iW&GJb>Fyp%j(uKqGnX&JAYZ|CPFq^um+lQ#4QEG8bR}$H>gJ8V`*w?Jl^hF@??gVcFz7W zcnkkgA=>hrmX^(OII;Z+1u6Sr#Fe$Pi1>BC|G^Nm?FNOMJa9B@7eB^iH%oAE2#Sky z3#mmlIEnJY_jL{Lt+7||-Us+zx;&VzvOHB)U3f)B(!iiBTJD|7TdnYrgEx22Zz6?r ztik@wELD|l6VvsE600!aXWA-OU$?w(A4-uQ&CQEtW%2r@G{1gf82&J?`_U%8f>y9! zEK0YKhGd8)!$ZyHr)d_gL@t-8CN*Kfa;+?IUa!d3%}svz=g_bsuET^6A7H^%%jNl6 zKQW=M2K7Cvv?Q}XfBoY_L!5!09~c?H^T7*f<9Bzv=Eqvui248I%Ufu23fyL!q8uF)*jy~jyxHu}N0VwA z=8H`^*1#Y*LbSHFUQIPh)GcVQyuZ5GSOBT*JB;0c>1ihZ0O1)#HnHg%X~g)B)&OZI zWha{P6}Z5I_1<-TuG~cvpQfA(N~R;8>N=YSYV}uT*+!j~MrnNMNZE(Lg8&?bY7f-Fg>46iK}@xl63! z%~`1!U7!wTc>dz&eK8pr|FybIfiOlsZf}~bSJYf1tul$97jd$_2rT!rF4uR6%K0OD z7CcEk{@sN0D|;~(d>YnMFP=aDaWMg&RxzWnz1CiVzby;`H?b>Vo0$Zsj1>1GFF)V7 zlxA+YJVncOP^IOC5Nc4p&!aG?`usbw&-|#Rj`9DpKSzaVy%~3s4Du zx~7y4RJ+~9(6A706fi1G`iyn)ATyGCS?Kp+DHS$MNDdCG0z&cl(d{l@uK;zQAIroC4rKPp?Z-C=obdVC5=l=#{6qx;}{n8e`Tub;AK=l@W!m1lJ zErXQj{rlOxPdn8rp=t5)2cJyhlZ`mT9Z9R*_D z6dq$Jkzx94U=W?63_+kvGJpadV}@s`_cL z(+rsNG&ICWthSyGYYaPCAHPVGqfNbi2itg;n{;=#CtXVE6n)rXK8Y-|Q17shjHt;P zOok~a+bnjp$0~xW!os-2BdN6C`ukJeSb;qLC~-wY!`|*MKFrL_)rUb4S)3@Mg;Akg zqw#XOl}Ol{vGlHegA{vdyy@P&e_wI@>^5G+t9K=ygM9>~ZqJR!CY%)rEf3)@FhcqCSrr^-xhKrwg05aasw>xd@Fw(R;0%drt;exqG>S)MEv zdw5395G**E9!-G_w(EOi;8Am~v#pjzXUC|NKj)LnKAdvhl3CJ3L48sQ0BwkRplBeU z`0M+Awh@aaYEo7#dFcTNnwp4-?PF-0YAY)Z3=Nb9O;}~_q>^}Wp}LydA?B`1g~QqI zt8V+9;i0Ao0fn(~936+4*b1DdiPRKNI!t;(kLt^yvJBm)oX-byLn)1{l6Oqd0OL7@ zkBx0auv;kLZ;Vgsai%5Vv7@AZ!{(z*D;2Lc}Qi3<~m@gAzS_-8%;JI|x?yKSWq5aUFH z@kfxWXl0#`sz6c+#W=j1KhmqeeizhJhLWK))&qr=zDfW0;8EvULQjYGk><`t?^19acmttfSFeu9a8K zAEc>YTU5GOkVsvk!~ddi7FLlsdGcx#EFyK+a07ZNB5ViZxAR#A1@5_}D$#%u3eWbB zC)b)>pxqmn9B*R7)mK;dTiRPtB=WKf~j|Mx;S4hzUt2Tx5? zav>!xMCNQKEG4O7@o3rC=yefT_6e)&Z*T0&!KY;tbPqWY=3K&XMrF>P&3c=armDW0 zs#}06@qprsntjL9(wuoP$NJS*dHU$lIhZ0E|2dEQ<_ZBN)6vm^Y8f6L9ul&LnR!^@ zFsM4qQ`O@z5e2XeO#;}hkDokIxOnju%=Qd}wSUwe#e#1uP44RI(Q&bwsR#)rFE(oK z;@vt@TeOmHccTgc)Ellow^%Hd_}acMa+`?gKe^Q{ABrIB^<_F9&msz1h@`-MvH5G? z?oc|nJC7&GvSxL8F>)-r^QX+O zb?AF6lMpsBlz=am36hBiucZ7MXz2ng@ka3_)3Qq8WapuG^vuF;b3Zh5+TBF?4; zR=1m}SxH4j_v%gFBbN_xb=cN>2J1dCw|{mG%-??nB7+0^@9TEWWCW#;4=4NBk9^hr z&>h^6aQMmIqrrih$j@>-4lFFD_TsMsD!Z--zP!7TIw3_vlv^VnJ$8KFSI`1{SJOSvpe zB*`yp@6qhtX41AYmO}_hM?T$SOsv5fB-$vDZU&c^MNWdm%eY23siFC;p13$vD|?H` z#_fXK(T|DY`O{7|R$k6;mo8s+hCnP#w0vr+QJg#vCxP5Sw$*c?A`Ju?TlGHC4i)Z8 z;jwTV%fc{;uiScEIf`JB+`d%j)o>pS0C~MGGOajwYrbofwu9lRneV>tOQF$vQXC|Y zoVBldDy2`+y*VH(k(N3WdykVJQ^Uo|zl)29@xXP9Ip;4dbrc}0DBIuvAe-CIt9o!G zNlvAoM-oA0xY$yzl$<{WB_()f;QYdX*BR5C>Ey%eNm?lea`pZQ1BzZ2p{jt2;cpPZ zFnGqQgJ3{iKz+m%dTAy<1-1|<$lscQ3W3_YdEx3hq{x}{hgyt%tD<@EVE5`!g5JZ2 z;Epg0jr3)-YpfR2FClzH*2JVFK+&GyjwF5Jk}><1Vk#60E~~YT&5g>JX>Kb{!pufD zZooTZ4$^Nio4&^lCPxk(T7>2pILai9Eoin8!fR?}0Fbx(D{7gxHcHIB3T?_k<3_&E zsDt~HIUI(^`K~OC>_|D8?4xt~k2u%aoqeczU`$-PnH|ozUUaa7P8%L_l9G}_cmw`9 zP!Mpqt{Wm&_RE!h{R)-iPAMLp+@BzDG^=2#)AmoyZ@-z5!Xx5fgu8 zn)cc0aS7AD3go#y6TVS3u9lo{%o0{mpq6amoQYqK6@3{hLYc?A*$Gp=j~{IjX;U7| zr_PEj?ut<1@!UmJxIpez(+#hZFXj-H?xC4eWuB#+qtP z#fuJUknBVg%BnF{BaL;5yJZ%HaLU%sGR1EzK?1ctFwIb+!usFgtwLK=0<-J&l3&`Quh z&7PcjZWzPn9FS#_eP}H$yJa*fLdx=B3XcQ9XSNgx12_#N)%^F#9(IC|UCpvL?ng?? zsDihCM*+FlXr);tHgFpON3SP4o&7|=4g#~V6J39|*fDZW$O@ar9pagGVKg5SyMCsk z^HV>=p=55*ggMKP>AHX&ymv3R!wDiAkP1o4E8Qw7{QDvs#|O4RIIHv&S!v{uCKy#0wGH}{r9zK;{n!kfp zwSZKW{{H?g?BF&8ewqR@t45vzKA@FRpW%CKS)7A|g9v?bQw7Za$>3O+@M{upe0sW& zpdiuRNMcxwqPU=-AcJz!ZkNwl#FWlEHn5;31OerNPs}dk^Mt`sajB{g@J;IkZTO^z z*)M(gG56QaG^qzAvoDUyhHO>*edj_e&;l{O%zcq~b52fA0nc3^;o!DVyzg#LkI)Vp z?|b;St31yE({JhU&wT1sUClxx3#1{TiqaKan)mNjg)oc>O&$bF+U>&!4THFg1U|RjW#au`W(!@1bysTpCxo)-QDP`TO zgF_Ri?u})a50`%htnx%)y#vUj1GXaVu18>_EfnfY*}!3Fd7QYJ#3aA7@>VS#IogiJcnECl+DQCwo6cSxv0s8Oejp*>$dNe=OSub8 zyH8j~E-m>YQdB;?A6soheA)mugp4-?WBmIo@>q^rPf1!<0CvH>LZQ#n&=;6b1g+1{ z&2@qEY5DUbDy$%Y35tp3g)EAM@d^uPymm?9Q{QsR^cS3t0pcKIY|`9}i> z&-m$r{9AYedC_qQ3p=1>mWle1p02h~4`)P1diwgK%9PkMhlfhpEavSTnVJT*Fosfj z7NPsmOtbrVEn0`yRlkcPBv1r#)RsCgo0%^l` zAjpGbBA3u$Z(D)Sl55l!#vUjJUH@d$4KCg*o#b=3HCw}ToH#4j?x_KkS&Ow;Kf~#xaZ!z@v9%M zW0YXwJQza>iVL|cC{NaRNX**6Sn4i@g`9FT3=C;#jc^;jVG(_QAmGQf-Qb4nuD04R znJ-e3KHh)1rcCVMyeZg-R6gnPoblm;<=%cp39)pyl@Bw+eDB{j3{%O6+V?CkbeUH) zZXp#q{@>dGdC&a^6jtU61Q>ZwW!sN_*v1S}17--Gbf4DJunDDK@7qv_N^`*_kxaxp za;-|rbdXgqXhJaF-NdlIJBRH$M7o_6wPPL<#*3g&W3z|gfaN2RbYyE2fhFXN z^IQqY4U=rEmNw^dt2$Pj9j6v`++ER=xQ}NR>80ACdau#R{L>GLe7ybzZ1{W5GudE| zf#vQdE$1&&9YPO1D2AHjl~rS4a7Vh@sZu1@52ES70WF@WF%fw>kp7CMw9%amAFuEG z{4nmSfj)X(kt z;*Z^cCmm9-%n2nnxUKq#DTgK#rc9f+ZIg!|AcB(dOgTCdf!K=x&;o(@4K>`t%Y@r( zRqD4EeE496f*)|k zVk9+8Nzr^5VEkW+3Z3fjuYeEAy@L(cCD$J82gEY2QjDk!+!k^jJLB~U8t6P@MY;ftisv-lyjdrw4~wpx|46o42MGzxQH z*M;6-sRyV>bq?LZ6WFshZ_r4bg(M7&^SDYQ=iVT7^wSL$W8t^EAA-<=#20lPM?=(n z=YhQFuKd*Z8=P4LL+DV?RG7jI7`OR{jJM^ezng{d>)$56Hy?&W+JJNZzm zvU@g}stIMM6O13vZwA*}Px}x!DvA1KBP_~U+QnHxfay5eG-^NPZ4!`?k#Rnz+oFLL zlqAX<)R(60a5 zPfNdOx(8v!jw#xiGoG!dPif!0`R;oUxE?ZNJmCP3FUHn8e&71(gy|I}TidbcM}EY| zC%Fp`hMw`=z5ST+Q^6f{+i@zQGBbZRHf97hg#GnFBM~c71zod&AQMy~CuP#StqGB_ zfP_RrP(o+Mu;n_quR({5B+#1M&F>Ml^7r4CFula+4V6DLlGaBxv$S{z@7S}S!S}8Y z26iGK>t}FjI|Y?(?G4NEBjce~k-_EhQ)s3q&L}?ZuF8`>cG}L|?>t zvJf)Oc2uFB?5qg6Q(N1%la4g@9M?o#TpVya0U1?e`iG?mfSFKIhmM+BI&@f|gSEED z6Ui2T{Uw=Q-iE%)^<9%hPF#Mz8@33LS*0ETcOoza%;Run!0!yAaD(k7MDgZA$f~Sg zoLa!QdFoYGp0KJ*wjTZZtgOSmG0k=+F6=!T0rlir--oZAs3NIZa+qPO8jNvMP|zOV z65JTrGN53ZiSiRaf8jzvyAq7TZ^z_?46KUs=ww>HwyH5oT>(!p?0kC)tQF2TjW8x41uJ!;X$;&$GhXY1i|bL!v`EC54zDgKs^@>3iIPQ&x13sSufk2r%n?y5 z?8tSrfqDuXMTnTQy}sODdip8kBd<)3=H`ysUVvb3UkqRVD%ts+F@m0mTUd)BSyM1c zx!*pAnJN0445dd-jDAMV z@Qf3(Je8HZ>~k3TbY2Ap?%caq3+L*mra8!+2+#atR$pH~H`1gp1Q)?!TxV8hX2K^u zuOWx-&EPS3Kfm8CWcuREb!4+$>bd6qV*n_c$BiL8P`|-605~E5%0bbVUAEn#TFZ;K z>Jv4kBOHwii)bC3Pmwa2MeH}|#9T^*L8ZnKj7PDvnnLl4HU`Tbkx!KYt+S|E3mStj zK8zQ7^U8a(A=ks86%ZEC#zr?UiA}V$5htwPOxs~sgSZM6h~Vvs&XNfK(9jD7hWIwl zh2ZJ7@p1mja9>?2o9l3}ZK)HuVVz+%H9NDC+>kIXBSd_Y*6qdD_>s~^Xc$1&gEknO zEhzuIyyidNUq!5*Y5Hdu0nA!7QjO%{kqSTFbLYNd*p0`eC0VzC_m{;dOn3;jeB&^R z5iKn(8JUviv|F-3EAyPtLt}{TFs?{UX{xt8cNY2g8vjJxAq@b`QoNL$hS<#|k z)LtZ_EoJ{Haq`&y^&Vp}Luc+ykEJ1_;vMZWxD^l{{AKY10ci0=lx1C=lXU3$ceE~0 z&dJ(2&Ri@T6=*6#C^zD0or_9ieFi8y6sGT3a4i;QsOYoJ$Hj4HrQQ~y9ii-~;DZ}Q zh=gut+ddtqgOHt-=cLJ=X)~XT85zN-C427^*^b-#pL53T)wklW>0LWpYmDRT?)EKC0q4s&(zm_?fLnY?S0lK9zl;tLn*63$VF6x0pSsZ3-ZZ4qPSIfpr{zJRL-~boM*vx zm0Se5#!=mlI3$nO4yWnq=^P45%g*jA@vWK;u9lOzkW;lz2 zsBrtMBZ7Y@cO^=`G$m|<>E|Vnfgu_Q*UiWEbiK@+^!=pCpIGJos1&01$7KIKWBttnf zH$e-?S8}{-beK8x`2mN`qye|^oJelGAC!`3))CVuk_UwnK?=lbOxpRUALS-(z-okJ zv*iEFOWLieCTtN9G-_WS)}54kg$L9O_^Orr*oc_@eT4_!!PwDB2@TB`#KpA@ghKQ3 z^00vPVq>c?vT=14i^vzkev;Z$!4@wM$Zga&FolcC35KYNQD9pD(Zq_)tYJ& zxy@}|mi*Gj0ZpdQ`}(b^lu5l+h(=MD6;__?$_l`<@aomxEO;j27`yt9JJRBDV6;FL-u*ae^C>fys??;k4Vw(jjO< za5JmdSoi3tD-tzPhk`6r7PevT0s5rHr6rpeQVwt##-Z;gC7@-F3y({`j=K}&APZ8XMKe{>pUNx|_eSx>|8;XQl(BrvOQ_R0?}){vm$f(D?|OXB_{hnaAo$O4Iqc$oTxqlf#|sEr%>|jZZ7jk@7z;X=T0(EthA%yto@1Z4ZcdE! zC}jgzFC8%@?4BqX6=HL&dSvwUx`6EkhJ>6%>R(p1$2xunXei)I z;?se{GV0tuJ!Y$vi^`$dR47YD(h-so4Er!`11j|C6TF#m^jC#x=DRpvyB66x7-_mU zxaP=<)35DzPS8m`fXsnFToct$$$;xGA5{x48MK4*_{M0XS~9Kn1s|wk$1{Tbf;;tt z7v<%{u+@VWQ$JWyRYeA(ja%qGEn7H58xAtuL0_&fKzNS(wU>tCtVV{p_UY4~&>lSJ z)sC+p1e)ItM{3w1!2`_>)*#lg_byp!Njd0k^b%4ol%{3}+ibu-Cl)+ExMbgqR*VqG ziz_NCAwvLK^XTEjXTt1(y%>ix-a`Rv)* zT+CsQ^89}tOq(E;$iWj|g5VI-6829bDFqCg)S z8-*bpjk)xVg{lng$Ue_=unTm`a4|42aB<0P85MV1&UC4bRK6)LnIrkS_8w`Tp*^ z)2)?deU|#!t5>b2r%s++!0ua@An9$XB{g^bpQjegiw0BZ(p||5{qP6^zZ~<&l<2$G ziCS4HUnVh$B<4HP)g|j7KHxrhaJ$riZMIQQ-8tCQYz-krZZc9brr&Vtr6y_$TvW(t zUMbwTbg2$51eyD{wsqr760=ph>)4X4Z>+0f4#AdHJep8RwSGM{I~GaeO^#GV*6hTa zU^B#Gl6^K7t4n6){Hzayr1#I!S+u^GOJr*$;d)3+6jEAqQPeO)K1|IHChAMyrKP1U z>{mRudc@*}X;ChW$|7uFJR3~ffQ^G7*#TaZ`*IH(?hN9gWdR!tH!)&);r@-8Dt=<1 z=yngCL;U=ILoN<4eCFV!ym~5D4_Un5F6F{G-pc3da`N)7fVnkXVk06tkanRCk3}#+ zakJc~U_D~u>UWIE7pWH_PSbI8-OprMiBNg;K3fmI<{p)}xQ>N^iAh66MgLgHOWzCo z08&_cQh4;?Iy3B?$h!c)hWZ=J(LwxJ=D{Pvufk&gGEd^@QLFLxyt;Ua!ch(AlhGs) zCIg0sF*?a;F~}GL_fk{$-ZYG*$UbKhPmDxNbF;HGsJHLhbwK(6XAycnahM zEmVnW!|*ahVTYN1>da6y6$Q2fCvLXDw_n80Q|o=WqL!#}`Rdh^dY?Vvvo4pX=rNmF zudu;3OeYzJl*qC`Y?n#>Bn%xkv2Uc=%dNsonx_=t{`l>}80o1lR$)xnDvbh+_~pY+ zIbPzAJzYwGADNja_U||B`s}sbL0Kq$PE18HOr*g!PXud9aBzQ5&(uJaUm4>zlIOLJ zUiOh5-b(LO>*9CAzxZo)b?`=Pxeg;g;TNC>51d~Cie*f6Wj39K>)6jYIb{#i{Gy?b z6lM~4xs6)Y&Ta-vZH&=j`y5wvRA?7rkAc|OXQF?3v_B!9-6PX@c42&}oqPMJgaoGH zy?+L4K(cs)%NrXV01u$b4G{e+uz1iG{N_#UYDrp6-OMQ0Fz;wheGU2nA^1u`l}(Uj z#a%U$8!^5}%g+}V5m^Ld;JGN%pAWl7!72q>oN>Eje;BO$X8R-Dd0_#Xn8+e%{Pfec z7b13tzdfG?@MmMCx~Oi_~X2@h`kvjObp^fgv?%k-^@xfDBikx^tE+PoAr&g qU5jMax#vIJDgP6j>HoKvkQwQnQ$NNn%^48iTkfpFnIx%ecmEeZpoBsI diff --git a/08-mcmc_files/figure-html/unnamed-chunk-52-1.png b/08-mcmc_files/figure-html/unnamed-chunk-52-1.png index a7fa2ba74fd9f073c6e11f17b4dd4368bdec868e..a0e885bb8918bf45f96d45d346a0b2f4061ee747 100644 GIT binary patch literal 67556 zcmc$`2UJwsyC+zRN>Bj>K|nwh1wlY1X9WexAW5={0+JWd zb1IOWt0Wf`Rr3}1|JJ;I-978Qp6;2wyy`_bb;92J`=#%^Q&*KgO~FWkKp;*l+`sz( zfjE8}fgq_TI|^U%Ja#t({vfx%ujhzBFb5LwIUx{}+^v7UtZmq`*b4DnCIF5;-f;a{Zu{H)($fCllU;bmlYai`vMi}Cl&oKL8d-Jm_4N&w zOZ(T?7oDp6SSIa7E>OzfzU?>i+UYhLRpbBa)yVMY_^ScbB_$;>F)^09M~IiWpeOg? z{2f2^hpM$oZV{1(t6W-UMZ=7Yj54ya{k&iH9Yro+vDhI2_KcMDljQpjC;! zu_aZQUH!+2QQ{ddZh7EEJl+@=L{Ib|bE68I=!d(OycnEE{1_)OaSyV({KJR+zxAox z{_gHdb|FV}^)B}F5)Y5cS{bz~a#?9sRVyWRl*E~vR$VR+|Y@3gXNNX0U*rpzmyee^!BjkY#6 z$v4q+ra3B2-t_=C&w+9?9VoT&4m_n%W{p^2J6s6VGH>OOTL<#22WIoCgvm(_$9YPh z$s>8Sv#$3DU0rckRjZ#*HLM5GtK}IP*zau`m^O8cRl84qQOM~#g^;9(7=kHw`#$gB zz;IFBa0P$4FM%~*UvM)eP(O2L&Vz%UozFmMu7$&P#Z1u`%& z$cJ1YKYjY(Z>aBBvE%AUNtG+w7G?eO&FROFAKUueg8MSwji10>wQ36K`uurcH*cMa z(zcV0G1zSPa_9mMr&^1h%ZQA8&Ak!L?hjiH&U&O|_kQi-jY3^Yc zzKQvHE}GBWce5KcpQwc0pE#F8jkrjA8WYaWV^F%X`*+$#kdu@1;kTzPZG3eS_LKE= zRHvDQtZ}=4W!^S7H_z?!8J2%FYmY_h7L=~pjFrDIE7Bt?v>g|#8eeuEwU5fk+Nr8&S5Y7&U%z4vF(|cuu86)G@qBw_SoX~+xWhG0i#@g8 z`;@Fw*8{Q&3VgTvb#)7jZ3GzOSeclZ#NF3tGJF$79q0V1q&Rtr!*;pp%Hbeq>*?ts z&aLF2b+rVs_2{}Rqt_heE8FjtqF-IQ9H<;OP{D%x@as>JSpsf!BBa20yjQL}ZfXjC zMnW!IVTFsEyUcc+%Py{cP8+Fng@dE1p&=k3-~*%JQjB?``_wy*8F?ior81jQmjl%M zpdfyJ{(=Y;Ov5fwA*43hi{6?YmuL5OUha%%_AfK#>Fo3$M_4Fib7S^*&}GBc>)X}t z8?f^k2z(Z@8A*{1{8m)-n%Z-FB}ULnr*|(kZ``R@r8iS8x(pr#rjg#nsq*WOA3xxt z=)?sXRWikoArP47+avmHcUKZzUD9b})zxP(e_oq+h%hp49ywymbsB+TRy@A@;lnBS zpVmU5=WnJulLX80J1_N}fKwRoq8vzkOS8jpF8U zc@q%eR4I!<(Dpnu7**HqA4qd{c4iFz#c+P1CEO$O&5~t_5{BB`G)*q;<`s6Q!Xy+q zIedKiic5FI(dxE8S-hO;Rqs2pkjNr!9i4rw(L9&FaB~0Rt6K4Fy2;*13Jh$=>vGD< z$_6$k1mdn-k(MTi9Wj2s&W_bVmSC;1k`X`ud>viYw(&Iys46$)WxH!+#H=ag<~MHZ zT4A_uMR^a(6k9;QrHzG!I&A&PGi`i)=+R7|2(k8210TMzLjb}&HU*S$S=uUmWt@d?) z3{^=#>ZPI*Tz!Ux1*H@B_U+q&Rc*HU?bukx)JSTX@GlvotjPk%{#ND-EEfqOgM))e zC^3UhQd+ArmE@>m40W{9JbGfw)@l8J%Md-q-o<1)(vdlw}BBcQpxz5VxZ>)59J@^ZJuo^;p=L`6kae%}8eH=TUPA8z66hK7chB&4N7dU|^9 zQw`*uw6K{?YHz-L2_K1sLghv{NLafY{^dt+rXXW*K1cf_QUpszAGY)z4F@Bh|6FUO z^KxwGrHfR|qHdVULer)h$(EKDmbmUanZ4MOA6{o+$7#BC>^M1_110m4BF7aIZ*3Ff ze5zA@>m?Kj+O)oNZV@d4roTP}GYM0$IXF5dc`RjDK)GWU6JTe5+7U0xt&?jJd$s-P zt@MlxF0B(#*X9=v4i02x8ho!ZoF&8vWbWTQMrsfgbdvv;V$rufO6HLY)eh?+xU1(F z7AHy=Ue8qA@LtHb#%_`#+}^wrz6J*}F1NqK5^JoXQRpz+TB@(3rFEkME*-;lnbp&J z#x#_ije>$AfLbhp_uGE{Rc|pKn^77yuUfPA83Hy*H9oW4Vbh|U-ei+m%t^z{j2`{6 zAUF3E85!B53sMNfpjRB>f{g9qSClf8V|oTewXkUwsi{-g`6N5ZL1wtY5~h7)6&h)B zQSp*-g)TPop?R%s;_D+;P!D^o3bu+FRuJ_+BbmuFdKc-gKg8@U7f563NeT-K<Id)^-WFzHX5Zyg_c@7SaGT-FB$ZMJz zn0Yu{eV+2)zeQ5JljGMkJ8*Rb-Ixge?d(ijH(}3?KR=s3@!93()rbmip`wk~l@kzM z5!uqeuU)xvZxx<9;^I^-;Q-qda$q`A+(t?@mn0_WHTU~v#MR^5YvZXgGfs3q*x6{p zuKWwL47oIhI;X`NzS^wC41U}ZKV1#!dJ|0#;;5v4f?c15J$Y61=|9*)ryPKt-`aJD zT})DfnDb;=UHii_UeklU-sjK%$iCTBP(HOXKH6!K%g0?rM^7IwWrNJ8lev3}Nyr_$ zekXzhX(Wi)q%~%ogey#@Fin!uoN$}YH^EIcm=I!1Oy!^J=)kXy6CS<<`0h}*&F(Xy zQmr{?xVxxxlK^%q?En0j^Bk!&ZYzH={oBlOLlT~hO%xn%limBo=}N-ZAlmm}YpS3w zzuYNXOnSmtm!6h^fsuwr(8GzI-jfvJ6ykb(_n*#5FX{tadsiqShEr& z0zsCtdCLL52oHki{}4m^ukfrcq!IC40;qrJYdQIJCVtzPx1yl1?(hFq>n*#t6Iwg_ zDPZPlUH$D6Bncubl*r(czvVKEhv2ZC?u5PQ8HW;|zD|n^x15&(CJyq^T`7qLrxBBq zhnJRft-W!nXu7WH&Ts-sXey7 zJ1uQk_@fIMJ)%v5=)2=bia@B#Z_BgVxX*lilf$Lyh2v3^VsLC?&KqS%`PLN`{*7Z6 zza?xVwl!dYljI{7dBeD`|#oCS8Au=E^5BN#b4Hu$WvkHD!p$lOBNX1{ojMxB6w1_$_bftw##m2@i;d@{T zNB(gTDV12ipVsfursmVrvB}%J;54znRgl-%c$|TO)Mq2E#TOgoaPKIhI_%XEb0u&PNZFAPnkJpTD6m{r=C>?;O6`*9My1J1qxKs7Z_=#KZRGzt2jHS)z!66 z)FrI?U%Kpk!aw!O5x*Vv8})X>-_ozu#3^SC7nxHr++r6H*z8GH0%9ZXwfmJiwYC=D zuWMpd<5ALWVeMmWZM`zn5)p^5a9-ANH{D$5R*L2oJbwz11z$Br#>J(ST_H}`jz!AL z?E!IwQ(xlY35L1vr^YGni%;s!1mz)9+ps#T+rlwufIN=>8(Fdzsh)Yl}DVvO~jL4B_{BFS)|CYx*@PW6jIsc-o<2WU1A%WT3CFd9=H`TV;QLbMdlWUtgcVK`v7c z$O=}CmL;Vd_OK`CTNLZRroQPq-XEoU>du`5xezDOgpNHAVLU-sPM^a>eP&ktK#CGn91*hE3Fm+zz5^jT{iS)Pf}3K1Scn7B)Cj) zI?uL71<~`B4l$fP+tcwAuB`IM<05jlRJq`#C(`g)*PELGoO#TplKQd8W+Rf4lKAWz ziY3ch{f>~tmf3OFTa}F95BAH3hP%2j-$_}UN2h-UFF(kWX^xl?Pf!i~+1;4$mC(EB zRAE?6$#Su-xq4Z`U%0eMBtiAhmfcG3>L|B^V}JgS(=*b>303b#Jo}1QsN#SL@V3`pFwDE8398{h?YHeTBhbV))HnN`L!C zn0!l3O>J#$<#p+o)Y8_@Hj+`((9y|oA(y=G?p`r+Ws|lMC7JD}t*1wlv~B!zU}Nn` zM7(OSoaw^)f;6E^oh@MIvdM#}-iMk$uWuTqEd1`ga_^q=kt2%uVyz}Kcnq%kim!}U?Vx>js!%na zu6aYgCbeW#R8$lcOHXubJ8a8Ft%Zz9sqDoP($mwgMr0od`z3>b71z6HT{v<)@=@6+ z51mqylsBkIefjAs&+vF>%R#?HWn?b^c{yaiv`9Jkfq;(gNj3pRW2xhnoY${kuQrhe zpiUtuC|c+`^ao}v?xKu}h>!O=;N(^4 z`Sz@BX4Ce@`9$yS;U-q!YMMnOvNLpabffPLc&9~~n1<3EsJO$z(v>(?8coE8B2+XHoCl`~+2S>D^*1pRLkYDV1S(~+C@l+@ztwi5&9&z)lw(DHM6s` z>3I!BUQ7j0!%}$y8;4CvZdMjq?V8Oa5EY(}_)G^2qui#0=}rq-57m#0gY8E{ z{D^dV#9~GqZ5}D2`aP7ywC?MA-)2_JCQwD@or2M&C&|bxEG)9JvfS|4c@y{9sG*@D zt8LT5hZHAI#^GDqmksSLse@Js@^ko(bJN#If*4yWeA3_@Xw7>N&gmiS;4K1 zzthZcT6m}s9#XpJn(ctIV0 zkAzBsnu*CufbsMRStqAWp0cs^m7-4Dk>bVL{WThyyK-_uCN#CL!^6+s3nGdr>@{_S zO<$a>`3;=a*3v7@%n{#Yb_Isz0V7eD>k>C#^du2-4PPS==$Uuv@>5e&bDc@P?SXVW z`n1f<2{1bnHgaVHDGx9|sm>uOq4@OvcAb!1Z5J++{M%5Qu7rMAZr|)rg~Ct=w!3VW z4Dzx{oTsMS9tvbVaqBoAVpC$NfH^iiJQWmN1R~L;Z8~(BgrrRRZ$q6M_ES_ z>rLw+K?B9`NY4dzcrt>=kEh(c8EQMhBIWiq5YU_($rcGtFg=qvPO^RCGfDjXc_>kK z0HBrUj_vDZuuAOX&J>x&Oih(a;@w(?ix%s4?iB$^_&5O-r08}d$kOj8}3Z$#8_4IUf;McMc zW1i63{zTnQdNi;g?@nDZ1cv3mArI2y%m0x)aLOVFCrTfEw>e2i>y4c)t8$6*-nVhS z^D-}oi}ThkPOcn6UKwSK5RV9#;_9szc+YlMvfEDgz|?pYb7UuGgE2vXCl zWeF}-)IVrhS6}LBEG+yqfOAS*_(^uk1%m>q-8B|X+b129)3>W zM*?;pRPd~f2m{2Zv@w_*?h;=bkiU$?WuTy#XqN+9BhT_YH+xvb zW@O%Kz^zsvfjN;_el#gA4uo>l@88NnjZcb(Wn^T|o;~|3gjxLYk7Eg{gVnQO#Ps&` z#G>_Tz1*KXNhPXlYSIUr^)E@>-Q7=v;J&xTBx3&vq{}*jS69J*U=Baji08+wv)f3I z?u?zauqapdvfJF%tn)Rcw7;8m(W)Iiv~8ZZ%0tG4xp?1 z4CWhwD7RYt@H$=4EMQ=RGFzi+w-;XGwoe^IF7Vai9OUHWdK2Rh2l31nGn4SBo!ZR% zTky&1et8*Y)BaRK0|Th_nTS;dw93@4&}hSa*@EhC&jxbu#l*n6Z9PYhFuwntZSzoz zx1R4vXz%rO{D(*Y&6ZgXd~=$q6!(w<`%WNG z%HO#$Ahe76;L59QZpD~&CQ3eS4(sab0+bH`0S(MV=I!3zp00_vGw?OJv_dQhF@+Iv zr-KyL)S`vwIuiC_uRF;GTe&ZOBS~0DXkc*A+{{e%^9{CZ#Gyd;@zW=>ve76{W4J4= z6}VyZCf&RTRTRfXtxJPgeRDT9s%*Z$>e#xmBrjcAZZ{Egnki>}0~D??gT$S38$9k# z#MNx0;|O%BmLKR$W0lUxY8#TM-2^Rz{`?56B&eG5f7MSn_aPshsm)eY) zhDr|T=mJZbot>2-J5;*0+|9ML`c#C+H`|3L$k_6YYjV1Z;G8gD-?X-ZvDKe1bEmXb zG5Y7tr%Qdw&CMNKljZ`b_*jpnyfO;4B%$rqWz>4Lyf+bJA~0eA=O^lX>)OpC%I4eS z1|v~%%5g$AUCDRWw-Y5j4S99ru2_};c1aL-T~qT}r}6*ZRa}>oqlkL@{=I|wB5{g* zXtz8k)1dabD@qmS#-N1&V5qqFM-daredl&F3x^)-T0R@ z9G1lt9UG^eK0Zit1&q5c=jP^SU~}oxCH=Cx6mUE;jwQy$c`kIN1hRN!6+OepN%++j z7x#@!lRi-hpK+*IT3YG@135z1oRg0aCX5!C0bpx`i>6UoH~eo|0DLEdQ!MU4cr!K0&U96|4pvbdx&{s+m8dA!Z-(WQ zmZm%$!c$WFbRT2`T@F?rSWyN7)Jv2OVVQIiyQ09w36@8g%f~tqQ1(j+)ZiT0+kd^F zG$V-0&&EbC8m~&F6D_TroSeEsqi~#MGpREDt&)C_?pFe)cRH7BxSDzLQgPRBcOT7DF z--F!`_9@SRdcawDB=M@|aPg1{@D+;7%g^V%e*O2vgvqLYWgS>2c{-zb{z>L@XV0G( zam(?IGadG8vj8((`5?uTo|L|hK&a-O(LdzLwG0iE1$=^XV*?sK~#-3hO^503au zHM|3X<UTtON5AoOpRdap)Sc%`s z;IM$0;NZWz>!x}E5a#Z&y5x&&4e8$dl|3!#B%}ew4?kqju=wBKgVz#`8yx903e*?%cUfX#$SBpt{H7sb_>di#xlxI0!twGH)v@D>LqO z6zi{E4wZ0N&MV{EB)UTq*DYt7v&o0TesGsWt7nEv(YT2XjuM{G#u8vm;^Ya(w=KlU;9}pP0vpi@A4;T^# zMnz`rAR%17d^xUw+_&Awhp<1vD&@5sp(fSR)`rZ_4|)IoR$M!kH16xLwa(@>IG6ew zx%L>xJ+yD9q}T4k`s{=+9!sgR=WTYdS53q5gOsXvKgK)~NsXwE;Gjdj4GM~r_Qeab z>K9vRI5{~vI5^zCU4MF?LD+VzoLAX}7@@KQN0tT3=PI+SA%0V{WwvsE*nHHH84yu| zg3>;~K%A_M*#Vm1GW~r6(M7j4?*k9)@e4D68!U}OnVl;M;wpdtiY9rN&Sz)72NQgv z7B|%xn&h*G+(Gfb2_#tTtiAoh-q{DRr;$c?Qk+eaIE=^&y|C-x#%*8t=CV2h5e#la zVp?h}4ODVzN%!>{27aJQpYceOt-94xfT*j!P0aXq-c|6o!O?FOb-OWN)XA>!{(=;) zkXamT8?H~M5nSs%M9A-F+j*V^A3;J|>w&I0sKct@=ac4r@fC8JCk0|Yc<)=5jEwa3 z?5#UQ|6~K(?99zSujy@#zTTdn&vfYrpp2%#!16aNw|~4L`SIh&RS6f!K=52G=4TAH zMS?z!py;wFxy<72G_<)m%<7A44`fYLQ!C)%%Higwk+BenP4+pM^2PY4P)SCDqd2xn zi2yD%4MSY~Di>g+cU38H6t6ItxnK^2WovSCbD#F{>B!+~nO!=^(6Z%%u;{2d#Ood+ zd8+0gLckeCVC0rMWe$^M2-~;+KT{jO`TM-l>N)-uJX+{rk6vDCiO?G@Gr@26 z<{)*gf`SC~Z3^DLy-_6kc&dSoO6t6zM==!sDrLmK5^tQdaS7r(k~@Y#OV_0Z#f*|$ z*bRBD9zS;W!AF@kNqPTm#FwEwCcZrr9(N3_Oh1b8Iix}L2TR;sD2TYMgi4*20b^3Y z=SRS2@insdA)ok4s|@p(aJXvICSKol1$?%qZ`}?mPE(V>&C^cwPhOK?jQ=@GduvD1 zgov}{Fm~hd&6}n^d%bWBi*69S-ZVA@w8y(UT3W89$Yu`Y?R&J*wP80xy>}m5D1YD* zB*FM7KOyqWa?OOsZ+`-%uZ#Qo)HAy(yH5uXEY^qy%h3q?;QE9oJ}^pFVuJWk73f-U zX+onY>dV}wD7i5YEt8ZEO^Q&O_3HUGy9 z)i@m_~{~`EmbL}AMP}9-P;pc&$BZ|L2FS7$J41zAUmGg-&Iwc1? zh8J=E{^ zfK18nr|XGI2XLCdr$doO$0z$~aq2_go+)X1fH()j70a!s_bn_I(v_lth`R1#9<$x` z_C7!s)K+?ISwaE=2P)Q3O9V&R8b8!3a8LkifB*jd_3PK|tcr)@tjw46^fN@8wYt6g z95;Kk(kfSEzq;OYWPU9K*id=A>Lr>pZ_gaq)kzX&S~~H&^0M|{J=-=M#Qa|(s0@=H zL<~V#1|nbDD51D^q)wh9XrAxhK_ra z8FE3YntS~2ga@*tv(wmMIlmHQz5h(+$SZ-eGfCQavi?Y(&VEtSK`ys@)xYJA93)x6 z>;96Glhf_}C$qK~#NFP-oCH_D2kNl!Qd(D&$7)M0!xo&d;|o-Mo3zri9^;@C=ee zBrZ>{NG|*fBmmgi*~<$%GVrgdb&y-Jz0+Hqlz~5O%XAC(veqF-OPvZO`5Kc%y=_?) zkUiJBzdcNleEoL`q)xLU$c$nIZ8iRVeL8Zf^Hf zLwf&oF`Y6(x9gV2clg#|GvND7e?)|zT_aj3_|Sig9~H~`wnkB4{v#*K2$ja~f9O1USy`OFdPc2FK|BCuyX52|9%8}9#>RK=2FRc-1$1?F z=bgm-J%h*#__xo->;9)r!a0z6K$;WkQ39 zfI*+Xi;9Vk=CHdU;f5Ktt2<~>^O@o%0HnVC{GjQ>qO{qEDi3Z>PHLG2r^@E$`>tEV z{LHwYthVKp)oQ&9TQX#zrqb_!WX~=we|R}yzy;dmS=14pHfL&ewS_nd+CowZ4ASBc(9()*L8d*|g(FInhnj|&8 z*9|}&22_KxqOZhgQ{Jc9+}vD=7gKk|Jz=FH^m~`!o~PUr9@N*O?JF?J+`m?5pHf>r z28M!t60;xrfhBDdcps+;F%G5>G;KFO6V@rg43|7qXu6&_GxIbdvx5(gQKuuZ-3$9# zS1`k?R{_+zAuOwk92N2*WNf%suf{ZK{A}++wh^+MzdkU4$4yIQT2fnmnjnWjX2|0H z{pNU4N1fb<-2zn~TAnJZsMM(Hf)@&D7R#Un*w%iRP55vJd=|7CfPE;^ofxOFXCj1A zFUl2tYboO2TRT;tUsIb>jYIMnoMm;pJ&`?p8-f@UD?^|?yh=-TQtaTk)VVdQ?fPsd z>)OuC4h{P!AD~d4q~~px?FF)-lW#bz(*`W_YBb>91(eTTf$#WNm1obML2_NKlfK-2 z?l%-ItjETjhT|Mq*8J$|UW*b`t^J=qVU)e6O}k#+Ku^zuqTv;72A2A*YrD%ihZN)1 zv)0Jcj+9o`_J62_*K)-g@zy6r;MUuG3RZRm^@ePx5x@%~07HcTJ+cbnDhPY%H;B zz%O)3(*9BF1OZ$rbG|x5w>jl~s%nSLg}>*xi#-m0x5xQETu0QGxIM9H`S0USu1?8) zRs}V4Aw9&C6s{5#?05L{1D~$6!>i}8TNLXNt!+?%wS|9aqtE_Jk)!icv9+BxvZ{@SDnj03CFgG zh6iz%k~I-HfRPkPU`l+8Bu7)5K9Da?Oq^%oRd`_Z{JFES@%I>hh)u9HOkUHxN|@#Q z<4;P=I~B~OA79|VF@(1{Z_Tt! zbxN1f(GAejK@=3yB*5|fud2YrOCITmGu^oiUeKiJQfn(^&E66{WZG;LS_GLOa^})R z*dYYFuPY=ZB?Vf+RkyMczm=a|L2NI&?t<6i6$9rIxy&E{#RQwO*PCcoi(3^JLPoxQ zYmJZRZVG{nV3p&aAJg2rst2PJwv{`^B}fQCt`Xx-^}<8TOZc58Y5d;7PKn1sSRe}{ zcF6SQRn29yG6{V7EDrl&Yx(4@Tc{Wb_x1HzSNx8zC%6xYNf+X6_40#AR6v3aRxZ@ZuLSQhC12t|$m)y&eOL&af`6|8n*EfMrJ{BJW# zk_}~^+ZT3M?Lhk1E6w4u(&+XRUwaFa(NXdP~5H zrQtdtCzh(6H32D~D zUJ{Lq@4BqXb`j`?@oiD|^&dj9kgt7_kt-^yAaCykI0J_on)>P@KHsvUs3eT8x+*;Cx8!eMr*G3c;2ptue`O5)e> z5U0WeXgr8T=a2Sicn6;DWjGZ=h&O3LaNC@&?h%)iiMYP4D9GW&OUD zuy1y?e}_6Byl(qLEpzNmplcy35N?=XHjh)-6`)OlIo&<2pv{Mu)IRu^90-(Qb{g+N6?$_Ec);g3dzF|A6lNvkt6&r3N`~@5+ zY^RaS9~<9!h}c_<<6~ow;vncC<+^4V(c%R1IEWKSFvuz^JwOkITE3uIvaSRHYb`y! z;V7TVU}#7yQCheL6Q_?ih4dO9pR1{z3$o;;+6N&w2Nn%aqXbglSPFKc=P>j!eR||9 zHJusH^~iWtm7Rp94r7BhzKrO$Di3X0!_BKIy5q^k%k#|T(FM78c#~|uIzRP_f8hHA zr0>}q)`bs8EPHV(W6-s;yt&<*gx8XK7akV&=*IZ~YQPXCFJAoJN7wPio*qOCV4pq& zmxaDy#+AgSYTT^oub7)(@8WeH9>EypJYBhf(P3+$%--QAB|*HFSvjpQOkHm?%~(YV zxq7Wy1gy_9~uYO^=LI|-{2tWv17ac^bigX4RHowqWFf^3mymhkOE8l ze@5`leEHNrECh`CQ%y`ZXwI$H*<2)sl=^-C6;gsNKs~mjQ_Vu)ig~BYU)0w7AbRH0 zr#)D)GEhVF6|xc1FQyvW4ZldV)d`tFB}}c<*$C%0*}KJgzErm zJRT35xz&g-9_Q|U8KC1q=5sJ=VCb(np%V%Liv-DK_L80$fO_G*p)!#oD?Z+N7)3s@ z7IqX-AAL>m(XaocF#tOfFcn^-%E+iF@IO`E=Np6Q%dCel*-dzDw6{u-BM^NYnQOT= zqhjO!Kh4CG67vr+!8C2WJe#247EoCZ)p%+dSTnhX72onc0gwh=#YWQdR?J%UM#pqh z=wWf$fenx8)Eh|dV7n(LCn4-rS>=N8vwO=bEp>%Q1*Dc|1qBllj&rkW(#%4pa!DZ* zFRliN?0hG6enwOeJ8QBKKrYZp4)~SEL(nleqb=afB$|y z$rm4`Yy2)a*anGABH-qMtyWZ2$h@87u8C33FgaM#O<8+rNQ#&Yf@U&*kNWB-G$tO; z=YPBogtQaBA1Ur}Zah38q2fhaN2lFLtYAVL0X|fTvnu?hYNo;0N8dqPfu?}Cm>3Ap z%-M_l`1x~xYgrf`F|?HA>lK+nGZqNX?Slb!5F4=oi;mTMvzz#D#x<5@qhJ$$b`0YO{Bs8JO}Ha3Ra_$D?2r58qOP#;RZ+7s-2roRranN);>2<=y}(eNPP z#fujk^PP2bvO#n_??XaVRaI;MTnD?+ww2fip{$X78}zGKoy<6ZF$S)v7|4sT!WHj8 zF7u`L-WVn;6`~NEjr7plX`1M@-a)|IQGvXVpiRf;go3y|SV6?DWNgshmn7lD3H6in zU@mSID0ROl8ZrQ-j9}+6?&Et=!% z)zbN}601RwOAY>1!a51QDdE*2&+3i)&CfC6#Sb}{Iv>Kp5Hz>i@2`IE?tWS0Sp|r) zr{^C;c`i|EwRkkxdk<&d_#P-lmXQdMODew8#O^>rNPk6YBW+E}G4*yn8zAJH0YiXL zeTgld#jSA&CzUq_0b7tTVTVtC3r!3l!SX_PBsQ_xrISa(c1)ybc+4xb+rr7<8KAD< zT8LJDbG91pM@H|U`6OPXUX`wc7AEr>$K>xp0PBQG;ss%!Y8|wZ@6-{*?LqfJlb!!T zTLeZQpOT`$Z#K3)&5AT417bkE#ZgG)5Wv~){(r>?{^!)g&v=!{qQB%+SHrK7@Uto1 z$L`6!iE00?p}{nPW31f8BS0NrT;Z%`7BX1D-y0F^e~85zlwQ!gdXaH;=W z7Jy{F)K(H(R`<+i0>4mdLt@KvS~+epQ+%!+V7EcF2%9MO%_<~k)_mq-;EpBL zVdwTkrNq$9AG5mCqWEawtn~i9!2dt#EQaog>T29;dgJD{Hmeaw=)VO)*zDOeh%nOV z^T?7Tl09>-UH7v4bt-clUz3?+s|H=hk>OLtqx=JTqYzM%ChS>(S~L3|L;(!qxMRT~ znHYr^By4P=3_&J`<}lvkSlNeUFaf@T84OG4#;scqP({|mw?u0orw%L`qUvq?&?i!1 zHzCE=0AaxySwM`m?otSZpx65T#Gu}FSr#vQ$Zau8y6par0qU+hJIn08DtN^bmIj9X zcmc81VHWzE*GpTT#=@=+yCgK(@)=bY+fCH|420McU=$PYt^R(bE>rNYxh8PSRc*KL z!J7hLD3LuDVAKVnsK7*;tziPcT^1^}cc1J9JRC4`0iwV-Y%GQs0yuP@L}+Q?`gKWt z2%aU#@*@i25Y#w*!e1`!g;Jmpa%;WT8~^=#8dU0zE&EY5-&j}NZi@85HNxg|@7sO` zIqPTP1q^B3hQ6ot?X~*)>hS%hS6~X>yLN68PUYWvkEQW{LsL>x)}`fx8Huqc5c#&2 zK?hYlY(3r{G7UA#ECW6GAqx1;r+CzBYS`L|tbjVTF?bWv#UrSn2Z$mES~B{hqZGm; zp*I{(D`7bWI{M%3OeB?fdw$Q>JaRPxTnHa47 zN~P!5n?HTp%mnnQ;q93`Ca_AgH8b=7W7J98*cjE-bx$D}n6i3V{BP{u&Q=eCG10H*r1~l1_pl!jJyJlBe>2XfQUgf-am9 zFjYd|zgGn9w7orwBb_i6#OH!WN!pAQ=WB6OP4e;Zlx*)V^M|un80J@2iV+p}nSKUH z!o($|u5(pns_Mn@jFI*C)4{tyUS%q%W>R1J>Wa>HeYVoubjfw7_o$cm!R*h#{`{jx zsZ^&<-B;GCqUd}fmY{=-I`>NQHvXvL!-os`&*fh*{}XeH9wCWW&16>qFa(XqynuW+ z>OEx@y+g^NTf+3+Kiv{tD5Q60F}iX&AG+iLVk(4h{$jF&mI+<5zaWIT+^lb_Q-XL+ ztCyoCa$#zfNJVs|H6{DeXa{YF7e*0sqkkG_f7U%%ww zbsV&fEYL%->Qcotc>25Z{T@OmDuGl^d;B!3G=GG0c#GJ}+^|z@)E7B}IMu1IMP1|x zI(uCBZq9M8OL)P7du^5M!dwU+B1oN20Jvcg%QFq7u z86|MQ2S<}2DfCnqW-5Rxh^fk&yZxPB+f)J4AQ;K&xpH&yq|wy~$@S*T4~_z_G1S!T zeacoT^bz&#>({SgVPP)9J)-A>e~pZcfP>;n+JlX0pM#_kID7I^m8$8VZ=}@D=HEm$ zS_lB0^7BKul1_!C+ST>5NGz;z8Y<3BUk=E!!ODF-`11FnQ68b1`Uf9Ghy1B3#VHDO zH8j`)!rErrIcA-YRD`N=A25isCaBH>shX&u^WIcG;h&P9pAXT(r%}A>#>OlcF06oo zw02vp4!A2^uN`(I@{L2;qW_;lPs>sS>HUvR(uG`nDsp00Jq!F|v(BU7C#&9CQ`PnG|(_TFN7c`mOk=`cPJB9}vzTyiff2vD=N=ZSllU==x^l%KY-BxJQFa zKtSNqrPME9?h;R*hK44671&GoH`ge|X9PtDc+&<96`@bj(VlHL$Po)-PaP^`(sO{i z@2^#@k(?;5N_Z8)(eCWLYODZ2w_a8R`SXK*ULx$eS_76PP~331jn0!NPr{pU;3XRU z<+|1IuQyHQmh)6T-?+o|B{Nf3M~4DB9>ymKc-QCC2-1A$h)Dd+#|g#e#e|eRBla=c zm@R;h`wgHhzWIi3KM=IaLE;1D=QTCZBXEW-v(4_^ySHp)z@hy4E9gzo&xo$ww}sl> zL*o9t-cKgwv!thsd=n*th2sX-(m>q!nv-}?<0Tcv9t|4xm>gs%e${T?b+vL9zwiI# z$w;>hWFSWTNu%!Ek!AHY?5;S$8moLYMtNZG?&l*eJL*tj6Fc9LS1VsND7NSZfD#uK zbtUg}e*i?!;DtK(?lpom1Y0ty+T4?*ME?MGD?A#g0X*==Clx*imBmKcS{*U`^1bim zmX6+5`r)}#>$&*ARsIDHgzuo`4I+~-)VN8puiyAU!>By8KkWDGj*9h$H$D~nW)|FT z7Wes+OH;Kw^SSWAuH`L*R4sy7Jo2G(T38TKq5sb<(iq+{vZQrG6_YAi`rM5cqFB?>ORMwh(kf!-s8+MFIaZt}Z7V3i3srO0tLRqzdapNe@zDfU19cmyHg z_hZnt;ni_j^G-a(@*N>j1nq?;>dAbZVcRE~8rVZvCkQCdeU;c5)22QyI3lXC=-hbDc{WGciMAY& zzawYCWq?tQAP3k1!`Kh*6mk5&JWPGlI6y;0vJDrniBy?s6E^qycoerb7E70Q^9C1} z$W=Lh4<|ylre`oS_s$gDa@cbjCnbsqA3s&8&?NIJM~ySadA zxcmCSwE*z%1+QGeHiepqI%Q#IT5QxL{wDP!Sy7eR<5gu#kg_k4k=98zFpu)8&ACI7+AZF#`hb$mAe z>k$NV&|#yxL~Ofd)VG~U7Rjr5diH>?<+|l-^U5Wl6xCK^&ym9RVUkkyRhXgzr>(GDU4iR3OvuEQO zVFvo`aEW<~&GY$coH%~45~aKH8^v_WW9AGzV$cvKc6yXFQ9h#zXO1Eaf58UaZe~#U zq!BJfKSy0%{i{WHD)efUs3l3MxSYNqVhh`q-0bY2x%ZfNt9VsDy!_w2FVsec12o9LNd$B-g}lJ z$zItco5SAgejfUMukpJczw3Md?#F%I_whLYIL}TU$H(z`f8Ouc>$zUn$WOwUg4B>Q zofPO0SiUaK3}3+$H=q+Eb=ADXrnvoj*87M8E$apIYnGO4#}rzc9&4M87j0!;9%{Fy zPE^~opRPH%`(Y3sYCNenr}boRquR^>F6jg04;fkt^70T_z=rg62i+u2Y%%CQYC9ka z$7!0LzJeAQI@#;wJ9q6OISBDBQ0*Wc_q*#Ec8EXwI?>ZhCF~{p{>*h&?*@h)839dj z;_>N;JnGD~hWPmH4~xE^h_Eu2zco}J4L50?S@&a_LlDxT3id4@%@4SytzBr)z@e|P z0syqZAbsW0p1pga_uy;3yoxRh2Kjd}L6mn75u<3HC9i~JPWzr$UxeC+*C z`0{mP;^Hi=4+e!aK*)x-KcV}C;+-@rdZ_$THCL8 zvA)tA%PeDcsW6(Qp!8X>X>PZ==ITbl5_i`^@@wxmZu{BhnYyTUMpr%kMUC>Qd9p3- zv%}iCLfa*;IC$@&TI1@84CkaVy`mQ$t6-sC5E$fBG(2M)U7g>1QSvZDMR@JCwMc|@ z9m)TK>PHB^r$_tO#EzMwYYCSZC&wdxVtGU5-4pxwf9~E`+i8QsCwJ4}GCk2PN9c8i zzG~g(adzGSnO{bttE(OYM^E4G5oOJLU2(VW;VrgkR-Cd94*9uZ1G``r-{){Qd~?U` zl;YcIXsOs_w0XSCV0u39R=g}GU;5$QyZwu`z%>3- z^8hLcCNlmTk2h3aQ&4~b_i<~MBX7&+dwhFoX(5DKdZ;AOzCEC#WirvH^o@z0kbXKB zwGKPS;;lIoYsqdkUVrHipJG3mchmu&P`-lLfhrQBEorcHDYpH zZ(G5J4Yg`DTJe8{P0(nzKeBX$pbW)o$D}{ncWegwbxPi;1*LcH+=s zn1AP90=}j**=~68;~^H8kL7IR`IkJ2-fw;r*@ay{-(){_tmYmclPDR}xjU7MOw7>9 z0@!k;QH$pn5Xij6lnbx)Q7K>Aefvlx)CY#=S0jd6GZRHBh@FMn9Ip_W=I{uR&kXcc zW#~Pvk%cjP8enYK5z!4BaP+RtPh8kqD+_P?c!LVQs+yho6B`I7f8v&m!C9zq_{g6< zd^l|4_(u6AuT4k@5w%xs!S-^y>J=5f84wEc4DUvK35>vMrOy1dOFFTP}zd0$`a z=|0_{f$%DHKz$bNr>#d@PDgk7hRESyZpw8awmsXhX**K>W;~tJW`6xJY$}kJ@-EYv z%UjJ+(HSE+H=fO8dxw4q^>~13!CAxx!nNXaHA0aCOVKoUG-IEZ%`LFEyIG}a#4lXD z*nBF&zBq1%RMv&Qyf(imx;*BzA>Ml-Cl>270$`YJYvz^XXqZ6=p!{6?zS!}bYN~B_1 z9xqtpwqG1XbxtO-c<=Vr7uu=ET(E^qKt{K+y5t%qi#7fFgsX&zvEfvko9wub7e_tK{HNAVK9{?>LVeE zCa`M3nK!Ywq2j3+V#dFFE~4ai03H? zTJ74YepA)+NF+&O3!X1Cb&B1w!}7inq5ArIchc2fY1ICHCAU+luXh{Em!;|F%%?fB zBt1i)k+WQQpdVe3G(OZ_tlM8Two=UOQ83de0=Hk6|EYFHUP9W|zaQpPad&As!mq$) zMk$~oGJC4>L*cUSyGwO>EnSk#4gLKgi~V9e2-N9KE}fJMd^cahfL>x|!zSm$e=i~4 z3PR9{X-l-gnlJaw9XR>X=ly39+qQI@`?cX$mi)LyCi?=O4mU+PO?yeRTHN?V=sKfv zWLzztlnaGT5)w^BOhTM}^5lJNmv~MUmgh_Qq0xu^7u_S$0FgqZ2t`I4{%mS;64*GL zjlgxH*G|LJ+KQ-+qan= zi_;7Jh3#p_4xN42CdG4B=rUp8T%}AGGzW0x!L6i=++u$86?icUSs8(8=RsPAxcFlc z8I=1br5=owYxM@{YVor#c?w9o4ivURqL%nfo1~9*QDP3nv##yUL zdfCPnJtJp!aNtt_V0sHjAAK&K!*mzE; zET}#~HmWs6_oX5-qfrsbUb*rd@rm$M@alX=*}n$4_fnGP6nuOCPTu=rt!@61^;rfJxfW>ch$_fp!_{kIz2%x6Hhe7SeRQb&i-C0%*7 z3#%6CBN3AjJcD}*P<#iCb7z4=gt@Y^FTzSA(jj{x{lev@^>iaR8RS_CxWa;AXq5^$ zIsOfdXqU(kB^is$-RXOh^v@BH6?yGl7S-l1k-!GmRiqNgpAW0qLC^Q;;g-Rji#YLJ zX>9XX(L&&hGK@}lV|JVen{hXF0RjepfR57AKcUXxH|;p?LXLLC=D4XR@(1C%_fqRngC-B|KNyE?7VZficbVZbq^(M6-hMvi%^xL;|#VEb1 zVE5t7H$|jWMy!3i!3aMD;I7SP7M?aj5|Va?k$;cjw=3R%)Q|54NPbhHqY|c~c;$|* z`(AhGh(1X8ytP#q5er>UMmdyY8^8t4t84m%I4u@R4CSdvhqbV4f6Zt zT$w+EgaiZy7jd&q^JkPnt3nZ?oT#-Twl*c^ae>pj%!LM^2ePQl!-Hgtba?69FX2m1 zQaz629-hZ44}ed(InvL!s$05SDM z>1^j_Bj55~rq$0>1D#@hJ}PaDu3_ss(Cw~Y)Dy^EX=ccZty?qEHt2aR%#*Vu+Y%rG z`a2`QKfUt-jHzjLdH#yVCyBY&QbT;bT(ZYJVt*4Daq@w+JrCZ(jJ?al5*? zNx33xu_SdTx*LHVbEcmx6c89ZQSqt4z)pKVp7}NzI$AjR6ISPLr#JxZ&8%HtA|24vUu2aSa9_>*o;!v2X8Q1ResmiM`)+75^84H|6&RHfOYvQQ_rv zi`UvbP96T86!!(ai8PIuq{=E1zixB(T$mW0mAZTthU;Lt-2sYGgv-{qk zyi)?Lm?x76$GS5--9Sm|G?=8vPoAi^AVN6k&6^bX@>nidS&|wM-I^;^P6dwL@=uBmlkG6GCMUG~ubjq%;(##7=MW@<))n!4c=#UL+uKXYR0IiShKK(d zPAuFjUfV#aT2luE%ZjNvC|@vFc%yIh~A)p0QJ8? z$JS#^jEo|V%Ovd)wBMw<2szO15Ql*xHbu}eY)s9WrkxN;fvQ7O%ST@UnjDI<{(3)L z7=bz*=YM@_71Qdl_FVq*WL2k4aTQUwdpI^$%xN$J`BSaIHXl*S%Tn$l2>NnHwv9Bz zHsKgC%`!x+7N||EtJyX^k_l?kJ7hULER3{LRdV`gnxra&a>pS_f#aK~qII3^NZa)5 znB`>$r{z1kT3TQZNZ{p`^Bd1?HD7ZML9?$+who{R98qCsYR)ho|LKq7&l)u%q_i;t z`_*EM5|HiC zO>JnH@r4T*J3R(1$Ufc_jwAB4`1Egv|)hnZ!<#}K^;(%H~;%}Dbv!joYNwL=5gMeEfhWKYp`El zaTA{X)t;EQE3zg__!41Yf3QyxIvJbQ2R2#7ls`fs{%&lu2R!+hG1ar} z+Il@?URr`Lp1|`vR-Q6ztYE`jdq43Uq3GEDWzru5xBvf>rTDk*r>ke(0oAqLMrkbS+TfCvknKprQOfS_$xl3>|Puv4-fK`hrAA} zcpf;LWYio~B_;*}@9m>UL@GK$H9d)qaF!it^%U!v{kl7{r3IYEd1?__r~aS~-Q6-n zZ#A>Vi;3->qiqWdQ3V3#&^&ot4afe{I=$7~-j!tRAX;k`#m_Z_Zsd@yf_zBeu1*rKIqN z)$HH3>&?4&XUzY62km%__C?8QJiP^gYfIE&9sooXJ}Ch0EaIiG`(($(9p~T}O2{R? z7km&?SXh`QfB*%U1SgU)vw@s~!lI88cYpj$CtTkhN2TnQVnU!An$_t!UsKcL$0Oz+ z?09#$k$NnDuBp_+b$Vp*@tF+-z>oQKLIo#XK~324#;(=Jm4>WlGy8a$Bi;|ialGy zu~b3M-@vd+PuIb6ZNKp|3v( zG!g0tz!&R$W8iTY)k4SoG9B{{Qs$nPPH7^TarxhuDJYxv1h2ggjm%OF@ZOD&GdD00 zqVijs-w`4vHY`xseAa2zpHb)!(T3bKSyhMEzg$-2cXZUQQcvrOY(mj}6owB3+u@)O zPq`F!Bg5zhvK6PR5aPK5VZO(X>7#-ZfA*KR5Lp}u<2tQ$?OG_QO~LO68H6`KFksmL zey+oZCCI(juRx?Rz5AtTVIaCsNAf?DPMXFhN{C5No?k3+r|-RdD!&BH>$@FKskT!Ps&4__{LkHu zzcfFTkWiCsXPLHL0mz7g+`2e2$9jx=4@%2;WkU(S7>FjLAyzR#N8Udhe+DQLB*Otl zJGO66=~uz;a;hc*DM8MO#Z)=?;n=j&LVyKG$ZXkLTE84l&Y#KzwHq0a5W4z z-*bHf!J+T2c_tCt`Nc(Ka>7E4i79}jB*^chzXCCIWe+-+&o{}bs5012y!=*c?~;eX zF{IBLx$Zb9-|QZFZ&Vf28Ni}UN$TbXMQ1d&vt&JMFxo4=d2XQlrjR2Gi{t0dP#`ky zd>h3nYB&3Z*bWv&1j0nvcx3vkS{L^Jq(jw2Un=;Dpy`fMOus(o-t=-_Hfc1=On?H1 z58ND`g{w0>EMF0MpMvBWes#{yQv>X^O`t%d8F;peoGa&&L2E1jmstvP75rUZ!009gk%{rLnSCtVz0(Y4dbDZnT z%SuZnKU~Wa+G{=Zn}^xtu=h3=BStR|tILOrWB`Y9n>QcRbj#A!bxVjWDCjWaw=3_z zdbO+7Qm^!ezl4!d+}oo5-rm#AN*Wr0Ko8%)Z>g@(T1MYufpUuyf$Jf}{_|(-kTj+HqE)jfAlEy6lwO}&u&&a==d(>Hh6iuG^HA}nS0 zXkEOusGRf2j#i)DIzV(k?u8pAgVpTF4N~A1MrIhlD^2+H>0a5JqsV24{8fK|BUC<` z{%*MGa}92%u18y$U`>9?h33p_yL;~MPR0MI-f}vO$dN-Q4&k3K&3ZK?T~6K%w-JE< zoS%DAe>SNgzQKUeC@LrGmxlUq-Dx7F>-50R2jyI(HIIrtJ^YA#SaoSJz_d zI=6OV6m$}ceYU`6LU8Ggxz>7v86-YMq$tN~W|?)v?V+Wrx}TPo5AO4ll@&mDe987w zDEfI%omzt(5HW{qxZPov3OCnQS4usZ_lbYkNxA-06MRRGus_X@(1QULR{Cp>k}af; z1A)eSo3{|EdcHQN!iRW&;`hbDvkxJVicyMHi@9{z*< z_WX3+nAHfmoU}A}nGvz-yUF&+M*bg?%(_3{-y zhsj^NH$uoha75g8)?TMIV~$v`Bo?bo7aL;&`?{S6Z$te7`_XiW01tb6N5yN8jU3!S z80}fTco<;EjX)IopDThgLQv*rm|8NIs*-_T4G7V67f>wUq3M_mTQbboAOb{r_ZvxhK#lj%LF=PKGM zLd?3;oo#V8vCz?`_s5tOaoMC_79A6G%WFv|Vw*J-)YLT93{q7ABrVNIA&9joO`q3V zT8NsE6ry)@9QM#))Mq_hvvPBSD8k$?)!Dp^(Tt741zJ+!T(joU6rA+etHf9=lTxbD z4-$g$%J}HzwItYql+@2A}pagC#$ksd-QVNOy{;5^0t*NA$%pxo=HIAR zM}JK`*AUfdjLY@orgVR4VVXuDoF@s@s<-S35?z^Cnez)4gFN8(CHLA_OpHQCs^>CI zKv0w4iiti3elU-xFfY$(EgI$obVR{Px4+5l<+il0Csa3hkrs+2SLayEOrj*y$)TBK zP>M@!+1>ee0?}Qu^51qa(x0*%fa2@EZCzyD+M-IMsiT7Z;`E=)4*B`ToTGOM&g)I+ zfPC87v&>@S&iL&~`n%CGwg^cg*Mw5^Q}Dk)er7R0kByf%Zf|+ogJF%m9E8wqZvV%P z(tAFe$v_8&;lSYSWhV8pljC$n%=;9*LTr0d+^)Ra;zZ^*;G*qLEFjMA}RwT~j( zh8b=`eqIYve~{3m7A?Qq~}@`s~nk zOo6~1?JUIC-=@Q>2>}{x2PDBTL_sZcBoHa*{Rl?IKvBKP{{T@n>*QB7e+jZDkHn7eX@=3l@ivb2BDQ8N6dsjaP*8Y_OuOkkwG1h;!03c2A@qW zF7}4^7l}ZN^I5mv>3PCyPsjUprhf}zDZRh^KEN)@=3I!Q&syBY$tv;Js)IcqK|I@7 z3=9pm?MBm~Yk-)%q_m{8R4(vLa(4(|{Rdx>a83_udY zYy)8XkoBQ43EjyO(NVHE~+`f`HXQxS<&Q{+fl9Dv8*j zW23-e0c)ub#{)m??d!`3&d04n-FT%JzRqJlS4l}{e^69d=-(;U!X0me2I!QM%F^b| zM_w^B5ic!2esbEnLqD}ynoMGA2^k?tAt0n^tUVWL!B=~c$?5X+DSz|{%<;o!Oq%OO z?&ae%gGlCb^@8)Q2-rrsc8)_k&t?KhrHNKlT%2@blTC^nN>7_}xwnx-@S^buD&jFr?2Ia@=*B&n@2{)to*~Z!Ag5Pe(ye_02 zS8$^Efl)M0BU_#n1c3pC)u<7C)xe+`yn88n>eSTJZT3C=Q!MU|BqTQib2MWU6IEK~ z48!XN0ZP9&+R=>%ugfG|Feo~*WOec1L}z)gbEqWlC+A9-3BD{l;xf=^L>Zbf)R<{1 zVHor(8AWbr5mbM&pee3L#ZJx`_udLnaQ#}6)0^k4VrcQ7)Mk2BB{S+*x<;=I!(+blGr7~<+(v&*iwnvo4||EgX~H#k(^=4)DyZzC zh3CyUVk=l(#wX^ilNkNQS>|TaElV~tabvhzPNfpon#GA*kAfgFgYs<9l1TNHTYe)@ zhY_*xifyF0;%O_AjaxD5ek~Kc_KgaB-NVD2d!$*tEAAT33z;qpR9}m72=|ac@Wph5 z0KGdt9}9|f38w-oFrCx=)hnYE`AvZzA|p#~C-c3^eKZA23%G00o`tiO_uGBSko#p? zzQo#|WL<8c9waAof8tw}sD(9c2X2}Dgx>Pgr`L`9=IjyQ{?q@IagKq(R3Zi%p|cZU zzM}QN_H|2qNJ|Ocv9vZs&4c`(RqxBtZp7n+pHcWz(XY=^tHGFw{HCfqr(A3=b8^zOMOMVs!q;nw~O zf=HMF1QGhk2PeKFU*f4bHe!j5ohQ~$r_~MPcuv>3{_9b7j3T!6p8?zvgndoVInx|k z`}$nyfFax3uah-9H6c42t?pZwotb|3J;lpQFGqcFX4~2SKnr=uHPFDIM@xIe2L=DH zBu%ww*<~B!>;P2a1r;YkNCj`(AB<*kbj;yYu~bPEto4{J=W(U^v8ENUfuIpxA=lNg z-ZzOYk4unRM^f+9<0&S3v&b3v12(sKxc6_Zo?7RIc9crIEz=>@4shPM(7;14wspt; zP~}*33QOQHuI#y#7E#PXQVj9Beo5?oXhz?dG(H<#vSH`WMJTvdx}KaYTyt1bV@J(2 z-F8;n$w^5k+`EKZ%Hmdzu3`qYw>4qhX4HS-E}R3v58o~Zf_jTnOOJ_okByg+*RXyC z_C{~-JNyB#;^0hahc*KNUivEVRwB-3Z2lNN+%H1*vdz%1WZzi`BFR~3w_gPINbzLI z28^Nh(ln`^TZxi+InY@c@1|bSht5m<*^=1&O>`4NEazBAanC>pRxN9`Iy2~3x$F2# zXF!k*V@bNDh2mmmJmQWqL0~GI*aFrbF=wabC9RhU38drXc7}7@|pHu`&-;aCj7ckLK zQ)>Yafv(omQw~QDkK@EkQfSG-E0Q85>q9Fd+9rS9X*hb+Zf)F+KG(t~pkfwI{h+EJ z+dZE9PfV0*>W!KZ#`&nYm|9WZz$)2c*7SG_#qB$HAfX;X)CVN|q+eN{3|Q&8H(GLJ&ayNNg=TuZBa+y+KLYaj8a9o!L$raB4?XRoh`n zTV9J3ge)Hkxvo|gA<|2oG=%_a>iS1q7>fda$m-@3yl>DO&k*e)yRoBChmd|ZajQ=)0g6k^mKd|5s*Tf_q}Q`P?}$)0w%qjqPxK$9o7ctgvy3>VU+M^ z7+MN-OJ4ODHaX_%E38iR^rxo0S0o>-30td=4hwe3Q12`-c}_#9c6qsL9>6)U?ZOFP zD(z>w{}j1F50gylod%@sH*LHmvNZBZFQj4L-oB7CAF8UFvuI z>?VTe?~j{Bq1$F*`5YZ}dA((_8p1**2u5_hd$+0(30*FsNaoD_UF*HaKXqWB2ma?> zD*w6_N{j5cnU!T{4H5a%-@o72)?(;F=(~6CSR{6pxKB+?Sy*F9HnEUeyYXue-Kd#0 z3YOjS?J6$anaW3Vxe_V8Fvz^NzoxKo_|7Im7Sp;{rL<-r?Fht>FbPp0jS$6C`yT(m zxS>W6+=?nnN}BTWnEwE?O20{)4dVSkb>6|1|By)t;d zikFCW`)D^`x{bn5QhFNg9gXm{eIpqm zi)?)mxy|dmVz(xD##kQq0ipZ1hs0KE^uDc*7PPgB^{HBs)jrq>WNb>jvzk{J8PZ!Okt zI;YoA`7eo~wB+4>HTN{Ik%Dr*jc*f$RvhVr9%Km5zWea$Q)hj&)!ngOFvv_o6$A-F z;2AHd5ZnE{y7S1fmDLAt?!YW_)#TqGWVn<_!^mMOMAU8z0Abc#GUU!$ji{2st`vJl zvAb&^KMfzHCiZ}{0sB29EG{(Yz*xP@Dx1)uT*KcRcY$L!NGKSzU$X7DymBFpUZ!|i4~V_Z#<_`-FIaKZqa`- zK>4;0P-VbB3~M+N4uX*a&lX}Y-=Z!rp8|@aQ5_PBAHa1*>@o}Kfs**8G&ZTfDmmdE z+5c?ks7ZL|+hY*0M-Ca(+kh7cEPutpKlGjFQV0dJ!3?982@j$HXK^ z?$IXeagh)blk*8CucV+NV!JC%M&*paudf0D{LwiNP{L}-E$ZeaD0ZaX{XIVc%p~_< zxa?0zL67hCm+pg?T5PbiMm<3yoPteVolGSC>?62G@aI`Of3&c3Fi~j)>eh-`yix()^1%F_+MTm?`GcHcT-57 zLf$Y)>A{uf>Wzm7-oCP`&vu+KNKZ_xlNcPyJH$1_hX|n|BF)I5c9VPiKbm-=MuoUZ z-d9~&xlul-B&713=|I8J_8k=KLk-PI-x9As$f^9_P8F>{U9lLdtFJ+KWnEgk0D)O- z1AW(@nUI4nP?MqXg3K(_LUV|2 zY}ym>XyoMAl9oSAH9!Tbq9S?WLY5FsuIh1L#4#Kj9U!j@MN{&>r)Kg?-|U))4}O=* z;4C$6{=gdGwkUu7h7VfXFM04ng z!vK%dF{mBeub+9T@qtFX{;i)-)!$NAqrZJ|)TRCyn5AZ+6pX&UWy zhIpHg9y90!o7;`6py!H>jm_^Zy*?z4Jb=&qPTAB9{3FOw5hssV4hRTnJ>jVd;2$w4 zpe_^9Ij?of%E12y?#@`mRpBB`I)%mX(;z>sZ5Mz%XBzSDezxhw->39Qy^og_)J!|Y z=PeTg?hy!A0>&~iXSRT4LnUU+3ahH+L|B46hl5TETY$W9eAs1d&AS37e7TXj5t=$l zv3-~LABTmA!|tjOOiFru*WuOXdAPWlaL*gJ-yq!uC=jQBG< zKRwA_wEk*;L~v#^(3|6M6+a0b0n`~5z#Sn?;PAN`t%wwv4y#sU%*Xvw z;?4j={y`Vae0rf%0fLAi^nK3@{jvQ1o-wD}qb>OM(*}Q~wq`gKTId1XgWTL)9u;q< z#l7cV0BN8yn|qpzG3Xd#7yz%(8f867Ynk_a(P1%Y6>Nfni`_a4Zx#1pBJ|p1xkQM~ zZxXsX$f6uOQ@=RV>A0NyrD^W7On~^{0y!bbZ+8>9jImu450(@+(RZ-USa~>uE%?j= zF?S1_T!*NhY^HCMFwgu@?C!BV1;>fo=WOOB0O}?t-_fMQVBT*~cXwX1BE2$5gMPW9 zd$q%?F0bkhDYj-9ImR1 z*PJ;7F-atM&=)|PL`b|VgJL<@KXLI;zj{VK*nG;iIu!b;rhIKNYqxC#Gsb;K$C0y- zm#oOezks2_`a9j`^*?U)E9uv*;xk8Q(m_`-u~xIqfw4KWK@%50=dt&WD7J5@b1xH)I$OH>GbYz+O_ zB*nHt6shJ0Lq%JeUUSkCU(gVoXV**cpi=7)`;`8l|(+O-QVrq^DV zt?OeQ)>Z~90_03P4)_NOJ1$IanCloO+Q3V{Y5mjaRHY-~g9^0iXJolB-SxR_u9I2F z=p7oc9>Kd|$?%PzQqR;{>kDv)o?$8QtoPcifUEpqj95BV5%;Y7*vSFhlMVJ`ovNJf@(<|cvA^7+GNt=I-c z#tFgchuJ&#_@27B9ARaJlfoQS?h9s5&ej5lB}hsbOs`zki%W#B?ET_pjeIpDJ6LY3i-a z?swe%=BGVTWG--Fsx_D>2C^9!g`ETSBevwaLZ>xQfl$6mCBlk)5}GgFC7>AiRenuv z*@*Ge&=xqIa9XvN^n6N1&)1#kq=bn(T`ViaoZ(gLj)gzp_L10#tyBGCX%xdUW3-eezZ?}%}L zX#bhe9D%I}M%Lh&CyQ2 zjSHyZ5<;7k96pEAbm!qqo40PIV3B66gI}Xyc~Xky!quxU>Qe>Ei?PJ-4Dh|b!>PiN zm(Paj=s|L0yE;Qdm$YoJbdNe1^^*5#AWl z2&4h+aO{XbLl`8i^$#HY!RgZr6>KuhAj!)liX8n&E#%?ukxx$D)zP`kfM5X)%=HGs zf{`HpHntaBxRkn^7^G;^zc>r#kFh*<`bFx0mLwHtWd< zwkOe@5-)IyspMc;Sz=pW?%#Kcx7KOW+p(-H(@qy zol;FZD@+Su)N5b5GXMIQsx@TBNiQ2D2B?`uk88T^6+f<;bTF$zHJy}U%p|PZB5Ky< zT&6P=nz>;U+0S_`dHGtdRt!#n)J0!NP_QMX5Z73H36|*yERt%A{X@eQtP1ek7MwrN zZ~dErmiDy4+h!f!`X-?yegfe@<&e<$*|TSBpQ^=^2GO^Yp&EeA9{P=);vk$znr(DO zqceM%nN9uIDG7Kcj9b}#evm{wwN~Xfdhy7IyQ6mOT+`}J-vpe}xK(HtGs1#|vAbI` zR!~xkKXU{RqbEjsnidD^@FyK{Y+DHfU+|qnDN_q;jkKLHwveV2hpih5P9c{FJ|Fc_ zWOuct8~UX|yPBF&fj_WtT&sTol(1# z>gMX2-o%P5BV)U*7)-xXuDyCl^C~2vb^{;WMnR>_NG+V!yZ#x|`$2CS~n~b*Fb9i0Ij7 zEm(Yfg>SN%zLE{8$={c}KHsDfw|V%`i$fEBm<8ETh=XK{UT2DAQQ)7@^ z%AM_j#Pf+w0(^XFfrbRx+b6JShhgAR=SnBn`;?dnZUh0yL=0f58=e7Eh|=Vgg7-W3 zOWExbpKMc}J|%<7YvIOCdQOg*oc0_pa~>X+3wJKM?mtl!>_~6YK`YKK{AW{0#TTF< zHN8%Q2m*s7DK9_2UGrJ$W}FVOEBE6PK&jyg2f2L(sa@Bv?*wP#?v#}4fuDx*%U9w{ zF7L5lYU!7v8%!0$Bt0w3%Xf>@!UNgYr`DHTcaM)#IgXu^GuL(|Mt6s^e018+%cfB% zXGy?4yk_F${?fBhKiPxQ)D!GQlIo^B1O=u?VSzOuUu%0JG81`Z-JMx z5b%!hlM5(&8xuBG3GNAmrGtP8AS5I5?N$ck(C7J!TOdR9l zq9iAOCuD6>{>Yxg#{i>8sG`jwJNE4zcAU%YY!2*zY2NyG?-4ac|Rg4W;yWeBdd`>O! zBCGd;oy`~6WLnx0&p2{h${7|S2tJXtGKKdKzp<(|fm?${IWErr-$t&h+Fb?c5AeX( zX);NWK;YlMShPuk*`}yn=}d4z#%%ogC)=r*nS>vjhlC$7q%OSQE&jQ?IRDV0zLCzc z)=JH-`ezThitnVO(>KjV+3>l9b7H&eZ8Tk&hJ*0_PG$xM#B4d(+e5L2c*+?_8;r35 zf(sCThHUU9Ho|dE&eT+Zxz(BrWMr#AVG&$h1zGMI1)6@LcqQ_G?ZK=>^(gYR>=)%#nRb{8(A2)s;mj5lKaHqOp_#L zzlAn9PX9cGqxMxr1tT9n-HwO3R*b4SicvL3(2C)QG?m#Qx2G-wY=$urKf;4FKw>lW!`AUlX72&f?LHAB6hnXWfVLa8GdD&mfubP_N_@a zC}+CcEr&ti&-QPB1Uj-%TwAMD5D2Q}4W!KEqAMk>(>iWq&Kl~`Q&vt?2<=dl6eG77j^fBOgcvP>}}-a zl~1^qmCHvU7?sl4;(i;K?Ril&FigR3n_5TmJ=Mk2la-q2O}e&OL$WQ9_ho`bWTTPx3MQm1>O zhfT|ArLC`m+N7Cx`q9=ljI$}~SsyDG_c~R#yx`kQcNv+LQg?&aUT%!{qdqX-G(9+%KV6%(hqF!o1R=C_eKfsg<2TJ*QH`W?-+RlXe2*+w z%RE@?$S)OMv4mGC1l4pm*oyK_r;$@tS&_1YbD26S&VYl^YTq<5L8Mc|@C>HjL182< zD~nDbPyEBZW^>Heg0PBfjwFc@6)jM5Lum#bBVa}NIZS8XG#iQ9P7eU0Hb*Iq!v%(P z7?|&2zXiGNMQ`-CwdrL6c22o%TXH|eW>k~xWo6AX17RramZf;UwLMT_^Bl5n()7kx z)6=;^?6Ro3c!ZTInD<-s#f^lVlMI{k%5+*%bj#5#RoqS0g)9qQ4QStr@84BnnE?5( z=2tKwn&Di{p)&?@H%%;%ra2?EU zL{|D_==mpV`Fuz|hTUfy%b|btHl$fF>%9%BT0EMMEaInbZX^jhA0HGG4~82dGoL25 z3mrXrF<1P7l4+x@wYrS_Vz zCfVS&srep>NEr)DcTEot?u1T8Yjhlh0TZKb;}}z(7LL%%(=c)%HV=X@s5GFw3OaLN zoV=#GdVDB0F+safD_Su_n4h2D>gr3cJEXuqTB|NGKVZh6k2Fru=P-~2oKulfsk_WvDTMRd9f>&Be=iVE1kcBZh^ z@>q|s3tCrxh(n4B(jqw3z?%zh`jqEdY5ttafgb?H_ ziAd|jxscn_!ACD+Vq#J{n2)5^j~~VVY2_b%_2LEniJQ)8?HvwwxUp_0=yqT!Vv`a* zeCb!)mCMr7^TwI}JIEyNgl)pyqUi(5osYyY7#uQ?jD3LP4jgEUAjP8pFaLUOJOp|Z67sk=$Jg7^UnsS)?pGtIC7FG z4%$LtD9&bWUwV3G{=69C@BgrzFxKBMuu{m(Z)joyP?(*IYmfN!aMM_@9dXcp1xo}b zFT-?FSn?FYlG`e)fBkB!?jmxuNo%XHd6)f>ks)&baXQ`5ke$1kjh9~l27}BS=StP` zw^CsGh-Nq=^rK6hQDex76pS6dczk*yg%Q(XJV4^%EWmJ;a;R+ zn<5JQS?4S)5CHb306||*KCjQyc9&&hu|LcfH9l}1r%>Y?rk!I6NUNn0r=vH}6Z_GT z?@Dv`$>$BH9~cX8YY8XcbEm$~G&PMcAR ztQPo|pIP3wneo$bW9HV}w@{4fg*;x9$$HnUvrC+Pq(HB$cg%E<(u~Zz>_`Pu!xbNX z%D2vxfe!i%TsLOayDlY=kE1oHz0IK(pOMecb?ORYgW^OkmSRBObtu$)d>*VWKg`z( z2@WRq^h{wu=Fec!h^T4O#B){Ke67yvY8n_#h~hb7m>rKj6|ym9&eKJ7Xh7UA-MM)) zG#6RW)3y$f523wD^mZ#G;}_r@8V<63ksxPVI5(N1d!8=p1pUjZ;0M+_D-X?0?h@x~ zVSEsNy>~KUs<4l5l|$)|ab~mGP23C(?*2;=6|lRaA`q;TkE+ASkl2PHs=nCAVc=&s zlabll+2!WGCMJRhM12Hb9hx46SC@JaT@Xiq-DGA-a=poF6}_T`42+|hjBB=-soTv>o60Ef}B z5DfGnCVaV}qoswJ-6_06OEvm@z8yK4(3tO}7SSnwgyoKe=~=OZ+X(G%8pfFa+rG!3 zZf^GwfC1<;T8pY5>;F>=aO3ua2kCrK`I(t>&-NN-V#t;3_HhtgP|F4_Z$5Re`e3?R zyMdmJOhqiP4D*;#Cy(AQzJ2JNfJP79Y` z%z5&i`}UQFp*+v>Yin)I43Ir~Scdn{KKd53slIPO{q#G8TNksJYa}Vv;!Vwx3a|E7 zZ_GWkH)ktBFR6DY8l$`D^g_;BTq3`I<3={pb7s}xCv6ckd@KIpvXoS7G7dYOJ&146 zvOm)V&W%E0`>Zif$3HH-8wl+oTmlJjynqJ6Y1FFDC;#3$90O*NVqhxN6hw(KO#2o6 z>8mXXiHV3&_o>Z=(P_Th&FO3ILE!o+MUE>($Dv~q62)F(D`hu(b5dEo2kTU{^s5bk z0-P9RB-}j3z;<4Vofach-ecAr77vV|Ku`2f?8l@AV7I4keR09$P7F6bAZ&wC2PwVp z$N3f5X-Q@x$e2k9=7ye9v6W%%(s4tb>-7iZAE@l><&Akj1@op0bD-1E(km7M^lLELcEvHFoLxtNfBhwMD zt(0H{@rp}83skg|R#dd``}be=m=Wf^S3gwUobu=PSrW;gFXJ>D4SQJhH zH4_9~Oc%Xu;1Xz`iq)-nBndelTHW0gkY#nbY}>PC3p2Oscyp`i@Kq_yU0Cg_;Ndr2 zy}4?S0~pX<;p*~K^`lLi8eD|XfaHJGKM{-+WLhnjj-==`iQL-GZP)Uw~Wd1Jft9;v(sQCU8HbOTREq0 zb4rb;nB(GT=9JYaM|pWHR(->zJ^TDHt>RAbL)K5G+L^Qn_jW|9Bl&7SDO%3g4wV_B z-3u%=<=rh%YOgm=MdHo5a}GTDmS`{aarFM}6jYQWcTiBErr6Jad@`f8P4gfjH23~> zXHNuFAogVF*sk@;C&(5GYv&AGYNj^3@tf8vh%a3YJoB6ps~hW#G$V!dVsie+F!!zN zH9Efa4df(33=J3IfBHxA+BESwMbw71gOk*Z9EFxwta~m==;|gWC57T7f3?5HsqKtw zW@awLXGMERmlZ0NYc*6qp`x8{KA-d#rnHkyoe-Lr}59oPSo1D^KgF^Gt%>TT|X)Xd>yO{7#`*sZJuiIU<`@Z zb{hRtCMmjn;*+*mChZPH!kr|2)dS|+Q&a24@-s8Sb;he4eP=zLc7RVcw)F#ARLtyn zW;A4Ne@k3UHz8!iU6o@q9|LApeQ~yEZEPlg+o%@6|a_zb(0RcYL!(Fp( zOhZ3e@TGby#|tj>1*lLlwx9~}3_0^z)fWBaojcALSdI|k=0c}JK&&Hwv&JAcfFuf> z4HjT(j9k7}p>DY^q|m+%znTA3fxZdHwlK+I~&OJh}*eMlF7?xKT^mb46;xz+E^SEF2ulMPvkn zkT=9j->&rL|6=YvqoP`~b>UJJ5G5E81qCsoBA}q;pr|N8P?VeuARtk41~*_vR0Kql zBoPo$at0-dWDvAwBr-f`F1V|4Fss%llOwcdBm`6MrgY#5k$ zv7Mu!$r`NBO_@{?PLw0uSUxF-J0*6pM(v5Qv^C1#>=|0sJ;!Q?R+X!ZI5~`V7NQ2BkB--*7k}ooG(N*@H~L2F(l;Yok*N!I3qAIu)P1$Z zUkWWHkCys)taNkzImM4b1+ZHFPn#LGT6;^&X`o$hbl}AxoiicD3`3T}-TrU4*f}D7 z*Kss0zejc(i^G*)UA5QM>`PhE;@EJ;kS)O!2>hF*Y*^Eyzf+`sf7zcGy}bTn-hDE_ z0j_Q2aMA9vN1?bkcp-RoDN;5PT}804Z9=k+8eDE#4bLG4u!R+?)$7B7U|K;~Bob&d zzj)D;*@)L~3pF)O^kz^Cz6`KV{l|dJaPrbjvk7dMx2LPanPye>u$PKjN+F1Taq8(c zciCnqv0hSb@$i75^~(dpLy>awHE{5y_V6gXfZIs+pW`rIWp^eKm;^ccU4Yv6$%co9 zeU>+~0*?4{!_=lX2uA7xJM^vURosB48Nq`8bV6ux6D2K!_#3+-6GwPjUT)R!GQAC_+a#zj*y%ps!n* zRSyY_v^G3ShmQS|<^{)Ut=G@&H8a;xg4!NDM&OEwcBB^!l_M{2>o)1$C(~Q>j zH^@rM1^E5X-P$VH5BO??Gvr!$DYehVA42&9BqS^zi2yIBS<~M~ED$a^2{Sv4?1{8C z7S@8>o+9rpD$elt-%{4o(>rs@!-e>PMb=7V0iD?Kd=oFs%D{E-MiWTo-W5b{7u5o6~ z3YOhaRh>*RDn1^(9xk8xJ@2;-e`E$7Xm=DXlR(1)p+ji*7#~)7~KA$sCCEdAB1_DVCQfm)(x6)+4$@MMWzNs^A)+ zANdEY;n7#WU!uJLyOyRL7$V^igfW-w%ud`@GgJ@1-1rbRUT{_pn=!i?3k&Oc6-~{C zst|N1K6v*l%I0zyLc~=L3>rcC{Aoi6mWN~q5X!=dXj25VOWGfn4QQw%e}X}j{SBrd z?gET+N6OjuouRy{*RD+F_2tS`qb`8y=5r%?Sd%0%HG!f9K9DUbM*f7Y0|B-`=f{K; z_$ybcAeaPLa@%%;R)jpP#7bATLCuHUr5}ny!I-KMs!ht1a2fy^q1hSawGJyyCnqzm z_yn%pk4KJB?mdy0BAX**cU=o!0x`bN?tj7A6#D4qBWDFavvW_`Zr1ZUI^9q^HXFdr z2BKj-drNF~usgjjFRyB6S1JN?4tNwSiX3w|d7$funn|}|oA9`|k|BRf!;h&#`_WCT z?>}np)n68-Nj-SEh26JQ;h6V1L5q(sR+d{e5RG{O`wXU%814D6-?d+gWP6xI2iUPrlM z=-IP3zqOToKyfJLKbhAqkDd{;1G-zd`@y=S8M1{BEO@~*L#R;Fsy}EgM_W5A#liKh zBH*Z~J+E28qlS~W_dlQ>q~F=Im##`#K>?XNb}LILG1%kOw~7}$-_2v*%zMXzjAU^; zj)o|=1H*HAgCaRK1T$~uKd#rzy!Y#?$7TlO#^Xrg4qoc!daSRH8@&)Peuoq%)z|@v zXN0z=RD>qD7-<-o(WbV9T|c(ho)A^uqGAb#IQz0@LU>=9pUKQ9SEkL?$m$;k$-vkC zTA1-*6yUzul=P_JytOX?7xuIxc`(;3OkVAKdk!?E!xJmifF5C7e0wBEsAnXzl?Z_x z(eC2L#*ZV<`~O;l@IQahn3*+-*LT+}7%v;?>tDY2*;9UZRix+sQ$P6j<+WbG|5s1s zyjDfPFXlz2<09~|Bww!77A~bD3m&_95H{RjebE~n=@_&@9o)o#IOD?;b|sqCaZjz` z2C!k>>7rMb$wEUR6++2)?!tv`>vj#Hd!0>>w_jYH@CB)eXwyw#MC-eSL<)F>HtLMh z>s0&MxQi@C(J|K^JZPJ#Iydn8HTnh)Ca{D3wVVT2$BTWT5U*lc8S7pg6`T0=kQKrn zDu99&5-t>^cclWTxmm;(KhoVQIN;eLYMO!dx);730n566e zxshW9L2N3isGy;tA&eDbd{a!?SCDhtp70FQn#=I+{d1pl%$l@joIZH4AcYGKvDWi< zdn-JH9Tk7|&UT3{v09bAVKHR+kvbY)uPHQ{n(Mgy>tXZz%l4f^jey`7h;UZ*vVUZK z^+yRm{^U7!WZja3j{cDodCz{{gs1a^WpF-$M9$Mt*GOd z5-)B6_QLg~s@8^W9e{e_cOn}s+N$Y_Z4AYpB2XSYSt3y0FdbBKXAr*t z$qY{)&4$HS_uydjz#$V8lQm-3-x`Og^z_CIE<7r6AR-1C#Kp5r$7orKW~&_(gH7Ps zFVg@5Dp!|tCCz&U!-)GyB4xuIMv1C5nNksNd30rAG6CmOc&6eC$_DVWx}kuvnXXg9 zcZ|P&OpTd|iAhN3`;JmELZyYs7BF_I^#u9DO0#^B z{{D-uY}xm^9=ryHa8TFi3oNc`uP9jlp=yx>S$3n7H1GMAZRk+M(V5b`&}OTP44{p{ z4xOzrzUN{F2i^`265AN5LT9?y6_jxZVD#-_^5`>Vd=k-u2rkfCvzrB>9Gh@yb1vBl zz#H(7ywr^N4kEZyho`h^0bQjRo1A94Sz&v-GyWEYk<3$0X!_-JcZNzvdfD3+KHqB~ zCkDg|TU|_jznv=aa5X0i=Jo#meTfOQa>QyHF+odCBtWVpVm_#*W{+JJzGg}FYGAtP za4rB{pIM)!L!Ma=jv;OtpXIyB3$wYa*)VA{!KNFpk@@qkZp^(EYyv@71>*EV_>qv^97swR< z8|E;4bJLi0n{6)`9oLW5;U^)idcc~3rUsH84%MV@K`W@H={gbTVwC78cN-=Shp*kf z9ky0h9@+)ANkpZ)>9MeC<(1)79o@=|%ojo82G+D0G`hUQab*%=bYHb15^~uA_f97# z-|>pNSbkf{X5cm0yqPh1tFJ(;q1kmK|2`xRm^r&rocMJ_BJ3(`-HRCY|nQ!MuwXFG{b=8TR@O zLt{YCa5VF|IrH`GWDyKG(}pWv9=IsAPBW~!Z+anRFyA_8s(lY5Bjb;*_?AH+TMr(f z3$bRXS(dck1;YZrzrJh)lA^O|Q}*K2J!{t1U{ul3(Nut@%_*~cO1a|qij91T7Ir^1 z>7cP#Un~?a8{=KlEiy2ZNq4J5&S@K1d^~nOqVwOn%|zKOg49Fw1P&%n!oC3Raya&A zZd0x9x4=U8>({SV{sD`<=;(k4$>a{NudAzr7eUJM@;wp#ea|eOW_W#EaXAh296ER6 zM!g9XUWZx8Ln853;S+!@prWW2kpN$)-7$HnH*fh?$T9b8Wo7(u**qYSEw{-tQZ-+` zyzfe$p7~@%F23GhS}HU&Y&iYHF}D*=xh;~O`zL31ieG2g+0-bvT<%{!J*_#j%wQAx z?Pk86P;b4uru=?4xY9zLRME!*2hD%O)DjQ*lvn_G)4JVJi4xrNOavU2u7EG3*o3uy zXi2AOjj{EIvUN&i!d4m?*db%%FYRr;d%I6xS8SR*xHNq&(v7a|*~mI97oY9&o?-n4 zQ#DEB4~PM#EsVIyH*A0zc4{{V!+#+dU`<0uc;pCybbv)29!Mnl!k;C{5gCAuL^IJM zeb~+V49uce;tC^7nba|OV08;Ls9uKw#y20`9lHOji2#y}2NMKYLXgi|fI-U2@~AVO zn%9oGdtiyyfhTuJcq7K6{q#F|ZNBdSHcxKZ-K~YmhL&+VvzX2k-`rek5%txf#Du2| z%l5OfHe+9ccu#tJ9_T5@>(~e}TF9=IBHy;68mrdhXX9f_I4@Y{r*>_@y@qetXqbg}?cUx0ViO6Xr=M{eP++s5bBo4Cke&`pO;8V@YR+dZ{jrWzbwS3V+q;y- z@inlz=yhZt86Vu>_4mwOGPAr|{bF&HEgNMaM`LoC99&L;XD9^>+jEu4$RV|mx{64Xs zyR%fe$`4e8)Ui`meHwJ8KcGdQ{ttL$uFgIDTFS0F*|R-H@$^#F_p!GvEz5GEDsKW? z?Z-MU^6)H+i>qG))ywo`=15-iKCGuiAoOSOLJ$^1F_VRjtgK9i!itjQlDQ>VM6E7& zbtWkZ`f++@G11>Ei*-kj{>p!l9N-(5o|7{-Svg6|d|VKy*GavaaFx+qlgb5i6w6P| zEwK%f0=Jsawn|S<$Y#wn=?>OwwImOA#%Vw+gYLl2-TgElFRvoBK|X78)?=K;U%z{& z!odLEI@m)afitk2yj9S-8g!YDo4e+7c_EMTqiaH#tYB_sNP6KaU^N>Zev?4Ce zECS6{zXIAT7fCN;)Ry0tk=W?aqIL{ldmY2ZxwVIrKQd_l8ezRUDiWQ>^!l(cuV4r6 z`4TpFI^54FF?QtSd|6&N&FEp49#E%@0lUC1aaxi~aUVT%8@sT2lkvw`OOum$ZD9ca zW|6gq<^Lh9!-WG-8d#UhcB5^b=Dl~Nq%Z`BZk%jkYSU9s7PHmm@u;YkW8Rqt8%TLC ziS{Qif0w_%Ij@Q6LX9-O{&68kGP1$%r3TQAR0gk_71Ow<&h~BGT$DR^>x_0dlQf3W z_t#$M^;#oqZspnTZY^gHuM*T^k#<83eMn}%d2@~JdrqetH2QR_f$P5_gM$#f!HKk% zg_-6sr)hR;C2A1o2u_?!@!U+_{lG+BKqjFQ&zGvdx`UQsT$iU6@kCPgxuon$br;0# z?N0i*MKGY7ABZV2$zoMH(jw18B0U!;Zn&Tjj4!qH^^4xWZ+0Gkdeu_|+G#<(A*LM` zm^c))nO9bet`uy|X`<8xPV8@q@)N^q&`<^Q^R;9^na zd#6OieA`YMrft$9N-~5#>p(^kfU-X9navOoMF-bicUQ0 zI{w!b=xM|sq2V!Mah!Td*9j;ZU4ks=S~4;_#9`FF9rv@y`S}Rx;HbBZceJ&oOuqnE7id?8Lq}e@Nv`+wv-|d7vPrv8xEL2IG%WVw!;LBE;K940p9qY!V{M$vh`14g>PXI?k{F>K5kSNB%&rYD*gyI!WD#@ zZ^#XK6CLN<-URljqMa2*D z2YV`mMGQ#dK;SUp^}|f?VR>r%A+SMqBI@Tno>-gX;3dh*K2Hi!jDZnGTgrWz!~PhQ zLY2E_RE?x%W^V0E_SuES#cDmFu!+plafyeGtD)g*l#k2U#2r8)!W6D=bu8W$fOSzTWT&)ma-6|L_4 zfuEx!DYyPyDSj+V_0*F=e3yNhxm8h54=7>QN;gkCUiQ#4JhixxkxAD(p?EAiW3iqx zZ#TyCH9zi&KSHxS(*!D7yv`!cdI#N0JjItZZGLT(UI#;Q92oj7)&{R=_a3q9r*Q!J zNuhpy#vzDEAPBdQsq8jA4h|L3tDj)>7>SEmG`M^BRn9Nd*G-+B@hL_IqjfQyA2%eo z=WoYUmfpFhE0nB5EYxk+uifU}Wml1=!xE7&8|x&O$q#xSG&alaFLKDp&leP?r;-QCDnW0g z7?Zhdoym^EkaEkGsT7m_v=$QhmC>1@+5_GZ33e+&b}>z`T%p5VzD5osI{ASJbTr6z z07bHMXa2k@O=PNv$y2_ji!6@U8Ey9??h-B(NArBWz40@9{e{TA_51frfRSpIs~OLA z^yuT~&u4~D?k@3IlcLOf)J9H<&gHcx^ZT}xN>g4{QoN%p2K@#l>tuoswT9e|J=@Jo z+iN+2$bN^^FxoQ_$}{CRiwekXjLB5j&4seSx6MC&`5~1XrK6P*mThC z4dNCa(~9a1{{kODoYGyqdg7`m#+;Qt0&M?+`Gpn^9C3ht?sO7iUlNCQ{({I!xtBNZE+QFATOWdQd%jHl-9bC8&YPKS~BZGxKtZ zu$I!n=ZFQ(T1rT$EiK2e**jejCzbA6} zpVc%S-6NR)lI&i5AI)K(`|ULl8rlS7d6}KN=;`-t=jq5<6#oIj0XeB}U=93{)it~; zxHy~Z{4&Vt0N<<+^;#3s<>?9T{;%QT&L*@Me-R9}4t3v|p%S|uKfLjF@eL3(9Au*? zE?S7XF8-+K$&+Y<`X{o%oFdLn?Iup<6S1jIDOSTTkZlU^rtitxM^)Uym|&@2E*K>W zum9~=UKimN970BsVq{eudZEcAw_H+=OTgN=IZ2<;ws^w19gYw=Hvsz(*bT|lhn9h} ztTC%GQYrp5fRV!j>8?JwUToPjsyD4>9xKEU;1V=(v#Y_YT?v91n0$#NX(=n)!0V`` z1+<5l`a##f{(|K4O#nO%mTa)FBy__)sHV17ZA1lkFf^DkG_VN(+W=xu=pjrRZ6Q5I zqycZ9E?U)!PRw6t;OmBg>ji+Lu_ zYCgWbS!i0Ai+zN~kiUl(WN*RH|0YV4dZfA(V@J)@<6-bAZBjhujZqW~1Smh_e0zHC zu;&uI(H)1wKEsr&RiPn5C33s?n;lfyxz4?w3w_qPJi9%tmwWhb8a>#v^6t^idqp2wif@-O8z8{=3%(j5%#9+D<9j~$Z`Qyi_mZI|^ zw4!s#+|${iH_%#DVHLNmH4^F-h47Gl96)9CPULV{^^ca1Po9D)ksKL}R(Ad3 zOe_Z{ufGg;y2o}}GVIC!TwiiuB5c0HmDY{Ok%uFN)urH?atE)HALBOngYf13%J2M* z5VkZ}rW)ZaYC2!>WxX>Uf;sF=Xip2KS`#OB1@81S4S z*hEXw({;4W9fREY;XQaQE=)aX4acT zE}%cmlYrFQNJ&Ry?l^dR-Vg)2VH2Pia;CafM+>Duy z0d@61f4+X5miZ*;5?8^rL4B5S^6%|?V*b{LxVyWrvAjqow&$~X(BJ@Wkk1(G2s16M zaw?_oF#OrjaHQOfNR+qhW4&m}UVfhe07+F>yeOj5A-oruai&fMwGFW`@CfFL>ERF7 zj0X#K<>$xM4b7+c_`t4+zJ3g#t#9B|w7RiHV~LCGiwBu}0=LG6vt@Pr=}ce2ZhUb< zILhl!7=(LlqH5?Qa2BLce9h1QhrU3Wr|3I+p1pfHHqLzMTxdV*h>~e z2KX(Y2!WI$E{ofHVyafrLu8QGg5aNyE;yf)GBb-~2G8P{y3|PbAvZnKf)BwD{P|$H z!KLqIE*Pg_36L$mcEO z=g`Q4?8n3CAx;^?%$TsSd;^Slw7cSuAP>MsQz~o)H|@eF^yrGPmKvd}wStvY>9Z-C zdsBT^^}7)Fl@R-okRvJaZy_hUtxC!}H|=&P!K9@01_nB98cuqTl`5rgadUB{i(j2@ zwT7Pnm(Ysq6x>TMTtItiOPgj8IX2_t^d@`C4y)B@(1QK2l%_=3*ZTVA_TVWR8@iZ_ z+Lzy)__ED~'ThK7-?y?@zzex*40U~6-d#eL2yANeC!w$kk`j95?gNO3E> zg~SCen)TlmoOq1)+38%l;#Yd4!!*LR!>n#A#fJMSD^lz3um5YmyvpyC8h1_$$=Ynm z#N`$K`lVYT$&yXsl5O$1vT{Mfz0KQRO_tbJO!B+btrIC!|w&l}y!+ zv_iNOkx=}7Jt>V}%{WR*PL5!LJ1wQriN`9URZU6s!H(Bx9xRB7S&f8+g@xQSNEUVq z%C~Oa?Tw`3JgXWm!Rd?8AB)MO5@Gi$z2p>w1QmeHk|95ZiAMF6uafzQx}Nw~5hh-n zuav!G%-Q|hNG;wR>rl{eXk<)f&$g9*|DG|Bbrv`t_OMt*F13`Q>3S_F3=%VCS>52; z;Khql-#+{t$OO$x`ClJg4jvggHY9)bDl386DF)u(^)qf+SGB1+wLM2SpM16IO3d>H zRVC|N`Q)qx&penO%KG1_Glv~#S&@PyoP{y9s*hE(t`wOqC@e($DpY&mK12C5f^jK= zRpc=3I82Z>hQ6eCmU}f5!@M&rz7DI)w|mO;qvAxzd~^Gnn=)3413n=g@3p|{%E<9|Sp)M_R@AT-MV4#m>u&*M}M*63BHJE#d3S6pFf z<>v|5Y3^6S6PKDLgOai^Z% zhDlqOI5x9_s_zBgU{?`c#H-%9GefBRNmdiI)Q+dv4Mr1mit(eaWX~evWT*9H`DecN zk9+t}d~kNY$({V;$Enxe8iIC7Qw=AL&bfXq*6oz$YR$Rj&h~MchV;oNj0`1)%SE7_ ztw`D)4c6ZM0Uq|Bna(0~)kTocc z5?X4zwpT}lhZkVxH?oP6vab=>p44!7|Iz+g$SW0#tMgs``-jAoBu9QS-)1U13>({K!x+~8kYZKf5N4UF-G=>%dy7596640mvobD z+a`YNw&P!a1!(NRS>D);3XU)Q*b)Ba@nW&zCWZNYTA#&kstZGx`8<%8i7&Qo$L{`* zpgfXDOz4l&yx)KSPR6bn(2~{op?)*#>yszHxRTF5eDL;J5wEutjDzu*zVfxcQTRkH z$hOC)H)vAfSfBDRL?Y6r>)Et$7rg;*<-7u zB>pJ@8+0kqn$vOea*^96S_m#WnvKmJzTo993PV(5C@I0X#}p0wMob;X;cSNw%fdwk zzJ!Q9PUuGUm1@{{D;=ozY1F!V1))=eW>OQTv0&lG3%3xuhmjT)P=?jinCR)fkw^)4 z8f48QPi&2wVqe$?UvIHcjV|&hC(^{>q2!u~tSDe*gxyh^2ZoZ|(+|jqNbZty{GMcM2H#cQ*-?5@f zzgA-P7i~oxaU~T&+(Hze3FM?rFh9{sH`Bpfd8!MHdieDCzkZ!$J9&roJmj#?_X=T7 z`-{^KCyKf1YPl;eBPA<(hG)BZ!bQ0KhT7~$%PT5&id$H82+T!_QZ|FgN+Q%z<>K znVvhW1urDMhWZcQtT|||gf~Cau02gZ2johM2}C@|hjS9{TNo|HrnW&Refl*0jvZS@ z9Xz^`(KWf|PK-o^dF`>8%CZwPWYF}Nko?Q9#=@TF^)nvs0*+>H;qv21rrKNG*Q~TULaB(R3 zzUI%QQi5~>wYH^HL~5$F$yB?dRy$Mc%xQAOx^KNT9(0?@J=MC(W!dI#@bsyzR`xNi2=4cjzwY4tG!hp!#6(3&Hla%G`&f=nGtSV2 z)?11&eVdt?p;<&_FN)uULDS|-agJ?d_`MZ`g(%&zm%F`&9>SIv6PZXkr9l2_rbFp` z3h~n|(F55zi*#X{TyA4%2f&mA93&qXl+JS|vx5)JM-3kJ%@)J;TMk+LS^Hw!sjieY1ha4qMN^xh!>w<%|W%cc)58-h!h_S%U3W&TZDoD!@xXSu`rUuiT; z`gBC*&K__am@Mfg^=xvSGZ1n?tV)UYQq`LN;#ayqd+&Cd&D(#_VR>A7|dj+V}R&jlSXqCZNgHx6)% zK-+@V|CmXA&6!;>oi253$^_LDtC|}fHaNVv$94!8P}8nI0v#7voRhnNSdb>4P4V(n z^0L63N}zuk#z(lqaE-VVIeN!sc5*V)tj7V4l0`)lLW5JLU$C#AJXsO<)w^%nEFMDJqVOUx+9iPEDaNhGE=)l>qY_8PrT0m)3vqOJMo8sK*ki9O=Gv2ih&8m6nHv?DPTWk`Rj0G8dvdGx3XtTMr;!2AHi6lTY%tEJMM@X&*Nf5ulY z=Rtc@Q-*#mM0;#*dUx;I!DBUI8U61J?GK8MPzNH1>Z);^NZ^jqc06pGs0RGr;xk+{ zZ66B^Ev#W+Ha9?Fygtl=@~GYbhzeSuW$**x2~}&6|q} z34c-0SjYqtH$?d!$HJpTq6#8aJ_8_xyD0OJ0KhG{(NYL)=umwS`MyHT?6=qA2zyB> zyO5JZL#s8LOhAM4k0a?ztIpT-^-SXVEeCEH8;|3;ka>TWuVt+2`QGnucCqaEoMP5grD?yePt19W0vz4@(+5)v~*tZ+Q&?CRo}-LPT9)DSCa%2D*}+0@l; zEf3t(mwnG{= zacGKcASrF-zmZ4%bZ6@)y_a;M>Cw?C;ROfJ|ELNYHB8NmrjBde&|rSf&w7?-Fx>6o8I{PyW{|F zjOB8|vGKTu>We_5wlK_=O1kTGD-}V8eB+fkTgX7sYMP%^7qk8F zWiw3}c-R~vChBzLfg>@x!6G>~T}$+~JbAW9_};Cda=zK8PbaBqc8d3@sxd*knKS=> zt|}y9J6noOkVE-Lm06R<&Y0_hnWhk*P!cWxa`lQzvyDTI46~!N)SGrMemjtl_|uW; z7@iHIE-sJ4!|~5aPhoi&;m@k21hl5a&O`#T9Z3A3Iun*P>TGKZPW7Kdk-yI4N+wO+UEDf4MIF^P)0rwtg>hC4GZ&-e9f z;wI?rh3Da##x(%_5==f|8qL0gs?-N=T0|0IH;j>g9z1l&vJd{&UYPiS*#^;e_Jk>t zO;+Hj1=1JN<&nc=l-kOByJ!pKFa6ceo;?G(v~&insjIn8%R}=U0W8{URRn7}jNK^s z_Of<$QY_nP{`&A+>oa-3>Dg&wRTUh@I(|+~rQ6S1y`0A!M(*=?7u-`Yle7gV4|PS> zwFvpB>(QXz88)XF!A)_K;`6B5yUFOTIN8~sK7XFWokxr~baeb^l~h$1#*0~4;C!51 zueq6;IvJf7c#rfwzXKM=@?BPzO|(9T`okr_w-n-M_o9i3P*BfCSXR?+R)@B+Z-ccz zaGJwj`j9oD9~k_27J0`t5z!46cO0vM)m}HGVkU1=k9CJ@_j^G_22_^cN{W{VWt4=q>NjEB3JjHCc zL>mPO@9Yh3KQk?dtCaV;a#!uoD8EUTo1K`>o_1%j;!=Mz+4)rS{{6O<6<(#9VsJ+` zvy#ic+2`aq12L;Bh;T%SZf*xx*FXqYQA}WOh8JHNJc%KY+05G1)YN9vW(%q2k%=*;bQ;pq_(fJ<9_T{iLkjcP2U{f5x}HBxPq+6yK5jYN{BymQ zv&J*#;UUm#vJcuFQ`2E? zR2B0vXMM20KTP!^hA}uGCYyRE@P*I~qagm15#um+Ha)90e$#_3ySd>iL|CnkJ!El8 zOSpXDf_qXmYQIvRXFxvm&j~8>DJUtyp@>F^WArx#X4`$Ls_;)9a@#axQG=Z$_XXYM z+hHYouPs*|qxKon1=eLd5uUV_g+*-PE?Eh>NlZu=f2x^mV#Rl%qM~{LlAMYO1|2== zeIOUaGj<%Rs`QAB*-^?h>79xlWEPeL%z8aejyqmK)9Kc>ZCrE2k2OQ zcIqlsdo?vTTVB5WcEK*p(=*ZF^UILzRumIYO0;YG(Q_;fF)eWVmO`)=GdCjSsyW)7 zusYHjVq#=;EoQCv;N_+ADEcw~n+7v@Ed**FT6d=XrlkuEV|{tS-WM_;tfNY2G&anQ z?BX|lmztW2mJN>4hzzx}%b@FoXHn1iJXAPf)$13lrCV&wiHInKZ!=*wjK7wiJ^oG! zI(ydhYHI#)G_c|riOlza)Fg`^0B>Bi?%ycpH zmEg(#>94V5OA%xg16=B+R`hhNt`uyMkwTeN*88ZVjf{Kx;pe(URe8uASoL70lc~ThlT-Qf=ui$B=d?3$8{Jkze>mp-ja0!rRHOPQy*XD>)q-A; zlas63KVmNr5?MsbfcuAn)p1*?yRr80%65&>G-<4%}q@U z>5DR79q((#=UVj3VJt4NoHon#h#sxWUMi154pY`>rPaEYH z_|Yj5KkIKQcRKOf?YF;1-0wEC&Q18uvUO|Fn?9U0pfT`yHL@OVpxyK4#fy$_uUZsf z4+XLzCPsrfw=-X4WC%vc_rutGNW4Ys+&Ndc{0ZB9O5EJP6UZWHo9JCe#Qv)X1WSvC z7S9X3Au)*Zd)W9?i#9UVFF3fJ35#SQgBJXxLetW~5hKEoaciol*+PWDx_4ZZ z(w8XB<7=(e)%o$DC)%n_ZX{cguvfbmuYb?Mf{T>ZYP5Y)R&3h&Y>9I-~MhN>-myj z`7;*sc2gfpZlLwKwevWz8~=ZYAQ5gSmq#B9h-YVIf%-`deGo=9hOwtN=O_U84p{x8 zU)E0WH_2&S2?LIy@9eESSiSr2x(o|MHqCrxM zsRPbA{4qi`cI2f>7#tVU*2n+=((y<+I69Uqtsv=b4?VrkDkxKQ;xhJ=<@zQ${X@qx zA~1mA^lcVU8H!^IUb5;cs$E@f=R2;donPzRl%4sjCZgczwVo9-Eq^tP&FREHt!yXd z^&9$`%dg=~m}Vs>3Ydi3Ui@))8qB!3fWZo)hfAMnGKesOnV{?_wm@g_=qia$uKT%)!OA($g*l=Mj3#9<#mIvSsgDx2H{{4g{KL*L0 zpFDZH+#ea-X06qxwK}kU*Df9>2fkqC*~!X9UoO6+)W|q37ROf0Y(f_Bq9M7n6k;a$ zcAC~b46+-D!n;9JY2{4+;>X%i!3@hd+(j_sd&}XDGC+2V+~sWZ^0)Eu2E!Qi9%9jj z4St$%QaRpRT|xM3M7^FdGU~q8$_c?2msIssI_3RmMeM|J9X(>pN70c$y4jBM(Op2G zi`m|=%7afcJub6E8#7R`>6JwV-HLC&CvegH60{#*gW5cgXZn^)ZZznwFo=4xQ~ep~=Eb5DkA_koG~#cWd*6`|0RHAeu4eFI*w*RNzI^p+8)6jFQTx2prG*@& znaQbA1l4zBc0>e<_6M(Cz5g!dRlRG+?%jKsn4AY=5rka9Nr$_o`yDA5(XcOGRK+~} z6IMA=hrvk)SgB-QBN?TQ3TQC3ZZ0vcHAesEA*8>Vsr{=DT0@y|>bJNVx%LVvjxW!a z!?WPWkGTySku?2)dhc6)ohOOXWG(k(W^TxXZuX2&5uFBlPIk;&4kk<&jS9>|);`1q% zllzBVX^TW=8Wd_W;U5GM)2GZ4sl^W0o3JAD@ioaAPI;C8a4-D(rgW?{?t?@`fQ6Nn zpb@La@?y6+dGg*@w@nz6D<0Y5!-4)MU8i(ssR*1UC8eZZ5n2$;h(^Ha#;${%_zrj)}QbU7mP&)#lGD2V1r-JN4yn>Kf>X7&OmMuDgCV<p2h-#=+kDmnbdfEbwmKamBm4$5Dk z9O{UH535FH6{ng!kh?ON3zhMo35Yu#R=8KHKuo4CHx)_f`gTxyba!J+G&wPux$Ld< zQEK!R6H=ZQidm##e!YxO(Jkxqpjtc($_UenI!X9G$GR0{!tq5C;X8=QdA951{(}d9 zgJ6Mc3p&^*y3p9zVSrV{V!wX<`s2Y&3=DjZ3l@`}Xgj@lL1f85Wl&OF9GRRvEw<7n zhGHFP6@m~VNV!JMyhpvzzpM_MI8Tm`N5#cC%{1yVF*1U}KRet^2tfmg#tTOV-&B?tJD>+E*A+enVwl);T6_+f909hr+vC5uef^47c=b73AN@AJI|N) zi7kD>Qq%X8uwTo`X$#1JS08*I2tci&p#jEd0I@`Y$-$?{i#awbs`2yfi}l&wK0Z=R zpj*z2k8c&nAPE)_*P2wWUq48U_;HiHm=Rv+3zJVoq)m%uy+)1fB=&q#-vJr%zPE3G zYigDx-f3)+ESs)>$abi|xp`XEh!%knoZvPQjnr~CwZ+QPJbJLbjDYw55xM#p0~+O| z$neRXgAT9+muA8v0-P&C-p^m9!ce!($IOWj@}>vusEaLgiK)`k;d5&K)i)k7iew}T z^kyC%@lkW5%joH0hB=%18_@T_l{snz+5oQc!gr+Q5Ez`}U~H-z9o`!p7Hsmlca;!- zgFwBwBqIS02cl&|TKMn5K{aJ%J*Ol5{0&*LOWpbJ&~C%FD$?GX3bOTO0GWHORIN7S zBo_NmF(T+I?Vi=lb{^xFsM+>jDq#{O(|QMR{FAmaF*U3BpLHcyNf|w!SK2)RpxLS+ zs#*_@C!9u+;o+C;!&yMa(~+8;olSL6BkTmZHddyk0*@hBL9Jk+`5WmaR#h&=# zU5C9MizVN_Y@|@;|tW^bP zxLVoccZ+hc7x2HBh-^xWpLftHE2WIy=|ybHi<|?fXXYRR=W^2n?~QqSW+uhK`LoPW z4{yrL6>ZSX2HKqCEjGb$ifDW=4G=;T6Dl7Spz&8^n!|iTqI6#T4GksA) zBfn3FXlV5~8B<2sK+U0HdOjMpm};J%L45}R zLkDPxr(Rm8X;4miAcibUKI(Oi21DdmpAeA~CqDU$Fznok#LtZAXemlqT&IAmi6xfR zZI-LuYS2Ou@KeQ@Pe^NXj!8j;X#Ur)U@s5#7gIx*gob!zHRj75{7ez@?rv^#3k!mo zJ7**7?t)R<{b}#iwm@09>_cEQ?4TxLjeD`AdtxN(VG{XR z^C=_qY)41=_HX|Gz4saY3UUKV?{ltj2;T)MG@!3tjEu)bv_*S){bbOq0XA5u7EaP! zvg6ODMtafcsGO;H&dRUR4iXHsBjhoSu~fdhHT&#guiab7H5+Ka8AM(HXoT%D0xs2r zt6!__P0s*P5&iEwC|>`L3qN}ZV)V!gN)Ph`R8 zCgK%VDPo;i5o|CGHQaV_P#!R5^zZ$QkquxkUtmVC^enG0g7ChKr^Xt5=8s^2BRQFf z=do&coLz3tUH0!zz2?K>m_NMb(Kyexo5+cs?yc~%pQNKQ84a@gZ26`1#uf0f7Z<_z zVnBvdFt^TkV)cHM1E3eM^IN4?UODm$*elCD;O5peeP%1j>vq$3_3zlTumnR_T$$Qp zCjF2Xx)m5A-8DAeNkkC6eHg!E$Bs)(J_e=B@5jbWC%G-}01WGC!%}iXY}AG1r><$W zly)^fwRb?Lg!r;7p1GAdOp6NM zDQZw&BTco?Qkm{GOBYU_tYx#7xBn$R6TG^#yf{i5bgHEEebmVu=TVU`O|cPA=RMP< z8xP8z*oR<^L!`d2KOS^YEd%p{srpZa`m;y?LY@l9msRb*2ElyfCzQI zzlP^IVR*~N#)eMfDLunS)phomP+)$lMr zrsiR{$ZwkfH>RF}yI_1Ae~;Jzc@GAAWplk&U-j^x4i1IN?=>no6r zRCs`Oy{ml6$aDB^*_#;A>snf)9k)n%?o*uyVR?n)UF6?%Nv7)vLe;trZkRg@Vc3)y zv-XW`d@!$q+n;6P$#t5PtRSJsI7rqug9}ov2iN_zQ%Frk5M@D85omov*mQMaO?-Ge zmmvk1VVO4Lw*XMUe3dx6n)(@aL32{Fs)nYfsP;EHY-R8<{cR@Tx^C~8SVg7l*HN(l zRe6yD1b8a52k9lKVt%%#$cM{S`aE0-hZ?H+*-mjR0)w{?tKkyU|KEBNHO}tvo zWW-nP_}`<6x|l-+il-H0T>QxI*lp?uH*C_cgwjXYx^S5zsy=mF9;| z1d&u2)<0FI05*t&Ay3J8?Z5mhLh2hideisdeZdwEX1kuK%g}gYF`^Y7%fqS>sKHRh zGc($r3#%6>r7vE%AdtB;ZzrQiPnW0I3i2r!nV8_}4tPrl=mv5KhcaA(zGR+idHgUy z343E?Nona~bNkAj6T95#U(20&R+fIkJ_QH*g?r~VS?t=nLeCxDv`&N~JtcA>cgVG^Ys zKFbQeIDnnt4`}%V0@RD1R#qM^!x&@3;6D-Xh@Uji3KmRO$Qn9buRb}HSSfM-JXnw) z(JW$IPOvSZ!2dloK+432S$AIj^I_1EH@CHk{(r4qOH30{6nzCzP+BGg7Fy*OQ5Tj5 zBM_jdsr=N4wkA|m6j)H?mx`33@++iGbRk9)8kK*Lh-m~wBZQAMk{A|3!q0+&fHF`Z z5R6dNBJ~X7$}L@W)5+_*cV^x_=iYNNrn==7s_;E`pPfIH*jpAOlQo0i3du3I4Dh+4 z)3A&Hr6rNvkJc-*1nLFW!vkD^FXZ;|9_n8)19_8ORWWxCRsbP205Kf}4J5PyuI)=>!h@yx{as(Zt?c9ml-95+J>?&zzG3E5axIY$97m)Q=3)W-oeIeb)v%pe|hJ@^_#NhhPhr9Z9b0^TF&FB~5dkb*~U*EnL3?cco zthW&EfWG+7S5ILV&9$#ow;6ZI(WGNGVwb(Z>E?xPvAA{!&wkO7?%xqYz zXyrq<1K!>YtS|zsD1Lun8p$m%Bh>x|szIEpX;e5-b7}Tjj@bGsPNX>2l`z1KrCcmg$UX3aynQW+5ws7tqqG2rpC%TC?MA7puWd z!l|XTm1n^boAMHgHg+rMZ&p{)>|mU1jBQuS{h0wdFB}};6(+sJ*eG1fI~qC7a3EQQ z-=GzEJ4Ow47S^;^6B!w)kj4^qv1qRSag2#G)7{e}5DMYWv<7Tq%mSCcD}CI6Q4bCK z7Z1)$}7d z)Go9ruc4`a#K&h5YXj{AeI<4j5I7=P6P^ohU{iJ*9=Pe|SP#-tX)>8${{?WmXMDU9 zEqvHOtS%Q3x_FXDe(~@N9pwMy#*IfF$+wkZ5(A&DdZ}*BtNFjHELn-5Nm_7*`aR07 N_EcC@XuUYD=nuJr-KPKm literal 67020 zcmd432UJvRlqOn;0*V9!pdcUuqC_R{YNb4w$z`yt&z4aQt9CyC0?}k7yhZ6rIiI`ZnKp-w6lyBYC_DY-^@_wM* zGjy;l6yL16VJ>%(<4xO*prAbdAjMlRn4SpVIm^(wLcyo7Q|$g>rK02*pX}{Zc08AC z8f=egzTs=RTy)~)?Xw!+B99gc^;;JG^jKVs*p1`5e6;vy5~nwYfF6|C{3}&&E|}um zA*00JS_G#9$8cK*_SoTfK`BZ>NOJibUe9$Kf*_9)CTMhDiu^}k`B3{FM-5Qg{sU``Lp5~%Cl%%_)?EWD9ux+V< ziNoe++&qCmNG?d5b(2ie&DBZoI(L#xwqz(stPJ;i-a|R^B-ztUN<96XN0nM8)>=53 z|KqHi_yy`v_KO$mupvfj=H}+NZ{KEOTFtma!Dee`=jQ4vZG3nIQhm=$qOOqCvNyhF zW@2QV!E;yNHa1S;P<99u`cR*!HWfn2;IlqMckbLY-T*CIHRSl^{wu|F;=8q{AX(|@ z=~-A7@N(#om6erb8DAgt%YwqPvR->pO15wH_1m2uq{F`*wKO#!mKvBndL(UpyWDyC zPs5KNw-uKw9{1Z9WM#pLEuq+AFDw7rn8)GVDM$zh(sqZE1D4V=5N^E}_-SsfygmzPt;Mq7Hqkhm(0nLwlr}=?d$B$!?>E zWYWA$uo%_hU6c(%&=9`~qPbW{O8jP&lwyha6|sdlB7OMHfA~j&JU;jJ`J#^^raz&Q z`H8=4(q^C)wcE_ag(OsL%@*37pv<={Zht`W;>8QbYY#?~JgF00l@Kq=Hf$#F^sMUKlpCHE22 zJBO!S5&UF-cO*r!$H-_d6U&*I*<|WzJon=*;pWYj^vHTm!v5wI%?0rq2izCW5t&-Y zq5OkYWIC(w&tehM8-0qz)qKNEX(YgRe6F85SHxy-OH;_|+1kQT-s2QC1{w3)Yj4=< zS$(FfXk@oG_BYFaCg|-9c}AH84yiYZsUkFvu@(|9+lweB(Y%8Rfe=Nv`N7JkpHwUT z%#0t5F5$7`O|OTx=ZZ~hwm-E$h^z3c^qn~xw9v>*B8x-@;>sK(BqT0JHQSax3kl)m z;)-CA@!8v2HpnltX{BNkHMg)387ek!j(qp-oh37igsb^Tt^e5A7!7jIdAyyDN7uf; zD8r_>Cs$AD)~$-IW;hj;O~yz-)xw9+VBV3fLAT?5rX!8%mv+~y_6q}t_7XF08O2cYW>$mL`u$tgD z)m~bzp4)@A?a4`!@???r(g=SKMFL&i<~B9J8*_>VIk>S_K!G3f-J=xP!lP28mv0R< zgmFicBZlH%>Wy0Hn^b!(TRig6)a=^ZUS;4j=q@zHSkh3zOAS`I$UUE)p8m9}o+7*7 z$mC>H;rzkE$;QU!`0?X%&!c(t2If5&q~Yy?Qd)+pD~mpBP@IBYxVX58cQq>f`}<3^ zjPI)#FXTVnovj<|(le15ZI@Da{QY^dcDJB?{>=e|_AVxL6rJLK!*wv` z<6~rGbpQVErLp=Hzm?{AAuH~PnAljjaDjqkqp_dFnJ7fHKG1cEkdPKdxRQ1bJ8)-9_AQQ7518xI%iZUtw;(-{&~~}Ch(np! zD71#X+}+((M@Gq@ci5Kd>goBS-#FfknRxb$%)~(?(FjxfsbSl?;$~m6k+Fw(Fzw^F zZKq+T{1{cM2QYC=jIhu9^qqey1X@BCnYEaT&aetBR~jhhw_f)NSFCqGya?l z5@6r}#T7bvvAt*l7Ju^O$u$(4?F;ogf?jQU`_Mz77NT5>j+ZFhy&K+aelLb;Q%)^& zb!&P2*+!zM&g@eWQBmFFOMFh^0z5ppawk(oMaA)JzRTFLHRxz7kxda!Wtk-IUA`TH@v3ld{CC!tQEUi) zrF@!R&2+^iaThs?w<#$pQBhd&2xA)?{F7spEiEl@hK!+~$&MXcUmP*bxbt3FSsCB= z$TlV?Cr3V%x-t`rF=Fu}<;k;hX9Kn;o` z$Ag3NYcJ^#gu!5FA3^0Ir@o-E@i8;gZpdBfrEc!J(^m&1GXOI?{7JHW3`Zk>Geahw^Y>%ID2NeX7(}t>xj5KY#wjW~%eZV|jRZV)+bv4O&}T?pWS|dNjQF zI&d%j(RXKaayrBWEBwXTvy^9aAbGmPxlj!jWMsUn_5{MXJZ*Gxr%ROk}{=< zl0w|j;!f`BwiaHU>PQiHd1N=08Qts(ub$#P86V>|1RbER?Z~%!C!eun%8?#5OLFp3 zdTKEi-W{fdM^~?&7q)n*@=FSldfq*h!=`kgzt{@1Gn4B%>}}=e=cl3Z#-uPJJe*m= z^{468P<`&roYzUO$!u?_P>(^a+^Yml=tQQ6=zkK$`e?CutGIC3Z#6xXm0!Yx z*Yf*wQ~zy?j>n`!rq>XtGYb_*Mo9V(54q=@Dls2Fek_@I^ABoJm_Wm;qmLzheY4yV zXySssD@EAFP;M*={KgF6f7)U*?2c!E30$univyQu=V zo(AeA{-!}xhsKf-IfB>VQYZ_fp!>|*^5LC@r!*%v7LmpNzQtrR=fEe?LnT2Fa;YAFf}QA*Y_JyXS@oqFyaPqyR2@_pbYknbzT9Y)FK)XK!k1HlMld1ucHM zR~q>OHVzzH`u{~-=0C%TrlpA=5W)X}8;KN?!l8CbGD^BFMMJ-T4{rSaJ>q%)aGD!O^&*7wn>MV5m>x3T4A#{w$E=szFK$%POm zAe$_byM}WLp&fH^S?)7th)=w5mM)`bc9w_7PDO#y&8X z6UqiZKa|(i)y2xF#PC9i)hvr(mMXKsexhXH*Vfhsq%L*+`gL}8*o>OqsD_txhGq6P zK65iYx$KuNY5P5b6Dx4GYhi4KnJHi}xdJ7k6#Gf$ zvrGDjI!2cSfo5?ht>#e9)y*HM_Acga4VStL5ZzqTZ)*wdKARk{gNL0|hU(!>nF3fe zF)`m?JVn@D?D+W;<&TH=b9|Vey**0UFC;0kbzxk3i~_jb{n0eU!OLGGjRn!fBl+X z?t+Bt$Llppii(YgcuYr6PbG2bFGupAGp@Xvg+y)zH*Mt%<|3q2dSw{DgGYVx&D;><%niH z{#mC+?7P1*ybJ!MaI`- zcVpgnbAe8-yRQ$k_DiL(X2U>3Lj!9zK0fYLHDA^kSU|+K=dM5c4h?k8$KTj^sJKHm zAt8aMb>+Q?T|xCqOE>Y*X1k@UOHWiBSOFt{-gzwraBBBQq_+3uE8RlY<)wP&*{^Z$ z-ucbuSN8YkHilEqb=7C|Y(MKKr@j`>8ssRKuRI4`m{H49PVU>vL@O4H9sl#^+qZAe zXjln5TMkCSxIF)3t_J9_Nc-FQKTez;W)f{xL5k5(9)l z7}wv~xil8a%8i4vos^?PVG-$#YolK*n|Rdv0tn~@y*qnW*RlAg9%IV-5+j+_z~B%gj*jp{hIK9{{V`7+J#=U2>u z@l@LJV^u=Rk>>ic<7hlW%Ml|p)6|pN^=gF~SE%A=?JHrCTHY5xr+M!NmJ=5cV?a{t z(&-B|!Op=)q_VGdFuAJir{yZ^!Isj*g`3*i-8GxTxGuqi*p#wilhuV#pcEu5)t4}*Y5`Py_y-VnY|i(bw{lByuioByJ;5e1t> zQqp3})O|bK3l6mjr(>tS`Ce;z88$2N?OC8ohT7_%Ofulyd!upS5+? z>1TH@YuP!x4|q&XP3>sbk*S^nyx7IYCY$z>py0~(R7%9$T6H>OI3OoFI=a)Re>E4N zBY}P>N51EyMTp#v)YjFt6lTN)2vJD>9CL=f7V1$M9aF6Zw*w$Njem*mv7@N;ISPT) zQ*v9|m46dM1fM3w^mLDkT)K40XJcU=WG!uAIrs0!Mcz!!L8H;{-@hLo-qA%#CUL1J zYk#tFVlO@7XK$Z(dX$OljT5|InbSz^t5>fYA8!1~tj7zO)jy+h!t9p`{(3N4_c(B? zp7oWY*;KAhfcHr<`HPvy6W(wrM{<~)5z`p{;NL$dpOBIRE9T?mq_gUnS@Qu|4&`7=g}cTWu9c~#QwCiV z(0#dGU%{V0f8M-#gU4oy)pYe)3tL)Rn$(tuGl_{7sBG?z9Msn1iOeB)i=3P?d~(n# z#oh8q!x>h8j^HIL4;sYujCQpqw~)~48XgO(&}lii-Ta1Sd8IMY(b2If8n&~&`Qf-i z3}I)s5Hp@Skmu-*-HEC{3>vv^4*Iw#`hxhuA`#+&y&<~ zcGuYE_t*ll-Ji)V9QK|{T3%khdGn@EjjX7s$KM}sfhTnPF4lOq@|9DtrKP7Q6dWH> z)z^>DQ2uwC1yeD<R@l` zPr6e5_@7VyYj4{X#t8`T32b~^}bnE>JolZBe% z;=Gz;BI{jtu<8-D`yT!Z3X31)S+};vY02VAZ)}ckBLbEGA8A6j;AA-_e6G(4TNr4( zw%(Uu**4=o5$$5uq?qyXsG{NyIa#lscAUzc6Ev){2Mr8B7#NY5x0t<&?-Q--U%w{v zUqFmrHen>X3g{0cXSht3>uF4RO#_yC^i*Cm^GJB)Sui1!9P5BN(eus7*vIYi97TA& z@jSNmu>M(Fyig`SxvWF#J=g_r-gKfOawngGVDHRyP*+!ynNmw=<`TFd>u1{<)8aOj zBVYtYG4z&F=m!1_(o(hM`-_`I{Y4cKL=MD5{SNV%`TZsP@F>U!0l1D`I3U0!U8yOY zWgagF0`{#Ti@$I=;eM$6S34p90ro&NOW<7UIK}5TUTS69Vs_h&?meQQ1U~hm`p?U{ zAGg)}jv-j&iCQ-B1&i&_wgim-!9GAuQEeR&{~zkP;Y>o7o$s!)2X43CNbl03I}((6 z_`yc`RyO9g*AA~AZ*b?#`gL~2qnmT*X-_?Lvd+SIEkAN}B-HwE?{4@L{)CC`jnRN~ zu4;A73vG^YW<9hDq}5|4IvDr{)(72+csHj<4qA2>WGi|Nja}wcrD82`UHb<^?)zbv7wo9Sw>aMR&8ef0-L^0i_Up2k!R>sF$ z`wN~=Gu4I;R$7mdQ&+pRiC_jRg^Em(n|&t{3sbKVpvzz!aAk>!7XYG{8q|OL78w<# z1Uh=ao>#suu4LjF6;n}B(fbAcB6H|u!L$|)R$$FRT>4ZWN>gZ9zJSk6QM0YL zDybj4Ut-<$mR*T)^Y0;*@ZadSQkP!-?%rpdd1oEoSYu?9No>J;S;60VDHyZId5OOu zT*+pAXLhQiT%UJ}hS}iY2Rl}F=XTE}k~*fW3hHX!Rsb`@B{o{vwPEdl#CA~ChgLp( zeM;T|3NnD-uC6Y*=iniHzFyPR)D*!e!hP+U2E`akGFHIUQ7}H37O+GM8`x~NGMsP@ z74NW)2Y+91nd_@1ATjfJ;}2cdj`u%bS{ci8b-Tm-d-Zo;YFaWAEp;=TJV>yVWr_XKw*o z)p^em|8m;2ii)i-O)MZ`uCK3yLo(hJq5gj>?EUi|>&XnT*b|~JNR`d12d<##a~l|V3^Q^8&#kR#tZ^~;oP?QTsPF9yV*FDh z2L(S{d1QUGbNi|agcpCgjowg?Mbxc!Gst>DY5z=W+D<6!Ejq~llfB#-lgd*OekiX92Gqdt(>At8-Nubk1 z*PxaA%}d`GO@9hY^Dyr^)3eR)H&5G!|Udm6bu!vw}81U=oML+k1yr z!{5Fj-=NeLlp=a#VgVDiVPWkTms%K|V!MUUlaZ5`f0;T)Nv{pW-pYzq#;4o1 z)Y8HNzrG{2P?0Xw!<}BXx4*w`?D;2(+FATU5pOYX3KO^or3UVjNotvYzR_x2VSTq( zR2AB030_C_zycJ2o`CHAJ#8a@`k|;5X4M7MQjCSZtE9qI;}|KjRmU5sTVUXU+OWiv zvd{hY)S>lun3q>ZRB-ER8a#a88ymSvYQZMxm$$I605PET#}DfZmI48iiG&q0Dn^dr zb22__JcZRnmP5(bTVOmJiC_hNn4Z2jJ^&pDv`INq?!0n_Y$n#`%YC5h@AES$M8MQ9 z?!VA{H_}nl(2(iu*|Pxih$j25U%y&k`M4b)Y7;XotTpIi9oq-UI5RsNLJI(n>?ug* zOlY>oO-*)uze%j#xsQM^zFgB9`H8 zoV9bqUwx>?aI&L$Sxg{E+|So7J&^T?6TFdXtfvZgO}b*Zq|2XR+Dl-^b8%(5uvEd> zz`b}E9Sy%ILQO{j#Vzq|Z3YlYqP-T3!5n;kSkJf_!6c@3ddVuW%cd#kJv>)tlWxm=#VA5Xm{-5npsn2eNKnK*yWh{ctP?>%DN0I7K{^dr8&`SIF))M% z2dk#Y*5Ka=rFX@}$9u;Usmi;bizvzBqM~;X$ucrB7QvtWb@A%e7t37mHnK|NQ<*d; zilDCnT(3_O&(obC93drPxuKW&=aqhZd_1saS=96!+O(n~*Zv}l{L;L2^(-GJh z&W!t_BFNQOSeTnNEn(d`>bv0L?LExy@%Q#&Vb(sm1o}N;Z`-M6y%#J}3w_7_ix)4Z ze)#YK7)-oXviEWWgW+p?C)9}l=EUS=!2Wul+;gDRjdU;e_Vz%VtIaJy-^s{?Pd7?+ zDJsf|fK350%iyPif_F+FVQ8RKezB^srm6QVeZX$Yf%X3W;>c$PbBF4bRcn3YllloUv+q@7^3b*`CD2#FUVn%+mSH0tpKq4kKf@wg~C$&Cd@vt5@51 zHwTM%Ll_#R30@dON1Ikn_lXIql)zeaYU&7lgl_jxF0go#Q+D~-*`G!?66rv3_p4V@ z2ODDgF`G4eD~~aR(%PaG!Eg)x_Wi$6;h3Fhe0TQW<7XBOt9lF9*Iyx0d0d+4wy1x! z6AyYhUi~7D3EL!QKXMvUlaTfq(P&y#k!42q+;j{9bXLN3220^^f?Z=x> zLOA_9cTP}W_%Vbo6%bBMv8RY&$PcTh=Ye zYu7Ga?*hmZq_?!k3*IOkqgKS20v!Kk5wHIpv00MVkKxS35|NlK^ikruptKZB1NZlv zSX27Hq;n%NWqGPGA4jLBKg;?TRNz0|^c?Eh9Iz7!FmfVY3Or2z1XU&N&K0Yt1fZ8% z1)!vDZy&pLivo#MvB|E?%7TB}sE(}?4sa1Z+SRB#8 zewdtcyr*@4Yf(AsWdsY=i`Ojc)9Ek98*PN&f1(m*ylZW5Z>y+itJoMKA6o0P+J?oI z)ws-;(l`!u6OmsuRh^2n7BP`EN-Y{@u|8kUz$(KiWBwzl5R;4=4{!VBE94I%dV8O# zx~fX9xc^QHI6zwWr_1hJ`N!%oyoEiF|t+4_lBg zlw6hOUuZlaEQ*3-q?mqwcWWFh(?q1#(h`#s>`(QYOC(+rbfo{V8(FWV2X<61U%s5| zNWoZlr3LKoi1=EAfim70en#$=l9Jevfby@GbUg2qsjc4~ss?^n8VW`n0tXGg~@ zaSv1s2OB^ckP6B&j$pd2HdQc{!XWo5SxkL|VD+(Qws3c7QM4_&#_a16wqR&~tvq?T zxez35c=(Wiv7Zx6=umS@2rt&HLX!X)&OvoiF@5;_<)tKOFGIXf#CHM(E_ATg&`3?4X7cifH@&(~|Ahfr@det<;2bZo{AV z?-5%UOAG#&cE@nBmAa#20qr9Y3$dT>YQ@x6zbYRIz&-i`M%kdxY`&D|!rcA;9wRad zAgIGzqzcWImIg=~kJuI9Rk>tBPhJlWHMFxe*Poo_fmj;d=zqZUz>Z~WWqK?O;-{uI zXH5^#Lag_7badbzfH%X>l2FM!4 zsHjEsIRK@B!l%4~Vlz%zX#_@TwnHZ7OpLOYqR|6Ha#6%9CM>*UTNPSAHk#pB7zQuX zkM6i<^}MuH)Z^HN(9d&=W^TMd7*Au z9KY55Zlwr}1;{=vq(Oic%ZXwr;>FpE!fWzDK6d#vch;TAk2xMDs${Iy&SxM=wZ(KY zX;Ing+H+RSN0Q+>%VO_UQ`U*t20I?@BSdCLeD5t_I};XA74l1M7zds{eJX&ROY$5( zCHFH?LMY2^{Ix;)NmB@kKIHY+0(czB5%TPr5Bg0(2OdR#_UzhRzgC8)`1>Nl#0O`(B?};R}spat|s(Fd3%wB=OLyyF8*xBUYS|kaut0VgDH&$11rBEA;tKJdC zCOuK`0ru-@kkTtZ*iCjZu+OTau3ztpi~C(5&r1&(!f;yfXr2@oFzf2+#+3V(!>(sV zCaI-&-M^zEh1^aAJ#5cQG1c&T@H1-QE$Vt>g8vYeX~xaE`Zmbj{qLB`L#h)eW=1f9 zcE(r7PjD#jfUIvQYXI3eBO^cP2qj-WL!g3KPjUJ>I_}e*A4E4`t0GFm_yP5z2S8zo zj{G&IHp6d{*V2mJ+1+)=@GK$D+9s{XUwin3(3CBrTVT|W8bAaBU-`Z;R0ZMN)H!8! zbx+(y;e6fMkt6b>#J$f#3?1G2nk#O5wxf|JC}6GCT0LU^929s z=tzNF>Z|iYz#z}k(~Ckl3ye?Eb{lhHMj;^~0c_7l5M%DX@3xMj;_b&hAj-e>W3Ellp6GYMSW%*LB*Z z7PrXB)V!7zL~Kb%dAgZ7(*Kh-1~Dpwy8gAsXQ;|DJVniOv@o!3q`YvRJO)HH-!VD; zn9Mwbo_L8R1d3!K?yDf!7rH#@AOAZGC@>0lsyf(CIdD<1ftLzO-~c*;U+)tm?DSO~ zY&CtLk-oO}n7o8Qh_!)kyvZc$w?3HwHUySZ;H1SLu2kIW-s!XF&!11`Cn8bj&|J&5 z6E9xqZ`P4E5%w2_q&!YSKf2C$m*L#+ym+joRN!={m=nf0IyO`2+ycOg=WQ;`+g`*jVP;1omVk>h=Z6 z?vlr{9OiJ7BfS2;1$)CM=QhIR$N$I#a17MShw%(+G}o0YKP;k&ADKVetDfqG*x+ah zF06JZhZ{L!bnlYNz1t|%EkD1M+``^cx0hECLyy4*fj$byYvzPQd@wWM1HX>YvDx1r zZ+!KFNvIJU0!V&_pPeYq!IFRSe=gq-clQ6?lt5A@C7eourlCoI?X0erqvPF&AKL7x zXZnRoJQsg!rblwAb{;$Gg$66H^Dx5XH=Lbs=t)U2$n>t;TmK9MOZ&dAHn@bJvGw1&NA;oDnj zO$5sflKbaG+$J3gtJ7$xH&8uLeAtQPVJiogSYGqbyu!Sb5fQAAho=*>gmDg=Udy_V z%G9~*yAepDP_XUV@RBl=T4rgv2@+QppOfkduDEFS-tP^^ZBWU5x?R`KjUUrr-qF9U^`3y=aIVt#WI8yYYqszv2%g{ zXyluKZp-ZZf1wWkNje$r+XI=aE;_^2tCnzCDyeUuu(|Jqso@Jf_wAeGcB|tkayhSEUBbLvDu5OF2?E-=Nfc)lxr($@4t~f}2rWOJnY{y)yf2ScqIX z;Af=!!2YI{BgP(BRTC`pv(FPc%gU(%4%xF(Tq>(PK#dxB!|Mm)9HG3KJRbUOk_xwtgmi*myw8_uANwo zsYz;=IET>cG$2cT5|&01w=PM?kuFii$= zg@FOWH=>X=<4W;!1s$O!9a{WsUm?cNiIbD_&gDg1dEuR7q=?ZoFd(B=Rbypq+tJ-k z?I}3TfLQ{lMIW}e>Hs4M}@Y?N6siKuAl>?wa??UyzgjPEMX+1FKyU zx+D^#+j05I_*4ij$V9uFi%7Rg)dvqAKnO2d&m{X*ic{6VzyR1bmQu4bGXp)xA?Ww0 z_A(N@b}AC*;N z`RU~1+9n4F2T4fDN_q{)PkIPo_FQ3&jT69w;Y#+Bt6Z-Mhd}^vsj&7|5C+8g0%d!e zsGCchwz)J0VSCH1rL@9YS5aXikzb+%T>0&roCP~Se*whUo9f}>m2uXI-CdM>4hkG- zvLKEzv9YlwW$VUsjNnm{=&#*M4paY&pptS;?9SgNR?ltU&$xCx3d98WIobKw*@by1 zT*t~;i+2o357DDyUfP$uddU{$~Se#+3k;^~XrPGc~z#GlX%%TydkcOKBmA1%#cf-QmT$s9; z0V!7F2cDYY!iDRPf=`b^iOJWsvxR$?XBuErdVg?ZTw3nMp!;PlE>b@jS&^eaCcUI= z@p-XSQDI2fv(j6){Bqyc);5?HoQ}kCkEie7GZMtnN-$Um{I17?CamE!Eo~jGkC;ZU z;Oc-_S>%xcuv2C`HnKF+)e^xKuCq&uBM*OrW9$q^~FJLlQanPNu)uITp=8YRS zm?*=ZKezVgdycCnLDb5zp1xGY3N;VGt7jtZdjBxm$~rb_P; zcc0O=kb=Rt;cD+Hk9lr>e(K}L<7NGQuwx5~>DK{h3mP|k|DFgX3aT?0>VqXVQAMji z6C?@JfGGc1@&Oonv`@Og^o;D%9Z>w{1rcEuO$C8(D|C@gCmGhdF|>|zJD*# z6tB@@E&Tet&?F>l4=2lr%h#u-HZM=rTUb~a1>KeC7mP+ZdgD2L{cAFFHHOOVdi}om zZ9}ph?LGF5`hsI&?(XEsLGRY~U5N6+Y@Hi;2A}3vGXN7z{9DUFz&pYRu9mz!m|_z` z9n!0R!UP(dn#y~7%pzoTwYA@+qzD9CqkkoIS?>)k1~3fcGr-U_mIvgJ%>R{n$H=`W zo6oR4aJhjdL6j;^INP|XrO59A{@1gdoKr%UfRT;CeTRv&?j&E`+#VEf948{&20&ur4*y$<r4-PEO$NRt*41&5nl#`5Qy5w)m+TK1fBdkewY&OF`TP-IQjEwYwXngkZ(_(zKnrs z)cW4nr>3>bigzDAyq_YwS!l}IwpR#P@8ZAZ2q1^@g@R}Bs5OR<8{#uT4Cf^s3~tGN z+fib8PL-LIJ%u!RX}5`Yt!DoZ)IwPqgk=Oz-+0!R))5LO?aNiB(}BXf(<_ zOg9<|bDj{&_~Z-z4bICR<_SR##L9q&$)9@?fpE%L-^A?bVO}0I2z*RS1L7(;F{ukS zn@|FAKm$Kiwb-La6DJG;YCG2A2qLKc-!TkiIbc4-vFHs*phHn9hu|FWIWpq^FI1t< zBGJRQ0gsLO^=n|o)&KTwuaVkQ$B#eze2r*lAV!bC{62=*Iaqv%Y(1Um^}rGQzF)# z(GVe?n#px1lgEliazqDi4naI;(x0&1RBV-UA0xZEze)P7UPfCGPN9i-3bM+s;=O~u zi!UN%1%scx-VQtv7<CNYsXiwdHYU7+M^mw&DJEA*Ec zGb|I9@mQbff!<^*D})GYviILxhIHuJ z-pr1+F#3?q`Q76A^n3R%^P3X3(-at}nSB-+FmaW><@^`xsN6xps(6VeF^T-BldJ16 zT&*87(U?S>l@Mf>_45J+S{+8W@7=p+h=w4A7i60{QjjARQ!v5@(;Y~_qEOlQ_wLis zAkc4}Abr_6LZGKT<k@ejrnw)#3mIBDm@N zM4F*Ry}Y@pH?a*`+*9yBaeLc^CcZG9nPlL+1jwQf*7@{ zj}Rvyo|4mW|31nlWov5-=UA1$oB~Zv+I!_A?WHSMtfBIPPfIViw-19eFqaTa z3$86V&4&MsGlkHCd*e}MTr+hHF+92NyBK`|WL=lz(E4+GY>j1RtMH+$;3O-LH!0CD z4?M0X4R0Kyky&f7E8L$2a9vo{URvt?X2{X0@9NxDr`q$~>7hQvP+6=NPo3WXFlt=k z{BSEmi$KjP3$$bG>eZ_-`f^(C-9LlIkI7joRGm@+cCw4EI}DTzBTek%MeKTEM3_C; zd0S5&vBXEzrLBVWlzS@OHSF;T)>Ww#kxy z=(={T-`(>e*KxX_N{!-Se!jagQHPqjH(OK>iMn^;Kqx-MGXBZxvIcpu1ckrH7Tj;& z-qyx^?Li%96>+^-TWge&l9G;qLjktgd(}^nr}|>nr1oAIA2~}_Itge8VuE&MLL3|) z=Vid>1~-8#cpB1;z(X9@reWw`d}ik8;p`ym2k-)Td9_6$S)Bv^Wh88e;n z4VZJm{az)`1ty9w_vo3*8~{mURe&sn;V>Kgjq?)k%unnu&7Gwxisonr5gy&U^Dw`S zZh*6yI+XSjuV`7+{*~D}&l*oJT+;5|DuUk70h!QdS==8?t3&p*YO1ZrdM7ipYMtu{ zqWYBq$*{dB4--r`zyQZ#;)(BS;AJ|P0tJo-@O^uGyXE8Bh~H`(L>*xad@$ZNnq&`n zCVg0j&_3#VBu8_RU;F`Mg)Y!v@Mwoe2MPQ4qD*gi74|O5&G;k|&*_?AQPloXMTHj& z%%haltQ#~ize{IL4ww&|xa5LwLvtR!nul}Q^zir%-d1A5$XOiHx6;N6<*7#5>qM|C z?=Zhzo39&00}p#hdk(?={JU85a}bM(acqKg0&EI+?1z2~_`>T@_>QxQIu8DBMiid> zwz;|4H@lvM&kWO)ZPJhFpfcBoVh72lDT^qZ(pkdUI+=In7E@2le~~)5Y{fWkDKy|w z9`#o9r;2!2ZL7jLlp){f*X2r@&^GBTUcC{Xe{{>E=1lh;N|@xl69h3e>kSQk{r+12 zT|q%XM)LZw6zWW;Mo=gmk!zjuE!N&JD{!#C$wLCzF|VMYpkEF(pH^)Sl@yFv=7o>5 z+5ZesuN@S7W|C_J=@a{9oe^7zSFbL~2kTUWCvY>#!5yscz@VE#tmDC^qH ztJEKE?CDwQrQfbZTx-!L`Ea&1N1OI+*UQwB8(OKIoI~Zpt==Yy*VXN9lyQ0Uo2xU< zt`jZDFPFC`j8uZsDe>DdgW>P*4-DRu@XBEfy}JbAwOd*6;t}84sT{T&Ds2oRn-si*Qs{Z=kc<_^JsoxjzNkKvpt!x(#$5ae2EP)nlm^!G*nYFtD@4XmOSUm z#kaoBfZ4nELBoqEdj!pX9_#$7Uu;PS&zzC*(WZde{&g4uEa@wPxwr8by)c6|jCQv( zGaCmHQyd~$5W`(rarOQdbT1p8^O0O?M~=`Fw4YR+N+dNUK41WEvmR|$;I}yx0bHPM zXWg^pp!wIAC|1ADd#0>1u76Xj7K$7ls9_EL#m4JQ=sy7%8EaOLDAc&}3yU3r!3hX` z8M~*ZmzR6Gxw%2Gw#cH@#BaF)tkDhhy=-mJe*EE48lYdp1A1(*$JEt3wpXVhevF%u zKm_qrtXEE5F#gt)-7^CT!UuLvqWtH>onD>O+}YneCLuw(Sdm`rSt#wh(cPQRQd{fh zF-I|nZ9aZ)lHiCo##HVUu#04%MB&!JfyB%@Y*+oTrKS5S%)c&laqh}3a zrz+~Qf2E_bhQ0mw&ktip$}2xv9u#-Xlnz`ym^xVdxCUm852`D zwfqM-ISe#9IW5|4oH>8K(iw(=C>ac@ZXklfl+Pgp1`?bcA!y*565z9kRc{Jswrj4L z;Wr-G{VBAbks)vOvts)Nm%T9uzz%nbfW@y6^zmRMN1%GMlvpa~x2LGu+Q^fA7iP;x z9J31-Q@@yB+beOKdX3!s@TtOUX$`;WFqk!c*LM+?O!8OdO-vgU|K{dXa(Vj2m#!E~xqwus_@Rn6$0ldw-&}A(SSi zzp{Ae+p!S2>ks>jaJqRK6%vF^J2<~~*Iz&-f;gYG$DNY0{7INfmReq@+D;IgavGk) zFD^3CPp03qnVo@>lfcb05wq`D<-Vh%f%>^U6&*>9T$9$_-RG0zFogt4}^u{KArhL4XT%tm?*l&}Fp z-)v-JHogiFyj&b6K2(Xv+<<@7;gJtB;&nP%r_TiLe?Nl>_;Z}?mfPLC^7`?54^ol1 z9Jo*{-z$le4MS7RXaB;VX>Qomd9QT*;0xGP|MEyIqknlM7Q??JosRvJEc*Z8M=GSy z#B)Kt=1}G|4fOZf-B=~3?l!8>Fg3{0xU!d?{`8R<`NvPx$+9xsoDE$fM-X|3G;j1y z``kcuLb3^Lsud*NiIDO;oE+KctSofaZU5=cTC0?BW*MKAnV#e0O;Tmru;va^Vn*_A z?(2b;9kRuCv9y=$J5#?KI^v})RUe>AF;F8uQxh*}5M}4tv(-okg9dfvvGsW=+pkY5zL*(`IJ_6}ccOu9&L%>N$O}`LgU_63oUT~B{91||@MuT4n4151co}{uQSQTZ zAkG0RB$%f7>WW0bUQKfpLgGaGf_fmr7_OU3b@Jrg2<8B0%mI#N zX>+$3I)Wks)M?TR9_IiL=vw}zBH+G98zHmt8{$eu#l>yvuo$n4i~lz00LoLxc2aU^ z(sv=i!M~mDj8X@K6Zya>vr8*9b(W1r7m^=IDdx z_P9-{DMzYu!FedAOL)xP*VXNXC_ZE?9SneU2C3{yvdbsMGKgAt{%&Gj)TZ!s^GsRl z!&t(AINW9}R)3JFPU2v4{4*)jp>tDc;tykL8;oGv!vjMwOW!C-$xd3kV>>^{gW_{B z`1z|>fKDKZP-S}%9v;5(rLb_Z!e#u=_;?5{Bx=EQu~mn677yQ}k+sgwb$dX<$H&*! z)+R^6%F0SZLn9@fW|BKp2}#d|L3l(OHM1l~ zu(hqNL8)zzU181SZtJ=xOlmt~_C2<@;5krxo0x;4vIFAdt{_(=_xu#Q;wxq;-47ZN z?51RcXGjqDUaHcLq)_q3FHR-Bhk64uwhj*e7jtg{P36D$4R1|~M1zzur9_63$XpsF zR77St64Bzk8jv&i}0Q zFMHe9^}D{G@oQKh;UnIxGMRXz?%8e}FuwF+j+1UQ!g0HwsNU2F5e1VV;vBa>DJDMt zS6P|27Xs=Hamsi$(Zb+*;K13tU!OsInRHVLvTID5-@!Pyx}r^$Sl36R9Yb(hS$Md3NL17j;LVWk_`VltM~G9+LE{bx z@*6i!>Qo&f7wW+C7)4sHRDj+EkVJ%T-@yolhA0lG%Q5x81&i);u0PxEuN+H~NT zMH;`X7gARCdE|a=Tu{jG&=ZYKAuBF!##gV-=S=O`5iK9%X`5G5o3fmjMQ^Cu=8rO~ zL3Wiwfh#nK<(zWLR|u@m5%G|YiiwN6zb}#DNBK*^F@@a%dPB3e-sfpNiE^iAz7bE(cg@#A@UIUT+^US81`3IpnY|F)f(ao6)^c`Y=0L7KO| zzWyaw?{F`nBYJ`^ooo^j(W&x})jG}k_ZXWKvTv#=<6}=v&62rwqjF-xGGP6vOo7+S zmk&7dvS9Z@8zL1|=b*T)s7uie6%~3$#&$iSZHFUZ@pehbM0&-EGq;qIFKmZQ6+_ucUJO_4)txUQoXs2&as}Hok ze%*tO zfIUtWlMxe>@P2{hgHX_?f(7yI)jdy-ZYCm@6O%YPp#+1;+dxvN@)2H{EWYq$=Z>8_ z-@{wkoTe|OPa7@w8Hhl!W&orc3%58G`Y5TX?}wLRq^X@E+dgSJ`1lNfeaGc}WNr@f zujG&WR@}bLileoY!79`0LGZ`t>FIMNV=dHVm(H1|CQFK(eO0ZKS|+T?{dPVvr zV;#muGIH|1&>@f-$njjW<3w#6hawxXLPHcCCF%07@pyFm*`8jJv=t7*hTp%*m;t`V z(x(OsCSb;gx4W#2R@BatX56tmZ(eD5#MpkOT6cXVs$M@OO)WWdGvUsUCnuQL_q~{z znStz{KEIrrd&lT6o@kD@X!s3Hqi=J22?^oc#OtMQ_wn|2Rz4$+#ify7?ekzM5Hx*m zWit77AUNd`NL0JzvEN&-MG(XI2?(aETD2jWGB7eSGBk8>?_M+HHN=IriJO*9R!sS zk@P(hXzat(f7@6IZ4Njb^z=R-Rc=7x$**R}LWE4`Hv(q7Zf>M&Yx6Q8w!=?4)*ay& zvJ&3h@u^{8eYvB+ofjx&5_rW6e0)&I@1-k55P7riSDSvrnaSwg00`akKaih zM1@aC=`ThBW3>=EV>w&vRK3Usy?Ps)j{JEwRf*?O1?vtIdHz4GI0=Jn^h})z?5xDs zmF-CnD&Bqk$Rat8a;eurL54lVA(H+<-4U;g6imU>{so_=r{=`w-#<+-4!Ie=X=!ej zg2LD1`!UbR?97EJ{*J*kCFZY%Eogq|^FQM4!vJSgq27C5qD}cjoG5?mWX^@Bj;%>O zffRIPW@hfY81(83Pn#5B z{_e)BVLb5t`}aQ&or04{-+EzzrQOs$JO+Q4mtn?hygR()&*NE%SKqVgSjjPeD} zG8gf4Tp#MHmQz%;TbzoxS5lV0E^1uyF5&cPW1G3AB&W3$@lX>uqD&|-5fKP8$JL>f zi_N_~ALULjx}q>W@RagkO?rjJd`E|z;^Nry1Pz9kyL4l$Hu9V&P+O!`g^Oi(SmqjAyj1WU<2^fA@-jy-A zfSZK02}K_~e-n89#os6?L5_HO`5)7|UnK-If^_dpx}lvvx7GX~35P%5evHJY^m2Xv z`c)U<)`6j@`lq|btY@n2oEBC05#GNr+?-pjqk=&AuOOkL5iDP`5W-$ToNLWBXcGsx6czb)};Ggg+jbrRr|tZ(=li#k5^`ol*%9%K3#P`E zaU!O`^joK3$D833?77NH90s`)P1=A)rSt7{R?`(h4u?Xjsvb)EJ1+J55S6kJI-?u5 z*5>J?G!Z6d|5bM9Z1=|2!ycZ31%zkP$?Bv%xB6=8JG)e7+rn zn$$BL>Rbo+(9mc*s;+|b_MybY?Co<>kI{5m?Jw&&^REHbGO=orEl|{Lk68>NJ zmrPdX)C7+EF_%V>&PJ}Vw`XBt0oJt$7)HK--?nYr%LAvnOEJy&zP{3{jKKqBPxC`# zOy%1{Zyb-53E>L4d3+zhg^w4vTCR@I0KPr~O=wI4(kz8<*wos7v=@&TsBf>nrJ$Xc zO(=Y4K;4Og#+X%`gGBy{G|h%J2;)ZKqs@IiV8BqVxXaf4#fv@SSG~=LYL3>HqNeNz zDK1t&n%}U!R9{9$xernTj&vPjR8{qWurZf?{%hg9!{*L5k#5={0fQ-q4GP2YHr zkAkO7hT$P~arGR_II1wv%pk|AKAaz$or94rSkyr&p&TGPb#rkEt_DLXP4&ikh+HWxH>s?!9z7x82&r-MhIa$th{X56sxw8KjSH*~!Tng7!M9FFL%} zyv@^FxDRn?^3t}oI-c4m_))!}NKA(633ch_yr8-1o6;ox%IT^;aqaJh9fO778UL*o z`0UxU^s$6%;nlEZrl%^pq$0ivPqxEwbd<1&NY2esC-r1>aAKIZiV9(jPEM|=K01T( ziTWj1D9zA<2&uf>h9=iD$Zkts+shMmTlr@7&nt1^2Z56OH5|N)4(+H8YMMCKKII!4 zyuhyN%OcUgu8>TX8eXTz`)i$XJp27zny-`k$qJDS*SJmg=gv9PKRGkDUZ%gcwYjn~ zA@6}V3sDq8On^pwCmo*wj6RTWkYqu+^Rk3QDRe2QWAk74%9uwfEz-;+CZ0qTdwiz0 zn3tcQ&hxuG-Il`r=wU)P&9w+rlbV`yiiD^o80+bgZQpJJ#3YW6sgMvRgiH!kj1NpA2uIy4|vNSU! zt?HS6+u7^+^Vgg0iQqBtZxJe@pg$Epo@SEnD8s?sJ2T$Zl?27jMkIG6K4%$+RXi8G`<`udD%5YhTP525b|)2o^cv0a9uj zZsN=`mvYR9yxmAd1qHLm>K%im6%m z2omS|#$kmJ1Q-G?Z^EVdPR4m=a*|4%UKqi*uHvbHy1L!-jjXzzufZ%?vP#= z^sG+zk>YoMy>?Z~FrMw~*|YH!159T4SDklRFQ9UY%l^+LE5Yi0`*`2@=PWN|o^oY$ zmQB9xj58d%_#3Z!y;<+0l5-OsPK#6baV6n6eMAzUc8ST+=AtfxTM23nP+qP(-{+ zw7!A4Ikn$#-LS`Uh{N1yzC%=U@{`KoHn)<`!ibXvi-;B#o#r>3(s6R=V~kv;n;=PK z1tsPt{yI2#4eszzp^3F4yzAJU>$K-oCY zH!zUy;6dGdR(oaK21u;0K(j_UwH54~o|hpN9Ash=L)Hb|y-hQqvQhs7&N^ykVtst6 zhlx^nzLg;%cMsLxdtD3^f^FI{^0$M;I>gS*0$8+1UfOids`1`a4=CXHpenPGz)U4y zzkZC2w6(KSPYFSb2yCX`o9h8BK0G~;q9xH(>Z7jxU|c2Fy4$SsQp87z&Gvm4Cqt)~v7@rpnRDAKo z0a?02D*F9Ojbzt_C%r3u+?UWw+4bY~+neFt-(ONlU!Nf-H=CZ+fmDOrtvl%+%}aXS z&#~sR?8XbL6B8>XVy&D9sK^K}`#$~+Z6v=&;Hq~#M@&6!IL5<+9D>hT(~pL9{1K)Q zNPN_+nN1r{E-RpDu~UUa^ytz1DBtYY=1{jXM=d>?5c;+49US8158|Dvya2N7t&cIr zH$IqBNoF|_FKiXRR_5#XOpmy=fvFzCR#9AZ2 ziGajEa%N^U6N2qF{wo{lXM`I(iE|LHfAW8>W!UtOwG5g6T+6`q&&>`0ul*}l zf8Pyh%n7#WEbFATGHSP52M_GsyN_-J3eI2{fe^PL3fM;1p!mkJ=X-5ShCUgYQrkX& zX%`eaEZIyy?(U|)MMwC+NklQ{62KHr*!2fY@ELl0TxPy_b$yMbx>{6I(_5|MQ?(oo zjX#{urSO^N>(vi_b1&gmhEODchN%sO<%2(4W1e04W=h_MI%`r=b*uH&9ea;0T)LR5 z2l2<;vLnA%Iio*L(TwMW{x8;$i)vOu7d~$#yiI(DN&Fo5)GPq2Q-dlz?4hT%+cO^a zR0W)FiL}DAL;MRwG>MkXQ<`5~hr_}$N?wZOXnU>3;18#iP+O-d1)-WWBqRYOh>{`n zbN~%vuhhftixIbU+f4yX@R&X+hVzmLs}~oLS8D;`i>dGot(2BlFKz~4mGQAL&W?9~ z5w~Lpir!G%(lQl5EjJ{r#y4r0-OpD>^fe(+JW@g)dEM>c87VFfYUVe z0((TYo-u%+Rq_2l0w(}Lm_!4X*tobHVNk%)GL6pXPjBCVuQuVtx$j5H_{!rld2P=1 z&>K5LL|Uq9rf{$YPGo6UXLQ&uEHtJ{6VBNgoOOk-3+54G!KrXw;0ZQ1#Q0!wF|Z?w z3s~TQ>Z&koFJbt7&-WLnwewXne(g^qA#i9GpO{34FG{+f*~i|B2Jdy+da@Iu zu-U*bV$&{uw)nHi$VfQO^5&ZLQ9jr|@9FNIvpUz(cTd85Z8pKFv}C%!0u19`aTK!P z*{dKYhk6opE{h>SAwYa7ZcoxI-WDXSoda(b!FH#E*|c9%3a2qt8j5W$RN~Qc*;!dN zO5zn~&J4^?%-@W@EIf0AW<37JaU+#fon`)xQHTD3Fz);t%_FwY(F-)47H|`bMO-4K z(*}-ga_$340O9&iJObVwWs{}r@ST5!h5?NCJ3*b>6*CB=g^|%YF(FBG(hU#05}Rx0 z+wBtUc@7`$M&zgB=g)n_=Op;Z#=++}85png(3U$c6jk4Dyl~GZ>(xiilm}T>76khn z9r>%QQtY4=dSeoD9oN(vrg`;viR4l9{TTI^M95OF*VpqGviK8MJNye|nagHpV|z`B zB{k3lhwRPGQ&EQvp%0b%GviAjYRt;%eM52BAay-0ZfOmQH^ zBi{_#h&(I25u91v_<$#PhG(Ck=Ff3;-?o-~n01#eE z`aiUU<+)Av_&B)2%mq~;{XkH|_~A;WfEa4FMNDg<#z_#7q+7P!x%C!hxI!1yf`4u! zIFG#v5>++pdOWs-3b;?R(H;FaCb3?Tij__ct9yyFgLEJ8GlAI(O zSyPZKepFbPQ}2SE=3~PM9q008L;a$M54&7Qg-`}?u!+5}Jmt4r)9iHmhGt-l^5JPH z^ox~FYe!tIaX-$Fwa^?mK$L|1{PxSz+1y;>@*$nXxZQA?<)=rr4rW)Eb>75y{L0Wm zdqtso8Wp%F54;NuWKg}DputOv7!GaL9adMWFcz_bsa}aI3XgvGYPIx~%G3(6d|Xyt zbalI}o~cnc;u{>?Hc_!d_gB!~YY|}X-;zQ2AZHL&p*b)($Zl{op+P;%^jr1q8L}x~ zrP_}M+D8U%Ol#Ol{goX|_f@ABP(8EZnHiZ3E5cn!G%ha9=rW_z(Z8=~8eaiY161M* z%gc6_6GtvGI!<(TRaZFL9>`PUme|uW)%1u(0!y9Rh_5Gf7tS3kxH%=34`o_xZSoCvY^t###ac8T=n);K<>5#pRAm zg3WdN&|GEdl;nPTdiut2r{R&<4b?=at96U{Q(+30lP44F9bY7F#q_SA(6BmBaVHF& zUkwfX5Pz%P&TdTzG=7=X_pAy&mUPMQ-S1{9D#X@=*%C-)vtg&AJ#iwZ^_QOqWfjoiyIr&x<2-zOZZW#VjdZ!f5C@ET->pdw-#;Et6{Zw7{y;1nv;LH+ zTaF!N{w5|W28O>%55bCP^AbpIAwNn;WW%iooZ_(1_0;qts?K>kNY(z~ocfN5o?$0P z-N-ERbpBp&xEf?1vY#2exu|hRyIl){E?!DOu*sP>+YtMt+VIHpZEv^m=ekWpy_J>4 zJS)V#oG{%9|OITWt3<>lqdAfX2P3IX41N4YsV z7_F@4QTK!cbAnjyjIQ>TaD2_A;Q3E5yF#xo*8i@fUmXyWF>K*G%UO{jIsG0Uu3VGe zX9_o}W-&)UNEm2`kE*BVUPy_z+tH&<(_MrQvIYzNG5>0&lJKrefAsI&ROv@rr0_%p z3m33aJ6PS?YS6r{3q}YXMH7Z{Vt7-3-UJ6{h^*)KjX~z+<~<>|4R$i zOCeBoaJCVp8VWLKa)XQZa-W|jr<^W%xjNToH7h06AU5^vXhRnTC+AaSOJF7;Eh!P3 z3|T+kxIjjrFZp9!1W9F-7gj9|(%q${lv?*~wr+D=FCqm$oRDP_+B0{bRptS=qN!zN zaHp&5Q_Hcbk)Q2(1VW5i%{K+pjh8DGy456-4cK1)rJLzC;t9=5GVfA5%enc{1O}=- zok6VKspccN+psGyA=12U9;Bt?c9^Yi%CqC97dY&C^?=ygqgalDNt2S>6a=a-x|=a8 z6AW0e2jEhN<8q&V0)y>P#1|Pc&XpNie0S%xKKfrf>hb-1S=p0ho^Um8*X=Ld15@u_ zDtj;B@t%~R{U4zh6(hqt_?wp}C;uFruao8HxMKn*2~&o#m{sSwSvT_Tf!(ufH*an} zCc|ht-zFg&m2GDuKs5h6H`}@ZLo{CTZTuTkQ&Tq4JwBt+UQ~31$xHE!is_S7gu+UXK8!E8O8H5*uvO8nVr0Rd%3>vJeW1mY@C$~^heX1*YEtYl z-$t`%&*6V!q;^M?I29EYwb?wz*OYf&>fxV$yNP=Jw0nLW2YDT`-R8*-p6vXkpkASt zyAbHKdg4Ldr@*yI(!l*Y2!q{xrW-Lrvr_M)LYAY@{LvqaqdB~qUdYk_c@$zN7ujiJ~T!n}6`?I$T^93hFghjz4XM69V!>+qm7JX#I-60AI`FcP7uxH>uGG+0Kso%M? z05hs8*5Z9;P|G$SYSIp=A2Jtz=Irc@1{P%RWk4X|A&vyh7qRt48B8|+BJuS3;Vu0( zUF$qAb^biS4h$SrU*O6JkNUY3FX*&ZcZF&3iQ6h%c3iC@_CH?rE{`v-p_JFY^U-cf z5v{gnI3KtdmX$Lq$DbV#Y+45rKJ`0%j?_?A{d;Ity>R&Nn z2yApOMn@BSzEDi|j%W^d_=jJsR!j!bhUzO!@QC}Z<;s-aMozUfKp0W_K7aMOnHi1~ zSnT+x1S`;xTn5v{50dpSC&K&{9nHk6yD%G+ifEc)V0cX8^Cj;+65f|ZR}ypl6&h?a z#~+dY($bEZo*L#-mtQeuyie)FW5-9r=)Bp&cDn;ECk%r2^h`_zMs3+}DK|DY;`)SN zOn9-^$4eO3w?3+T!JrGF<2jWV%Pe|kxFl-8s`vJQ`oyL^GG+|y#C(Zt1;`f?puMou+6oY=JOu=$HME=3 z?Ay1U84;mbh&0(*Y0Ib2Lr_G0FEbP3>7W_0@CGHq2r@68g`eEK-Mlq=aqgdvujC#J zETJLTvOCE7Xz_mcpsnvKpGa;DG=~3DLDC@)M%6UE&4kpNq5lKt*M~VLnGyXIA8(|q`#RyLx-5QuL^9v!kv&>%-ru=*KO#RXtA|g@*EemO zi^K3x5Kj4*Tt&w`II%9PiqCGdh5TUQBk}F`WJ10-)>PeSxzI4I9~)h*mzE}NrdVEF zQgS5%GLJK8eCGm?;`UTnexeqLEXBKwi9?0TVT%I^9As`^gd>(07T#tgoh(#`U_xw% zwp}D70~bkvDGDd18G6NXzkk2%XPmg%rRYPw9&0Dk{lJZ35fR@sPQImlXc61lc*n+lkTE(pSD2SK)y4OV z1}DxdTF>vg>wY`8p^Isyvp(SHRY8VMbY;WSW_gT=Vem*$QhKNRHgBQNWGVhsp4V0I zOnOos((fu9yDfs}Y2ml#dicdvKb?(pgMYtpDo=js`Cf(i^gCWL8$fGVsCCbeJ*JdK zW zrFWZhb&p+uw$!(`)5qHz>U!0%mW9P^b@-JWMOMr);dFo0PvOlmF?JwdmkM;|=L0#{^@rXFf)h7RTC z$_6d;wVO74lw%iZ9(06%iV**!qPV!CJZ7#Y0=(q-j4Xx%@$FtA1t}y1gV0)q&fDzu zz~lUe%`m=iBus38$`Fp<1Mez~wdgu|xBmn(7epz?@j0x53TSRX{kt0#5h%T4z97e5 z50e;@0@7JUQv7Xot5&c3 z@yL=`klWXXc4`2*%0PZ@TrXi^;`vxGX^v))Hm42cs&%Q=EJJi&1py}DVyeSvGcAb~ zZmy}CEGv9;iInnKhn=ytsj2paQQb&E*$*o5RuH<00jJ}X>D+|~&ROv*VbL2H3ZbLs zcFM{r-dUhJVrQ4?NIW?_&rEisr))mtut-D_^Pm|}^`zsPiOwLR*B~SA4zonfBkB`? z@j`a<;Ryw5igyn1TaH#8JZ*53kx=;2{em};4uFw5Ci$H4>=RsEzu%p?7#!Jkb0caVsk)2b+3Z5tkv#x-Ha0_|a8t;fyv~ zy}34?eSLQRocelBF`YOQ1d*N)8*3e6qPAFn$~5;@U@M_BH9M{T3OXIJKP%q07O_^` zR!A*zcKBEhBdi!DJ@(-|Xli1dUs?eIjkA8h+HYl0zKfelMHN#A{rbv}IJN735&<24 z1bdOHLodL}U9h;&Q)o0nzmt%8jE;-U8)S;_4&w5`#4}dh2~Vvi7-xSRk)oCQrM_m` zY3x)B(yrdG`Q5t-v4zg?ETYqkY^cMj==BjywT)Rygu$R}i>>+O|B9BbT}!@O`B&tT zA4UBCgThT)+jbcJ!R3#t=BotxNBt_F_VVyJc&3c|@E2B=i)h5Yqo($-|N3I7&*ku& zLtPJh!o8%GvT9gazE-1hZPR48_Id$s7c)s1w zkhOge>fKM_cabdXjNW<0RGrt02V*9-^S~vvuwXrXTI7KlQGv0W0z$&H{c^E~X@pBX ze`dA;3`M=FfHJjjs(U>GG9JZdlT2QnqiR zQ{xJD4<^!X_(+$Z@^_J0xpfJjQFS^(;qV41iNDg( znrpQ<#jWntR#g)=Gvkpr6!~c+Vcz}OWc!nV&`gdZG-ZsEg|2e$VjrIgyZJT{8|hLLJRlVT#m5y393eb- z(pK2XMj~xn{;M9*m`}Ood3r8z*BDPd{^2-ycsh_6@h5_AZY);=h-4M%^-e8 zaP%;UnUhxhb#HRJ{`mQ`4mF*kxR0tfU%h+}V=4pVr-;z=3eY)pZnFE@;(u4Gs7jQ+ zR#3N?pUR$X(gr;pl(&q%xcO6K846R=1;2h=4LDu0pIRv>K3{F5=bnunKP9EtuT)Y( zLyhnM6APMj*^9q|kkq;`PG7Kia>PB|O3g(_lxjFOsEoe?5b-k4yLLgbNhqVW8>3Bp zXzcZdI^Grjf$-X7*=W0#Ul9)qnhjp7^jQ_ySZBjwDCFR_p`w5A@(xeOE zcVlBY7SAGp0TK)f&Xm{{58{@?XOL~+6eMRxN*1;=K_IAIwpc?3Q$Rt#i&7)Zi62Py zqhn-``x0B=%SBu%5AJ!`W)ZQtxYYl^%Gme>Hg_kw;79yRjwBM_BzysI4B+BBw>=5P zIHX8vR>ZZXjW5rRVBhb~#mvOSNywgK(x)ZSX~TQwOqyU508!sAJmp8vb+j7PjiA#Z zx7mJq_{~C~F;_*UadZM};b!M@%+`CihX24$+nj{UJwFlgV3Ei@W~p)V zz!s-RbFephTt32`);5!?usi}&J;R;%Pt_8{2HNA=G*#a@$S0a{NI`V~o!~T}J=C@9#k=hy=z0epU9!ez+F9(zs zq3r#vVfA|O%2L`TH3nDf#D4mOT@(NGdqLpR)9ZG!T!zAcvDV@_<)(6K!ECTMWD&RS z+>3pbA1%RiAUlzqp^9Xh+&VK7a{%!tx)es@!{9=GKQ~dUaq_*WLvzY$;~zo0CeasQ z>dei>Wn>}y?AIa?M%c_`ac`p$TkyK&Nqhw(rY-uTLQDZPb9lvx*Cp zb!%girS%73dYiWQot+xX3Bt4(rn4ND^V>52xUa8v>_96<)6v+gsbEaOQp2_|dMrj2@ z%jvx`tus%>?(o#045@c?-~Whi43ocjNypD6D%!r{vD!e~$CnsIA{)8$El0}9S zHzBZxMsZ_|{_jj&|67=2{3RFOOkp}pc+y<=w`NIyC;@pck5|IO9{2Q!*gG(&Vgw4> z*u^LEn|P_OPZl#-jedd)e>TKDV)n?;NH1pT?xt2+2w& z;p471j{Cy=29FaAPb0K+h|8bZy45YjQE6c)Y8efu${}_}brX&Q{lEMVBN^Y5f^yaw zUR>aT%XPAsU6{{`IySD(Ls9LarqXCH)Zz7WSYHho9YspqerhnBH6@v`G5H&S)XlA% z2^u?yQ_!FQi$wFE!Ehu%GVN^IW*YBpp2)4O7-N^5gA)dhKC*e!@Wt-PzEX81V?ZfT%CL1Eu{OI&Jl4A+-TmRiA!b*U z1Uikj*{R4`tYJy$PZNemnwif&I9s3pCYLK*CaLB3iB9+aaQyvYN98m_LEZd0o) zcsXGIYasU^<$IfuX@QAKVm$^?RKIxb+KajroWPsK_Muo;Z@kCuZ$M1UBb5{31|kl1P(<5& zXlNJcc9_yqmEvGNU^;d8BI?F&-SVb7eB?;64zJ*(8J22!>J}^wFQ~6|4;>eLJ>Ftm zUKs+}N^mVchrY2*?5y=qr`3j}Gy3fzB0{G)~Tpa6V)VDm)K{qTmZ3j=$&muR!JF*Z|)iLH}T zqGF$e^C#R3m6bBvL*>|so72Tshh)T`fe&k0mc=8pmRJ5Z^+3O^;0tLvRTU1`19>{H zi$!+66`YNk??}kDot=7pgiK7V!R>dS>&)255KhXMiFVspAz5K;PR&JfTzSsuG#EHg zeUjzKQDxlW7@OfkGDx5U>Dv7Jf!It1-@LBCv18xUMNx92^eHYb%?;wL?V*?^13d$| z%NH;1Vj4GL-n+b*YM;$jgA^M}s43q=GERODnRx%3Kh#TFv!N+)z+owy!k>A3@J zW~5e_y;NT%g`VHOTgWl@`Z2S}kVc{Lg-W}LgLJfS_c9Wywl)P7suwt_Dn0Y`G>nk~ z+I^Q{%=&0zdzMOjM*TVNJhcK`BDw-7b?nK*X1?FXKTwUOeRvDu><1R^%0e^ghUl0W zeVuv7)VYy_w*4N<0aC}hUcBxqT3y<~9DB@%{O<4%9)`_Z>i;e)T3gp+b8Zg=F* z?N{GYwHZIW<#GyWyVUwftBLlwmYf@ghGS@Kvm25Zzj*Phm($8UR-rfF7l|IOKev+) zx_`TyrX4w!IoYj+#ef{UP3mT=wwjjdQQ?L27d>brD7Q~)5YVxwm)86w zGfWmsMd{j>j7=MuMWV-&S<~M<14-_E)2!S$nU>PfUxo8mqhxb@tptDQC2g0M&J4PKYjZ%Yw`tBlWlD{ z&;Kg_fmPGqoYltEPC z8kZRywVpVN^OcAESvfd3SXjO;wr6`{l0;c9J^kp=xookNCakQ0KUC>@&a+>TKJ@kV zg9`pUeOaZ$n`b+#rRJ@4a|<(*nCst(Q76#bwj?oYOdC8 zSB=7L#p}nIyhOKKxFnKnzAPZ(TrJ`_`E{J{O;=Y@#kQpE5b3Dek=Z;E+6$F8)zpwj z;qq@$y+J?sIXb#}$Xs>qtKS}FF}r?|B%w!4P?^u4e?$zL^bQQP3^(egHN!#c@9PUN z`HgSexoEj&_8K9Hga+b5ZJh2j;<%4U8Lc&7I^QK6zjOO`9fyP4w{QQ1mII0R$a0V| zovo^6Hs@9{1o#wcp*wM+ZNK|+se^+X)oof&pVg~o)ulPZDYObZ zY9v&JH##`HgNqDGYs5Yg5s|z_;mQ2`eDP->c^YY>fJn8jCZa_!<$F(T4pTZlU?sInS%!> z`)Gj5c(@#`o?g7eAGhM5x1Qh2uXvTYPL3VCUr9nxD|x;9E}XnD@d*+u6Ny{@@N_mL zZv8VarK=;JaGb=}EaUve2kzUHGmQEe_JD=mP0t|m;o(pEZfE1r7isU<>f+ zw-gKZV^t}dq|o6@3_9BM`9fmT76<1AG@I@;l`Kdg?Ap%6JJ?R6K4ZQw=!8Sf$L`iv zvm7hdieSTueB9f;#x2Jbj`w2|ybxP-#RChA8im(L1hRW=!q&K=sNZC6chLt)+_a93 zj7&5%QF837D=P>%!`?UDYF0_C|3^*{`>ifr5>Wq>fY3}SGJWS{Ot7YPdCM02Bwblu zwO~~tw3tweuIGlPTXxsVWccKvDqc~VVij9o)=@QMoHZ0375w7)a|tOaiowZ?956)T z71uxsH#=&AUtR%xvwf1^^IZglVa|Ro;f0lHtN1(BVn-v6*qs?Rf2w93IyKez2&TV; z{N|?fXk1Q|wl}s%81y#iWwR^&uG)$W@{NtggkFPEWr@7mG&|?B|;DL)LRw zRu&iDykRo#Xdh#JwV7aj#!4L<;fXJJs~X~wu{GDMMB72x&!6U+Pcd%OwJnaQ<4YS? zN&KME5bxg9bm2k8ix6HmgUQZ*-!bSl3BhOo7(VE)ATAQ<@#Dx^PjI@uuxP`jM<6&J z$bjAcoYiUb-?8i12V6DbIDh~0<+XIf#g_EN7`eQ|hc^{}@t~lf5LC^RKSA9+hU%%* zGy24RbVjcZ`(>K!rBK;`c4i9H)OdX1+ zK9S#^H4Rrl18N+)yDvTb6P9{gMB`ky!~9W^1&uEv^Jn=6=m}U{9l1pmrS#0qp|X^( zG2C5jf=8>$!?w`*%|NiE&A0%ThAAor$BQN$lLn9k0nCOlt#5057`_4@nM15;haB<#1R zy1zXaTYB9(V5gq3&(SgT&ma8fh~r96Ojee5O)a_DqE-)s6-Q$ZKY~LtZWM$`vV9xs z14T;p!rEw)KPA&Hx|5x28SS)!W)Iv)^V}Mr@0~!_Y>kbL`qCw*ocZ>5`VFo7*>PP9 z%x+ObC{jSYWDy$g!Js4*` z$$bXrpV5e==aeXJMdv0=N5ivAu=eky<<-H-1)BIZtwD1t+v(FOi(EJ!afw^>lVaQ( z%*-qIQ(YWQ`4M^{Dna!G#oP7sq9i0fPRq(2V(VFxJ~C^Ilf_<6bBd%^TL?4fb{(7C z?+zK2lgVi%sa`KF4hNrL&^RPVw2xq8`X%fYRdt}<`2-<5l^jb>Bp@$sGUf?T13`gz z+xS}r`C%ADu@8`#&k)hAVJUG0XeB6QnNM~ihZo3m_->gyceAf+xmNOyf~DKD^)U_L zV3IU1l$ljpsJ$W(68f)hGEP%!h*dO$-z=S2c!db^6wF18ygE1BrLeX;WTV4_o&EFT z5-=OGHfs9!dK*Di88q2pT0qqu*m;m(O$P1Q(TN}lwuhmMVxtQSa17edqYxy}%)O_~ z28`@yeWSunNKl;F*a%3@?(692m_92XGh6uiw)iulVEbFTP6C2iUX>rULskd1#e`P6 z-5){OFDl~l$dVii@!mtvFgA3YP^c{6y|FdVFArS@$m3zak&C#c3d0w1_nPJCTdJ_6 zBw{Hny3F|BT)RI_v{bVjswp?z}9>LRAh8q&}6=d0wr#z#d0KJ zfSk|^%_bX(egwRBFryNHcvlVHiihpZzD-c(O7(M`Z)X$|F2f|?@7;Ze^0VXWw#v5; zyL!ARSNi!$+A32{tSckvpb3gTOsvnCV7`L|E0auZs%X@6v(C zf4pKgob`MARww3C2sUSyZxMxmik8n9$z|9r6qS_NT?ZQyICXZhaiBga$L`#* zW5^nHM)9RcZ_v>SGq{!T*4Od!$~U1P|1T+L1;+NtCNiEG-7JES*FI7eXv zYG&pg+j0?f@57u&B3+q&xV|OlZ{U% zKgcS^$>*s}q{}Q{RtxU$JU>rQK9_B?mK$|p@Zx?Si92zR;;kR59%Niw7aEPsZ_iVn zUK|L18TOQRZ7}@2A*G6;o*qwNg$h#}@b>Szx|3v$6f?GYI((KnF|TiN`iMA9k4bl8 zJdbcArtq6*uwlZ&PJxY^JL9MTsx?rAL@B!P!N=j+5PWE9V`GFy1a|BMU4y^$6>#W0 zooS#q!Y$Z17=I;!LS*5Okg(*^;V$pR7KhE7BN&4w$aF$+50rKktn%IJW6LD5c`9Vl zw6}#}hrNl3$?e;|RN_&!Y4wpdj5RR|+;)`J`54IY(#9y)*LQH|6AzD_a04!n=TruW zMr6zo_mW4X!bHAj?d{AlR$jQJ8G${beaXv6Sr+t#v6N-UmTgDeN|FCKuIriHK z5ZUdrs@3wI@1)bT&1+v|)(yI%uBiB%GxBxLQQgd(qTttEhPrh_1`L*x!wUcWDmjxq-a<>=N8@*{44;Vl_R&Ou0eVG);UVFa=5bzk1aQ{V$DJTfYGPgE$EJ;maW_thrJ#K@RCr$1Xlu=gCHH)9@VEzudc>tbKbT;f2hmEzk z6c6?)iiyR&zj;W7V%gc_99mO$^ z3$6yrfk5NX#4UK-Zb{jxt9RTCzufd2kAKB$ofznewOb3HoDf_<#FkSY*9}p0Dm{xq z&8u(k0iD^3voXluCv$tBY)Eic2F?ok7htmr7ACoZ1)WYOT+bpj z821o9t1m;RG_d5HJAWaJN<8$&3U-4|t&i6;wAdYi_3BX#`8|eC{DE&x^v1uc=PZgB)chL#nvJrd0tIWRXfyZ%KuID}zY-M?o~G74SM zHqtbOLJ=a!8Mxr#=?Tvbe9s~6;^Yd%i;s)nP0}!=)e# zu`2F2UtWNu(O#H?ex0_h4y$(GZzD)XgT!7;bo6d<*C$WXKM60DCOA2)AhI?!;S@6S z^YpHn6~hM);1T`OX0_hXRUH4Enou=%cB)h9m`|Ka77r&_vuN@N9$WlmbjRzdj{G7K zTP&3UbUDI_ZKiMh{H`_SsBk%+udDH*t5Hu}BvN?6lC zPvfN@bsnwephnwn;#$hQ^yLlPX>`hm-!FfOHl%PyJA>XMUO$|4#4{yHclECIaUXN( znhROC|KhZsVb{HdU>z;}{=PZzQ&58d038kQoVM6Vea`%^t>nLq+HC(6KB`83U+P`& zbQ`@O-+uSL?@cK-pr35cKf2Bpf($I%33+Q44eT%(`nqM!kBFoGBP2!GbwE)6cd~3$ zar{#uGR23M1v^`jV0fA%YPJ@%zPR4xSmlGV+@ubAVCi z3MSo6Git)IKQF&=XqlQp@19Wm&Kdyj2#ePSzk zj^OP7P-T0Lc*ImG0&{$s5A*NZjPX;!|!CeQEi2)D%HvStB(Ekji zI(vqQ?}lEhW`vtT@Z;*zNHZ*@LDB~q8R;3?meX6dA@3`5&N(U^H0w9w*ycQ+^*Us| zshry>$H_@nRdpoJG0*mByHy982bMi(`_^z{46+b0Twx%uy!-=f>BEwzG$jtvN00uX z-wvLOgdbN6)bifpkS#AyQ+Kdfb?44s>vS=;9HULsC~|OGl+?HbrgIzm&^CTzLnam* zr7NZwp|jWd+L_^`l06eSGF<}=VNx|0C<6lDk)f1px!q1X!-(@&g=(UeF&cyzcN{=f zQW!C3Ke_Av)~yrQ-helXJg!gdbCML8E0erSQY4k35IJP=szGR7ucZ@8sMM)T1oA zwr~#wu5vW7m!=Je4pvTQVSkFN>z14)-UB<4SI@E>Q^H~_p&cuT6YOFX))9)Y)-fMs z#dqJXHL+JlP9?Vy6pBkz&c$Osp32#&`FK=nhm4^$BV@F-Df&EqU^Kl%CwAn*V}>;m z)$+tLFpyCBSY+w4jY2O;7yYh?zwIY7Kxfp|<>XQ!hk-9ibJB7DmW{iZ;kMR#9n1;fTTd&+>9CMD{0YIcW?6=E!Pe zmoGE{L=N3)`1I#(A^fgeI&7U;MglHukPwj{%~{y_6jAT^?&g zGG=QFC5G7Vxrc6KYBKx(V(vY_x$ghI;h$7Qp|ha~X;8|DLWI(g6b+;7N>=vXDx?xB zNp>nBE7@BLA=%r{-h1!yyuO|P>$m8M# z(dD!yBVrjaIhN_s0H9`M*=YWjgTpemYY=5&orbV=FgD>R(+K-n)h1JLB*@T0jvDS$|&n;UX>d)lqRqq+q($v@2v`LE!`=&3L z$tQ>vtax<&Dx{|yUCt=0f7OB-O21MQ!cv$Wzj-q^)@Gb=vuVH(&5(JHPf$?HY8b?c z&Na2Q2RS%oL&eFhUkvf68mC-WQtC6oyzAYK6SeiU(aCMDo6OR?68kWWOxv_AM)J66 zB^AkrJJY=)^rZO(e zT72`F`?&D^%JKamm#UI9XpVmYPFuX~lGR`HbYGQYnT3qdpJIZDoO+9|sVcL)uBewk z@u+$huKdzYgz12QDP>~gQDI7Qfq|gP(VgP@ewoXSIzqgvx(QXf$4h!9cW(2@?}>9> z2uH`Ex-;<>b;t5%lk9!_-5BaZCWf5F1*R^Xc}Vo)2qrCN{ygEi)L5=1`VY)v!E8c=qHvCzC@d% zR3n-{x?WsZ_-2WjrHGn}VSuy1Xl=A#w!1F5`A^8T4Rlc|HA&Vx^e#KWZWy4L&h%I~ zK)r%Hn}&0I{<37jrjJhsE=*gfX>jmw13@7{!O7B5vl9;=o(S=xAp2ehMQm4ajvPCA zp#3GI$XSrjQzah8$Ht-(h4)Yh-A5^43Y*~i+ncRvaTN~&5U44tUuw@94aBWSgCH;| zvPNZ1ID7py554wI!r2QHZfzLIF>CYYNCdSWgZ)V?PHAZme7t~KzeuXG+Sc>)<$m}8 z%n!&pb6r_CwhM?2+~yXVw~(I~-08rzA27X&{5wwadr5N)ShV;}?_{<_rkfYEq;o6k zA7}Etv}17Ee5{17T^eHMqU+GhMg7UHImm6MB)i%T(_oSE4nx#y(W z0r*ZSgHzO0tIz1>?oMxT5caawrr6SIu% z!Q?~K8Tfp~iDE~G?GzNr_3?f|;w%D2L3e{+_x31gWDjnMgA8FGj%4WKb|IP>65ys7(zfmZMX9}FpdQa<3PCX zwqmZs-4{bkO${R6-^~MI7l!*U$O|n>i?Xh&s;+8~b86ho4k6RdRDb`1^z^mHj1#t% z`|PdP$}`6XX=sz^d%lybRv59vmjE~J}>os=MTcQ;@R_Q+D&=@ zIC*()&bE40{c1&> zxs9b{KDk^XG|MDRHO#~uG!Towgbt3w+QJSp>A-kX+wc~Qa4~V~y&t)S7Id@&KBZE; z>Zj}`I;*m>rr?~PyZ9OTVR11>Bdy2Yi8~_N0nLjdu3HEl?hQusf8Gr|;5i6)0!)<% zz6Qyt>gk`{2=oKd|M!59|J(-rD=afUfp||+-qxLo=_wyS_BJJN4Cc8SD>%P!-qr1} zgQFM=_+$M?iR#{FTXd}*2DG$RBN;FJ8%?IPr>+$0zxi1**f@e?`n1S7Y(S@Gq0-i9czg;Xj@}148 zp?U%htI|FoMR~M0x!=es#fqe8dot|1^YcZAdGB;)7af2(TV|hcSM7R#rHk2LLM^Ic z-g`h|wgL38u5AqMVK1oz%ZWa6R25w#1()yAU4$F*^vSP-(H5dM5Yhqj+HacF@C_C=X(vpy zF8jZ~dMF^ZB~eEX_9as%{)Pw*Dm$?BVTXd44RQn(13Q@OK)UWs=6?=4l^7h-|Ar6^ za-2{aL2d4}qKnhT!nW4Q*f%$-P*B*qR3*dixU{Od^fuw{nDbEVS>7y@88|8b3eDAQ z6JMB%FU6%|J}K-ORB#98R~i7fF{Q(%0=jsmE_3_f(wg_H0=MT3&5tE!?p?eI?@_yD+7bI zX6X(kW6trgHN3B(5kA=}vD`sSD&o~dM|C7b$rv_ihoL%52>Kgs_#H zBm2*4{EvGlt#V9c9oJ?1oBDb+lH;Kbg(zP0urz#H241Io*)1IOvcYumB&YPelW;-;9lQVtSnh>WU>{<&2H`}_04PMYFI(vk!9NT z*w7KD3z5F}2Wsc&pvOlNvr)p=0%2$DRqO7abzyi<@Fg1M+C)dwY{uV3g*_yI;dpK9 zb&_95X#( zsxKl&BEJIrika((7>k>AG&mge)R9Qy`MAn#ks&*n?(rqyvg8wn2n{wLJIr5so`B&2 z-i)|ajE@LhY^#Q5B%fsDoqkM_vi~UinSwxXQoFttXB=knRbXMAQ!%s?Vjj@BKekzA z9pUTAtDJNZ_DQ|HIZzp5AdTDwXt>a*BXJa62>TDzJSu&&V*ZT=J0<@B4lhF9qZt64 z1`drgT2w85{F@cc($Y|8_2|kp_5;E(aWTI@#^FgUKHy3%A00d#p=6WRFTKg(inR0} zhF1T;;^ns$%{%BXqQ+D{m3xL0N|T))ZgS0H_yPJP@T3TGRk7Azv8O`KY3iA=V7dBg}S zo^vRx$%mtdzanoPZg52Z#a?cuc4au{4OF2igkB1F=;YLtq2+Lr@(9|s(vp%mxTrHz zzLV!N_P5VGHx+ur?m^>L#ID31>4R$=pT+Lev|HPJ8(hEtV)DEcP6MIG$5l$v*ghV~ zj;{T#k!FhuUW1)?Dt-R4xo2Yog0e`|6pS4PM9=E#9lxT@EllXvb11q2|lD`<1VyLatC54RF#YVo%c3sY7h-}2oF5F4~3kp>kM|2RB+ zp{2n9pFl}WxI@*m;c_PzWTMS#!+y@xD2^e&db~LC zaO$rJgGDnQN@ytr*^02H_mu_qIXuBCgt0cD=qgODKo#SRg&Rqy7mMh}9>mp_Eqp*1 zQ9D1saCmu{>)Ep)TWaITIG&S^${c=6<7pWG@%H`H&42MrH=@Mc-! z-`^Di7uy8ZRTRV=E@9=7*H+-T5*}u$=9puj3rN+d@a34;zwaS5#OeP@5Al4`FL(K# zwDi*pAGS(fJUD$oKY7t#Cq!>WR+RLPbJx;*7y9*T|LMh)tm5O8^Qlldym0ZQ{~L@@M;s~9IPmbua{XZ1woL%tL?2xKz}yNIGz?(a z$Hi50aK{=3TQGXeHE8?_BN9Yl;{3zU9rMTU7;DuX(mzK@%HR!s@L;Jf-mh3oO2f9G z_2D$QC{!9Y-|p~}QJrXw;e9D(Jx>vVW&eS_HDY6%4l_L*DJjTHnPtYc;yx%gU4gRO zdA@)#F~qhvgi-y;V8i@)z)(FnVGd_)Z71(~6I%X67h;pIcxq0M9Vzhe58P3$uiI8e zXE{TU%PZ-`-<+tO9qAqWbU*u`N5S=!Eeji8iNx)T2tmRhq0((%WAjJrnwe#&DzhfOfCNy5h^W554VOvvgqk> z{+c?$ev299Sb0^!j?v7B*jv?Ov&~{Gh~PFk_-{Lor_Y|5jr^lB3XH$T-@y&u!P7k= z7OU=Tt@Gv1IgQCfpl&t6xd%|K%KpE$x&I3CN7k#U4~H!uX#5q@Ew2eZ6%LC*b_{26 zh|Cbp)CR{3o`VAVHQBs5y2tznOG^fml!0uyT;92|vK5|L?*eZVR7P}Hd^L4DweJPDrH=J3Or1D*aPc!2 z);9n$ju*W4AbeocjZgFQOZFlc0Ob8)V`Zt_Jzr3%q_Kj!;>5sA6_dYYM}&NxYNnzi zxX0T#a~hHk^Bpyq{H$QT+{p;GQHUpK8SX^uK;oS(i&JCczEySe*1$FfKE4wtjH*7O zWv0+izRZyrPzGk+Kw}~xCcOHT91U=VnyIm5BC3oF;Yb)t7P1rmQ>h( zyjU7zOEwAPKN_>3=r36rZ9R6T`qP#G!Ptznc?>OZ*QH(#S+01)y`RnY$60nXv%=3B zuy)2<7?cILluN`@Q@@?eY`ZdF8?UT2#vR$&Ig0F%r*aa8$Na6tkqhW8Zbm!=Y0qxR zwZo;w%E}6ZCfNvqU7Nv^!7LP!bIXV!MLyNk8wh`kfBw|X(f+#==N36--g{YA*6UKZ za+Zzh(08y99G8fZdQ4Ih%)q9{+9bHSN8n-pI>qR3`j+idtV$~QH6l}#>i{4REay0e z#wqvUTy>Q@d+E-2zUO|br-$xPYIWRQ&08!5v!}t7W|0%PZBKOMvtt&Z`R`l{MAjA%;KmR2eo2 zR_A5Y^q?@T9@E zIN!%^1V;&33l0lCepFkSYVK6S=^ps?QP(HWp6Tc0fS``CY<-;C{pfPEK^FgzacLD6Wmk@sP|K7$B6*_Y&-Zsk}zDv)#A+8E{;~ znfv~7y%PY9lwq}4MPB4PVH@T09mG0}IP?L`7+o0Zg^|_*mAsEac=53YCLe4vkI-W9gf=f{yAt(3m8Y7b3YZ-TX z=ZX4UI}sY81e$9K@(1Q%Pf;BzQs;7+gBgEd#r&;CV~y!A#v>vwf&an<=xZ9!2xtzq zd4z&JV+&LOsA+>mtuK{=XTb|u6vm~i{-BKDc>6XDu`cZAV2p+NI5Jf$t?d4WK_qM{ zoDoV@m5*6sIO=+2IaI+6jGA3J%NX;hjAQ0!T?!1mb_?+ca};*SF19+^$N&7fIB6DL zd|>MKbym^?>n}^sEZg%ypWDmLd+Y0uH`&ebP8dQF3DJ|}6WA-1hf3rIGuBXT-nI8& zhvXB~I)om;=x(wy{CmQCU~9Up(Jw9zB~6OZDrS+vvh|A$v$I$&PQ3@0i+Zbs>3e}- z>>5tnI8+-lQ-Q|h7G>E1jI;tl29ZE7cLE5*n6feB;U7j?FT9pr8PG4_6CgWHFFN(d zk8>*Ai@$#TQsEd!1!I@3u1vRib4!-3xw?7?V&}2v!Tov8i1>4Dyp+e+! zfxC~+rz=2TpD8=6?g6EP?8XMk0Cr47L-3A;C zONcqX)pixdvq+2%9NLR^c*BMex^Iq9y)e9Axz#56Ug?}GL;fB9^u3>WV&=Q0QOZMV z!oB&exR`#;AvviDXIODzl#glqg%1gFab7jww|xB8Md%)KmYaRo;j=e8&Htfx9cODC zU3Ran8LpehqY66;EQ67ix*y+9gTo3h>!1_&-w3$BsH%Y{kfWU4qslWd(E5XzL`6*i zF?k|?j!9NuS9jcky8r3Nzz_i1va|bV_Reff)4;@~v-b)b^s2Hr#_QJi?2qg=s<+K_1-@3Sdu z`i)atj^l2bHnpr6FQ zjVq^E*|_=1#f#$>+t;N2h45u3@`5$&KM}qve4Xk81Om&jI%6{4KhI;Okpv;Y$Mrc- z#T9(QWFAj1!TGw7{)hAR+&MATg%#FDdP&ev*@I+*Uqyo*7WVKL6{+PY$H|i%C)0yB zB4;K1y4&N&8QdRPOK&Pg6ck5Cmk1)d`vNX6dK>O`FKr@s)VD6c8jpiV!G2}l1af;2h9EpAuNFqJ9&%NrT+k| z{16;c!OcD8lLV7O$iDS%eW+}x)5x%pE@?%0>ePW;M?4%QiWx%{&}wF|<-XhN&k)d6 z6daYL9~ql%IvaC2j3{_)wq|aF&%YQr%*0C^)yP=}DHw_l(1hXAU?ARtbsuI`^qNIqBUf_#k1~qmo#N4uvCowSt!S?dHeQkn+rGqeZcKm<&_&bn0|1*LeW*`+om_4L1BdnqSAf4XC6 zDC8>oq#aU^E37Mq8xz$g3FY+Z`!Byg<`%W($HeZHfQ}WnvW3-Xb2=Q$3ZM*!_<8=KQ6Uve@s@Ssl*H$L-VbYq|h3-eKm4VeEW zU>4DbOwzplEx|;2o%TZGYK3=QY~U9M+uu#eed3E3muBjl;&Y8EIn4SiFzUbTusFcB zM;j~vrQT2LonWLPC%&LHb%G~!kOQj9^C#^%tSOKcLp{>Awwk+oV&u=zwuF{OUq*)c z2$$XY^Bd*{wu#wU{CL40LWh=!(d55CXW}k{h5dXtTIS~wlz7P-7I(Ia5*-Jro$LRU zF6DpH_xvk3s2K_teqt(UgReau<>9DjXaAd-TlwvN#0 zJP3RpB9>`b7c&^GMEU)@6tD7ez7q-^L(T8Y45xabnf*P|x`OVVQ_!HIyZh8v9d9nd zy8RTGHEjRW;-q~~_Tdz2v(qqbT#*bvt=B7OI~`5FOJv6qMzkjm@K_w z-EvJ$b+}g-@BQNcZKIQ5c+bda6fxg*P6u)k?8B>;@!H?N(V+*ftY^=jWtmUMc~^}F zBsRxp7a5f!Zd>`jyNGq@ClBuH>bjU>wbZynqV^zZEg$79idTyN4T!kH_vG6=m7^H+ zr#OH`fw67Mbs{}1gD}HG&0X+p$EHo2tY-B1cBL3JnxO&f@9*#Za~e~d(@kz0>ghq8 zWyxpn_tVjVLwxG8+O1n?HP@U*)BTNe8f~|(BV~w7{bdtfn}M8{ZJe@6wJ^xi0(#Ax zyF7^Z32E9P)aV3MU=V@sv`Gf;u^8A)2@$ZL+OJU$uh^{xMrFDOaqr<0D zYs+!xJ!EsIemATw#*cq<85#LDG|%Px>pc}IwfiSq(f^p1HMwMYABnshs{I~w0tariP{D9|oWPPsV(nyF`{*})snAm?HvEKS9?~GE^ zg-I1@EPt@QJNhtYy0RMu&hhQpbSRT8& zBG#P<)AW{DO-oA7%5p$#$;cc=-T(!gi(8woU%fhx)N5LH3`0Yl7WMouYZL7V$w*U> z>582r8acp>bk_XC->4kdt%J5CAUB(u)UP+3v&G?m^&*JxN!I0qOdirQOt5L#5rQV+ zyy}piRo1*7!IW>oB1}@1mnRsxUO$lYk>s>uH?S_nVZkg}nLIHM5jVF}AU?3y9NxRa z^a^p&uoVXl{3vS69ZNF}2-0Qy+|6Q2Iitk|?8cS%GTp3_^Q$J$mm6HjZ zN=Uu_NJ7LRBnH=WsNAhe%Jph1Qy>LOKQ4UPgN&)fIDRAi)Yn7_L)(1DJ>%(KO?g43nZ2gyo zV9v8NPwq;f9;w=;>qK%q05ptPZ@9Z3f$I9zz~$;j)b63B=kSrHHih+H;g26_ALR!2 zgN+jlm9Mlr8Sy$(=nc*z*bw}%GZ^ikVv&?XYlNd`)I~j8`Ns9mUKgtktux|p3k+s0 zsEzKN2y|n37~3k6r1U`9a46P3x_&^b?3LA+NJ4haOy`|@7D*8%vzyHnETI8yeRj)s#m)o=1gbw=e>%R8>muDeSZ%`m#Ix!9(JWO|0YjuQR zRR%r3rsg{+`&W$1Zm4F{2!#PPjsow;8X%k5p>RL z34dGGi!db675~=xzkR#w@I%6*Du`3NF5R|kSO2Q9 zzZ&ptf|~_io-5Smy2nQL5xvfF|I0xQqoyF(V-_;!+(dcf`l2`6Sg(tnDl%I?R=XsT ziyInjR=?Aukrn;v;DEjX$tD7MC;BZUsn65D-RoGhya2}b#ZqJHf&-Ccgy+{LDLwSD!<3?FQ??_wVq@``QLXHs~h71 ziy(2lbl;9nc*$N*PDl5Q&OYsn4xVk<_texcmKNVIZkJCA_?gmmT*_NeQGR~?#uBwT z-Swn)%RReq3mdm)VPFC>FbzBG>M<~AQv{S%0>_7<4@)_4;MHSqN>}=cmn#BvQ`NLe zQ+W>(Bg`z=UEx7&(^E;y=Ij6yP`QW*ImGr-(di%a|E;A(%|5!?w&uwy*7T4yOXf#K z7(v;}ID`$*|8fc>oVdBiFco=YUbkWW`u>?kyeGnTvL{Q9fLbM6g!6^Loeu$Asa65n z8Q-2RdCaD8vz*lJRDfbpMzXrPx4HRNs=m1#go2|j)fmggEbFv~C-ePy4K~OE z$uog%4Vk>8ccP|WCc`AdZer&iiqCZdzoV$2;4m?%%YFNn2);oKqB(L&x$Fh);(=g7_?YUv zwhH!gcF(7X5IZi8-nC@wzKJUe3&1=wQZ0-JHj)o*KNOvJQH{n$f=k$;@pHSVLWNk z){fn2_TKdJf?cfD+%~z3eH}&Oi@K+m{Fn6=>%8GRW;^j-=X73nb83-nfY$d*6eO|N zvBo}u@G*V)lHK)YqV^Ry;4pdxK}Q)9(&~oEGsz5ufgAOfpxK~{J z@ZKnsTdRSu{M}x94Go1WSMJ){4)_bWNqH-(XB~3wM^hQ(El$I9{NiXn-sDj%5p{Cf zcqeKH=aS-+3%^C(+iX5ePY+a8N5nUC!@a7il-GNHY)$ddcELCXQpMfILwVjzC-lKp z{=}`8!=MIw3qs2DWcvO#9^0)Wl&Z2i9q}U~B*ScZ-c8J&%V{+|Cn+iFbBXBj8d!)p zznzTWF2< z1Ej%W@bn)hzAXO;XVj$nM>t~x1A{dMWt&v9)$1M_J^jXj*^n6)~!n_D}()iEzseH?4|rsvPSN7)f#*+ zD(S`hyN8cj7Za~=AGz^#quruoAK@mh9z8QqZwy}AwN!HNZU)V!Gx4?RV&=V_t=afI zP6;L*>E+^qOU0b5PEKY!h-7wEM&vi_Z=U-lP*fjlZe_Vb-X;f=vFhR;5jHzn9-ggT zh3B6$EBX8QEOw&7ZL@GLBaucDxbl#-0B}@7R8%EO{&TH9l!h3R zA+!czRVUZ1)(t{H4NGo=rmv{qQEnhU}Km_GORT02zqu^P_v zGxhNfYb)*oI^xhFM*I0~L1-h1B=S9<6kk6CyY?g)ptyX~G>}KKeKna6}>XpOP7+H0IkykaKj(S*xdw zKEve~^cG&;_>r?jzBd8;7kHozyV4BkLNVs%H59;P3VIe1t;=Ir4*>s|-@N&j5Yu8l zCM^oE;?)H!=yltrDNGL71sk;ql=oX^sDwJEObw`Yc6XW;$?)24pwcmHw(6OmF#3#{ z0Ey4GUbrtplZ9Nb4s9mUAq>@ZfI;m;6s2FR`a!g;viEe!#S2$344z zxENN$Y5*A`IEFO6K|p^c2p9N>N;_gBB?3*M|`bs@d{tZ$kKH z5R7x(cH;)O=eurC?1kIpv2C0*>@{1qs3~DUMbbQ(Se^%^?WLwCUS6yanl#f@rB5JS zfQB7v6@WBUsS*MLFn~1b!SNVtJDkK`R96agbn6fl;SmJ-Cz-OZGgM980BU3MopnlL<#zTh`R zW@6HgI(#&S=g^Bx8vF42Aza7f;^O3_^>>4dYkXTz$Jf%Z$K-ls%B`(RQoATNZ#Xey z5Z>6xRN5t>mJ>TF{jb%Gd z3g1ihY-!F>dATmjuQsBL?C7A{LblA_o5#2^e%8_{r$u4<0{h*f&tj)C^pmg~1CzC? z)z$T$*m(+YmSqfE<%-SSX23MaNz7_WsjRBH4qaf6{27bKiqLRRHwdM?KHJ>eLWjE; z#6Pr9KqBvDntnf?G&fLP)S{LIqh+|k=Bnj5+@e0_Fh7pKcKB``MOZo}-8_d6pM=FK z^gnCh)7(s?9gy&b>AjE7!MR#<`KqNTpZHB|r~A)rr@3wR!tfYYxPFrz^m&(%A#s0g zbX@7zM(8!BC#rhZ9CYd96AgEHyZ7*XRC*zPTG%OtqR9SkAWJ*?!H=Z2*-LOTo&+HG z`t|ne@ZLogF^?HM`Pc1`7lqH3o@CI9{L~P;!6>k8WT{QzLpBk3Txs=jEM7 zH2aZg%L71Vp~EjKiVz4ED}26bGwsmmt3AHz@$sKOL!6Op#v^Tid}c-=J)L~ath~Fs zbDyiO!J15=?DhKEf#Xa%)^l-(K1+F|ugvD0eQZ(m6PkhQY9GrBOPIemJp1Boz&lByf>Onp0)AIs$D(VVK5xqI8eLmY0lb8ymOre=42~VaicNu!0ERgOF!B17 zlvLB)Y!3y?D2MqKVuOGYvE$Q1^LY?BAvCMeJx*i09z#^+BvLs_B6N*@)BO@W_dCnjiejTx4yN*CpG&rqpVzcGu{@b&|u8oO3 zarvJRs*{=8a^0fyM*%q#^d!B}cp*i3t(B!V6s}Y`%lyMFr%qq_7cM~4CAcAz9%LQe zG%iUEk0H?FulV!d12Y+S9n>~3rxX?zMxrxn5hz5kiNa^a8TXH0%zWSI=xQo}2N3Wz zoL4N7J9<58^Oh~1US1(+yr3hDWn+8bLhNUCvG&IKu0GHMux;BWs4w5=tQ4*2Jk{wj zn2~{sd>;(RNbmZ-@a4$>!vsp1FeILYST*##|Ecjox`a`B&l{CraetkTuW??U_lGI$ z!lMl!#NC$E*RL^5wd_r;NltFdntX;#hsD|Eh`3wTt7yv7L{aJ2#3gS`C*st8_qO<8qDJaBQVf2W zdK&tI3l|>$v0MgULQU8VYq_1B9U~oe9>ryw(e!uo^W|VM4s(WfYin%|784zuZKk|) z=kikI(2z&Y+N$65^jCuC@nLPg2%mkZYM}8faS03?L}0Dsxg~RHbXBNrdB%e`1YwHP zRBS=3?UeC(c}PPKp`hUQ^ej_Quq-HmKAd_h>XYDTrJ^=Vzm|i`_7@>n@GcGrx!xKCfc^v_R}y3_S&Yjq&;h zwd=>7CZLiUGGCutQXafC#v+>a=utNpGl@i1xX%jTAsGo?^sjv4wRNPPvxqu=e@tQB zQpuGaXl7=*o1ah)B;gt6MHJ(k!#9qXm8Hb&Bt1~i|12<$JqgB&h;~rqBE)`(J_aEI zwn9j0`u+R&CoyYaD7I7D)o(z~`cYJr$}|oeFqGY}$D-YNR5vpd!~>%Eo9rpQ6wZ%$ zr+n8<;Kz=SkH28O0$rS(oX|+F<&dJYv-ACsy~y8qp&q@W^?MJ%q3My-wN)7REzcU; z*=Id+i9qk>-1zks^!A8mB&(!YSO4J=$ooQw<@*rBG@VE;e}Ac`UNsL~ z=dSXSy0^@R8WqLc#h- zR#v-tGY!Ej=ywipe}<_|f4?sK57dxQ?QSTCLxR_?%{mfGmq+(CDZsO6bm;zyu(Gc{ ze5dj2&8w4)e)p?eM9KyDOqO3AY|EOi^7Gh9PPa?WFRtXNyAfTB{74FD2RJ!O)M!cX z>Jtv+IYXjfIL*qyz=shcJ50tG76|$`AwcokvsLoAkWjpG@?dOgE9x-*6*9`0D2}!w z#HrbVjDo5M$H>TUO};F+QC7_&hYF*ZKN1^wgkeXKSX(x?vYL&&_5o%$I9wSZ^5np6 zoe}g+bAGXau_x|*bCkZm{D~8kqiOqfEB2ONc#<)a^5XXQlJd~C@~ZGS$3+W6Td^OY z3GX`nfQr-*)Y#@xUsFT4xioosd8vbe3Vjds&GGSLU=R@Wb(0Rsfy!sko)LCGU6rV% zpd%B#I41c7>my8K*pgf9D>nvUP!_;l?%n=8ZM z{o1f&Pp};bOQqr*(&Ky zpQ;`7^T#<(PR=W5UFJu2n4{Zd(x#e6r!UP6dj5VXFN5YYVOKBX8sN$MQ~$KIv_N5& zDx?hhqbc_yGzCK&3AbOp4|tpSdgffZL)_fHf?)n_-guTOHT77yJQq=GD0=3onO5$F zWYE$vTRqx0lSV*yaHv-DxM+#r$Bo(Qqkm-ttAD^~5rUI|WGgk5Q70$I{O>~^9-?bh zO*#E4%D8UN?nfN2a8w4kMs9g7A(Eb!wlx3qCOzqA=`cwHF4u;rqEhN3FjM`sf;gh! z%6JV4+`FC^ZYU|GqVfd~l7<~#QTjol@zn!>1sr1LkNf@3gQ8ue`^@8l8vPUI+YHXe zBR2<`_s{~iBnyj!{8v@APwnkp>)+s?BAnGssnTQSk@vX)=6x7D4!KX#(0u0Q5!6kl zQBoR`8q#~+_j_gjwBpj5|Wdv6#c}V_XcGJ z=Ju%QUQSFlJr6j1O0ec`TSJxJsYJSQGzjA2;uy|IK1oq}#q9rhR$MJ%c^J}3K&F^h z?RO=vE=Rf4g$qPKPu(#xGNR3&TC%PxX&Ks!V}7mjpaH7Kr)uj{ibzLP@7TE$%;A)b z`;-|j7d}MA$J1}#{5q3CCJDKQno9TWqUE{JQZq8jjM`LD&ODZu#+EKgtzelvbM}OS z5-od7(6hF?=?nAoML&c^`xA$*;lp31pK{3mj&=54OwmJ3d}m` z>cnO{$6lx#l`6B*NZwR8>Jdf|W&)UASA|cO)Cu3o!`#NjSK`k-h6I1`U!=Q0$K4<6M_9Gy6J|SPF^K@B5cI`$C0H zC7X5`{f;$KRa47u`eL?G9M0$&&cGcrbYE4^CKSy~O(ASW;_n}uo5lY91JkPn0RY*Z z)a=`73a}ICuc)JfWymMjD^Z(TEm?Vt-HMEh&;4Sbdi78m8SFH*(pN{S(W(Xd`Edr5 zV1e+z8mxmd@30k`V(*ZAf@KQs#!X~0*`^oK=+d|Y>c+rk_c|OD6q0UoW|XU`*3FN` z*q{HP@!Be_{p^8XA%@@Lb&Q)o#l^GDHQW`buFCir!Ws@*W8h;FsrycGi93zkKG>ZD zHyI&kTvfgh|94|$oLLvVftW7d`9ZCx5`KMm^%ANbn3tLk6=9rz!8%TT1S85pvNfUr zgyyWLy!U|TQ%-ht9J5*IF**cAfqGfK3Zt;7D0GCns<$4P=n){Ept@H)!AkMHF)`ETrO-Klc+xIJfSPqPk_uOq*xPHh$|xfnT%ww-d}#ZeL38gm)>g+I5WR@rvNZPt%7sbHa0Wg1t*-|V zPki!Z`V@uzAC&0I{jqCqlBRvZ)|c7<3Oq2foa!v_W#nbm$QAGM*D+cNUE57~_N~m= zIsX0~ERi!8awZ~haxRzNUz{vxiFb&$=px_3vzK9P0;DN+^@~xku~zrPnwsy%S*Ewk zLypmlZ5Pp(Z;tLmOI?Y;J|W|{-{sa5<8PDil}1vrz6jSu?W-=daefGHLO2*C;n>L` zE}laxCHtq)8_P$x-```jR;sbD@Oklk=vsO}@JcO$7;j49cX3GbI>&kNib^Wa@~6P=I1D1)?+p>q%kWQ3Yi~L%TGY9-txm5lZIJQ;B%lyY z$HU6%5^;q&Rd;K3FW$~bkcMy>P|mVR(34Rj4;G?4J1ip7lvGe!8hsxuw$r>HP0W~9 z5cIg(#TFR-nTB8BJ}oVCNy&CuS@Dhzr)$@aZR1F@wJ%lMk6Q1M=Q;<2KS%25K5PrH zY*ry&#JG3&E@7?0&BT28-Q3r4K{Hg5*t_5S|EBFhV11?DakMhNp%NMz*Q-?3V$ChL zcze@JUwpE#G8U|+))PlZ(z<{mi}YZb%gl@}UfJ??Ijh1IPrW5Qc2@@0)z!1G-5YN) zcf^Z?pCa{d`t#*p_)8a@{Nk5)bsJpG?UYF#&J=4id?0?L%3H4 zA_Ra@&K9wG+xCYYc3#VL4-IWmpnS0T@0Yn!3kG7Kc=kTdB65+=568JJ{>Q!-eE*;j z+F{hv}om$$zo3lkt+E3r2*+|-*KzNRky06(z+)=)B=e(@!+CSAAZ6)AOh8|;$E>CE52tVB!tnmD-G0Y+D=D@%!qi2z}g zV`pb(JUu)RTM-2Fd;CzZTrJZInNp2O_mGo-AwZQCY^tEzMtzBb3NR6-7$|!2f8~); zNJxoQ1tK_XRLHr9wRk2heMI^AuKqLh2y+IGvf5g<-)}4BZ=KZY{S_GMP*pro$oU4f z;ONct$?j(3zTu{sj_139u8wb}{&FUYRB`s^uJ#$b6+jH|F}jaPJm^r-@r0bhg5Hg z`Z%(nV+J-wHFb4wUr^VO9?WjNgQRtLcApgr#ljjE7M5((elWrV9Uc%U5^?~$SajsO zReksyl{#Pa0fpctW{g}-&CL;4ZEK7BTSh<2Vc{!7J~ICx-_`d=ZBWB~;6Qg==IARX zPj7Td@A?G#XPQ27&^xc4x$)`dsf#T&Q5aPPeByACt#?bNI4uW!MgkrIi%s2eNZPE4 zFS{bFgI)=}ot`}u7IxV=*^?{MD zAu}4*U^ZexT&Jt2i*fhMr%#`?@z@*eNn?`SF{=LY|l{Bs+efVE-PRLV&{J z^Z=mT9fY1A%6}*k<})C9watbFKvl|s*#wklRgY6sQ!_K|F>0S+2VBsV;_dC7bnV6s zkmL6S`{#z?c_N;eSf(rPaCtbLTJ^bB^2zwIyD@t>@BDh(;<#kN<=cLf?(~?Z6%ma1 zMi5Cu%|q2~-IqSXwrCcCmOeK?!Bai~Pdq|+)r=?Py2muqRQRq8gmBQ>z_?u&d*-XU zs`{ZBmS2qhZgBegrrCZXfnwl%Z*9sJ$k}BKWdP*V6#F&3t6mvzwI{1R|A4^ws-fZG z;THeq5dZLbceV_xJl4{8K(7|3NAC9sS5b?^rqJqt-3DH~lk>>>oAp)t$s1ido?+M9 zJUSjkZYdO>zS_4mRaB|{{EXbFWL){%bs}p=w5e>m3}z9lHM@wA$)u6C;%^$ZJv#AW7$g70F?HL4Gs?KXIzZZyCXE4@O=7}@0&M@N=hmMUT3ev7!cu@sFzFCBzfUs z2b?ndJSO&6u6P2u+KDPXctE>iXejQA)miWNf_;(2aRbT9?5>%`>o1quEH2Tq+tr>J z$9&dkWv%pH_#0C*%aLx*FW2__IW@dUUlS4BzriN?xPw?HWt*z7Vn>vUD$EBzHuMMYwPSnxUQ@bFs{>ue;r8T?h#mU51 z_mI;VD?EdOg54OJ9&bES^fJy#$zn#HI!_g0jnmtEw-9`>`T4i@l;>~0!^!}9VT?12 z3a%XjZ?ww}3W?_7DY!_{n)V>;8g5N(ZEYCGng(Rgk60|y4TCm}LLBl;>SKsg0?5U) zckgMtpS$*M+31433NtjPb|WBX_9)VDFeXk7rdpuUrQiAo#Y zt#a%ep%g<{0wca{LcjR}aHKwsLFsadw%7vUFCc;qoO6Q~-_NQ{(# z2LXkB{`}P}=u^q1F5T>N4L@I!r`J-E1R1O7?(S|~)J`WCb~R0v_Hb}zO-(mWP>)~7 zJMIC#%p%rj7km6?Wcik+j4-UhBq)*LJwnTnSeWJoR(0dE9Y@gbp{MigE6mQydVZuT zRVw^CbgiQp<497wNgl)6L}b}EYDrh+aMVlTRPLs9KoERV$Jkig0xvhF(@j=&`pLf{ zHjt)S<9@|`eeEIJ*HX35)nsD4f6}iqy-kR6Kk;j|P6wz*Aqj3M7w$gWS>Kz0S*SHucpqi>Lk5dxi9Y$Jc@yTr zuUpA2Erf^I_;>o$MPC5yOq`hkaTi0utTcSvsxtZ*9ad*k|NR*zI3>cFRmj*F$extf z&6B@Ul+ z1PYtl&uoGQZ*y+DY>=_VHg;nyo6|LI1o~uuzA$E*;V_5h7MIsg6<1< z>ZLgQauIrZdf!V5YHE;omlM%Q*G85PV_gB&q>xQCjYdpFWD%(~%DGP2e=2-DXM9HXzNn9PuPB`3$1qd=OeF$oH>Km;d4NM zcKFxhM}|rg?t%$}Va(VI_Bn_7+dtkOBj67HFP22-LAvbLW>NhL-d=`H)99a-62Hc2 z-&0EsM7fje+~Jl$%P5j=vYz&x-`C2bHVl>#)oRf67ZX!cawcfa&%8jJoS2*(Y{J|F zj8RNomW?Xkn|g~YTTFJl@#Y?d3rfz%k5QjXY9Y}R5z%V+5+ zTO8yJ5A1$8jL6vbNg3Yx#fSNi9pgV%*#I&{U5}0rj*^?sj_4L^9!fY zPqBcp_K$*snSpAlQOO59J7HzXz<~ATG$Xuk*@OgLx(1q4dENJ!oI=Be?}4$SZyNo- z&_EAQ|9P|jju?9L?2i7!a3TVlW(l1M+@W9&1GELrqdi;(%<4B-coMN@XsGax^t7}- znLG3T0wRYober=U^2%`;Td;ACrT4Mw=;)*mt;^WVR%3F&%TD*o11dXLkZ7ERUw=fu zw1HLn+!=YK>k(ze*1!I`4u~1;8_|fhqPzo;gE>I|Iy665qvXw$C~ii6{W^&_n(RNF z0g~YeL(%fk@{$s}(eyr0g1hnSOb%DS-xeMZJ3+zvLIZJ#7%##c8+Z#$N_Xwr6fLbwLv4>~zbRFz`XGLor*FnYrfM1TBCVl;F(8BKRwc{ zG|EIli+3yP!n+;4L-muFmsgH@0=~gHwaKs15k^m3%VX{7>+^g4IxRDEX>k!cf%H;} zqZY#r$Jqa$+OGDcsW6USw^BD>uB+VgrL`G-sX_ZNVbyMvs}Tc>j50A5!4Jt|LlEXt zbTj5QDpM#|W?>MMa?KW7rOmKRm?E;om!yQ6M5J>nI#h(Zovpt0E$9!paJkR(+~@Z@ z=lsqY!d;Mmanxcq!yk9DTnaJh#%fz^(KS*n7y6EQz9lL|N@rn4X6EdGfhi0{K;QWJ zg*|VC6hOij#j4eV5Q%;e2$zE~k~L`Fxne{pOmx?yp8|$@Q@DL`7ZzD@qdv08UpEF5 z4wbz8fzd1sAoa>W+1SKpGuS6_9->biy2o~8!kF(uCR??bd#UR^n?gA_jZfQ@0;>g^ zmrs13idt)F&Ub9Auk&eHcJ|0=xSM7sS67au=^ywC98(}o8C=T1A0TU#0#EHb$TF6l zd^nCwbBem~9OyVlT(p&djx6q|2UH(5islny*RvR;3k0D09YiwGa4C-n>weQ3=<%E% z?bXY(aYCY2;)_1?VnVIC1O5}EyXl4}4o4kuO=SNZF!iD^L0&9kv9fa8jO|AnD%i;) zsnmtu8}rTQypua{E>9EyMV2o_Hlyo)hxXM-_>5{|zYNtT>~k@8g9hFPR2EXx!`y9> z@wXWnRf%8?Xe%~NVF+a=ZAGD)re+Zye@SUrjx8H`Y4`SU;{TyeW zFEGBYTy9R1U&mpMxPZWP4-H;d2;oe$b!MiheSt-kSSt1wySbET00!WEfdB~B5+Dbi zt7SKe6-a5_DRXcimz4r5?^yyfsnu#xoZWgVgQWV;+F~f7K|F+w9S*g6bFfloqBkT>j^sT^p;6Dk&;&|n9*;*-;nrDu4DnNGQAT&G8-Y%BOjZhTUcDX; z&B3MqHP{^cL0%gS4ASSFrCwXza7<3i+=^wI3%8G&r0BozORSt78O*rksyjFK|qN@LnDgVB49uekf2D85}Vj4ASOgXa#Tb>1SBh| zQ3OP?AB@XYO6^zB%Vkcz0&rthd*aw!_~04^>}%^;PXBS5=khY1wEI1fj=V zx^NvqsN@lZqJ)MVK5?VG@B&_T+g{SLM-UD_(m%3*;dvtjIf7s=oKwd}O?B&9-X3-7 zn-}F8y2_*YM9fOdj-v{bi|N#*sGL!J_3qhQDq3bL?Kr-tMfCL>ddx+_t_?leC$;0` z8`h7?zlvn;d@H{2K;m2kHtSjU)X~GNxrS@!HF&Cc6)zt(c@!0}n8E7p%4(s+Gs?a& z7rwS7^jyAgqc+|pzJIOG_L2YFllx$VeeM=5vha%7ijgtG3mFX-{?f>oP#}mrLe2?q z$eHHgFO!!SHG+5{lqh&Zd8ChwG?PC(#WeJG?C4swj5Gfs-(xI_r`Z`;4;;`=)#%Q; z`arNMkmr6x7I#(VJhp4xfzAIS=~MW>bzby{<-vdoml$X1=zQuoY=iUIJ9pm9@FkVo zN?GP;Pdl~q^rKEbJz8}p@vN`EzkhRcv!Unx_6Qp$zk*|GBT5s zldAR-Q&UrW{7MsJTtCd5ODb<^X$cn4oQQd7-c{`3W@Kb!Xc!NlmtavdP6euq7cvDm zI$DdJ-X8Cv*jYgAGjgP9WEr7Js3 zr8dJGvm)44+fR9#{g;rEFUR}H;xuYTI+{~%q;onJu+)+xQ6_)7?ElQZ{2g2Q|LiF{ zHs%t@v$3%OmXRv;ers#X+uJ)oF^=3Uf)_I&W^z8n2ongqDaPiXZ}NsbzG2K#HLG

>$%>*=v!m!4TdYfFoUrsiafFYOhfF0kG)!iM)(1AF_dX7grQ zI+nKfb}fBA)y{gFWNznK`9%#aEUI7( zoq0CG!ooI|mQAuWEZ`2^)~#kSKZaQ1%F4th(l_$SVW2fpkbujkZT+3W@eV3 zrKda=EiIDL7943WA?&gqr(tN#;jwr8RI;;*O$>YtA` zHoW~9Q=(~+zSjUxcXd2B=UcvgbFj$j|I~2@K~w_>e;7vGA9ElgMV2CM1@@zd@dP&` ziM4V4jU0>Eb#=x4WF^)6=8%%51;MI{!3~=t@$QAUCodNDEZ2GFb|fPPya1wcubmR@ z*TPNS>*z3-tyBqX$}l3;{Id`KC`geUz+EDypK% zX9$O<`S6EWv^1u{gh#`@sN+;wB_uS`Z--l3*|-(VDq;}>>p$7|)fJXiQXFgV>EUGX zyIEb@FwgxY?N?xN=T5(O?>El zSA+DdtZG(iYnl1^uCA>6iu7zyoayQ5vA>8>833C(IXN(JHo|Q0tb??GfPf>T0#&Bq z;XS(`zVQnC2@49c<1p=BHezfrkk7XL17**S=M7wPiJ6_55ju4$H7%_L&@OCq5#sur zc1x#%ZV1g9DK`m%udWbTno_#0adSFtwo<5CGohii@A2fwK-%@*9=AB0~JxJgfejD~no8+aNG&i6#i^tut(@~Ol16|eDN>=w&d zZHia#hI;^ySp=3N(t1Esvo&2m*4j#%eWsY`nlM<#hwB+Gsw-`$A#JmUOSyTfg>6cxZ4^S&wAs)6-m)ea) zasIKl|2wfI;4%8lih(>pPv+)6J$1n{6IPxdA}y9wO}oh1ny&`+macb~D0vwzt`-PZ zq1crAKN(}LF`Gq5*SEiXpWKK_CP7i<;^wOI&t01rBHjl*(^PF9y4+eMEBZ@Jg($xH zcxJ1Sd5-B?h!LlM{K==^?$kVgdvbF!@{m@@*_xn;cN^im+~XTA1>SRUS^Jfs{F`s1 zv2zA4E-sFaIWt;G^69P0f#1z)A9>hlK1>Qxx_!yRR5+V=ihu_ak@ZgE-d#b3tQpW z&BHk$xOb1Mi!&l6miy|)RH1?@HKz@vVNImTsitK3L*xvmv*91}RY2JxGIwbEbKebx3?NYsO( zo#Rg&!P3U2RrXu>1Yu+6QZq9%s{>{EiD9g>MFhR>V^_mH@v{Y$f+QbG9e>hIj^LHOoN7b>iu=ElVT^1WGl zt9`_YK%@4Q^x}?jhZp#F5xo?><~bc!`0K4v6$&|~aZ0cl8;sIKD`k3vMm_Eo zPmQl{ej?IWXx~pI(kdjowKOmRxuSEgYs$d@64UYGsz|K=-_#${h_7)>&AcxK+Pp!S zxhb^=K@wF;C@w7PLo%4F=lNxZ4|vfra?T^4e1n67E4YA6xnkQoJ3ctUda4F^QPX^E zwswBMwP%eF=gf{E;`7{2ULVw z4@yf*K~8}mX6;$cDm>K}1#vzq=vhX;t<(uzqf7nd@__>f*vBj{HD;frO>{X5kawc+ zt-#?q|BJ^kfxf=Js);x31YU@_JSqnw!kgYs8n?@Y!~Odi&F0bV{hzkQ5>hRyEECX- zai1XxRDI`3Gx-wo0_d{)?AmCRw2)O> z5U#x5HJE}X$k(bNLyMpvfdKYr$~L4HNfib*HnX+SXJno;FnnO!h3sS@O@lK8{B}2b zt1&QAP&Z$_QUpPwaO9kEs)xC@#+LAT<0Cb&m`EQANR*?w@F^7zh#A!^n*M(S;u+x> z-LElY0+(EiHVCttrx^nlh()q&{-h9prM3ZR_&hd>r_!66F`|N)Ftg>kEp~!j>IO;R zOxsmA^+<}sC5CYq1tii7C_>%hy9Jb5AdgDppfKOzxu8h)J-fQC^FT>xG!OyVz)|fS z6>r@SsT!?clgn)W<)`thb8~a*eq>V0W)U$p%?2@}LNX@hJZrpa4@D`SzO~&UB!X4I z2`o$Uv{QL75|WbXx&<2G?5{`HQg!m+z20R#^`K3N)}icoNoMEdI1c{|7X8d!TQc35r>UUsVmzaM?A2B!|mAHYnR|V5%{hsxPnusrz^^On%G_72fGLY6(U;g_7^HA z|A6WI9V_r}eoB3s8+hB@s`5cMNo)7f0Af-#@AizOr{UK6@>5>&FclIATz@Kf80EeS z?u;H@czckG({qy*cddj16#>W*_pvNE7{p-N?hZ?_4iJt(2sRGB4JvNrgY%y|r=@H5S7r)g0{^q#@K+T4{%*6~ z5r-x+oJUo0CW+Myir3V|fnTx%)wQ4S(_j1PpN=ac@you?lqeCr_OoZ9AlA9A&G;V% zu8SZ_OmiihFuCb6NSy%14gcM#VTwLgD4SZv71 zG&4}_BpAp`#cu|7DJnhKmnEiV^e zpfe32)%F9aLhz3?yuT#%#Od03#EfDBQP{b-r+1`6s2Mq@W@lSvseaSB8^?PJGzm0F z)G@7)?jpCm89u3S!77m34MdV4gTBhF7-B?H&(Dgm`R_zZwQTKFr-F!7Y<9oxSdV({ zK|xXlozx2ubLh8vWn!aw&IBi!mp#yv)eyE?Q!!Bf8LWZ8>oNN_qF!N2VlTCCa9}NhZ`p&9k7SSC*og zs3X(X3q=|oQiX?9ijR}B>Kjd<)Yjr}?#(g;jRJUdPdP;Cj4Q$#fkRAl7 z1PP8+NI%AUdUftoUd~NeO)egwHAl=&2@0mAspjRLd|`ab>$s)nGsW)*eaGG1_CMgQfZx6ATq6F zZFjxfngFE*Xrz&kc#jEevWswuh}rTdM*=`caCUN5I!JVX`##j^+2vx!pG1#||IPldidgAf9xw-lI+5|!MxYo(znCn$$#wT3D5Tv$b zU|^t7_ge4oVh(Sev!IX==l>Lm|E;!U&;z2a|3&J80wam>kEuBa4t!wSE#*goktRWo zJ-K==!|3f68&KQO#F<&S#qc_H@qM-oyRkH81b@kO8JQcxby*+3L2tmq0jNyIV(;eX zD27bq7ga$w9)0QM_fpTJ-#4;%O||<5f&`o8b}Cy~K;GP#-EoH`%bi!BPDofbiGfOS z%xFP6UXKJYCCU5dm~O_mTdHoI6L--Y2fQyyUbGm3UH*^Gsnxx%Nnck4(%lycID9oj zJGM(t`-3?+P2cAJxvSns>l*uQT}aI&DtYI_d%2;ueSxR%jRZ7~bVk=YSTN4?rh~+Y z^hGU#vizQ zaj@QC*FiqcA!g5iYC!s3Y!O-5W+&y?0Kw1>NZZz5M8)EltED^h~iOJ{mpoUNYH z$j5o?LW)Wh>a49e84ZdYmK%w)<_u7xxlinNuG=_$DXd`?jo3GR|l4BG)Y1YzmhgNpn9#w0f9rl!EmOz=D80FWCb z4t=DA;_~Myr}Wm88`5f5ER>(wN|Ec3dhfi7{Sn5K%*J9D8Q7CP+SuzxSDDjW?sVg= zOU#fu8Gw{g(SUpaM-oCt0#mpTT#xh`M@~uFa|BWMLP#1J;zheNPgpM)F6je=U*7Al zzQ_@=HY!B2#w^QYuFKw&VV}8(`(Usp`SqPkFCpZprV0T}$j{5V_ugrwYf3yUNKnKU zJxGQ2$GF(V&)umtHQoC9c2Zs3+|vaw>go;NrvyaT$lbiTGh?U%3zXgopWbO zUP%3f!=o`%BM)7P!(^PFxsBiapA!tNKSo0fT2I>NTlbv(&^J&D z%7*cBXMWY4A+1i_2F)DJ!~B7PpK5Zu#o1U^2-r=*l4BS>%m+UH>!^oA4z$1Bl=Fg@ zk}b^Xbg7@f)(1I$96_FMwjjCp>CI%S*(|yH?p}_(n3MW{@a~=nBIOVE`C$k6}$KD zBSyw6eDWs0nc})kdaHoXkKR0CT(2Ci+-0hWK(4;Gem6PFI-)2yccD>ji=F#w8EJ_h z?AyzgE*buM+3}WO&GPbtRO-2NUKJ{$p~2Cv%Qw-~4T=|cy#oM4j$F-_*1dJXC$rev z@7Sj@gkx`CbK*jExa&4=Tati~MEUm%JUk~Sg<{bGYM6#czI=z@tPCg`aghAFr*hhX zmRqhT|K>c+NM`0$?>i+gxrwh&_xJl9qo%*!k~b9}@PU^0_3|sE3{XpVT!T`S5pbaOUaIaEr0MX*ih%w?f90 zQGq-@C()j_=V<~<-!z!lBqUrGnER}o*04Cj$1o?ZsF=XznbbVVa^Q#$Tt!3E&ot*} zzMCv(<#5FMP!Q#6+EM|6TdodQ>&2GVo!fUptyok*fNA(7^S%QIBwe!yW|~Lq4jbNO z#(%OB7hj2BD?^jAps|$AHQ}O>thyzNU3(5nt7{QjLJkb~Z=7k;UyL7^WL=9S&c2P zf1&q9A3jH9+3b4cxk>xr5cg-Q&C$A&*k@XW#LYvLL$jY)3tvmIQ{gBXl!yULOXO1Q zYmy4`3`(9HSB9*9^e4q~y(rY<_URl~XTOOGWbP_`Rmd8pk%GQsRZ{=Pe0QQ$|^SI1a-6>Uv0Ud zdiUtp^~RUn(g}=frl%uysz+|2(-_PJ1sWAEJ`#wg`IM7TW;c9!=+hnTXd(3mTU*7v&e-R8(%~1&DKqdl0{X1-c9Pb&gxEZ!RXidv`S< z-PFy|(Lz~yX|DfgJ{@=U@#E#ISi>vNnZ8Xs$*{k8{Fp{14=v)PEtvb^Lt8^Ui$0I> z7du5jAvtzTYO24H5yc~ho2YJUdw^ea|3hc5YdJSOV^o6bOk!iVt<8#W={5VT;fdz4 z{!%CLjI6Dcopf{{kFTGfbB+R+3_D+3TIn@q|EQ0QDB-u^LtS45C}%C! zq17&3dOUQ<(&J%`@qUF*k{i1Uy7g|{2#SjOcvISf&NVncKR+z&;EHkYRZY!N2Wdb4 z8pScI4=E|sYkO_#Q*M8;JAU-&(H8unss`ok++65hSs77zMX{-}h2IAwn5k{!VWHjdx3>0zcKOi&*w@$>aChea(fFL&cFvKED-D5&5TFHLODMApDr5Bir~U946PEmQ^J)Ytdu#dtia7=((& zRK1*cXd?NYJ9i`Q`Kg1j zwP(KGr%hF(F~uc2z@z*XQxmr_wm$=Gx-u;^Lw{ zwx24fl6h(Zq50Z*+;;J^kDf|IM1<#JWbdUwF^iUut@=0*cmM$eR-Hm@2GdvSXgKfy2~q1 zSsn@_DU}WJO1eUt+S(mZH94kFmeg!6dge^E@gi|+gOL*@b${TyK`YIYe#Hw88M~oN zT3X?a<9nP=$>W?MS$+8M;g26b#4TEWjCStdzhB>VJYm+8P=MR$>^&nYx_{rkhq}k= z)#jacuX>BlncI#3I?nyQh|n`>zuoivkZ4B;IZX(ZYkvN`T%?CKC_(%$?w_*r@|+&3 z3{rTUd?PUzukBeMch1brOfQ|#lzii>0R7l3wt#Z;>mjW8{etfK`T5dE^owSUbaeX_ zen^&6(1avFat$Rk;(CJ;SI#ZLuc_2yb(fWueVJ~&zcOzYd&cN8JpNJ0EPr*5G$xAQrTS?r~wVV~Rx-OjR{YR1MR zKD+ln)ZL39MG6)cDNNr?#n!X^{QT&+!=&kuxa*YI9O?T57xeV>bakV@8r;gfSJ_&; zl4GDriOAdBITOxy_%OhUd&jW-EDAcK;DptlA0~1ET3N=a+BqMlb)JYO@yy1EKIx7OisSsXc~UwqrsmE9|*skv&ue0pG1)FuE)l&qUm%SWy0POx@g zrehbM(_Gg@kX2u;vF4$+3_}(cmK%wxTSNk0%@ryp0*&ug_A5l4wST|m?s(u?LR_4D zVq;B=tPD1R42feW(^GlDe)gyj*x;N4cN-NsQZMkF3+*}8mH}X?lWX~k2Sd~EAT4R# z)z;DBS|>}maNz=Ffjok|?%U_u{E}yUqB%w3vEyWmWB#|7+~=L9+8VMH$&h+w*~Mzn z6wP#E1)4ZNi`$ktdv*<~A3~u5r%%trEcQ5=A;`(^hp^2_sj0*4@Ek<9*u5VwqoSfV zW(w*|#q{zW_@t$!j~yFq#S_KrUQ!@Qq2-gyy9#!g1!7AP^^Z@*n2_DOcSFup#;X4s z5AfPbs!#I@3)h*{{QUW|f(wV@P?NG_qW-@iE1+td4BNpfDFhe0Ou9W z5IgIdX3$&XYT|4vPENU-sf9~^=*>6ivfD+jj%80-083uIdIiMo)F~@?8{M-1z=8J- zro@F%JPmh`%V;zvi1*N*M}!`?^v3I*QF0!x0CP{CJh>Qu`uOo-D20Gl&MK_;x-~s5 zZDv(x8_v6;rWWw*nP~VG=dSw|U?swOg>4y}L6so6GjK@X12NcjBKh;@&k(e{zlvCQ zeLk)n@;WqhBTI|K!bu5`!?Vt5VncxEQmT!|B-CY~(_J+&3t|;udl0WmV2~}NjBQ^D zhjZ7f$Vj*TZ&U@{)>-XBw?Ds(jFf@U19q3@YSo>;-0#O#TUTdO5QZ1PuQ#U~SBK4$ zEExLr82sYjy&Gc1ua*Ju!v0I^Zcnvmfq#RQ%Q;TGZnw;Bw}jhug2D!|pbke|R4r(m zUIBQS?#QV!&!Oc8Vqg;MLDDUOZv>!;pF4HP5ijCHQu%o-1dL&}BS)EL@BaN+rVVe$ z8xu9v)!C&T#=bwn z!BjN{wYEN)UT`}NnhJZII;|FHr#&|3D}?czc6aaIb#hu6YlxpM-k3=%N5h(YxS8U^ z1SVYd^Jj#Z*{`x^ti7(2sSuYSpgP|MJ<+K)>MVeP!ed`L*4l8<6VlS_)#0Kt&NG(g z=Gs}t(4FK$TpRUpEt>mAYE=voW)FiP;o-4W8!f}gF4gBCEh;K1tY17;$4idHF)qNA z5Az8M?%BP2uflTH$CLhPzwnjHZ_k&%26yo3w)|X#_*LR-FJgb?d{!!!k}&ObVNQ)X@6G}ZbJYzFG*6v=L}c`I&MG^Nso1hSVdx;qH~sNloYqm z;}oi-e)jh<}8uFl;F ztvc>=>x-RHMZ*YK0QiRLWcX>rixqWp)&?6m!@$L z)+RC5v*UEhiQ~r|ahqwsuoX@&TTh=peWBT!XCe{lp}mWdvnv`zeXr+?UtoR6iu8nW z4L9Y*5ANyj@0Y#Ru>5qd!jBs*XW1EIoxH!+N52BjkS1D;!n$#A(e(0x_P#ikKS}Kg z0k<;Zs5s2CeZqX=MHo=5=W9 zFO4+-6vc9cT6bh8pLq6)i=(xzEi5#&_5L_G=&1wGnBEThtaXbyPN;K#XVrI~|4PlZ zD#$M&0A%&C+F-PE51&s`TAJtf7D46(JXgsIG?k5Q{g<*ZUkYelKX!JzZGCw%M?012 zsDJ>e$zht+sv~9DE!t z;JG}}JUwe;V{PrZKAw0Sv!J#8fSPmlr)Kd{pIe34`QB|JVdWX%Cp_eos*wVavru^= zxEVCpdtFa=!Cd`0WF+7jDPiICq$JahY_kBl^|5TTM%WT)>u?|Xu^0HU-O!I0ts%Wf z-@JKqSkgKQjq|j!ng$F9zRMpQgmzgN0w;}9O=P+Yr0J=RRKSZDJ-Jpo#>U3**p{wy zch0@az$g1p9AIUg?Jkf+qjBp?;|r;j($T7V`tc1zLqpY3XB#agaLXzBy4j}JTwPtS zU%!sQR08jZNOQ#JR+e#1(zST<#SIFiUZ3QiVL}({rcu?;sw&vL zvfLHuM?7s<{)4P|>-)y|_&6j@9ysARU6#H^3D2+@^Ep2P;^a znJEhnAjmpvEl?(}Z97O9ckk!D5+?E{GxL`TP*y)it^*2J!p|H(2rRcgowU>?xNwm> z3XrD5UPjs!k7tDX}qCAMg3~Ar&w-upnt@4l4IQEX!F3X_i{79LK(Iz;F>) zW|DWuX=R%>a1rPHA}987aCFz#+di8xYiw!~b6c5$gy_XHFci7fKJUH9E_O|@0XQ*| zDBhS44+ehVvRET2tefuuEFvr{3=FU~7LA)9D3e>PgW1QN`;T(MXE%D1bnuU=Mf?>7 a4I*QH)Qn2d<3B7!|#1|UElk-|GAIj{^NV!9np@q&hvAA&d=xle!X9>*ZaJD z(8XcNBCSOz6l#g%{(bH!)cidt)Vx-ux$v79g?(x8V`2Dy?=vXWnv2N4IqChQL=;LF z<+#trGb(?m`^6Pwzlisv54Wc8476{OX)Si#q8D(le(t9WOEnMZ-tE7TyI^sM>6V!} zN4yV^m3wFbM}wEV_CLOO{lcU_Eq>ZQQF=2apE6n>+`jeeCDAi#*#W$F*d4DwuS=(l z>C<*!Dp`1qRjUSi&TyByJ1v3HpitU7nnZJEUnQ!pPgF!+^(m;e&O=^=&sFN1eGfB7 zVFdXFDjzjBYW9T-Y7Tbx#im4*4)P*#`5u%i@}hO2?*EI!)QaYu9m)%9CJDy6TJB`k z7%UPnsRf41VhQf;tg0=X!DwAff}NXYN&vljDruhS4Te!@aMT<;-qDaO_<_9n@t+Z$ zTW<`M+tOo4gA-Kby)*IzFMOxe02u_T`c1DqCLtX)y?k82|2&)rmsg~cecIumhjoMZFTUCnZCAs>J+H6Al+<~zBhtW96*N!~o zw`}qf#X7S5V#4o>MZaA4k1Rk=_5a6o{V&b>|5t};9g0R~0)@u$+H3AGoSaCSDP%!P zz*)<6DE5Wf1@i5%n|fs@qbeB3%h10pJj_FLB@w2ho#^eRj^mx8pY+ZdpfSmjmL`2>v)6uOJBjXO7}wjfwkeptG5MQJ&gb*J zbEMIhV{Hjb@c8cT?oMif{)=gUZFb?nk_Geh_FX(aPi5Wg_;z`y+hynrM}LnR>LrU< z^wMnNxNajmw^B6m_3PK4Ki@KkKZT#tOv$P-=2TWzem`qeqJ7PtkiInP(!W#SEMU@0 zE$cW0J~f*#QhhhXW9OEkPohU`v*@#YxDvSs1^0~)@E#N!s1)Ma zoxvkl8H~5+4(4#u>Tdkf-BPW-@_#pX!DyUyns7Lxl5wLqx0FQS=Ma~+TJO&OIpP_V zq-LvhGhzqI;esWy?e_#4a~7TVx5(SF;)<@4Hv0{=i9|Q%)EGBBdoE8I0|0wAhpDdC4lTBSXI{w0;ogGwHEEM*D5%Wbi%X14?c=L>@YQo)pWi zTf6D)Jcs{TBrUzNIBVs$8sp9n)j~|On3p=ad8uvr(~AOu;IV(Wb#AjUXE=Ui<$VF35jX^3VEv88)K}B2d--TbDrgjXgQ_UA) z(n_)%GfvT0uMJ4Tj16ZH=GTUGBDTCD1;!DN*l>)r~@o4H#JpSLC(znzC zX+-{_iT~#aIri^cuN(wSvS5*(XJqRc+kZnNM$yhK#3BzaE@6=#mV2f6TgW=vze8)S zFiKs=sbN*s3&@27oc^~GEDv3hMI{_C>}{lN*SZ!0QSUbQzhE04{ejuk(6BjmonuC^ z0W2a|x2}^+X})=yZf5O=pK-|7`t zAF3=R^)%8lOTR}qg$g3jTF8R>Gt1rXr<*#}a?q6ebGsU{rV{xl>jii`Q7{&TwZM7s z&}>SvftKyMDsEG-I&0Ic~R3x@>%G)3tvyVE8c~zBDdjSAofj z#cYZ(2euu$LszM%IZlLeY3bde+$L!>Q^uQ2t@V)S+U(31 z`by_@m6Fv0m)DE`=bpK1rr4;d+ui&*0Dn9FY&hoMT%72!Avv5N!=}DWc-{5N85uJw z+~t2eVV~q9NT9XM5ZO+pq-3=mBCT*!^0(-NsKn|t)3_&xXgsQc~dnj(65l8-;p(t;X0KcSd`_ziAhrDyyD@%HN!ECygKPm6vro z;WZ^czQr{HK39zsFdZ|nb)0T9Whp&(jXJ8&ZmFV91(RG|T`gky8n37l4YEv1UP>Ct zf-6_9j7EhBBKXH)v6wpWrI@rGc^!{yjc~4f$0~)yGxn&2+lT(mOMRacW-HKme+EH3C@)HKIYuwYEpL>06N$(nau3&)bTq zzPhcrGgzI~DQ)Y%Ms69;c?12h$y( zX@Ogxe9xF8!RjcZ`pn^8*yj+RQ5t%dbf>2BiYphYL^f*W7HAX-3%Rf84q1T4acV;7 z_IxU`sLPD3P$*Y7d5`Lf8|FBGJWO&WW8DiC)JVJn;WwIAXqwAmk~8(Y)?O82l=o)L zhka2_(i;B0;$BL?kl#F1Ym8c}aC!M$tYb!0;SQ~9V|Ak|uUv?pvlW}DQepm*Nrr(M zUkN#(z1pxp#^gZNVN|Q)QuvEIhbr|QqnmoH79QkNdFVB4x2@Pmzfim0pgV%<+9k0G z`;?X{*r?kn*kKkh#zh{EKZ)K!uGQRmsC#UO`BsO#bEpIXb1G_a5s7Z2rtfIG&N49< zaCt{Z2Ou4_ClqZ0Kd;n~bJ`+L!*1(!=S!d7?Br7+)i*V*QMssU^0zT(ki|5<0-I38a@`rsj@YO@g>VU8L(b~~%SzMjz>shJ{wT~49{GI(?9!I8TQl5Fae6k>Z_ zc@G$jhK2@%)OY7&d1y!rBrP@tZh7?8*(xPHy<`#J&h6~To#<0J?#)9tP>m7ZIp#Pa z=2cQdW`HJRH$TMUO7VV;h4XfywXUIYn>pJYGvsUOD_5>edYm{RK_#Y-ewY_!NX#L^ zK)BOHbDSWwoQ>Qp~_j9#(pJU4#Hy!1M9-oW^M zLI|h-CsK*{n;kaEP3Nw#yYFLClBFn!{B#PBr-pcasC`W(IIXgCBkAXvdEU1F5>!jK@ ze<)(NfSEpg46a@2e0)nn_%#Aw+Hn#ogvx3zhUd4}V40hTALWa=FvJn)eBqAJX$K$KU4bv<6#O-I{Ln^LSRD z5|Hmt9>TI?WFmD+gn?KzjcP&^G^G(Ur0zVzIzU@EEnzK)Sz)o+WvCh$S`SLyxcbY{wHF1$tPWn)&%!D zg30<=xR{x-VS%_=US)g$5)03B9FPsc$4B|%-r`7k&_7}4Mu4$4{g{w@5b`NfoGIh zDz%^WBWdT;8sjU)uc-wM%U|C$=49xvx@Mp5b^W~Ve%=Elp&D2$M6KNi$2qR~{1loY zIx_rasqNvMXKh;(tKKt*X+39mHL+NO(r6}mvEBz}M@>k*pyG$muXBnlJijj59}^W( zCNn$2auMn^8n;?`fqVP+vvmE-W5Ume>7{UizoIP%x$_EQ5^}w>ckkVF z1od07P+;1aRm4n;9Un;1z=_s9Q z7w?=MJ9bFMKbk4?skaP1gjmoD>&Zv)ohP;h80w%B0|SwqOrqOs;m+7v9txQ|2=X-V*(~T@e4tF?5gFOnd*3RuI#o5gV`3ncA zeX6gBShkmpA-zY3GmJS{B##m5Gw&m$O>4|+dzI=d0h(^=j)oBW#c~9{^f1XeMDLtu zl#gPW<4uI_2~UO-43;lAZF^}vwi&?uW29>GZRt&5?6E{nbQWT9H83%S0~Z1g=MV)< zRuz&5r#(8qBj>qsMqwnX#M2~>e+&6^V!GYZ-N*~n{{lq>N0|f`2(l*>sv?#U^Dm`< zN}G>hddwnP;cN*5RZdV{D#9uB%3_)dfm2XI&GJ*2xlm=~a`YWT1TMU@y9z=r@{BpR zv&213dCnW30-Qlgh{QB=TVe~bAn0mDct_iSx;w@%(C@j9I zz7DgizSRRX-;1}NNZj>US?)@szwczZ^ByFX0hGeSx$@z9-lDf~+?^^!EV95x4g3D^ z6%R^eWG=Dm*!_D5sKD_U3?ohriO#CJWiS|>81+A}^D*suu|ctcJ0Rjda{%h$RL$+wI@vN*9jvgK^L(zVjF&-DrpHu0l73w>x z+okV4OYLTKMi~_qEW+3QsA#yRX3MA6*`5Dza==FEjaU}ftJ?OO+Wq}3L&Q3AeZW;2 zm1v7fm;LEpb*K`JGshjs*vET-N%N}2t0^@3rf)LR&Sq7a<6?pw9uU2a8WXx~K1nKe zUp2Chf8FJ^F$`kUu~6tSW~6B=V`z_p>$k73`Y>Xdp>@2-k3Qxk=}l?vAMa> zc_WGbbI)br%?PJT0xz9=2(Q83+F-(HqA-=P$?+Ic zO}*{YJ<*)Gfx-2HyL=IZoZg!}CRv+JqNlNsTUnvB7tW2s8sa?gGvhX6 zkX`_pI4D4lt%}C zPzk-=-Pyzn(ucFVh--9Ox9TRc0~iTh4{6aB&RgnK#k)f{mRE_6#kgT&>k`9h^N##*fiij@Nz1+_H3O z8v7JFNHEqQZfAYCb=^i%Qsm-{65YNiBU_uG;@5;tQW^4@K` zx@$)&z4W^NizFy~nm@*$9_jO@`ZO&-?Q%e+w*fj--rM15{i?W^pJ0`DNhxqIUkc@z zNcs*Rr1|_YS-0#!-NoO)P@N?tywOx=Jb>8FY8jWvH6<24C^eBX5UkyH5!QHGh z7r$)iu{|su*izc;>Hr(%vT~#<_QGc`>LUwO&i93kMMJU6V1x*oi%tz=(gtXZSJy?X zcZ0j#294qvnYIKzMZ2ggSv_2NEUYOhP{hh{FYLJZcN~?FOEfHbN9|?~*G{fFCuuu_ zDpXfE$0$D=7dKk~y0_OD^UwtyCqovrQI6a_)X@DS{_%Dk&&0%JVrqJo^G-)Y9-3gh zBJ;(U$Ekmi=uN(+jv2y*eR-w8Xj{sG>BXcWW#nM_qpH>HQP|5ujOuhV5`22ZGSwe% z=8tR$5&T1KGUg=l0!j4elvsUP=YTuDGpNpe{+JBQ70Kj7X$ooDbFhW_2!2ZmIN?2Z zW4cx>4?Lu*JYZudW~lxl#4s)uuoCg?WRL3Uy56SKBXgi=)O(twSW|TeaCYdXl8?QX zpD_{Ifo7Wb{+6iosbs;Sf=Zu!ED+r2qXJ{GTfU>2f?Z;2)#^k?7q47zR#S#)j@!=#Hs09|04#&G!Q&qI~blWOLkA1J({{oc-eIa8{$k>e9KqQtxWmTamtm z8itYH)5nV2@ZS!XTuO-b2PQ)*r2^~o448m6v)fsAZfM*Y3T3NKI@jEOnQcCg)k~{n z49*5Z#SO=?+=gDWxtkuFUELlpsvsY7?GIX&a`SXop)8NFpq%K<5IiK&2Q8{TXsBLn z^Qb;JuTdWe^*~$8G;H0xMiL!rI9Jn|({AcbF|r?mu$HDrk4EDXTHHM9E{qll9XF@AV9~Dj2p04dGZ>Pzwyh{%FYk-!aAK18g(Qhr}?k!|fK4YMMN#`Fg z$@0#*5D>M17R{=vRMgF0P@(dia;JUinl_y|1b#^tV`xTLYt-;tSfqkq3%^-wdK_4; zZ3G^A7%N6qcftMqzsOODFZ`z2gzTMjzxC4kn@n%ZY<<5R5Q(@A8V8)lA3nYFnH5Ul zOU5VnTeTp?s%oEeRAGHrNNVx>(0Unf=5`hca^$0YD))HHg8)t8=tJWJ8jpiOHT!3D z@@&xDe*dOD_~!kcCKG>GA5y#tXKjw|t*)%>`XvGET=1Xiz_dYi?SWqWyOvGp3pUAencugrRS9Z6sTq|D+x zS)9GC)kvdfku{s5;@b%{*^^9DYqLIG9=h`c@7Vo=mq~-Q+YnYjh?#!3?$+90(+kQ| z0+jT6c!c?_^8jx*?=Kw4>o_?R#Rz(D@AmFR5Wr^M_jgd@oEe{r@0B#dW_`JOmOFK} zn`hCEojuiJ;YFt~ZpL|IeRWDeBtz-t*%+Xmh@z<4+ zcbve_FNZQafvgL$7@T2KK8mD}iE9%kVn@0u%1aKOTMqhApTwua|LFgC0RS06gw?+c zY*eTR9`D|+5}X9Yp-#Gpb!fdCk()mL;s#mJf4XAP_>d}N%O!vg`)fX1<6C;YI=Hv9 zWIF~Ms&;ECTYcx=jGssJ)^W}-<(!_;y0LsPIzDLXk3I!<1z$ufT&eK5*|Y-D*%Gcf zot6`1ih*H|uFWe-ja;0_%_4RIC2PC_bUQz77pID#q{VtCYrVbF@2Y0hr*{nx52wff zTHj_C-BcLePNIJu8#`p_i7VqRkNcHg3>*`do22`PyH?64){j7Sdw0P`Ah1$D+bntV zAJy9|w(e~`=X%^br%Hs!o8u&y-;f>UlmMl^^20fuVwqpx>I$56Fm1};2$X`3lWk<} z-}+^viHrM`V1D!+?QgxADtA`8S^6H2JDJ+v+#6cI8Btw;4RqZGQZyyMGf3JU+54zU zzD@P8Us8akpYKr@1gz(kx-A?p9JpTE#k|Wngeh>rn>GcmG8>`2EBrGrFYi-$RKoMS z3;hEiETT-6OOlXpb8n;Imim7Kd-rybU#xp zC(+$K$C7G{4`iIc>R9)z)3kGQQzy{@8GALek8bE$toKzyqnFBsL2tgE-Gm9Zcw%Op z3bJG+X=9yA^;`RQ&Bwm}HPY^#Q}VR}Pk1{;sjCaZXh&cy`VhhEx3-)vQRFg;Yp8^l zp&Kr)c)abUq!xPue+wtW-2!*UNHC{ar&oq2H`W;El`gdf5=m}#{RL)$?WNHuSjs|7 z4?pgb@GyYGePF_v+kHkm&?2vdG>A!KT|1i7PwPo)azj~ttFu<0`#aiqoHeQ#caN35 z%Pt*lm%Z>?w0dhmQ1wNp{L97r=Wk-n-^<@SFAcct0L_|P3cnHI*NWY2@%wSDJmQq; z?(*g9lMjw3ySFE~jvIA+3Vx@sV8r|z>s9n_RA1%iQLWYiGthePAZ%oUPmFyhc~==7 z&A9gHgZhn$2i6CEGKCoT_F@B_nJUjs*fukyxJKQ8S-?0W8ozgrJan*1)Z=IHLmExd zHeIn8?|GX?v8yegHo~o^eXl! zZBhjeJ7Nq+*ZyN*{Pd$nzb%I}PH3rIlt*t*6AlF@i6eF+;h8LWP6^R`KGl4x3{b_H zGm=|tr}p!u2C2rJWwu#FT3lQ=8bl-jeFx&5*_3yotsqrk(k3RTgg~S`^Xy^{$Vnq_ zZ)Y*qv`wYr)O$eEDFXGdbuX>3x2Fe0zz>n%Syd~NuM~rXi`5YykHRnbNF`96cxWEl zlDoKVM7cN;$9s#$$9)i+GAoNHk9-W1Cphy~>67Y@HTx8-FR|bkm$-Tl)>^&>n zYZ@CGg6UsvexwA&vHiyIz)e4VQJOu(2G9FR|2ZLUi$_I&61z@6%I6MzNEiR%-i}F&Z0J6P{#*b$jXo@# z=^R87q!MHlZ*#8X-J-XTi-QAKu)wEL0+tfKG^zjBk~TA3Ey4gdH@?bO``jni_H*T- z@%Z5bSgd${i=7)V)LT|8Hg_$1BAtb+o^CH+ zoOmnMoP#P$h8xi9j)+}JkNf((`P5APg>56|$#kQ#K1fd;hpsymvJRZeSS$0cyw<%^3VdN!>u>qY4OhS z&iV6zD(ZI>R%>oiX;pAt?@^@y!Pt1`E%&2cMX5(RDN=fES^VM7t5dqvLE3hI9vVoX zAd-uma`d}F>fg0-CU6lwJ+B7N5cqg!$a8M$wOx0NIipdN{aa)4crcb|6jkP>L@#-D z6#ONG%IBG?E`a4c(?l$UR7!V1sm9)k(}PlO?Adc?p0@IW0rltNTZcF`Iz>}jdZMkh zm&!z?l~!U{(bi_6zF6*ut%qqkdIn0jMkN7sJ5&_w<0{ zLK@vImbFYaoN^5_atm9V-Fr?_3Igmz;z8N_sgN}&)Y>GrP2VlRc~mNuMgwn`j=??w_Z8pdveXdypG;Q_(I$$)O;VK7SiLsYy4NPfJU38Dta9#)G z5s^p)LB7b6B#5Z(ij{Ro+Ft4k8T08Cbvp4LkdJaDI+LH2+ccFI0C$uoH04Gf%x(90 zw7QzSLfN%z0m6-Oi{CSdepmXshu0bIEf#{YasPPXPA7nOIOLWt9Jdu zKG3XB);{X(@!>rHMH`e6pY2+HFXRWXjS2me!i9Rkzjd4hjSDu$bUg^WI39dV@{rIs z_0AJW_MnE2B-oD6DUC${0PLMAepr}VxuaTNfWZM7dP0z!i^j=>{Hz$3HruWHa$aed zA}R3ErR-(}q3GYh1OqD*`&X)c;b6hoy{okpl2fc`Rkb7-_M$rbp1<0^{mU#&MR7$eqx0k6E_lh0d zJk>9JAP0D_;4rFRpF)2KtvB)_A~pzvRG`XCO-+HwJnx@ibJCl6*cgr5{XPLS=XUB0 zMoHV6Q}Y?q+|aQ5Fa4r{M`Oa2J*@+7kG|0g6>UazEe=VCKVz&?9L5<8&w|OMK(fFk zLqE0nxaOcun($%O?(5E=k$0{@=>abYewrmO{Cf8OfFdWI<~qmM9*mxvhwz=~YxMRv z)HqP_zgeah%T33yu6(J!qcLaKhx%ox8=DnIS}*QQJB}Fp(m9EhM?Qiki@ha0fQT?b zf{6Qve?>PF>;M;U@oTYB7agIVBAFFvdkqVV~2$%_>0k zm1EZ{`$KzW>EUVkyU(quofQXLs)9`ppjzXSwObuv4PvyxHD=Q=H42-}Al1M;IS^c3 z+CWP<%+H~hR=jVMO|3UvJb-bTjhCZNby-l~$jSH9R!P^q>I|(vS`9^?PebmqWo!z) z6iS1?19ShCp8AeIs;VrUYsn2pd#Z_kaw@!oy@^ykyzm^9%#Dnb2OL_?Ex z*oG3HYCet!%%G*x*$rGtXHZGBHlyGRVtWMebIZskjV%O*b*93(sx0G6CF5<{t+N|Y zedQyMQL%IN_NgfZ^2BS{Lzvt}7u10BB@4!53kSxVRT~G7O@RXY*#EUub2R!c;y2KF zx9uJ|2Cdco@goRl1LLD7e9H@!MA8XL`dchFuk^n0m4(Mpv(;LntG{6E?5;ZF15}*X znpd|BeqyV8#cKx|=lKHYhL4ivqZ?K9_93h$u%XyFv1$qp-6ouE=H_>Lb_Z=v4Z@CM z?kS=WC*26inV0Xp5uy9K5Z~NAa$bq;*#jG1Sl1=BF^8vu(~_%1MkO;pe{SP!L&$VU zt2p^o{EU9PBj_8NAVT$>`K$EB0)lqBOonNkp$ow-2xKr8+=ooEIc~WvCT+Rh(mH(< zN^x`uJQ^;A?Q`6kl-GK&)6HD>%~GFYnShz?KFEp>DcL*+ESDXrU>NzbGYyb)f3Hpv z(B^4EVHaxVFBr;|X3;qmDotziNYwBk%LR-MMs>eFVP1{?`nUiB8h#N-8(_79*f%w; zV%QJSPZEpP8gK3$)}4bw(0NoRm<1yma2Y2O^wWeLC%0>>ROl$gf~1Gk3V)S$1rVY; zdtL6bVV%)?sOFlDi3X{_tT}IV%qV}7ih%LkSz$emzzaFQ0+&lSNpWOmxMiw-?PQ-~ zf@DVmm?&JQzqn3MRL@Lsr#^D2mInD(fwdG2uef5TnPMaZA!^odmvtIS9>%kS492X? zz$9-@h9x44E8RJ=hhCc3@ikth7J&)k3!H98Af7rx>oeUMt5}#cyy<;|RNvG3QI4}E zO?N1j;AQ>^xJ&ue^wQ8oa4>lk1fhD-9Wbn!G1r-2uI4zzWK?4 z)2X+nRLfoYD2+6e6;}XGsBZDx0j^dcGD&pa_Xh$Sopi{KT_K*j`pE~g^M#l(Y#7j_ z<@1S;fP({N9juI`A1kdP?LsAbz(ocav!B*H3lBQL#!yGks}x0Jw42}WANlzN3Y~il zqwEF8yjNUbiAt=cFy>4qOmk<(kpTkcXc^xz^R+BtqRbptSnteK!i;!kszn|-^8@*5 zecc%hNofU(wu9KwX!cDWpF>1Mbi4IyalD9zZm7$RSGcLe?iR5Yy{xLLD&PqC+><9X5_X?dQYpT2dk$)n@%5dQ&0H0DdDXY zMVX7ZjfX4rX?33EzLNF|&oBCp;GY!BjZn*NAqi+*1DQ3nUbu2Tz)=2+sd7i+U3qga zb2zj<=K7zY^Fk~ra|WhEQ#nJQcK=ThfU(t?KIdj91Lz~a-xvHI!dJp1aBc}>!7XFK zMn{)LS!XLuzl*-1w$5=`)dn07m{}mtyV=3sDFF&LH=)9<=+iZ~F6oOQY|SKKM=d`%V84Plvjx z5B3#Jbrnrbi)W_8CZC5*wk7;lT|1LG93jt57|%^luOwf;^6WFsq5Siz&XOVMf+##7 zV3v~NB^^6px5ZOJ5Z>5?^H$QhGBj37yPbu{TguHFb4x1%G#xV(Y({>ExTyoMQEtoi z_OYv{mx5=fO2jT3WHrNALxZ3WV8kz+<^zYdhQJmvpx zkFuX_>!_^U+_}qzFD)g#%Mo9>vba~~`kA|_WRl@UpQr=B6R_lL4cH!NtyL+MWi6Xy zAIW?|Y%diXyhX>oHgUnFR>WU3JyUQv$6V`L4u@FHZ%BCKWaw3yZIqFK^}0iMcvTZp z^x~NJAvFclE~;3mA|(N7AgLxFHL++^u0m_ywwkgw%#-TRi<0gcTW&qNyhVDnrNm-u zGf>k-Gm-=_Urc{XpZ;b&&7S#PJtJ+2A8`d@-}<-WOy6kk#ADTXHM=)Zh80C7<9L%J z7p=8bE-J3vLcyjMAHI7iC=ceAq7Ah^4a^(X+0Bos1aL<{eJE|d@PPoAYa3&FpVZ^39F^lb>qBHf~cAV&|bnn^)sp9*; z%{t)+1#7F`Z|I_W&lkG{%_RaiWJ0rB7xMe+I4O{Q5xmiA-9SCW_ z+WWe0sNR*fmsF_;GXVn!E0FODCV6$r8>9kuZ{HEtb8zRfRKydsM`>#jH?pCiO62Z@ z^hyLdPCh$!QtxRL7KAi|Mdmxoo+1=bI0l>Xjo?I!iILB8gRAY{#7Be_odjAzEH6k~ z3N2B&5Cb42M>NFwRJ&}M2d?!uYn6(gQu4hD?@q+Cs$3EO_!{=;l=51xB)UmQvgW-c zu9r#XN>YnYfpQaow4InT<#7OBN27ey?bH;Eh;Pt1J~e%?plZ<~Od3xt6R-8ERd&qy z#&SWL1Agp&ftrRMrfI(!sULShqR0m4IjBDJu`O?Qk2KC&U->|jmINhLFy;`_7dx=g z9SDRnm@Zmhln1q$V@A?WW2AGYn+bHogEk1AF`LFGr#LN>ATv$%DOyLpHu%;unLATV z`oNuh$vwN>xbGt{1QQG)W}moqrF+xrLdM1FG>=hm&wPx`Nbj?r;#p74Cd?^*!jzz8 zO28=b!Q*GXTThkEO!&=I3NbTZiY7BbfrGQ5TDR|hp&pInP4~lDTE_EQ#@PvzY$P>o zyY39dMP4aId%$nk#$l+V^4I3Eu9$!M)9 z2!8g6DM@?1AtXz(fN|`%!{NHelE&c(AUaP!x>|gy_q87POy@7X)Z$PFxQ4Wjg^J(` z!fq`27-9jd{O<;xMSAwP{>%c@qVK2-29GA7LSStLXujR60v|-WLNIIH+kuc^Fu>G{ zG(7#3$W5~C&9zYeUeR+L!8W?aE z0}f^|V3OFv(fB5U)1&TCsKr1>bSZPtxcZ&d1N>f-uYl?91QkolDD`qjS9B+sP`8ki1TF9jwzsBTvj)A#_ChxX`jD4(f>VEReT zlnHBB!loQz(VCXwK^Ppt11Y=A7!1yWjI^lz(aHp(_E(Sa- za&=q70b~dlfCt*OFj`1qQ_d2&l8>?}#W{a{*saE<3@k1ijMFOt{;)jyLz4^9JJez| z-qHq~&axTFoEk8Mb$@;{r&aQ>p+OF&2xE?WWy7F9fe*$Sh}d;UmMlmLb@)v;$9bp& z37=l8=Xqfaal2VbQNBtyC+>r{#Y~yN?*ub(#rX%{&koAtFOpj!h*tAyh2nJ0l%;lW zDrP>odgTx~{im&pDovnb#N+D_wghMZ5HO}U1-YN@y{U#uTxky~)v7F_xB7(uO{glT zof;6&O8EW5FHhE*DSL+vrM54MH;RDLOzEcYnL*%&iG$Gn6=ETmy4Q^XE!Lm~O@Kj* zlMolUba6GqC{0*wkkS_5H7}+PLctq((oS_wP4oEIJlIcW%4^t?wQwKx`Ez2uJfDl@oOcB_hweGyz!eRlL57g%hlbTh;#%5n zRL*ji73XDH9s0R1E{v0lHVeUoPIS; z@Zd{>>gXLOZPfB@oE=9}0%Y zwtQ9wPA0)3Z;fOBd~*vRB=>y>50JVBfxocN4`zX(_fhBp#YK}ZpxS50ZZ6u4#@%|m zL7RQ^{2J7ay@)Ky+J5+hB{hfmo#mTDgk3MueT(iy58E(DDjxb-zNs;8GaI{q$W0v@ z5;c$gM%4P956eCvn@50fVr^67)z`9W$iN1x`s#p={6L8-856HWcC3HleAMeLAe3|W zSPBo}so_g~?L5A4BR8iO&$hcLCOw{NvCAPs2>kr{^S6z#(Cpzkdj zL=+pf*dU8K5eqmf0-=HhFw7jcx2x>9nu3jY4*aD?zSo=mNdM+j3RY9uW$OiK`9nA^ zpmWnJH!+6$frWAWwxJ}}byw@w6N?&kY{Az6y+rh{quHj2RG@ToaCgKuTNFxVS8AXZ ziU2DRSYuF&6`@oEZ_6gKx7VXm-uGXyg?q(fVF_p+qB zfH^L246A(iE2(pN=h#=IF~WD?#r(lFZhYxu_3Rqsx-$O2X!fiD66ooVdH(eRM?-vV zqRaCIs8)|CAC#}D23SP@>PBBjADMQX(Y1YJz$dYcQo0Qi%SOmwh;IZ zxBe_8A+1B}k`D^H!N&*=yl~73r}^L~{vAHow*v9m%7Tr>UCd!tsDMc;Ob8mf`@yHB z<;nIDpLd;=gY^dt@oS@?fq|V~7G0dGfv=mC-~asVnH_-FH!DzOuWIf9*)AA%=6wu2 z^RP<3in<3(ud5tJ56|oCpKa3hn9o|n1}0Uxje8X9HNUtyB(e2k#o%Sf3<$|N{mtbM z5vvWBiyS{d6ME}#9$?dDWFVR}#ziy5VcWBjT}a2{(wJB%rp{kn(3kCAnc#Z&k4oXM zF!rAwxOW%S5=K`h03j@vv#R*i0^)Tc1~BbTMv13hvXdKNTco=O@=f)-X6diTHSdk` ze%b8BAnDQ0t^8LM9^9j}v-`ou)&aWW!-s#@+^Gu2Te>OTG%}2^gbPX>0N=jw=d{&} zDElzt~m|KkPVN-$|+F=q?s=Z_yQ_!xHwu#;5tfra7(zk^U6wlB>4 zpRTOKZF~Topc8(7CuxLLpcB>EETDFGoXjjGsoU-Q3FE|qz0V+v2+-n6@xh&f9O8Jh zSZ?)rk`LS`iH_u+Jh|MuBn!NVGd`p<7Jq=ekm381QIgb(W9CZm_-dDIA1ruyneqrwPkH9@ofhK|Ez~ z4gIHgf|qOY=#&kc;=>1b0>l4(;A9ENj^Ksi4wRC1rSTAkt03qKG^|8ntsa#`8TJR& zO|%R(d1nd^N7P-TZERijGRt$X7k)Q3dCl0&%uo#Tq#3ZjVH7o=m1UV8HjWGiHEk7BJ0T#BNvRj=^QDdWLDv2zPATHF^t zY=3=?D+J)GVBoep>OJwW#>Q!sq`5gIyn=lau6BBZao`ZLhGYFK7BdZ7L! z3sQ@f&c8-4(Rw6c7C3LrS`pFmhhQBH!$!?dL%;8GS@PBuDK`gb;PB}+-QxK66nfG5 z8%R*C2ptdKpMk#aJjkkIv{ST^KGU5rlG9S+)&olU(7RMRw^^_fV^vG^2G1+P4KJSf z^=4~g7vG9wtXLoYkq=D^COhpHzr-Jz(_qnJGCUr z@C1OyLZUZY1|4Z2qvEIagJbUMDq4Z1GRz+jTWs<9Jp@%`+HD%O_O~u~UHH|@v@+eM zb3ONJl&$WY(SS8)>Ka?-HjdO>4b^UW*4(<>9c;^#+>T)(Cay@lQgf?w8E-g3Ku+^7 zJ>JmGg4I99p+9-3{Ls!yYJ_y;o{u_Ke*cdsrxDpV(QnCw#w~+X5epzeNQOh-$1NYf zR+)77M*H}b}F_GoY1GPY^u>t*RF#RfITUNFG>MDMAKKe61J5Ku4Hl^)0;LjS6K z>V=`K*uaM$=k0i!Q2FFVoZ^YiuVv#spJ?&3oym+K@0_b!A9UoEj(>JnR=Fh9G=X08 z^$kmVi;X!OGZ)6?A{X>|^Xz%c8SN76%a>`Zzh{E+UN)chSJN>7WCT8^9~>+%U#t&T z*|z#eaqU~QFQL>`-0)VC8M9WY0b{+!`;a0RB)kQz26yRuC21W z3tVN|Y@&Cu-!IZi$MB+g1N+?Wh*$?O&__eMwemNN}x!Bjj~6KTGzDo4y2;HV(*{r>s-w@BA9!%R7sLyUY%?KVi& zX78M~yZAv4kBtbMfNh|y0?i8qK8fD5uHjF(=en0xE?F4$`SL2|1ylm} zX)Dvm1gxf~`y^OsSgtX)eu0Vwq&B>waHiYl>ZV`9A3yr9nVpaK+Z2oTkM>fxn^unJv!x19dWEvxr`YyGQr$|PfUyn!k(-tW+2 z#$Y&Qyj#*H!G>u*_cx33p8viYo}D7DU#NX-BhCZIyJvdCpndrvhWHYL0gx+0AMK*|k@B0oJ@R zFydxcOG*By2=9B^qee>=KDDkE+ubr~53#6ZEV`x-%_-_L`d1t?ZZnL$a~y8DZBn_Z z0g!};26SIys+(GDkeWvL=PkPF32{jpYDzBgoSLK(!YuND+{5E9w%s&Hy?VdKI1cF$ zCkw!+5JS6V%+Wl)X)!pk!RUm>xv6)@-FS*YHn^^f?Y7HN_VCDu=JuzeJvsdY{x^$C zD+Xv##6Qdc4}@5LUiagX)-sZo-JfE4n(%CUZB_8T8VS}quOrP5!il<_;@;)&k3~%u zG=PjmDbA;7-+6nQ!xLVmz<( zx=UGl#V5C4CaLEKXuUGT)^~1e$_uz}R&f)zMH5X*Q6Wow{<(BcNESpmobZNjQ{w~Z zgWA}l|J(hrQF|)-67=S8=~>|x1?>6Po_Ncg-2J&DSZJqhPOKJb4aUK9a%|V6K?esk z6aHO;1x|;Ranu8^p?+H34m^EsWE^iuCNDP7y(#W*3aqu9AoF9%^3~N%cl^_YiecB{q4P4$4`9VX zD%m1sb0Qp1TseT3V6oQaT5Ks_Qj`Gc5bZkAob+6ul&WW zmzQ)7ady3>G%^?t%SXt9V^90OWT0{I#1o`B;YWWHG_%-k<(_fOP%#3YzLR>_p#5Cp z0Ol1%`xoZy%?04lNBZ|qp$d`HHM>AsQg}?!W@~aJ+EUB?^y52i8Zl@n+xz)`3D10X z`Sjn=b358xH)E~vh1egbZT-jRzeby#X^Y@NMTJ64{ZZ}~HBd%rn1Qw8W4g$-569fz-;%rd`jY+;`V8n6Hxc%y}i84H?!#ei&Js%U998y7T zm$4%hR(e0*ptiv?6l%ru3Y3tJ7>LAZTw6X!`b2M+jmxvzccvYHiisDWkV^EfzqHU( zooJDlO$2Lk<2(&JnhGW9Ur?d`O?>+NZ^pS#7Wq{TjsQ7uyx3(h+UCSX+4>|i&2a5N zO?&U0Q-9^^8#*on%Qe>e60Kor4zZJJnb)x^*W5XK`}0>^?(SUk^2lD9+iRfLkw+us z6IVU|iN{|nE+-#VPVMEd`MoYf|3wXW48t+Wn|g!lK4Sor>$(1bjvo(oVv}z!@jFdt z*Wjw-SGOXq8qM9PCod?Gv(tJ>v}bOiZgbFEH1TSIazp&TvprE0Ce z8#zHkuVW0pSp8sKYB*hYTsuv;Gjbmo)A+k{>yoOSazNj@UV2$rN?P|(Woi;J#y>o4 zY|H`M<^Q4T%;RF--}hgMiZ-Opv?;_HDw6gjgAh7|Fe)vIwvqN#QArCqlBg&rgi=wN zcF{ygLTGPFY1+4GoqpGQ&gc8b@AKDrJid?bIWyDy{d(Q^bzj%>jvIWM#nR1}pEh@q z-m0yqw^>*@*4A8N=C+G|?aFZQCc1rpJX1WX!~Nd!BGc)2@x2w>Hy%>Na5M$kUgpNA zLV=;%^8Bwn+a?Xx*Vdf;t{6At>V?8CDS<$}I3=B47NjrV+OWqp%B4|y$KbA)6=JKR zR!K7zT2(C*2(dVyTvHP|Ok7u?iUV>uEQT!>)Op_i5T>EMLfUE-;73_Sjs5$z-gWx| zyrKN#Ve;%*r4M&!?r!#e4(8Id7cH)>v?cCrW#&*a!+O@jM~#wU%zeJX7iosHC-CLNg-vT*IETirjzUaB`9GP_sDyz zj#*fsZiuBhzTNd6(~bmtRMSMg5UPmw632b;hPXR|10@G85}#eLBNjIc{vy-{gn+w! zpRZyWNib;ChFtQY58w7)g1igK@1kXLhLigdIPlHtrveD@h|O;({Y1SP_^{v!F{5{B zoGt}K0oQ64tEd?2*&r<%@jOxhPgXcB_tl(y#oS}o zbf*LF`|&uVg8#mJgRqbf-X`M@(zYMifj)K00){oYxn!xUZ>edouRNsGzo>KMXK2@s z(wSG^o>rG`+Q`?R(L<1~Qo04H@Ua&(PL;+{mEJthZa5c-m$|jXU%-l;nc1PeKfaTg zF~zG)4Koy|4R7Ul5YVx+T6bt9_Py2vX7%df?qni`HQGcY^&UWNgWpGkI2o<<66`&B z8;qxXm{V;#g-D$vL_Tbk-6@uH0f~K9G!-?cE_~+DWRj~qqFYX;J>^&>0l|z z81^gq?kSfr?$%l=7lUErCFG=63-=Fiw@iqrZ1*bK5QVI0XYKvBK+9NI+;11D^wAc2 z#_}UEDCU=JBJb*uvRQrwjUT%`5_^q47jZjCW0DD;5y4NIX4Hl}ay@#%HBo74s!17j zV}p><;W#AHLvYj*f?w*WR)nHp!C(2@Kr*;eu}_cuRVAG{-Cz`#nF%yP`~&US9J!%^ zW<64Y3%re0i5X5d(yKyB@}44UWd4t$;Lh}=44S>Am)MmwM@vb*UitmyIL74T8uLpa zTa2DGml%6^*rJP`mEnZR;Ki1t{~j(CT;Cllz7VC9OC!>wH6xx9v5JBiPGn38*7(!x zh_jZkV?jA{D>wm?N#lmswJjz7-a$bF+Mf=ojT(Xlf&=^3USn~^I|vRvJ3`Mw4TlMa zvIzcl&RWa)+aW?eObrU{9a!^02ZkC{zUbC&y?JgePFZ?$e!*J(fG0(L1p?dSAN+LA za5@gTbOB$!SWm=d;zLFyL9`euwY2MFOw4P>1IrXM*qRNdPk8VUcnEHlrPjAb`6zq+ZFD zl4+{F^w_3xj{mbGf2DLQeVtjKtdalIS-q)3?p1}A+=bw{$TV$|s2qbxYM(HdxE{nU zfcS?eKU*pB5BotBEIAcCJGoS+F|0x{mYGY&K#1jsqD!v&%@$~wc)3D&8_&M{HHiGn zq;l=3Q<7}B21!&P4EKBRbbYD>>N=L^z8w#VtaOHxKnXikQ9G77W4N!+%`eBt@I#~C z4)ePo9njmkoY?ovTWnb0%`#zdMm102!@6y~M!!UMZLVP!OL6PbH}=G_(NGCf=;Sa+ z9sutN*GU<^ zDVRLjV+gV`j*)n25L6Y<=CDYA?pYk!fSxSWXEneL_A+N52z;zUu6+isW`>ZM|G^Rc zxU@$`vrkpu8{1Blgv7)R`$Wgj)Edo4|Mo@6j^Rr&d9UOCnq07%rlzJ?;zLK*-epc2 zE6wRX%3L1>C(HA_Z;Zj7prVUO>BdvA+7#CClx`Rvi1OicA4c$?5geZ;>V~g0lHDh6 zd1V~1n)tbn;*AG3(m@X6aHLH$OE2&$FlYoip<;ci#t{pPdQIGHu^wfmr-6BisdxM_ zaPBx>{^MXY#3MZFdfzE^?a{bfsdsmm{dOwatyB0BMsrOOeX05WR?Y@NzLf6Zsjgce z9h3#1B!B!PV zEVkUa)y=o2=pvv zhGDHoXU>6#hlJJi@2V-=l7%Z(OtoVxb*T*^m7g^~1}XkeBT^pS!)a0x+%C>f(0~l5 zR3FUjm6A7?fWcY&Q$^?I4wgYJa&VoU6a75_b=Px%G>TXG6E*v&U`c4XG>*KP!Ll;* zIfdV$&s|JJ=1UU-y$Se&_siptGyM*B>?G^|QgHP?Z(+gpOlLTCw5*T%;u#B5dQgyI zYOTh~xLZFkI0wIIQc=DlRzol}O*Npk!BZ{>a7KGet<>6ffvJ0gFmmGcpvlzs9N3A% zfNy=8;{&5b467G0TDHQ=1|Im-dm6;rR@cn%HS${~+|JM;iBcQpMpNgXI{hMq|NPAL z#OnpW1_3vvnekdBbh#FoaHihAUHAZEAgWr^I~qqM7TQL4`%=t>D}C&qXyI9*!iWuo zPcE5gA>sEnJ5=@KfYICq#%KQrDtF0)qx#vIy~E=j9ty&X=vhW%hKJ)-DCP+H5-Eod z#2B**Ij#KEelTVo`Tn)ECAGu2Awl0 z-H1`XI{7{~dczf?xjzRISv$`ZVhq>(Dc|L!D1$cHhDN32wam3wHGb1khF}u;FWZ!O z3&pr6gMn}aXb~{zP#fr3czXz+h-v(XZjX9Rs|yP`XV1KRqCl6!uq-z0_bh>SfLwx$ zdv2(G!Pv7jRs7=?VP=10L7-VIg&%3abiHcN@M?b_2{y> zez&MJ;1T{@i28e$J0=WO{E;76CiTP0od98Nu2M1m8}^S&IEJ2T_o-P++3F@6!V{n( zB=5P_`>cA<{Js6>U0_z*5Y_Q+VRbH9kk3J3x8u?RMd38D^Hj^Xy=hQebrjm7$Kv%v2O4 zMzQ*}?ZJpjWjJBrn1(Lmubo|P8`kBKmsCD?yN`mg>6a+|=csh_Xu~9Q!e<)VgErlP=!OKFY#{nfLRs#pMKl z;h6Nz-!;vu>&P{n*={2#ijv^=1p9m!lsc_YN^?d@(Q<5z_ME2_ADEyze0L~L)!5UNe z{Y?f<0yVOE#S9z+1vz zt6k^c1!l!~kd8KZ5~6u(aVY%{^ZK3|~xBg%Da;3WqU2Z@%#7l+XDa@`bG%Id8A7uh|r}s+A47 ztknVvSK-UmrX$tI`JT-*bsu}fIZ}N($LDiTp(`)2p`L-cF=bh-3@30pIldi|Up>K_ zvJaBPSMXm*Ja1N=0FziYfIB zIiR6E&CODB`kUU;$kRaVZ8ck7dZcMy?@RD`&b&`e2xb{F)BO~4eW%eD0aq6U*dO7# zji^)_8)Zr%qY8UHjfD5re*AH!E*g-B*WVD1sW3%cB!Ty1-6wCkE;7|WQR+C#txrg( z0u)b4My27+u2ff7{Y1N~Vw#lU8P*dgX6yXwB&SO)cwNmVVG|N69zwwskrC?`2rk59 zy<^6WS{N*Hlb%$y?1l zZl^Yd@iD-xviUq$o%+-%$v5RFkp$CYF^GAWOQU4zqNeUD4pF1Gqgz%%ep_c~P-X1~ zp;SL}enuc?X%<=`cIQ%kStwqSM|rs4KsuT3-+Os>9_JTh*sI7uPcKY5EAwpL&lfKK zUS3-AaY`Yu)@!;LranYQQ?zyzm%)9s{Lp>P2=534cSp=EO8=RIiVNzZ85$g zts2GGFLF8f?R(%A7IPREii8h1-gAFD;##p~HSlabzst=AVr?gQQ>m5-Xe9$Vb88)w zyhcoXHNR+5KG=ApD?}{Jm42zva7YyudAJQJz;vif|9=m+E%96!Hvx>pjgrIMzp@5= zt_IJ-`qieZ1ffEr7Pxp?Q`olT)aEMZ#unEC!mbSU(pjtCGw{_({J)JmrC$(R*K#ZA z(L1Y*T3T@y>&Zg>O^?+4$8NrQ*}VI_twb4lFMzlwVs`MvGJEOZd31E}DK8`5UlC@A zq9AxK%2sk1{m0tYjvmIpT;|RWin)4~wdthFlU2Gy8;}PnYQ{KlMdO_e<7JmJGsXHx zw&A=fzVN?~uW8o4XGOSDQfK=t8V!_D&yFOv?i|*NO4}bn6reJo2F`PeSoGZwaNM0~ z)81$rpYL+N6iSZUgVHRWeSqUVXwLZ*v5Ingdgs>8$JWvJ@3(cvnpmBW+o}BE<1PCu zL;W=>TklTA#YNco&}cT&JIkKNoaP`mzHg0XLLe=uy#>!`tZgeBNV)k1E=d`ADgifJ z64b7?yGIU4x3cXmCHe2ext0mzl8R}1UC(2w-NcdUeX7dJ0gp_r_#>-oXUl|O&eR!I zIz%@?zI_d#0V0z{s>ww(f_1!M{GHutX#|96BxMVr$M83hjk$KX;hjSvdYZs{d(DfA zo|et|IB-%gt;QUzq zfm()R+a@~6UvtR|AhBXtbX?BAXOHfMF@alECdIGZZ+k0nqjpOi55_O1K40WSlp+Z? zg^9e=0laj`z^h9u-V`^`J5ZuZe2uq++9ueMAQ<|*br1xgJ6qiVu_7uwEkVA>A*(wu&?z7BDQo^}!X=fqRIwk&e0xEiG8R`8p1u`Ed}`d9_s>zxcbJ1u z?vw;6)KQ<%!84pDx}TWq9H>8Bujz9ivuM_|*ELPDxVgXr!uR#4If-<4PQJll_wP8P;Cc-E63W zKR7-C*Js~8@v%?1gb&3({B8SxzvVynGL*WhDPIZ7&_CfzsiQI^9iJ7oqnIoO%EIOH zf31B5$-$@R;`}Q2Hj}C8dlygEYgW%}>=}4MSHFy9NMP6LM>`l6~a87*LQONCWN+Vtgjt8Nk6@f zeVMO4s*e5Bxk?(6EQx_?bEEjc(z7Y3uRrl$)d>I2x)ImWD@xC05f*KV`Is1Vw!Rzl z0X=&M>KwmXtyN*4&MCa!nNNN~u6bwIF;kl1q+SalfnZ%?ycb{LaBSHTi0;%_@{-eWUP?aMH4b%k>a9XfHM#Ii>~-xdH#y&!AE^9JWI?EEl=}jMS`X^28GY2o z22w|}7f)Tr_uK$k9a=jy+tU&Mx-_B<=$@(&BCx&PKV5$kKjfRg!XfjBi}Bey=lvuE z9lW1{2ChU9M86g?+>*?yTZH!oXg9lPVs^di4{BTj7TR+l1;YzMZmm625DKe=O;Sd4 zx&Edfh#h7bDL0i`HJ*v?XU~AR?B(_Sz#+6)h#J*DJdjI{V=x)7Bx9M@B#;p;EEo%s z_op`WztDW+A|0N^@`}f6eqyg{3g(YH*MYs*^k{AC)1~}2n{HbxKh9IZ0avtPtHH{k zOPF4S6q_{J6|O|^l)Ld@Bs3_B>k#lHj+#gTo1*3f`&U1m>DsQb%=ftn=c#@(oR6l3 zq;!ICpt_iz4l7xj;CHCGaD9Thm#}(I5kbnnZZAWBoN9VA*QIgXkJ|8Za3=Bifp|M; zxDDrOM@#29GZoe$j(!7qUm4E94?ln2@htPKRfz{FB4FmDL)cn<2lgbuh*T+!^UdP^ zjrjy0St;st@ZN;0c5cCcwlrGNw_T5 zUp`Mr1Hvfh_uyeS{Y3&`5NB-IZQ1#!{b(EeUn^Jb(!}B;pOM9NOrL z{ej94taX#+o1o;97{mG?+jD1y{KM76NzuW1mkS0smJyr`mZU6Q3`11+JRuTVSSa1; zZ&R{N5UC8w$H=*m^dTXAk8koXJ%?%pVj3lHjEb4py$xFY>#a^KfWeq^#jC{ZOrHt} zqS1IaPgw;`+3P0j#*R+(Lnnm`V}98^C$&b8>niU?i&>XyTh$PfiwbS?BUQ{bXo`d{ zj7mFM_R+tnx#P)Sgd7x|lcs8Y5V}Z;P0n09qz0#?8d-67lK<+j6t40fCqz`70}7EP zHBkw0AYA!TwD5Ur(NiVZ7F0~HJ%5Jdp3zKLx7gC}s+La1;KR*4W553PA(xEfkZh9f zf5t>zHs-ZDLX+wa9#n7mTh(|@m)=P=;$h4j&&pi?BDcWhY7mAzGX_&6MwhQ>oQYkV zQvO^+PX#lg8a;af)X3=#6MikQSF3D6{#tIG)^5|Q zT_UXob__?8)*S~WD1y%91&{wQ)>hOMZD;d7_Za++WC@|iDP@SBViUbj)Z@if$He)Q zt#nf=X-!bhL?a5^IZR)9CQnV*GJjrec&!LwZKQC;Y>0L&uD64OB!*0Qour|?hR3-t?2G{A)s2ZZ?byFZ)3aGsf}w46R|(2mg}Ku=M>Zv8 z2oa{3pd7g^y{b{4TMd)<59W>-if0|HrY5o9b(enyeukNwNxs@M^1B*zv8l`@}EZ`Stvz%aZXR>&({t4d*$p z)!*<}n6@2%sQUh0_UctI&&+4?>yu;-$Syy9N638iK(0PYn$XF!_e(s8=fkZ2psT^g zyaE_|WKulh2CJousH;nrLD?W&+?dlKICQYpTtsxt-7w^Hr zLFTaZzvp9_*DMx!zkqcjeTiMP3xNfVy;-IxSlRxW9jHA@^$HJbnq2VtfjdQK+5$vL z79H;7HnhNbt%KJq*@w>&8fRp7g497?Wz=Ude`IDlI)&%x#Bzrsko|5Q^YV^YsUU3u z^|SV`sMD6;SB#&ilJ5KXd25iTa)^p);Wh18G1))YS9t3^@!jDL7j9I?|Aw$O*Gf+W zSSGN)QR1YB$Tb(JQk134j>38Oy3JY6=eu9zVT0q%ZVQk?)L>;O^%!kiYwei*oDLy8gBr{z>%Zj6RdpicwHfegx^_P ze%I!aHxu+@?bx+9geDGwcFim-Yd;_D(zrW%P_LVv+)Y2w-*(w4X;sPwVUrh4%ufn# zFSkK_n4|F4O2ca8l*AdSQN!_F)cl+9}h3l-EQI9$l%z&w2V$qXBW9i#cB4P z`0;E7VZIROZw(j~sU1x|P?V<1ohw!-w+&2KBTB)Z*?3R>j-oNnTlSy&wU{)1k6lt$ zSctm{{AksvuJcaPRqrIWp;Ykp9zUVbmw(AdFwEOB!Q7gmwb-`L+Ag{1lm-d&O2%+@ z8Rs|#BQG)P;#V@OXAeS#o||L0dcP;7j}y(HU$IqKvfzhy1&M^5K_-1*gCXk{nv_`P zv4qQ7BF;BpJN-1uEv*l8Z>;;Tq0`#@qW1nf z@hYaEA!MSKFss+PW5)jMu01>6V1SL88Ug@zKQEXY7F8_;2USr!A-ER zFcv>pI1w0}a}3Q$uD)&G>}-H;a?9aNxvzB0oAHCr$rmk%SHaeqq&4~H@u)FqnVAy> z4q2ji2Sc(rQ{5o+A*|B?o{!QekxDf0sfK~M1Vx~q?LXOVBdFjy1#S4=Yv6lM=K!;h zeIUy61Sj=U5GOm|7CtsvZ?0B%hL5-xx%42`Id5d4^dZdzGv63;W&(R7x=>7c?RZ(^JTThu_;QSXITS`C4RqS8Vh5g!X*(WTMxT!b+X z{pHebFIGXw$Hc)Ih$OA)u7sxdR}GO3!$XesJ%W6~?Lf*$$3mfR^pXz8S6D{L*<87+ zl21#G(2l!0y@bhKIVGVfQ)Qg-Y|K&Br5|M`*~{oQid052e`tOLm%-`y*1?drt;IFp z8Uz)1EfeZ0F;&3Q5!ZrvmHX?M=+fAMsTvc*Oh%e2Mz33M@53zASqs;+r$O@mnXQ)Q z|I|6Yp*5X7F}3L`n-EmW82rL2Hl|xUiU1!GYjl%M^Fl*Wy}?LZOgF88 zh5vpQtBN)|%-lsW|CRrCq9Uja9WBJ6e1Nnp6Da1}e2}ARb~SJEqTcHE72d8;ef$OW zAN#4%S|i&h+hK!1(1l)DxI6w$?$g1td3m$(o?bO*7nfN|O?`T_pr2c|_aa||QqVm$ za5+#+UPYA4R`CxM1z)Rw)$ET@2!gn%eTQJAZ@9JBG#;7L`MXIO#2~)FQ!9d=;WDFJ>h!$OWW%%%=Qak)-AliVtot^hZP-|m?tYT# z%jvuULQJ=Q`AxaM8@33yo7G1Hf`WSc^Hxloq^?qkp;C*zhHr}PkC{$W^*%Y`fC-+e zv4T=?yh{daFTl9tZf8n&l9fe}Z`-D(pt3X3n6EbWj}RVGiaF_428^j#xCYk`HC71PH41g5t0&$}eUUA26rVukw%I+Z60IoI-$ zds(as>!C_9BgMPfMJqF$UWcng^Dy9ZR+8&ml{~wDnb>>QJZE7*Mz}oczkptchHpTQ~l7$*aGJy6kyl|3?4UL1j|> zyx|j*2UHHHl8-QG(O$H}-sYJx%*h8IwQYd`S32F#+1T?pJh4DMs0ew2tmB&!m$qB{ zlDhB>mB%bN2wMN`EIR%SwZ477Q1gl6;CcC#0>F&MVeCs=&@*%()v*2DqqHTV*Sd8W zv{1#_ez)M2F*}hLs-`+`i%g3=2%NiyKUxx}By$Pl<4Zz6yVxAISm-_7?23DZJb;B2 znQ)89{dIOAPiOnloWa=5RR^~-ev}dX?5rby?G7}TsEdT@B6WTi9^M090pbTf{qL92 ziz;<~qr9!`d*qF6T4_0BNdf(Q^3;3P)vtD8qCL+kVQSmWn&@lx1OTFapyXQ77nf~b zCJlkl-QW?Eyt*(}u?DIy>1as%ZO|@s)!6hbrBAeU(G)R-N%$6{w;5@wPNG>GeE##V zsMka|=DjqkCycK$=FUu1>Ym2(@ z3!!p#Xk+-LkSVqNjQ&+o5bn8Sy+LJG*$qasLtz9m0sro*!j<1W(HES~ zDc^*jJpW9y5s2guiIljIBPL1?GZE+&U^hVxx=l$8ZvgHvA2)`>N#g>N#!eq9uT zzgfFARZ_%jM+fFo9YVFMh}|PSH9PhB#?HlP3vqZ#uaDL>Y$UXXHG-ibHqOFS1^uLM zo$wz;%1IgPqC)4EOqRE6FV4e6#?82PG$6sgbdW(4roxANw+gC3=QZ^n58;bA$w;E+ zf9=$q#wx&-;WjDVYX>X0R2VG~Ji533AB{y1bz_-$yW>^5yStxT?5fdC>dlew<4@nx zCKf!optpamn`l&TqG8W`Wms_3b6XsN*6O&s!2$jrBermG86ix)a%pt`J;>nYqnIxW zyV&hZ&r(?8)8IKjtS~>E9XyAheNwai#Vvx`X&R6A6c*sj^%)&78OHM;{hI$wQP8`# z_rFQJ&pz&GWmY9&QHH9H^&5bLWnf8{aJy4efowE|>=hFNibWy+8iroxS|0-b7B=>@R z&M=iAb0D_t?t-JG&NWh4uu@#%{qPCw&7+u~xzK>j>rdxJ2MlXRpI`Z$|IFUf-jbk5 z6g~T2Yj3r?g`GfR|+H!nPheQ#=g;ZjyyTM zQ}uyDwLi8Rz=|NgQanu+$iibEVc!|6#S=ECFCV875&U-vvvV>)#+ET72tQ;ldC;pU zPQmE)Lo}C=-6z`xChsWvmd<}P-qFg4Q^+x(-I>`-Tp0YrJGix%j16HWj8_@=g!eq( zCG{&f%lN2`T7G20!L+6U>dlSYNQ4BD@J?2RO> zbUBth3X@>w1k1+koV)KQJ#x$5_k1Pa)v{^5kiicXT@9WwBt5fw`X3&Oc`0`bKvG5p zk5Nno*J3vuN|+wrcyuPw=guB{6K<#IPv9crk#E+F&7S^sb$&r(&5u zlOO+iH>&trWNyj)RO&oZ{q~mOmKa6N&(_Z4X~~HjLg_!bFzu!M&k-U})_g`hdIk1yc7mXE-*TWNpc@Oi&zxBZ+_(q;;F7o{>8lLZNL?7YoH3 zJV*5-0_E07g(`0I;Kc0z--Go64_0J@*afU`sLi)2bdvq&jN03FZQ;F@l0s z!2|V&a4Zl$hi#36?1F1g1==#z&b{7sXqs4knMN;oH|H#{hqq zO9IT={MwUh8jop2#fR+?S**-V2g?jta(7!RdjGu{r>>Wm7mWr9gv7MD5b=+X^lz*A zUrI9?JYqNI2Y?c_k%sLT*k8ap16>C8Yc}F~#R@b+u4Us?;5^lPKZ&l(0Ige0nrdacct1PQy6m*b zqfzhCB}WybI_x$X-#v9S2L-^^OgH6VxoiG$dtqInzQ^1t!F~k=k)@!?_6Qa^nmEG* zJ1hzF?y0rXL*b-ll%-40xir$VPDs2p{>Fa%150({tuN=2P24wC;ZE009rOuuJX|H+ zTP_gy`cQxG80OE{GGY%^JeZqavKxFnjOvM2%KN$t&_M8pHQ`4`Zj=Ztv_EIK%B~JW>VnW(EPh63y+>6R#3o7paVE zE2Tf_wb*UVm6vRmI>A(vDpesm}uG`XEF!z(9) zsc}W0Zc`rt+J8~D^`aOb9XZ}CrTKv+MXqZSFxd|qgu7_iuV4uaE>Ubz8YP8NZN4@F?hHFkq-mUid32AVoV+Sj< zuqI(wak0jV*jqR!*|9-T6(V1Hp_}>-TO}L|dE_Y&*kK6}i@h)Vuf+}D1nI<6cYGF}5 ztot}sq;fa0KH1-Cxw_e*1p7-_-U8@rf6u=y7)tllp)#Tf+H#}m=Ui50-l=ai`8Zl?J+IWk^z<%x^Rrp?qw%Mt$R=zy^R5_uP@7>2{*jE}2LL;t1}ar!q-@MtbQ zIY%;$Cr)@wBZFoqe}7#0h~?@?%9>2Dho|}K!h60DQkdrRL2>1#*4o`OrS_J|VbIfz z#mn!wqu?(CUszpOV}J0F9ESQexgdbQl{B?X(0-*Fwbj#r`{IZC97NIf=1G^%k~qfg z$A;U)FR>nVB}xaq|6rd>1s{)+*Uv`KA~JU43J%4iENAmZBj2;;f<|R;^H{ z42Y$~u*zM~?RVwlYlnj;4l#XXFb)!4$E(a^@eef3G^S(S77~N?^3md&k%@ivcG1K7 zsQYfH{D}pJib307suFA4Csl3+CO2W^+qP;hhi&LLBV!vF%nPYz;~@7EH*Q*p*}(8( z?58Bs?h6KoIVRGSow@8o8{(MSK6h+282=*c`T6vm%DJ#l#rx8%HekG-<|ti7Y92oO{`A)M2rS$Kmz8RisH?<;l)G5A$9gn%H-H*QtoW_HvDRa9UW!5^pQ{7# zs=p*!>|Vs|bZsp$nyYiXFuQ&q2me>f+ZpMTBP%Lpsd<$bLn8WT9W|kz7c{nGucn2? z<#5KMDT7azij{+Q^#XK?_2LjLER5F3U`=2A1=q2)OyUW{jMe$Y9syR+k184OYfSG zKJ>#i@L^tqdWN5Kz%t>-AMGhS3k&lPWuJZ_?vrjPODe4W6pMh3Hpwtm!Ge4FqzDmz zoNr%D;WSi|O|?0YtzwD>pvd>tq_Oc5o?nvFl5ka?Nbt0r=hLsHU(yEy`-{YDA9d-; z(zyPc;DBqI-HHXXz^mx;!e9MW0vO^tYaQF%srq+)w!16K!*Zbc8N6``T?Bhkw*~t; zW#cE0m1EZ2k#BDqo%7Mbwo&WTz09)`l%i(%(A(WrYY;A#)PG^;>Rq$){UbJBXK;L=S z-y0~kdd<2VHG<(#)*(zCXr^7|4W}n^{DjW(Hnpw-om7CwTXKqg`!Wpfp|2H)WA)W8Ryk$0sRs11l@B^yot z!_;<&9$(Nx*xIobohgG@VpJN`icS-O@(XR{U`SlJXN3EeI58@&6S-(@Ft?jsK?W}yWg1CuVt?k5I+M`C^pej&XxP8Z$ec>u6dnac>6i~Ds!^0FIpr2__GVtLAO{GfXzU#(@Z2N6|0ZpyuZn! zdr}n!4<=>^F+=cNTS|ThzJid*?)oc^{VBk!yPChA_82tCV^b3u*4m zA8yS)xrgY%`G>uw0p5V^Lv&GC=|ST6vuI_vvs(VR{Bs#{qPlj{2c>TH;+WC_=GN^J zGA9>_$%8y%ZwaGTLYL>_S8@f1!r;GHCF+N9{oB)kLnhecKg@A2YlR8?__HsX$os2D z-${CcQ`K6)ePJxK*mv|dlM$zyXDhal{l=3@ZO}O9KH`T>jc9n{F-_oD>zSBK5Dvl0 zhrUDGjm6PQ!TdC#oDT5vjr8TuKbzPFmzjZ+dyGZx-b69Ci>Bs336;D3*Y-(n**m$I z>vbIVexLhBWh&>DtnQ2Z&PDHBzIH-hh<`)y4={lx;sqw-99$BUFK5`E_>l|dKXU-0rxy(c_g9BA+N&Wjol{GdWqj2Ygr!z8%>_UZG5S~YIK?I z!H)2PRMjXvGm=YUnRb?5B(M?5H5)yyz|mmV#~8foij)4J6XRjPkny=BuWS9@Jcj3* z4t!`V^BrA8@v*RQd(j@cmHz8O+s?Jz=Ka6Wfndkrwxd>(5)qMZD&Lp@iS@7yCv1sG z``y%Fj<0TVzKg%2c6RKlurG!~IuYy>D4p-5sY>4&{2p#R$9bVuxKCt_=`w-}pM763{UyXb^5>jO0|r8`FiW1{&@de$cHpTnU+N>Etivbw&TZbKh+ zWn5$y{<$#y_9fgCSu*$aU`oQkP&aviJ##L$)SGli6pV#Cf%_JdPK^DhfZgPVOgjco z$_)oTeR5r_RvH_d@10p`g7{(Z@=o3dx{Q)X&*@G24A?)80rauKxe7(q|fA%fh0#`jqR7nzqVlXSFb5} zc(a)Y7_fg11Y@=49k){BJm5nx;-!#xOae2II45-mQC$E566JcDnpt#7{`R>U_KkO! zG$57Gj%$BW=-czv6IqS`Lq?V{+Y|xvj~G+4_W!Gcf0woNiXAnmsIoYNTbaz?bmg;Mp_@Ly*?wa>+F5b+Jg4x zAD;6m5rfv3M&wP+@eEqi|QC<2r_1n8gwy~PeWm_P;X;%N)wB^LGLG1~$q-i|C z4qYfQ;s_r;p7Lsrztp7zrzGCCXo!vvXzw?g?DCa=*?Z^XqQ~dmtJCk{2~&+C0{^fh zc~XhTLr(2mgQv*jfZ6n%Utj>Lm^#+!85q3n1J%2)$^(Z%FIW6~brN|9Cjo{XhIPQ$& z;&7}67~&`?3{D(szrE|1zAbtS+gr#kT3Fc3$gLG+v__J>_r1P2NKw`B!e zM2^cTJa9Sj&y*6$Rb3i!LT!@!6HI8*Cz&_>2>?UY*eUT#UFWey%tktJhAPfq&8MC4 zQ(dvGvty~e8<3B7#?{up+Gt)pQhpK?SToV5o6|USC%az)MtAG%Mvb+%!!om`WNOMyt z_-B@;7zRe2@plvIxPD^VB`jSerQ4`Gg8Lq&N^;9oju-@C`jW0_DSztR^Sk@ZC62u} zfNcmoE9cX;v_QB%8tcDnZXlquIo(e)*GoPx%Bp-Zb*j?WXc$f(Vq)l5@=+QRO5hWj z7GY!+^h*oknp5SZ!!NoF0ffi(%Z7HjXwQp9ELb%7@Zm!rzCvKPCSGV<29#T09zmVf zL5D;UvEjUXkr$7t>U1|1%}xthdfQQ6%^C@3%E~~ z4?q7Z$DSxDVg-_0{Ue4VlV=V;9aJ}a;PmT^K{av~znOEs+?s7xc2bjbj&Rqz33XbT zOC;E%9AB!ty{>hJgN9U_1oT#TCB>XuijQ{JD)g?ZEu}2ddHT{x_ zp(82~Vrk1^0w_YRQ6-LTCVI0r_xogo>rXa#k{*^JIY!T#Nz|I;m>554^>4Gc>~L!1 z=bsPYzmO*rez7lP+%G1P?eB(>CDl95%8Xz@6f|y_o`@|2`YH)~oj8$IGi3&zRKO#B zmOmf=e5+k1Ttiwo=+Dak>IDt%;aQw2X6CK%nuge%Z_1O*;}$E{^g^a*d>S8HJ|0&l z(%=cc^=tLR5?$I}qTbr6wRNmTn{{S}^lx`h>4V~pf*yv2?x{1iDMVmje*M6&e9A+E zvyJzHin0KkGz(tVJ`>d7>9fGLZ=BU|tf7IZo8T$pgN|uU!*A4=`8MCpy5OIT$vXB(QpMUO>e+= z$ouJ&!ahZb=opTZ@`tD$4=7~3%E7l--AJs{y_|W;d+xf&#mr36hy_{83CQHN9xT<` z8;A8rm_TTg_QYS(51?WT%MN>4uWA;3e>{J#f>40HB_g-j!KEmucupxlRp0ltbQR-A z9*Sm(f1PB1Ox{nUJ=TtWSif#WaOn5omQDp*qELRmd+Z_4^F?>>-YqXK2a>L>aK}(# z9YERl`Q_J2geoG?t|_u;l07mToNQ-#q+ttPIL-{?0&Fl6aytOsx6d|dXyhVgdy!s6oS zw4R@Nn53qk0>r{>&GHv-Y%O{6dkHdEsNy}<6lP&%d&sv7jrsMOCB?-Ol;PRgrhFGi zr%H7Yg(ZM`B+|rrKVcXn-Rx^Uq1X_%JW9osGjgkJk^q!wD5=$aVFy;KKaXhjY>wb- zS9oDcNyUoV*BKG&ls24cXshAS5%_{dtd|&w+UFE z+^Thf##=02GI_^#B zhJz4zft+03{n4xwt!>i-wW9YnLog+YVhm-L(w(NdO38{S0v+;XGTuklSKick!Wc)! ziDFJB04K=XG&MC<=SKg{u5+|YTBF?b~ROz-9YwJ(kT6^AnyRdx#L)Q%!m~f8=Oy@Yol+axUA#yF*KG?UP6cnjz8zLGc+6UheZ%(on@f!9 zmlYHL!{!1QF=Cl7i014db))GQucB|7&(yLos!ZuF@f*)9xQu8Du@V-S_SLt13w+J$ zuldwUW2@$?lZc~O9-%g5W*$$toaW!kevn|Kd|(X%~k3`jEt>zpqGRF zYMIc!oJK+h9_kAoetsKuX%vY>UMRs{X=t{Duap=VT+@$x5q$C)xh75ZRB6CE!PhjG z7H6#+_Bv*V?663|f5r%Ak+UJ36`k|Styx)EZP((z3bLAXciE$+jMLJV^D^ePnUp(PEHWq)aUi|8nj*-!>k^pmwM_wjob3cFHPE$3P zKo$zR(&wTGk3n+H&>_I_s810c$NA;Sa5if-`0b)dfRPVj+*J;jrpntODff)(lVUzgn-VE zE$k9qT{W<*Cc*=?N`9#*-+<60xkfai5~v|fk$V4s-bqo+EmrL8ATh98R$YxJu19&r z7J7X`&Fb8-IJW5Xc?F7j@QuNRR?{MOdFPTO85+xYHz3b+-J~%U8^SNfVdiTrUS{*( zGcQht8+F8;eC7PhaX%N!?I7xu=FpS-6bV+Fm}foAx=*WcF)6UBmLW(N(|*S z&9E{4`8xNYpcX9P&2(v$4X>a<1~_6d-r3oC%o!n)8`qJZ8%(&G_9*i#cOMi@nJxDB zSA5xBV%5smRD^2naC6Py)tI<{-SCtYWq9j7=j%(Wr9m?g&?GS`NEdAt*I)ea%F^N1 zp@zFHEUxto&cQ5c8b8*^3>FbTtT57OE8L>_(OSLd7O-m7ca02bFHHA0jYn2s zzus51vz_>`DyGww3Y?I7-l`uCc~e}T$MK{L1|OC(QX5dpd|nV782Aw!5=VV`FC&Q@hz7Ojo^Z= zeXCpmdb&ZWd+md#jQy-;*pDUN2CDtf*B-ZW93>w4>M!Ph6^9u2r4Ofj^KQmi+I8Fml??<7#?)*Cc3V~o^{Hz#${d3Uy^UH{&`P+q4C3Px-4{z`R(Mj2ucS-O3* z!4J{~uw6p`$6`(FfZYt7VR3;Aus@*Vj!)zH#XCPRAX;^?<$lOco_|V$XE)E^tfY~g zl~pTYk=<&&k+@SMYx%kPDuo9J`hy0K&Rm*E?G$*Gb=AHv!n%51XtZ>c3PXCj8~~0z2{JrRWllZNR;7q>uiF!QqHIE zHv+fb;EZW}`O{cFoiTdro$|_sL-%hig`?oeEtPk!1+3bo2X{4S#;BMoSneU-E7W`X zfzxB!cBSOKwWHFuNf}ByZu;_-2U^zlYE+$UpeVPw{oN7Ndpm%r{fA|^0oKr*!K4-t zR~scaLh4@nZIRr}!Pn4^PqE8557YHTo;kDk^V75T#sfYZCsVBKfISe1c^}Qpe7!c* zer{|GO#(g3-`Dq#Zws+9$)T)OIbB{?=5Lbx_^B~3YJ@34swJvbj1Vc;osxjLqEc~| zT3Fyzt_B+>vHxnCy4h$;MCb){CM6G-9plI76)NnBxw%_I*K0rPLj5_iqG%(ed}hD45cf>dr}kLHe8YX~#l* zAHS8ES>>%_8hVgc{aZB(vq+}4er*Q>Id}(M8traSTC4)i*B5(6tT-bW;h%pCNQ#8NzB5z zAcgRD@OsC4ZxVOAmRZ;Y^a-UJFprbg)NFcMh@5J-&O{|I=s;+b@IMOxcx|-qAk;AK zbRkoU0_g0XzIsihqMT$^$_@7M!j@3N&Ly{=yJE8Oo@$i%w-U9sT_HAld{f%7Gt;bW zPin+ZxbfhGNt-0r^@!OEZ~`Ex`eI+E+>sU6);6%eRDPJ>TDqF6lo|>V7sl`_NWW)a z0#T+=0(5FGKDbo_Fz*2qec-)C=ZyRPKbp=yoaz2=<0+&Fm9AEVN~Kchl2&<0CAmsc zDJoA%CC^F7!-_)El)6+3QK?HsREQWYmX;)m8ipk_jE0S2_xYXQeIFh7@%!UCitYRT zeBKY|`8sEquVDVc`=&e*-G&-Z!~^>nd%zRbB0NpE$x!ex}7m? z<|n_y_KCP8P%$Av$?#6vb3770CBqe1HjMQKHrQBv3?ecxE~S%i@7(?I6A9jQ?bs}? zWAWJlq;C8C;mo*I8SN5NEuWdWc}tOY?1?+{05wKUz=GDHTVLqUFab%|o<*3_KlWYQ z#jb8$PsMoXxzVQK`%@ubCGZNv{pZW$WodF+a?%7Cq+fo+IP$DaEn~}+j?mZ$8cMsK zOfTgl?`n#L+Ri?pZP+B(s~o4AOQx@U+K z4oMLS+YTD0;vt-{1S$fkFUVYuztGW&IQsuu0C<;?1{_Q^@8vA~yR8#2zfkGVEGUEh zT{J{IB*TH0fphNq(6Z~5(7XLL>FKZQmD1eyP9KH^>RFs`1z9>fj9NA28UigLnrTgv z@VyjLMO8BO0dN{z*=Aa~nY=pUaPe^H>exk!awOM2#ZnoB8690ymajQosyXB(8~s6T zRB@}imSy1qdywLM$y;lZy;u~HD}j@V&Lja~5ixqa$; zz7aFG^5|QBD8+9y3B#`+2R`&0r2{VHzxtl$*5 zh^f3O_6ZZe{lpbw;7A5CZ8m9Hge9{8y9Y8yk_%o^vReBQHKFT?R&DN zaP=p}=i1}V8W-v>rWrHCX2j}h}+69XK_7QQAWq&hD&IU*)wPRhRVGB>}9B$(xFlDV{B*XRb)3z zjg&efQ+gWmXr!3MSl@!HGR2ql_L_S9CLdv)#&EL)0kV!A>W>~FAmAc7CyR^z1R7wgTD*C3r$XL+ z#hwH9tc0V4=RGN-t1xTbl}GLy)D%&*4NtzYFz+4i*M6u=Nqi7D_6-Tf?>VmC9Bz7} zABZDlP?-GFa;*&rRS>Ajh~2^1rFA0=9bH|^T|JAMjzlgv7E&^Dh5maRaj}0LU?o(Mwp|_7&m;?ajOsF&su{y=4K6m0D-(J3zXL1@#%8jF&rPz z=`0g+b^7Npwa3a8bYYLR%ulS-y-jtXiool zZuiC(y>u>JR*tR~$j zAL_GrL-SCY)Y|a94Ob|mi;C+;v*%gRo!~rjRj3^tCz@d*LJnu8nX2dBtfgXerAk*%EZU%Iwv469%pl`wWZ#}2`o*-khK z8C74|aYiR^Cp=|AEU~Pct z4&S;WB+(6Y4zakJGR{Zy?}BV_EN!9gtExi!2i!uimG$6CXEdE6%60&^B-hb(=_KW| zqSgZe4%W3Qj=h2ex9?R|GaevyDnSd*wzQQ5im~A>puLUJ@hy;pTZSArHXje_b8 za1sa7RG873f3N_(UEL9vqo)AOQPnZhS$uQQ{+XY&|K^u+7v}+tYM@2q13-arrSA;- z>tH@=!Wgh3Opa>a)S6a=Est|;ihh(z*go#OsQ$FF0A*?6`v}c}^Zu9$-n~1zn+fDF ztbxUw6WcLZN8})jb;xMy(=h~2F0)P{d_6NSV7#>b$6l3(JXU0No6s4-#iQqqXIb{i z0Y2@;!tw8zEfONy<8b|2tLw8S1inILqQe$ym1zpLYs;(9hx)YQ zd9IxyVn=>nx;B3pZ`@zcx}sb(?eH!(KFG|>aQ`P^A3?;Ua$2%J&pu;)ZPD>h23FOO z)9{UWzGO{}aCG`>#(w@hTI`7D?_CX0Hc_p(*%3bz&xp&pb4Rt}mX;+<%sNbBRE+`d z$Sh17WXuqLV#9xbjNUcHAdgtAEs8;vqg9M4;Z54;66PAHOn2?t?IG@)3FaIT(g+J< z%u}2L1e__99iM)}1WV6{+S5mS#?~EqJt=9J{I`Z#WSstkG2?MnsURI7^Jywy23wu< zto~-Mv9-mu&l{=gzgfn_fx;Z@vj1JDXz%Cb&CB70>P9^~0_Vcii>s z*XvGRoNM!tI_RmDKQBtk5`)&6=_zjWzSUoIt=GMvQKSGPBzL}x55c$#Agg`jzRJvu z$%dB_MyA<=APrG`65V1#BcHGZVf6vlyLMgeP+Gk#l4uFy-59v*Eykmj6riYC~FsZT&} zZ|_n2T{uYAfDmSFjj)xSOQC2D9S@h#KP2MnsOB+3v!e9fBF`LB^jpNz| ztSrdL@fouCFt^94j>&a3awUNh4IApdo#D<77h$y1PF76zFX3SnWKE81$4O+sjkDCZTB;xEx!MywBET=kGCU%qK7Q@F#Y));J4E;?Nv~!ZA+;v+N3Z+(qqNsq zqW3|wS)Yj6!KLAo;w4&z&?MrKV9afSrw$njv5QazmJ@?JR7HXcziz^XfJv|X@661l zmJz3f9PU7v56tUDZ{BR}!%JqF(30D^c_nk!?cYY#u75Rclz}Yo(xhy<{JFsNFKSa~ z*sb0)9k$uv6oE(I^8#Fao=oiXq82XVy4gd0_u{+eLGi%AOYP}DnowyoICAlQReK}qslE{hoHXk?ZzkQZDJ%Yc54gT$s93gb!YpwWU6g|?W zTpXOz=QG@67^3absG}SDkk*M7z{D9aMdm{DRI|^7TJG_r-L`X5Mssxnix!yRIL3dHxq`0uIl3bl8PH{p zr6H8Xh>@Da8yYgCa^NYye*ud$KeZp-{X3}^ok4#{LJ&@CP9Se4oJI?Lhj*gY7wSxN z8)1o3t(2?6^3%8qH@3KrpCTqJXo4p0j92G!mL*mI#v2YK$dt8ZtuiErx7 zn>V+&M9wYMQ|MlMA_=7U=fh&h*&E*tL;nT{V;foh$~HJo?e=U>_zC_!rm5t~=N|BA zGgGLzyMbmJC(h4hmJthrbok)H{)C@Q`haN(-j<{c?2MOQXI$?6-$5WPxt?v|dTRAW zbZx7VzmYoSM6Dg6ls!g*LEbmPl`ZO*aYrhYr{P{(jB=b;-qDZJ>TC5CZYe6j0zbQ6 zFjN^&`F6H=n+O(6wB{Z?VLOc0wBnGvY~|Tl8Dz9=idsZtKRCZ;G~+k2dUa?#tNDMx z&yqg-N{5LT8b@E?hEK~ei$GbYDfjrK2oom@DhHP^y2yKoAVi!jB7U2jkBnnUfyj?B zh%($LMJn2hyzX_q5z%9!Z?QO=}+KE zT1*22lW1AUzRQVG)K`La5lhK z#Z5CdezF+hYR9etcVv@P=P(YE($Q$j3W}RKE_b5YSu82aZ!S}y^GyuA}(C60>zF=JkhE`zAZ<#2=o71j#MDv5NzT)OlmBomE5o zeoL72??5OaMoTU~ppT8<6u9c1j(1N2X(!=9s&%PY3v!^s-d0~_X-sM|+##+jLAwG; z#mGRH@p>ei@jd%pdVSM zuBqrN#wbppUL-5{Bd2V4?p7p@3V;8_%u~FkQq^&!BOrkUFyw}^5|7opK~I`QmeI1@ zY$6V)f!*e)C$;OE`t(5tmn~XwRYQ=!m3Y*o`xiBj`ypqvwb-kCg{AXhaWYl<; z3AnV(r>6$9^78ZZZB&dKV-QE{K3^qXzha*)+B_T+>uH2yIVatT;DzJH1tku<;jj(! zH+T208g(sGpNb9ay~~R36wPY?oj-WJy%_2ElAmTyPZJzCZ~(jh!mKT!t5FXPu8ci( z=1c{N?yztM9xZ4JY(`OBAgtK&O%Mk9Ci4F@0j~8?2C-N+H|VW;$-ChAfBhO4ok=P( zzyKn#wvL1?c!|Q6twoCusn76oPXeB8UB^Os<*=YQ{hwc^MfmDo-j(p+rmhq6amG7> zjBvXMc2Ra))gS*w@1ywpN7jYme*Vhl2_D}-?JD@#XE!LmYMHX4Z9=DiTjG`1Re0I9 z*rVf?DxEsM?oGCa?1~SPP&8ySE7vu&AyO8Xq;Gunu@~d0sB;{%L)@WbT{P)=i!n)o zh)e@Xd?19Uar?4t(Z->Ud9E&`w!u8FNX^pR4U-XL+R1Nlp55S`AK>76rYWEap$Ho~ zuC9d(pU)PoyMtz_w(B&SLeY#|iK0qz7jdq3 zwwbbQq|}WwP9`)2!-{a=Lw16pWYZtv;Y7E=WFUc7{UvXslC%6CcLbfY-|||6Ywo(1 zv)0JJfKyp6JbXYNZ4av=@1mRi;}UK;f6IS5mI*E-1T83=+1wakKi3>bU5T&_&dk1i zED@t;Auc51wm9Y7It5oriLBKu$iBZw-6hDh^Z!2-eaTrqSN6p}A6IGYKYrh7!IWyJ z^=|gPXNs<0pIz{6p{D4FzdBPKVrXLTv(X2 zbLnnQfWwwzNCS+9@EF4=g1f^Lj(=%0RIZA{gqF%ar2{9Ie~8_b=LIPp!#AD6VOPP7 zbLr1MzUwk5O_;eLr^ho0QX0_hsm3Aj6=k^VI=(qKF9pl;PVLyf+4s>Mc;gzCjYP|H z{gQhUrbkhJ9m2gfwu9Gh1+wz6bUuGnYIK^P8b)_2<}^_g4>QAV1&8{&fGb1iqvw`! zeY-ViW{6$x#0Nr2jTu9#RQ;epc7x4N%=0g zOIue9U2(3CarKT`l@Tl{404)gcZAU!uP?I(86@81P3fe=iS4lEFn)=~PZ<0IHT`7h zqspisPE$GipV%h4HSD19f6Z7uIS?XmvlehIH)%=T0Ko7wKV2K%sN*l5WUi2#JYX39 zI_4=u4$7N>CmQT$UM%I}=WUDs!bXwMph|5Pp{I*;vmg3Zb%!{y^%S)FiUplh^`$AW z#?5mDJD!$Yegvu;E=H2-8uyG&DWB6d-uVDZ!vBH_rfSMfju3=@_4yw;A!OnViO+C% zvxm1_`je|@{>pDzT#O8?k0clPB!mc;JoqrxYp?e}7JV$FO!R3acQaGY)}8O(u6M?iYcLXP-DY(1m?YNhTTXXr1uf( z#Y!GUEaGyZ_R_3z`G=9S9a#k=WS0;_(B)hIpfK6|i}?5c`s5qaQReJy55hDCBh!eq zp3KbWo4iS~nO!Xhsm97)gv2eM)@2mEy91E^hG>Kk*Hl-t)ZkF%>5Z|+BNAPfGxPSWe3AgPvaG>qISh$s?pGhWPc-4Aw+@T-jPQsdX(vepOTT|5-58Z!g9D2^noSLB3Z=}>8 z#1N>NUvnX)bf6^woWmYVrT*n$R}zC?t6HjtFdBS#RW-r3&Hx8diS?z^lFw!ItmH+> zmbdE^SD30yvDN=Hl;%g^M5*4lqYM6A?%>GBWZcy96RgQo{Xt>IWCBn>IyUtXgqardt34lGT)( z=d~=K=Yp}eU;KG`zawDcTk!*R;>>|QTcsRn5e73Jo||}9XkPazru z6A!(1j3{H%6=b2wd_G%|pGQOh=JM2&x`U42v{Qb7TrC7 zu<@90XBKb^(ZdLb#%*MxM1%~TFn*Xd=jSZ9An*OZh2iUFoVhE}r;MUrqLXSEPv zw^;VQzuGdn$xnH=MmZ4w`+e)%o&sNdVHOckvUYq{UyMmxyaYrJr-roTlW{7{!Wi$> zLHoo2&+GeDmRKeb5SKF!g09*}#oxeGU*gNS^OKmFF1P%0!k`UOr*ufv*YxQrxRgf= zU*hpw@suK1G;d)CW7aw<010T+)vy?EY;InClUZ{D)63IOGu)%;E}%L8B~KQE*79vW zsHvH959tl_RR090z-D@Tr)20PL>`x(nj$jLAcCz@ExAEN_F@Db75t!WFaq`n11n4o zN1KgPgEg9|2Za{lG8!Xzuo2Z7O@~KXo(D1@5l{IpR?54pxq8sZhX`DWxfagKi>6CG zl!av1Wsif>qAB60eKaO|?rI`AOVh+j&l}_56ydv%^K3i9)HcljBuOeu(89X-&3da^ zELTYAQ;vQ5JeueR;n>rs_;QY%c{3HN9!DHFvU2`#9S8hhF zXPkdp`Zb68>hlZlEKCFQv=C^$fya2jJAe(-@@!Sy2*&{0B8U1u92CiJ^X_6! za7qmlLMsI@2 zYPh2an5~hTqPdMPTgu{`dy;QGM-fR}1rP3_L!bUa=l<>ul2NOPjik>Vo-7`s_v?1E z5g?}9(|o`MO~m}kI5J1Ze9e^Me&7T_au`_*t@dU4xDt#hSb3j|8@?YSXxu$#Le8F@ zp3G(MkzU$GgQCB+U z#rMO9598L^RJ{1IqJ8g)OvauKFZH8ZwcXMFuVg|;s5YZz3XCM7B^b5l_4M?tYV6_< z8!^|^8UQZMR~sH4tBssHsXA3ZY9Qq9d}#V{6(bH=H2&m3HkO)kE=*wJKICFWGn0w* zMS=~0K^SMTl2t9PiiaO26c}BEQZuIdrlTi2WI^t{Y||Tp&mXVir)C@|^+tIdmqXx+ zn=lFTWRVqH$cju>hWnA<%>l_;me67-PW_tscg0bAJdi$N^zaZ{+s++y6C;E5d2CR; zY7K%@2=?e}H+$Sg_j`N5Wa|$?fb&ThHSv+g*uAR(nlkB_iaG9F4~S_TJ7vu@E%zj7 z6}*QLI$9%juHPh~3PuBQIp~irG(2=K{O;+=QjcetDSH~iyw?0CcrSq#AbJipMpv=y z`^j5B!SGGE9FPq`M))SC{Sd$^MsKl9fHweV-k-i}b4gLq_+fmI==M&uKoMYD0{!}^ zzE5K$K=Q$ug|3jaBz$wC5CFZU_?pgB9-?6$)keQ=4>MAARp9u=CHL>Ls?DffUh#=2 zXsCMvE9~k6s2o_2v$&8pG#bzUG0zoX$#!@kt}r09kSyP0)8iN%oR@#{h*AxJ-v~|o zE=5Hf5$J0i66KhWkA|6xP$m7x@W(&}Xy(Oo)xx#jlJYKBM{s6D zY2NCIjfKgaiPvZmVXW0wFwGJnr}0oD&Qr&wAZgp3zB8A6l!hMHy&@t4h&}<8+v3ijpTu4F zdIQix;IjMf3Ac(?7U7h~9Os138(d0OwGo<#HBITL% z9nlR!J9P)C$|Ra37yyyO+4b9-Jd)6$^ao*MV55S5LjY@-vNYaAVOj~#)ojuZ9!63j z>|C9fW%?D*?`FFn6u*R_bW?GLJ9^ZH{A$u{b7H^0R02muHqgc!ZkP7JB}16@uvL0j z-)chnM$?{HWv41h_Wa-ODeqFgP?&Wsrh){CMqW>zR~S3`QZh1J0|;MQX69L)mU*t) z?u;1Kxn`3>QabL}#OR|Y&lp3ZjG^kSR-oDyWaDyjbzJW7(1901`Jhg=Oh8e7eH2rt zy55wIXZ0TS0Xb#iAo7E-0hI%xt=6)fPJe!&oWT+akCURX+rs_}N+6gI8yhj4Ct?2& z@~YB=kbw{@RwJd;3E}F|5}w1BJkWLU zo4xoBV;{PRDF0i{Hu;F={(#sLdVENbY7AuyL-n*zYA01>;pR|lK)509x_v+36tsnxqT=8O|m@!F} zk5FddeiwXO^1o9>GK4nMt04XJiRy%~o?gFB7w984ia*c!{4`3e6u9nWok(S%SzDb* zWW|MZAT4B`>sWIUPxROeJCM_HGkg`&HRdfA)P}?iL$}M5aurL)08krA(p(_6*|N(< zh00m2tDAGr(Y6jXejz)f);*=e%^qI2O&h5k-|G;{pD8l1!dD~>aTY$=?-*#l{IFnM zAa-{$nF+4J&qboq)~gu9o1EH%TuKA_>J#b27Aw(2D^u3=}4@gr7t zYi?_P!y8z2j859JeOxdu@f^YQ|6{@jPeLBg%If$F#9U6f^&9h`!u9J~%bByTLx-%a zSY7gWtbBw-9nBwBi#%eP0ASI&e0~3tj%B953dR(r@Ink;>CDwxW_b!K@Vp+tR+Xhu ze<+|1j^14;>F#5>urB3!5#HGH+^49I0~T!P+x-Fs4ZuKb@fhCoh0iaipA%vf>vy*> zE1&huJxSPw1>?vr6>}ni7sn8m5}uQ<3CC(H#>G87UiOLjf!ac`$}p$kde2atIYqCJ zb90V#8H8hN#HjOm!!XX~d5vx*-g6B7LSu;|F+ym+sY-NugF|*baSpVI##?={%**0Z zx7{y!ZB-v&nE(vFDXQDyKTC{Sm2{bYYR#cW2YBb5CVlrQ0RI5;?PD)6k5)$Xi&6EK zI}Qn2kEzGOe`pPEuB^PoArrzfg!%$w@8CG}^#7@Eyb8$IDVTS7ntUH%+L$%na7|I=^W!57D?;hg0O9O^Nw zv`m1*EMii>zst={4UVast4Vup=Qu(RrmnyDf5XiU6Vw}jM3Z0BaTN9myc}Dkn7Wxi) zBmpK!C}95MA~qV@LGQP3QQEPd|sGU}$JMR%@DOr@pZdGXcySp?8@l zm85<8$|5>o|ZXBDCH7}b=bWbs>;;nhq1)@Jnj{T2}>^!8m=L^Zsi2j@gh= zQDr~_!YUH0?HN$q9Pt?Y{Tt&fl^2K~BjQQ``}aBo(P&}39htEGMB|&flx|l)*wcf@ z*6uZGj4OV(LZV&Zlh_9&=waUCO;Rc8+9=;?YzWKk6EQGNkhwPma_pbJd({AdjkKIF zSb?pn!p>haEsz&Pokca({ojc!St-V(E_g>{<;^gjCw(5n(n*WoTP3!$#p8mQL!w*q zfQ*Sue$|aZIlbr-qCKZa+#?Kqerj7BQt#dcMG9SR=2-r%jA1BOAbDD`k@N}T+6ZU~ zYfcP|40_ZW!0n&XVV{VcZhwDQ642o;BtYlge}L3gP*6H>CoDfz{HGlWGf*YRFUalu zVt}69p&wmLW3MpW7ghK}_YHTdsADqZubWO{>=U-Y*j3@tv@t9bJFC|`f5LW>UMiQ; z;XXRCDSb5Ibxl2od8Fr%$)0g_H3p72BCinBF)voS&_VeE+E0w756Hf4}N(T=nwqr|0`dh*E#rM#$!TRl8KoBTj z0JPl*=3A%ncBhffaHDzB?-$#tS4hS5fFGr0w%YhYv75be4`Y95#jOl?hkEE5efy{@ zHBD(0Z-FAP?-HHOtBIrMi6olx=(9nLWT(0p>NRfco&l7njg3p9yH$)q`pjd zOm6U-jEQQ#L@x=w`{;dcsL`lo_7x%gw{M!fkb-1uM6`|7-??)~Qx0AqUbvu0%oFDb zj?ogEjvo{UR`Gv$REs{^wx3dCoM}5f_2BQz+ZM?sE!6CkoAuH3oaVifO_R@moxAn% z%((;R^cj<7ytm7Ly;k_|uZV4NmrlHzm*AYw%o@J?qNDg%@Th~)hi^9jCTG1{U9^HG z@OQC&Ry=gjgA&*!ghDMWwPU4|Spe1nZHuKA{)YCtkYNq8A9B$<{HYve8(`jSRIFHox-dbN_vLI!Ll(@Hu z7Y^#gEa_IC@haM|JgrYYK?`R?_4s#Fk%pK<8Lg#^Sc`{E#T`F)ZB>33jj!eb!r5O| zuK;FkL-IEWQVe%J$;{LSN;4}n@SJkc_Ojyry3ARB`5ma+SX!3F&DHr^fm5k5Cm)(K zsXruKix~iWh@^Wk~vs;uXMOAE%)lVWyix&H)*%D-*igU z`j4PGPAv*?sJ}J~s3If=CI0KSo}|!HiM0)e(>mBXJ7&jIsm^&*S5=WB%_bf0S23Sy zK6Be?Gv${4-M`l4 zmSyjM(tc|F{3}CF`&oG;{g+8jFBzzQ4*h4cVX{J zr{NECX+m=~eFcus*fZK7O)L;Q>imVpAS8OJ-Lq#&_m4)*`vV{nPmpa`dVmN9|E?te zi|qgEAf)&uSH2}>AXwt#Z4LlGh(n581Xm3dLrEFNY3DFwL=MyinxHu(--nH)7I-pU zVhq-*d?9f5LuHXuiG3jNe#sTfQ`=8G$b}^IR{s4iV?yJcnF$Fz0P13oBw6^jIzo!o zXZ^WKisz^0NEZ8trZns>bzZNoYC-|UxweEDecM=KogKl!4ZShE*W~I_hfoSc=+^6VrrzveV0$YR1!7*)M z<;BWaG$G!qmaBev4&1nfuHF8?n$}@zpst}o6ZIBJb~k#Z76>&mUQ@E#a!+UFH ztZwFQpNNIa&V-FreoNVufeP!Tvv1{4%lDGl{ZuQ}l+x=BCy&m|9H$^>u zo-36jEQwcz8KPwy3jgGiEDukq7EM=Z9WaGD{cN2TI1t>z-8FW>C;ni7tElM9E-q`f zU4Ny$jg0EyB|{uDhm~ES{;}bH1@-0-H(o!e0${%QK#5Zah5n*YJ1OypmDz9lD^w|i z+2eH{^;uym)%>laUv$Uz*r=c}I-msHA+fjn+Phu(o%PQ805^Nb8FOgR;TcumbemQy zw9sO6ZXPkc(LRY%vZ55HfoC0G4@i<#NRotR6 zinxqXRi8KgH^qOP#z~j=*Q zptsLo5zpkn3l~y!bhH=iS8#Z6usbQri=`K0O-LsYB(fxSOy1KGF2PQ6twA(B%{__t zhOfBdH!Opj6|IA+`MB{mY}ni~dL#!^;nbOfXtYZN#XP(zMo|EY$3Xj)#XV*p61 zUe^M(@OtIDTpeKrkNGEFck-H6Fzl}HdtY;aorm^OWZvvkc8{VS@|P(8rPs#fU6nCN zD@G4-JX&dG3uWjyWr#ACEv^e_3M}C#^Fli|Qba!D9;eZAr%=w7b>pL{V!noTb*t$( zLo7t1+xCUyqaCK=SJ`1bVU+K0eX@8VGSUmeURq!LM^WLf>5rAO-!0bExIF$aY+uXN zwAY{q@XTGIbR*!hR$^{5?T< z!a%l~Uw*`eBw0#>fA!bL*cfzVQj{?O}4g3$kbupbUZsv_D{^ky|w{4c32%bWb1hIj(wus<2AR>g(`fe8MK9!g|^S$ zwL1czJm5@(#f-wg!yf&$jyC-5kdLkHAd5C8`2#MB)97VN|CM#k!Zut7`;1!&7&?iz zGbAN2I2bpJx@nbQj3_SSHRcjROFp0fs2~1HMcbtjK|i|b`InTc;of-$mAi3s71$@x zd|YQ-BZRWS9m#WS?{I+Zfo39!h(9-lSN9gaXZ*#h6mq+sw?v z^=N|Jq0?}_gH{SN&f>si?btwGGjaj;_oN^l?goOc*Ps=S(Oj7#N8LR{kBI7F3WJenN5M34;W;^;B2#u<^8p z%pg%uzDo-T&ZH>(kj8*g?qZC8guIO0?DI`o!_>NqQYGC_9*Dmp47x{gf5&M#F#n~O z$->6?B?5|pm?s`H)eat|%HZHTKpUxB*Br!=cM`s}2)K{bnr_q4XmMY*c#sBuEY1?j z01Paqr;rc`kjHohEINEF?JKURYV`1doN~-Y6gpe~V1!W4EN0!6uJ8+(?`cij{9c2y zoSCb-&ik+fn6h*|SSb!vU*P-@h3g9a_Sx2*eDxzW?qGhpw)LM20S=gq-l}kLbVUA| z+SXPCDB$cJqq`nos6dB=A4@D`b`6~^M&Wk92;`#fK!Z};R@=XgdFSK%?Tco68WJ(I z5vL3F6f}&2l+9~`j1n>a%Ei7=&xlNJ=%CZrIKMg=oH93Rp{u7JsS|a=TfpvI-a|%m zUwe;=dBTJCQ?LR_}saAEZVIyQVHz6)yir z*?P`M&bBwYaC3EtM^lOZcUj;Kk+wr8@jsD+#&r^p)Dv%#PdNV$tzVVq=jR9QV0cgc z#2=Hv|E$Y;d!f3~XtjcAhSH@w_OR+0A7Oo>{BUl*`rN(*tzsWH^}W|Lg7ZyR81n86 z?NruS)tQk&ao1R=>?yYyd)THfTiYd;Ujmx&J42*X*JgC^Tbkj_&9YvjW|0E~>J0)C zjEVlb=)$^QeGuRi!lF;eax~0q#)Dhj;l@PK?mRi#c?hp*IL#;N7gLu8-I(Lee-cn+ zp1r927}KvIue~QUz^ShTm;E$|0(10Xi9#bKV}_jrGG06lK}p?FyD!m=nY%mufQs9O z=Z@nq`-aD^@b2{s{u-uCu({44q;CG3QAH&b+&Q7+EOZuSU)%J*)1ySj4rY9!L= z6-K8SmspW_`Cc2<DIxc;ijDVm*iloYFWA6V~v-1E{O(*upF9pa;$uTcv(4fw*tWqS&?|qffa& zo$gD+$cH}kqQ#PGF+BncHfZSW6ZJpz7OvK5XNT~R#(^@bzhD3BMx!C+FMl!mlQ#w; zj^wI>(qJ=paJ*VPY#Nu7;SR0sZ&(HdWB2bb2C4j;qsm3?ShODmo;d+W*I>GKu8#cv z&>(n(9kY)o0rU?ESUtDtwZ8>^iYAyD4dq70Obq`1HB^+fr71)=r8PY@V|ll1%1_F? z=O5_a%yAL^qAHnA`Je}`Lw>58|JRFOjkhaZXT@iavnZl(`6YwTe8RYGZAU1OqMPinsBb^w^bFK950p&DV!I=4#8wAyJSE_ z6N}<|h@38qP5)(agEqCGpm&CKAjtA#UJZP6y^IbBx1q+>?L-o{W1dG82}FrENN6^RGMGu@2abPwgu`(eZ7u?0 zep`?IH}SxUN3z9#bj5$rQ@ka?Db5y)C}QIO9k9g8y%LG_L#K91O9ZJ~+#5)g>MYTT>tTK(^2mH_i4nF!u zDE!`ovZp|oqx9fakb!v8Ck%AFx zQc6k+;G~1Zy+@{Q2~O3=Yi?jAPYhNTen6y(91kWfGQOrLmwV&l3kj-88ub)uDrdKQ zc4llN#yO~igL;L}Cyx^~81cNZhm+ZmrXc#U%2ae*+zsn?yXn{?@xWqxMhjtP5LeNL z*C8|;Ayi-n{fb|Lohcgj1I@7A<~N_^^2Um3j|gS}+}d7;kOVmND%aTvl1cONbJ)1H$`L0$alrKvx5w#xR z021lvAgkJ-6jXjH<_670SuE~g%eNFD2r&yam78p%0`tnu<*X(JH>_(} z5SAYAmdPDiikH}LtPjhVI9R|8tcbX8f+{zPb{KSkh5vCetk2?p$la>*rXv_#;GYjG zVfT=4GN>xdvPrMztEKgBzvGd#jaWW`2he|klm@ao7LNWPCj4#nfPi=eP(VG7< zfw56B5A1COLKK#K(U{UdU9P65ySIqNi*;QdtJ_dae+jltG~ks)15O#S7I(#u<(Ll5 zzOe>|R<=-;!r9Uc^+#JUnqBQ!=hTXDavWM5jg#RJ;wHKg1@0XJJY=!h_+TycDU$(k zMz=Gq=W!NfJZ|>LkM0@z^Jmr-!S)oQ+nLPFO=LdQl-vHEF5I9#h@ag)an(&Grdk-G z8X%|+;a_M0!*~cKcP{zv>FgoEq_Ry43qQYb!#lw#4APF;0nB(CbP$*p()IAB0v)ck zpFiC-P zQz$%0*2jpC_ zVPgxRDOZCi80FW5Sg60I2EhwiTLpUBbU>IPMv~yz(xf_zlx?D z%Y~L-F6)-WR8t?XC)Xh#T)NCz55NC!oec>M(92+wd~)1IrFiIv$F2Fmv<5V3S;BOH zs}0i<%<5@uY>KX(D%6h6^9po`RuhFOf}jfjf=RG-&l7|z69;Ro(K9t-R6O~mm;4~~ zA}%CRS+@=o3OU#AYn%JktND2TwB;@3iEX)M;GF?sM4H2Ol_uw|Yoj zZ)pLyw|i@gqYLSny&+t-d99Dp4Z%R>MEp$v+NnmJZ+qiH((9vtNjspS;YCX+5Z2XB zoRcZKgo4Y=$f1oKbv9pz``b_WhV~#{AhuUyW_Sh0W%+OQ5wf$1zmM!rYGh_ z>fT;h3wji@c|aFPn>o~Dgew%1sjdSRe^=n);})`cfeuse6cQx;&4Vafg_ZQrn3rH+ zk+*7FqszY_`ugF~4DNYV5BsyHA+bq`XLLRcRO@JI(X^_~)gesAg0m1`o_2uK7}1uP z7$M>t7d~DIB8Sv(Yy{FJSUHa6_BnQYTp;2udK+KYatEnY>h23SwYr|=H~)rSm45&J z{mP>V!to_HUiOFb!FCmMR+VD9cDjmqAI*b!5Hw>RO_waKAIUGObruiF_2K%>bWgJQ zxV2@ylG1v$nFIwBQ;O;>6?d|@o#7UZ^G90+XE$2yz3~BQ132@Y7lR0T@)e}U80AA; zRd9-h46hPAo{v3uBz)zfB3+{}h0~wX(H;!Gb4^VR0h{UuyVGF)jA%Ok4>(=>sjN48 z3Po9aRb-NT2&jn+4}ro?!R>Pphqt$LES!>K2j!@C>>|()2m7`Y!4Q3;cwtcAC%Tmt zDqRll`SGgBdzs~|YCeoavHY67!ksk>jt z%L_9zolobRPF|uDyQrG)8wZ#A58;nj9^hFBLrvBxaA3t-+Gm*n8yE<5NlTkm89BsY z^EX_@hIh*Sy2(@*QfxXl+LIuphmcPo>b#3IcEMOtAa6}Y6yPDoUZ3$q#LjDRXu6&PP(a!Bu!a$m;39xQr5C9s522`cvxnG?t_Qu7)$B-FVi#zu zBJrZ-#^ryZ^}NOS}1jv#;%P=0E-D2#0q*Nc!b8rx!cf!A=9%LNyto;KGJW1a%c z&Xz4(c4E;vTikR04s%75?^J=ofRyJEYLvL=3}o{R=sC}(pj}DINWuo{LS?XBuSZe^ zn0a@NeoNk2q5DMw`|_^VTp7qJ_3WG}4~k63XZ_Say@vY09dXhS{ivAhML*%ruk0ZL z@#L*~$)8TW27;CU1}CVRVogZ=%hyDNP7vA;m!&W%MbTXnv`|~&Iog$QLH}DoQ{+@7 zy*cP(;q+9QAsZP^L#v8UNXH|`&bdPU!@R-1Kz7)H+Ls7IE5eRCGBOej9PZ$mq6O21 zM9?yVf9ZNVi75cNVc}(14-e%-N*^2)gb*#0<*o|;(kI@6E)@{ez1UX`Q@D)A15f6d zzng$a?j<5$@kUR^Ds)Sr%WEIE@k<{GHGtbY5UAfG{A@&G*@sS`j^3>2i8OFdweYD3|RCM~M@u zGa8&1gZcUu_kIG;uhoS;^23{s*qZT&LusOW+(P#xOj|hQ80cE%W(&JcPydb!#o|69 zA~74)**p)Ts!NcKZNy{&(+n{h4C2x*H(0CW|-2a-E9t7Fp4NKtfAY_{(Px>6U5jE zO+qOQH{Z_Mxb*i1RoJZmjVwy@d)JXwpf>f;Gz$w0UmD#%kKpb@axDYztSuJyi2)9j zzLqlYe00_t_7Jm5OQoD4GJ@~9|ERjN&Y|9zOnyu_Mt{~3+q`t`@y6;gltK{wd{DHK zYFG>Lw88wI4V;+_pSY7gx?(%na@NE|XGh|JuU&Ek@K8tS$KI!y1T!n(Xw z2RkvFi0W9y{4Efj(7|_Ql1e0kLN*8{$Y<=Lv6}yt){Jz z@T_rab*(}9{q!5jZU8O0*`qEd$!>1aZ+1#tG9+^k4h{O@5of(k|Hst1$Hkog?Vp5@ zgfN&6lr?K-DZ*5vHY6<}gs7B+K{PtebR-nXL~E0zC}OjUP$`{66HziUGCEF~G-^8N zI30f1d)oWHf8Rgu`?34ouWg#o=ly;iuIqWVoACf6xpXR{^5~cJcWJ6qBEo%}1}r1H zmCXTHxaEn13cs4;IbBdBxQTL6w1yj4MXEC*P7LCShkj!52gAu<#^0=aw71PL&w1ny zjToaiZ?(sRu|}2?p|Rd^lK9)%*-~S3^#mFkpl}?r>VKj5a;8u;L*>Tnz5>(e17B&n zTcO8LN5==nK!+GGcRkoaFn3rYwASRoXvS>7e8SBy#}WK776_f{-GusxZNES2yaF#Q z+cC{~+X;rgn9`5ld!u-bSK%^T4=9>!D=^xRa=rd;+=2jXWC|IkrdU=3fbFjJs2e)w zSG61&x0(#!GE?B{fB<{T=ZJ*$8m|&))m(`tpKS{FnJi<}m-LHb$`~aK(wd>%cD2#a zaAG2vYT5~@LHlu1#@?mR=wH6crS}qmM4!x{y-%DZij#^cQ7{i?tv#Ws;wN5hVqL zJ!;qQC789VD{t*k)Dz5zkppZUh7!;0L7>%m<(-Y|KinWrVk5vAnF1vAddm#v+XjGD zf)OT_`3WB3e>Mj!B9?^d7UdXO;-%uoVFQ3$h|G^k8emNizHKr>Sz7e1^BF6KY}TON zxmn#aBXF0rof(As53UfQ*W|*?%*;PR&G_snSKQc=(i;Ksa6IDIlnKNGao#4eVxYFa z__I(yT+GR?!jr>wL|(_Fa|!1pFv`PJq4T20j!pR%dYexR)Ua@${KplfxrHS}Cp~ja z9Y*!*wDg)2@^-n*{Ds{u(-fb3p!dJe{kjwQItO$JbquwZMvNJ06D@2YEq1j#7BlXX zCq9xQPnbAqG{3cwM3ZSR5Wa|r=oCK$wjMHEs#=)d0v5)#jX3iB#W>_#AQPh_c=7U- zP^&I7-YtlIPPmRRHn`57Q#G}@h+<-D3SJ^RR*uP2jvt1%H9e1(tMl7oYmRMmK7@eg z)j#}e%*@P$Uid}f0D-2`9zWHR*)Hg}nl4&~K;^*`<5w`KWUj8hHnbgzN)E^`erC6} zMBR~a-S6^q$9j0G+F{oCQ(9l`&Vj~XLqxP|_rGB&<%XtNJdpS2QQW0qqo7~W3$ z(1)To=DToSxUGPf7(KmOC_n_uf#eey;w#Fodcjqj(6$9B>RBm!gv%#(LA+>qj6ub? zQD4=<2AYbngu%c9v~fh4@>`fvVlS)^#l28YccP0+Vv#Asy{vMFP0o$#wi( zJT4%i{V|9EG;a2Q8lj<^@r^klqeVd@C)>f9Bb6kQ5_ATTbOQqzvkXgraXEK+N^os`Jz(kOhm<$?Z!8Cx64~7+P_rR4 z9#)SZ2hAppiU}6r(*X2M5p{pI1)$~>Wg2luvgAS+i=zGeP zP&49GLAaj4Fj{04iOneTUz>_q;)%Q5Pa+jXacPjeY0mr^|G>_K?V=MX{pKl`Yl%vg#S&v zSSaH#!uVha3~Zdlps1d)?ml966KLqrthU-k;ZR-uO6&K2)LSd?AS!J7%dH{t3pe=r zc_k)_0Az_;c913dREu)-TRQUP)`&m@{v~X_wV;EEV=pzg9}i*X$HPxwB%O231RA;}tXocveRFYS zgnezK(q3liAY@Z@4S5hvdpii#i>w7VYyYK9j485V?bI0C(g^Wd)NzpQo39$|(0GMm z($N)%mf%@agqyj}{)xN}U?XS{(dt=Us`-`$tqx>y3~C1xRwXhlHL{9imQ7XLDO~>X zxG4Qzr-U1bkmcc_0OfL|iYb4Am?ye!hQ+Dt_^lLCV!AQrv2o#VXC4+)`FNYWy+iiw zin=p+3DwPY=!-xJm7A{n8Bnv*8eFr)PVKql2}gBRnIGz=o@tu=@_>`7c=aCc`|pL; z8F`_NkSDnKYGOGEnO(l`C~J=NcxU6nJ9}t7=6l`jBVZkzgJFpTQ}M(%s|j^p=~FBG z-#A`yfy9hk=3TT4(b{xW3&rRwn6qL; zk^gqI#Hdhz%jA%dgW)6v8d-4ADzd4|kZ9p1ni)w^np=4kKbgu!grE0-*=S*7sJcd7 zS?>i*2u%Zbkl=0M$>4CB*+g5>PLUJ-T>UTK%Z$K3m9(sF3?EAl;^VDdsk2&~* zi(atR15a2B?j_?!%&VDFxP?Gw)#6b3^ZewopG&VL^_7~)Ub0n}JtL3=H1%bj1o}VmXv@?HpA#pR&bheOW;@yC z4`#K5erBHq>28-C5mhfHExEa8bUe=hvPhg;bDY9arrg-ne(=8|diux_O{IKTSKL=E z*L>w1CqY-a>AhD#jw6tePmCI__3t_T?0>WXu!qx29D@ciq65zry!%fHG;C|IEJ6i= zTQ#vwZEiPytsN$Zs~m*DEOau9swNkn9D75CFAG8`t4N41_AkW|2=2=q%Da|u0}C4l z55c7v#k9kem6bBp(#O-&lfyZu)k_N_Bj{QRJD8nKXULx%cM*aOQb(=zMx?k_F=T>7nfY5=2 z;?C#Hvdb*RBZ2Os##$>&0#{~f{{{kE)A)7H>;&t-2r=}8i8{m%`Q>;;kAVc<{gyE$YDr1 z-9j~PU@HfO#I7^aY~F2aOZjF#W|jq55`-z8pIyz4B?CCfN5^@!J@TMh3cb$cn->x) zC_+tF967fI-8#Q9k0zv~TCTh91J=dyPTI#dSNyUy<7W?to&^GGZzVI5l{<&~DT! ztcb}}qm2GviMXB2JoGPOFA)CdyXWB;dHU>*#grzN|5l|eS^Pj|!77SQEBJF|Jif4Bttn!Km@oXo_V z{*w>lFjqGJ!({+r%oa8nN7+^+vEH}xuBOpXn^a+NeJn#E-|O?wCE9yTxs#LO#0=r&g=H+hk{I{rNv_DpR-)PR^l`kfHRlMrs*1d^br^EqM=?)C%(F{qARN`Dj% zbC^3cEQDS6e+zlXo6>xSZ_#b;vom$XjM#2Ja-P`TCOO;9Ss|QtvsO92pfV2E?zBB* zqXB0bgSy%xQHF~cYwm22i=VXb!LvnV^<*3xv8f|Ps()e_$8~Hx+?|(_zTx0h-f3U%cT=t?|!%v!znCo}r$ASu1q! zIgcn{CA0chg`fbRy)QmEKvH-$czg> zvs3P}oStf|{#3+1oKkr%l9ZhE?~$FCA`}Z-lSQA`d!kS#r4}Jh?5+?dx&nPkF#DV0d_|`>~dH5Wdnh0P7gz9B_yT zT}5k6mR}sO=4G8|lVR=Q0W_;^>Q7NVrK1ADM2a*p4-PG|n*r}m?=?c6YR(=OMHzIT zJI?&kgJl)~bLyHr47HU<(? zYG=w|U^bPTnF$J(ZX*T<*snYlI>J0d%R6WXw%y^U2&tf#&`SW=bD^sizS;+S6Ru;N zUU%>)G;pA@gxGb#E2@)I*~{)pQd zR?`}CZap#!n}5&8TwVVJL{JBMVY^R+LHS$S46d0j%2bDaFYqEVn+c{td_}RWk7y@La=*Gd!DoSVL zws(53S>A-Q7cdlLJdto6Od}~S7#t=qGW^RAsD13y7L{yOR~Dti9#~#J)xJJ~=G#@V zb8;c3S(p=n4(sZ!(E$Hs;d^#0iF3uTD#{g%ONAj&iR$vUCx9bFq;W}F0u7e3GHprgWx!#z8z z+z{KjBXN>>6H^pZ!KprcHkOs|IT%<*>cRa@rRo=P;vg?;YHAv9)@x4wHfGYuLotlz zK(i@k{4B#9N7T}`bAK|Q?SJCLzL;+~`2BK#rKj@kqR!4?oPiwzeL{4EDrQ$csAchg zA%CL1!Lp0!PA1215<-Hs^7`a)-`gu~s`1>cjb#3@_Yb13JRC&67?t?9&Dan^==lAl zqF7lt#<&8OPpNN)s4o|pKbNI|Nq1CZ+lO-;5<6tcrt&7ZXTH4k0$U4$J3{NiXLm5o zjExc6Ea@9RMeC*?sE9ZK*A{I41*{K@x)Q4J6-=2jMU#Ij+{a;7)pwZZ-z>J?R@Qld zgqkpJ)yQPt=%BVV->p74>7N`3S)&!b>26y?-tMSS-+@4mY3;U^|9H zUyP1$&AQ;2nRxN=FdWwmBoks|-UvX@0`JK%8PTBt_w8-FMGLbQ?6<=mt!H&FtR&5! z%`Tu6hA1@;Hz=o9-?!)PUgC>Fu?!`6CDYO%4+9kaA@ed5L0nZKG+a?5d&zu4j$h z@#1j?vL;phZUr)Q{ay}aHoj}|Rdg>)KpMt2C(Wqi!{yY{&gZl+GCZnChp9R_84Rx^ zmTKY2&{$VHzYD!&h6e%n`0?YpaSDmdygaOR#fr|4M<-GJq~#@YBXl2~DBW-)Dwhgm0X zucE2&|M!1tS+&qZ+brif*l3)|0$G8DU{J_x)99e0Xq-hO+m`Mon_m8&%9|6Yu1to( zTs9j*00&{N3|J`)@7h*ujKFZlGa9pvf`5~nNdyoVBbUsJpSho(r3#O1d;o%LCHi#~ zIJUMqZ7(Jrx&>e1<4QfNeRiMV%(?Vj24WjV8y{P|9L#V9n3+uphR_`w!0Ye2 zt;ahEoyTcS?mIL-|HSN&TOf-8qXG}bH!dzqhjH4s%N|V`3EYI|Ug^J2*uYgA-xZ)d zXDtitl?_u0-HmSm(%IAMU}4jYgi@;3aR=d3K)(0INzQR46q#nz_$R!B9jVm7EuwSva!s2DV6ov`)5N9giO|%HF z&6^ENa+G)CSg<8@=wO`&ZeU=b+LA#W1IPnGjKZHfB;p!>7}EcKnQjFnjA|iPZ_yug zxAG)?DEPs{yAS9DYJ%p#$;j;54IiJ*koJ>U;ol4D{zX6_ zFq76m-s$0|aJ)A(fY=9hEie*Tk{Vi5`R|ACIpAv(rO*3_y=IgvrcCNj?nS{|8LFW2+ zhOrz%4DD0ZUN9_RE+jm4S~IxDd0#~SGn{3*zE=v^iDY4fI~bVPxKOt5=khfzb3;ZC zcOyNO-;NsMy~`A-9D|#v1;zvDNs2`23~ zR35(JtD4m#b=g2wmjLcc$WU-T-f~;po_&GZbj0Fr>~#|b?td!6RF8UHWAkwK2+Jl7*EQ|ui7{UOfDOMf z%rf_}%-4x1yEZ*55L!aqspI4P@dc9dxLKY{FTo@vZE#?KX*Dgp6{1!^sc?lOlKC(gp1!MY ze?n#PYG2(*p?XN4lHb1=Ag;Hv41G@r!~&Kq-7fFB07mDWuAaiq|61YYidNWk$9CJv zh3c9=b}lR1G67`E)6im2bkeN_Pja3CzlyRhxj$1I#VZ73m6)uF()FxxiZ>Vf51|l1 z7>)WsrqZ<9o?ztIXQh;<#_7GrJ$C`b9UPLP^s(kmS;v@K(0J_FUR4EfwVi_UGy?xm!oB?!i*GT)9p<{kDa}1ay(^Q!f3JIzA_Z(Rp$TIf)Y?3kCk1;Se7KN+vCV0nlPNs$E`(%t z9u=t->RUz9!qB;k5GRwwf+`8c)dS5pU2R#UeSuXTX${+L13KTWv>5~djNs3p^1pc_ zfri!;E%{D7uR1E-i~B(+B|jtRp@*MN3_fXqg@eFwxHD*|EGq?%8-0?RH!G%yjX*ZI ztlS6tA<18H9ZE#(D7I+F+eF^RdU#M}<9A*6p?`vIj6B8KvqqlcV<>Jb=iW9^BfH`d zm_qLxU2cSLPt0gKnwOb*G9_dYmd{ue=rednNDsE=cqenpS?oCo;ul>BX4*-}<%9eS z*<3KYg)~`Ahev|w0-z7=1aLR}pZm#Q(vd`Bt`4mk^407YEBvEwBJ_4iEd4v$A@hRU z@%vHl{>I=*xR_EC4|Yexqo7km{^6gX^=uzqv@0fw!?DpI8Hvb;yJ6t%?taPj8Z8Xe z?h|Cj^LWg~!Oere=_&4!UcH+&B!$OxGzLD_)9ad%yQy7zV)$Gb#-Uuy=^+{fBF!!e z5GdJXk8cmT0x#e^_-q_VUu#R!)-LsrN#cpoSTbJ20O#!hFBRs%WcS`J4}d*oQ@n%= zkKv-V1sHfmth(}Mfz=yAuEE~5Z*kZ@2uG+mlSg-@$cH~?r)qB~6(6lVE{WZwHvQSD z(N9zhN9VQ;PoaeDr$t|RV&A%nY2?|OA@*tiWBjCXd%7*z-p{(S)r()7JieKfl^oa1 zan&Rkk}`tyn_1w>p3VZq;m1cq#CO-+p$!{HafIjk7`6#{MYkXuAgNt_Pj zPn0B)_Ge@RhY9`+xHdukcY{t)B|}4T9y~oGvJSFv)Lbgr2&vcPyR{@5mGNdH6J@D}IWm%sa!JOx=WYH{9UK zo2lJU*48+*gkV6gF^vC-xINnSnx0j-fpT6Br+szgZA5G)&G>K44FV z6>MM4l@;KUrtf~R-)>zl#(OrlGhB`88!Pv&t~FSJWfyi&u) zi<3SEb_m2{q_2vwXck zV@W|{Um6{~Z?cbiX3Z;Fpq)?B&=rLZL0h z(T|tjMuS41rRSwt~E*2;1S%K|*XdjSM9v=8_ zB}}5dy^!$7l&|`#Kl`Lv5Xzwb93S|&5_t$oImGROO*hH}VOLj|m#r;Hsm{y0>dIYl z9V*r&79PG2;>*m1Dys=h4T_odP;|GCX1`P8_GV7t8(H2n)pCb@0T{}85$dZ|<~1a) z9?QhnGg|eLN9l5Fyft^PqR6*DvQ5L4L5*|d%`{we7~tXu7Y#xNo;990uVktc{Ayph ztmk^t>$Ials<~-Z{%8ulp41m=HgF5NWZF^Dx;5GK5?UAqvzw=G7w*BF?tTFmf^wd& zJJMR#wqg%ol2*@1k@nZsncG%uHXFod?`SXhBgm2hZUO~b`?)(fTuqFti&V4dgJGqD3Ff=}=xvQj|kYCuB^gpakLfy;|H zN-07-G2rTl1B70Ti-AEw+K^&`g=WG-G-F}mm=%)tam9se9)q=wDBW*Zg`!mRa**}- zG3WfTDUKEvoq-Ugtn6$A7M_biEbU}(rs*H)=<0Z4W%HAt{pnA1{k62Q4J=7R`kq#V zxw@xA4`j?h@D%C?>g%3Vd{MI^CURD*aFrMtS{4W(x|>Gz5Z`-E1b6-0^C!WThLPjl z(q&3*=^`v^9fXZs(;J&Mk8OMR4pyw|@78HpynPLbysxD_dzm%zKT>x57VEL543J|W z4h*gHYObOPTC`s*W+}bta!ln@3ZDm1`MbX1Rs}oy>(}T0eOrkJACFk|Mj>P|qVyXZ ze`y*(q7JgezI!%vwOrn&yZN7G#q{UGn%&*JstnReF9*Lk@?jk9?Q36r&0g3#LGdPO z)ejH+g5x3ZFsR1fCJ43lD2g=*+0z>9u~snVPh=czUQ#fJx#J~LFkA1(S3|;Y3y19s z?*Mh>%%7!{HBXn2QisuSfKr70*w#k(Z<;2O&({zR1fv68npGqoWv&kHEF~ng@RSGd z#oYVfdwP0O_vWqhfvO$oC2S|qM+D(UXZVC(_sHBGv4iP?(KTiy%q53JI|xxr|8-4z zi^6YTk~dHyi4Wp62KhGzNww9Ddro8iET6@=rt@# z`;eHPo&A_T$+8wDO?th#u&d%QoT>@|vUM*ow1Q(uK<%`T)T`<7a=_%xDl&oQo{pDo zUUzcxCRekx_O?Y#S9Oc2o!yGfF}X!EYe4Vs0KpXs$R8Ej5tjSKlY${Fo@#$J2`5=^ zsGik+JHT#`ta3dGLoXnBnObw%Dm0sAAEIz_TMD+ z#S^0yMVps=gc&Tn&Yk1uhf*CY9Uq_K``}iqC=t4dN}x;lynjtq*Vt%?(gTJDj6VFp zO?>S6vZDUMz$n*U2)0qZTCG}m2<6lqqCBjRz3O^CQmeeZNrb?~Qf`!MSc20_+(ju; zg&5(kDiQ%ZnSiVt&iN-9B5H65RmZJ=;o-2dtW#fALC_1Ss4C**@>=!}G zd4PwLC-#@*Ybm}D{^^ld z?5nCencIt_TwkZzM=dz;?JvE)ACJo(ekwJR#3GY=-fYC@ISIj#+n22s`sr%Pf-tzS z6zIXiI*dCj4&R~uNoIa^>C{~P+bm3Lyxks*cc z5P?jDrGrBbTkW|g63g$^$aLEg4k|DVaz9YFu>Dx>D8;9cpC9=YA* zPj_R_(&US(17_*vdz6|D4|r_nryC9&k@5(D0~3A7wSI=<~t& z0Nh4-H8>leZNtQMNYsvli&edY0o?bYeOcejZdP(y%%1sZ8y%}(1!uGY*d3_&Gab9L}q zZ*0Qe2d<+Hnzcd@D;*D_9Ppxq03A3dS}r-H3B`(4I0&zn-_z1ia-Mc4FYtYq6#< zm=GEd5-if__lXQUIa%HOs-zFjkXd{Eo$UZe!fG}hn@fRV7gN^XKPPc~lq)Dowzk9T z#zM@eQVoRA`Y-$`;EZObY&hLd-Z1VI8^s$oO7foKa?fUg)#}mb`)3E#`qY5+vpp}w zIrdx2Wi5!}JsnUT+1mbtCk!*AARyu*47@Z%urk%B)W~qxQgD_gmLmap7Q8SOC!V3% zM&2$LUq^krh0ROHRYR3&bmej{hr3b?E>-TNO1~Ide+|QIyv*ada@klE2t$DKkn=7U zFV*iQ^|9av)ZN0npGHShiA&fM5Bvu$*MaQU{$?t+D;Krp4aouCIhNta;k-9|P$P3$ znnytL2*m6d`>QmLTuZXKi)ts#YhZm&zqoY9^5(-&A!WZ?;#Tvk<hcY?+)O!6c~PNgO~{-j6mecr$Hby~OwZ#n{noF;2+>vs@Z*qoVzy}kcG+&B~7>5Zn(L9ykFA0;nx z5MusGppWZp_Q!m4(#PC5}jR~)2hS@fJwlkOVepP(B*R_Vm$;YUE5IBxMew$1)m69qqFM*PSbb+?E zUetptt^?HO+AC=6PN0!lgZtx3rm5-tRP5=nwaqFj=u^z8FONG;Sr_FB(tXH0mDQ1Y zpDXyIm}D9MvPAsQUW9=Jka-e>$v_Qa(t^IW%FBNNyol`Zh|`hPoy;fiRw0h$*RXx4 zzDuNCFqk2AH5WX@@JHGk9{`?&>vHBKERvpMYa#T)B%t$o-hqBB<0}qVNV{@}@#_&7 z0`!t1&2u;~a%v8b9z2XsyBQm3Jj?uC18;G8?tyS5EN-=W6`?GPC{L=Xl2{k|Y{wEE;>D9xrO?f~9HYW$=ipaxyS zqg^)}Va-i>nYc6J46?Ew+JehQVx>_2y{x^T9A+M1*lE*=F*dVoRas{MGVSO^M1J4e z&KUrZ0}JcDx&D2vKI889_R^(Yc*4W`#ki;8J1Y9TciA9MWl($4{lbNJl>U1-`z!Dk zR{OZx!D+%QgTqObj>nL=%&}s`H>5h-gZI0`cKNl9KxMldV%MRg@+G~(@BuIk zOB|g}3<>jwx)4dM$5Nzi{Dm!u^K#8oZWmq!8+a3FCd{Dvl;SkfJ)U)@m7GWwKBh~% zyLS*XF)BO>W{7JmVS)P0C1K_~G1RKWjnq5dS^%5Tr_pcH)_zAVKfg6B0r`e3|L8kN zH6}!3>@#vpnPu#0Q=oL9KD1xlu2SpHU^1Cb#oFwiyD~gOcRRa^^W_G;iG#Z$Gza^J zhjhtFa%N!Q-pPe$F7=|+GpgPQKPhfw@Ll8=Y%Ef2W*dT(Qwqlnh)@zcvm zoCTme1Hlm!gWUrHE*^d+%~FU?u-55n#=j}^4emM6IkY0OQW7h9Jd7gIYz{Ua`zjXe zN(P>ciuhr?U*;SiZ;-x=?yjAZya;63Li8DSQGK})T_&v7HYg60VKc=g zC!f@%uOxxZAM~-vQAtaF@3|L5Y7Gv$86Y?)Vzs(5&_l z?~D}b`twt8hR?t99*cZZF8bwEpLnJk3@>ZC8-_H#IlP2JAgg|#e6<>qX?(xHPxu+u zk<^Cye6^j8Y&TP@X_(SPhnlo8)bNwx5l0e}g<*w*5VuB5QjRaUoyjPpe_V@=vO<0JeGzVbgst#uCN57}u>uPMZTg>tY^YyEq6~3QsZs#|!ARCR>13=-_6zGc4=$7 zNn&D&^0WiE+E27@Es?D{)Bs}l~h78vjA?qEVpLlEL%yApXI znq`L`!c0fJ@OluELJUGib7EtL_gd#|h{SRE;RnE`N%=Lk<2NWipj1-7%c5by`wUynUj-|Da?w&qhJGq`yE!;7UL(< z3kmwx0{w7(RfAb4Q*TSN+Bx`mDbnHlGPuvL?6f5H$rL5UpyMZ2Zm+}oJ3Z|*AIKQI zN4E!Cvz;Ob@FU9ywOrk({LsRJoru~&8z=U)@0IAZuom$=_WLbVQ6V*)oSu51Uo(2rL$sl zRHLCaDukmVBrv48?XkInOc2qE(yBTJI$LhsUVHl|ZWk=aG5UCuy7^)@q+F|=vD1+U zFi+>lH(3P+lUjM6*%(E&b^fW_TzDR5g+(TfPD~s>0zTDF)A3E^3;G59_A)A4haGtdw8O$mKb|QS36fcMY zkCQMuLzJ=fMIn3aflF-~%WMf+>lq|rdP|GT6?E{J zk4TzAp+ibNXc~{LJiR1$paT|CtkL{U`9g#XLY|cA*ZrgN@KYEHZ~5%{(ZgI)vXsp4 zcjfV&ULf&yaoMVZvT*YCH2gX;Er4yO;&3CkdP=ThMsjHp$l`E}S3y*hl>$YVv$t|O zhW2Hh2z*eK;zVyzWCVf*QEnfH@;$T=QPWc6>dT}SnPJiQQ?S{K^gpqkILdcAyDNqd z=N>_P%dVXqF)o2NM|E6^w0^*(8YXQ8#ydd!phUfN7T+MuePajYs<#Cbf*%r}?BxU+ zsOe~b@2-E2Mcor9ZPz~F-5Eqw2*Tsd;x3RfN~LeXt-S&GMCWfc4L+KHxT#J2YKUQs zB)Kx(=fA72>ApJ1z4A1~*&gWdTvS+U6)2D<6{?^8Sy5pdCoxz5T2mA194#?w&6yp7 zSt!`T=e?+b;0ADIVF@3>DaR(?%fW>Am!z+q^RiaaWXW@b{(OizWaMqk$}gOi$$Jy+ zqOi^dp09*5DOiW3f*}^d(-`x(^cI*&scP8Ymq`f7?)$%0?g;yyddHO1J~%SP<@sej zYvz*=!=3W}xET)gm+o1r+oUx?zdQ15+whB=W?Zt=))w)RB^`pzX4r@OF0{Q&&_cq}1v zF6-QqG2R?TYoagOVXKIp#9)TweX`ngB0_|TuN7!rq1R(NnXMYf{=25R8e4F+c#!V` zhjBejAf~W=1Q8SZA%H<$TBLAf8{cToLaO-Tr+*4Ge7>#3`uEE-GzjFQq88jk))tz?`#XZYFQ7$QX<@!DJ3M09FO^L~U)@Kf>y9NvKp{D=hii&gV~8wu_p2nxqGn>#OqF zn`-8h`tDN1#F1;pzvei}C4x<>^BZFzBxKpvCW;I3+ygNJF>KC~ZjyyJG|-1hQ3n$U z5DpVt!vvc8K4JO;ddV&}+J2X|u!P&JuyH1)i88slI^Gqj@gn!_KQebOw2E{Sv0~<1 z$o|@F%BGHA<&7cTbM ze*sEG7kCV;k-zj}f3BOz!scAUXK5FNKpL-l0!Wq`rI^2SvDGw*Km0a`T&%=KZaO;T zJ!{`%+oM+#qP#>`R`5O^t{l2{_Gjv{d4~UTY|R56#nNetHnE*D?S5U zMf&Kf8k{n-EiUV*Ff=31WhN(sYzLQmk37m1{}txU@nu9Fb=@O{_6B97tmp0&Se+sz zaIw-$Mkr7Ja5yN*k*4%FrxY=-SmZ~YHP#*mYC8+Ex8&ruS8Hv4Vw+j#zW%!>IalVH zg^a>tBIktslhVUblwFO_4~Ac@5;wbC%?z%GDQzH1viCNBrGoIfursa zMjR9nh*d0;f4hDhE(478H4#0-GMob>N^D9JFh@t4tpyl0eM4^+4D_mKHYB`dq{0Zj z!gyH@WeVMic)ANb|848ScR5l|}eg=5Ale@DAbSx4rz z(9P?s9()X1OLDT~-o4^*s(UGZ;U3CIr{kA>YmDOCkC>_W_D2J_@N~BkPd9Ijn>(o< z%+(>bi20@U5k%=(typyGsKgSjhlA&nO2U2!9l805_BxH|{2wGwwBcgleGE>eoq9#^ICsSLMNx|@`XeG3+sv7JG^p+Ouh zBywv7-F~F0g}+C@z}gOTurzvEXI#_5KNKa|&;R{phd&bdLSqb*fq@q;4B_%>aLTC1 zhp{(28uJYdjzWA%dRA*~p2Or$gPMRZzU+Y+))#p+q}(qFmskHzeA0K{oW)^E1sy6F z<&|OXdLInFN-&4^8RiqnIjFXEKK3sP?E@n9$OVH|3$e#2g34(sO8d)Qroxu*zt#TM z8oF764EJurP+Z&ik?Qfx$d5Y8xTWS<68t54R_N1dVPFw4sP4}K@@ibhVn;F40!-U2 zACUf8(t)M7zrQ_wrXs61RLPlw&~ap#!0NYsC>f}>;4fOsnKOk@$d+uiwf*>Muk)mmMksS9(eq_x_tGS-UCTu}{Re%mM zO(ueVq+wAPJ2wRD{IJ6|8W$3XyYQ?Fyn(exu)7z2L!EmpgH0_-LrR*bF-YVPvanWM z$DawNtPmf-D9Rg451Tol!~|EMiE z*?Co6K6RgrOP?*YN>jMD84`>&^(i;yzY|mRq31Zjw|5Z)0<=EH09q4S)kQ{@p*1^C z^J04vYm3OEbhZmC1||+{taWk#zuSx7b5VB15>=h=^knh|hhpl=+j++So5H=>J z@rX>Y7J!K&?j0H$sxr)$`A9W{vYzgPxpnxcz0VcZ*;4tFo!j#h%)C}^cldG;MV1d zA$HI_VXltD6ZOITwR{K@cp3B(l_&gFM&{~}qL*j|5pxct2%(zD2~OZ;~zMPH7p8_80_a&dKFP7c93A-)2?=>3u@cj+cD^S zTzT_ox|>PZ{F)wtVIx_+e$XuJJoMZpEY2WgymGLP6Hn8mGsGDhcrx>{uvs5@<`V8u zn5d6s#C8gF$CVlxcXHli$<4R0@ke9`YQ&6k(`rhFxn%yD6GaR|rwxYo4 zVT}wdNma4uf{}Mj*PL{`{_EYhSqr;xJidxpgPOVP+H!Ed<)$Rv7xN&=;Fc^ov8MnW{GrJ0Jr-G>+gg9_3_*vN047U=a z;YY`n6#LdC6@15h@%-|@JRnNxE~<9cW-XS#G?;98J z6^9mv7j}2gu4Bl#Bpe4+(*nbb;!LSALQWf3lJU8<0N3EVh_Qa2wXSwWt|kK#H6xIo zofc~M)Ge@D6t-H33gF~3AKc1CAc(sS(8B1jux+=w0!ggdPP@KY{;_0O`?SlC%ukNCIFRnWHlRdcq_6UjzQIO=UZ&gHdgV;$ zKb)hZLEL9hA=X6kW=c^7M~FVt%K@*1h(oYWt}u~K0DS1DaA;Pz$0oDA9n12I)c?O9 zylcXkh@d+WIVTT>-+J{^5V%oq{k#KxcL$5l_>V7&_~8c`0eR_{010sidfU&~X--l6LgiExO0Z6Tj!-kqob=j@um5M%uR`0Wo z>caOn{_qXLS@NXl%!kOkQ2)SVJ0OaP@Q4z^W@=6S(`VwN`^m{tKnTmT_=SliKF}zD z#+>HmFl+PZNIf8*b$d8|u{R06*P*Nvk38&e1!a^%KQ!87Q_o<)`=**h9k&6#SfRqxLhfAs^)0C-ZOTxZ0r}Oo1A+T^ZIU=s<9n z!nSrT$&RQ5){<*d=!N?%t0xviQXusGP0P}bGPO`j>Al8Id@f`+3~Jk0sC|9%W++;v zy!Ah&YB;|^+*+j-VPWGBDh^;DB!6p*mkTG3*nyKi&33ViYVpSQ)7EyCiAi>LHc3aF zNIlBGX|h`OP(R4euf!;*y&jWB%ax+e=b@qFg$tap{#5eCk{Ljpm_Q1S|d){kb zI=9%9#rIhAVv-12oW?|6+c_*=kS3SEC+cs#^AavA1}WdYx$$IShCk=fv8%3dfh~R{ zZkXl*5kM(dlpd{=-w&hVE?+Z;2-sn5u5|gf$W0G?M{u@X6zTNn3SEMP%Z?GP(zaJ zY9MChvmJ!wDhA4gkV#O;cqVJ|?TBEMT`Gmk$X>$&r_M3dHB=T*W9e>dbC1L*MBDfb z_qtJfSM_3(_Y>WWTJeofwGKke2%k)g2vxBb6r<3dt@Z*jRqr7tQpFQx_FKP0 zC|SfSTCxHs)D}v0fpSp|#zQ(Ps5Bp4Ej1b@TOpJgZ&9t6$p>>2Xf_&%i^eV&Gl77| zl?_~gPd|u}c)A$FJ6F4eg2iF=pj{nZ@!5}`(?bh`@+x`avOWZe*YNhm4K6TnjB3P} z>}~>A9t)R0p!5BMxEC^8ON~&Bpt*3tVyqPNPVD$OO!V#eFzAK_hVB05QH`MR1P=VU z$dT6-sOWX~>MPb0IU#nQ7B-l3Y=}gUUknKX)GVi7WPRSfcaWfoBjIk)>ZEcaX#$?{~!>m0_VWWX$*z>#Q@$<=At{y@!)JIXTDEFl? z1|hEpU=UIU(qoC^bBN;LE?&KaCw{#jDU?Yp(n@ND)YZAS1=Msthrndc#kNKC?lGpb zd=Y*y^OooEqmGe^Y}SY}E;Zn;@kKF?^YTOBK2H2bRwDo%5>I}ns3j#e6*Mh^;(+q> z-!z=>1pHkaoA`_66}YjDIQ%Q7YXndptj`Dl3d0gi`ZU*VJ1$-P}ZXEoUrbEZ?hf)=gByozXuK z{bYFVFiml2{-@t{l$ZK5>Kj4*9UU>lb8Tf^o5_KXU@JetkN|AJuU|n=)9_U;`JR<4 zYH|Oviszz-4mb%cq$JKWXA0azmr(Ma^SjbW#J%v;lSpH#+IW1wzdl?RpY%_1G7-r| z>Zp+HFtNC*>V~VGd@#`X2BOXb0+6GqO4xSAow0)p)(^{TluOcJFhBfst8G`+YT&qO zVVCaooR+Ouj1)E~bkxs<#QHoTqXrv~b__g9R;8Md0Xe~eobI9<|$o&lJ z#9#&Nl7Yd&J`!*Za;e4C6=g(O@-KZuNt#;dm|wba66|=M#PV_wj~?wL*K{>=*+`OF z+8>@YNRno`iJG2}H3XN+kM84N?!(rNGVYs_W3K=C&0h@PMR=9NeBc1gImC)m;}2cz zJ-Muy%A-(?m9;%q)B@byBbtO#GCzM_BMYd(sVbF{r7MZ_8Ebv~#}k*akPkuDZ=*Z8 zwY$5!xp@)KxeAHiU(KhHo)s+n~4K6&NnLumv zAN?S(^cnWhNT@>ADj|Zc6=FQXkYHeGXl;K4TGp@x*mZ$vq!i&!4XcO0E&HcgaT?u5 z!{9AC(zX}voPS|?k$((Sw8{LF3MEWUW%@fK#fA_}hixY4bVMy6=q4va`m14qWxU`! zXjlofnHSEw+TjUKV$C;<^T6}6-;Re+sbgQy91(p=Z`rn#xya+pYm5?Hez=L?+sWtp z8~()44@q|UPcmgMGFqvstGZ_GCoqUbE$ZetKnSPtFM}xZ9+DkRVi_0Le^}> zAt*`QP-1fG{%nU+!bQk z#WV3ZRFe3^tg-CYH$~hn)cdJw#|PTl+`YVPh08l67B)YbOYj{^s=j^&*V{3*$K~-) z%Eb3xg9iskEAGwb+9OrVNgb73nTTW;nGJWE!8ndYi*a5jG%SL3YPa^ofq<#Mrc>c4 z=A5eQ?}~Z?V!6jffbe%f#aDc(q?7t8&(#hFad!AT7%4Wp4*WV!ds!#N6)k$9(%Xz> zMVA8i3YQltBRSJrSLFqaY7QB!Iihrfe5hIDCMjUoP@L?0aLjX(E02k_GJCR+R^;7N9TvU(B@wp-;Ze-tnUwyNPC&*I5N#HQ+5ximO{Ic2bge*Kx zDe^Zx7!CsyX=m`q@+IwDgBOKGcK$SB5m#aGEayh2OKQauhua-2nbD%yW zWvrX1=#6ib>&lfYQyp`@$a)l;q_qw13$j!_F7qb1L(8kz5#b@{=`8n__dOk9R({WC_ zLB_p1_z1_UxHuJ629KXe3(IkY{a`QbijmN+yHZNjB3i1|74 zu?`$~I1L!onHHxgMj(QEUB}7z?ZD&Lo&FgjXDzMkEp8$>l3cz1y^*+-pW=svw-Z9c zmi~TY6(waMG*A1mM)WsS1~3G+G{@jaI5V(Vw=$v^!h@+50eC9j6AZwS!Q>QkKw#L^ zd6#8;ZDU)jqQ-1+_;?EP!70<$eR{N&7qnb8krjhgn}rQ7e}Tq*8SVu`>y5?Yhtvcy z1k-PjvoYv#rmQ3ll`-ia=BdM?LC4Hx2@DSOFO*)7z_sKW6x;VROr5?(6o%0Fj(wICK)mUA( zQZ|(sBG9sM<8-CSA2L^m4Jvu!{coh?4!7pO!-KqqaSJO?>!4*$UPS+lmtJrT6wYS$ zXtjt@fRd)I8HZ$0u&zjshlT}bvAdt22}Ko%e+l}Ra|ykOg3yXUFvB>AG-H7*?HjX*jBg}DC}iaQ*=7ph4RiLF))k&8HSoiME}mrljji_5P{ViA#w+-4wRi;-FBmzD=-mP_- z61*vJ%%u+q0+)@PiykBAqG}(2%2!;$PjC?8A2z;$)E{nK0&RUX5NQ~9g{~>uNO`Qd`;V<2j3-j3=3!64v zWM`ds3A-?uSdABxP&k8iV5-9~%EAVbs))4Dc7X6?<1b_#`Xg&`oT;KvxFj3-{=gG~ zhVHAAydpIa@|D26Sr(VEOR^<}E#bvOlOrE=w7G(<*uG4&9W{AWH)X=Py8Hl&MMc+_r zv`K)lN-`EWgxmQQ0td#8Zw3qkYdIMx+7uwu5iI2k@9m+ekw$F1V)m9tL&Lr<5t47f z{Ac-md6Wb#gN6k}fkff_P=KpC_5U&VrGZp#VcWY|nw*nLGNdD!Lo!P#6@`dIh9n`G zGS3aDBSXnh#v+7}IkQp}A?-wj3T-maGvBrLdEX!3&+p&2f1IKA-p{kwTF+Ydecji6 zUCp3W3U$1)U=?q(W8!e`YP_b9_iHqBMjsQC^sg9L`3~)v8{(d+jfR7}T`h#N(VCAo zV;c<`K#*)fqf)mpQ%L!oY@C)u0t&+h5_)25+Cndbc-_>38_VSU{u5mCF>0hy+w@zS zP9|#9%t}QWW^f8(-`!Fr_#;8r<_XCPiYTPMu4mqkqwQK>Ip& zST~%IaqyqbRcIXc5PK{F{d-gs2P`*50?jDQt zkY3QtI^XRI?`Ur2-qNmkS?hOsR<$gZ-EwRDcAB(=)0vj~!Iitrbg!@+XTcfwrwF!# zr2if!4@6Q}nVO3h6?qQRWqQRJFu<2-QjFE}BMAe8>kfLU+760e@E+3 z>1Cp6#I_oCr!F4=o};b-dWr$e`5?^zHBTiC4d%+9FH`xMm$L<%9Rm-#u-&Ybcb(|i zY2w0F{~kg}`O-lRvt`4?L;)Trw{8R!q4c>$n+TWFos=8Ru~`ic4#L>C89fC#W)1gq zo#i;vQfsoI;JI(si_Wetv7x6KMz;W&N&!@Tbh7%%{HTkde>^&$GqLN_7O+`EoZdX$ zz8=!%Ugak|!EykvfBmv`y$9m%)<%sJIi*$?#Anf}5fiMBirnZMLgE^Q3@HwE2!rJX zAM$1bugR{y@k0TzQ2DVj)*^DIB;Sf2(vmyC>R9n#QgO#=j$YnoxDJ1m>c z2K@y#<1$pOAgv$I`w2Z+)4i2lZfw6gi!%gj{}vb;*k918ernkEYB}^G8J}mSGA@Hk zp}}m`2G?Eun0^_P7rg%9iz|mn(ekaJQ;KtJ!%MyNL-PYUQbD6^E8-M2m=_wohK70Q z&*;2Aef|9CafNcFoga#5fD!Wt0q~o9Fe_o@ei+Bfopci-w2$+uv}m*elHQ~AepZ2@ zld)S@9|?JOww!(I+3~gw(%a-+^)Nds`O;=lJ6VVNJUnLt*m;yH^UY0-2Z#u z>-Bb*s+|PeLiTdT+?!gQ8=77!8L!@ArFPjM=>BD0Gj9cN7iIVI;o{EH^t~~iOYM~3 zY%5(TH;OsdbR=1*@Ifgttx0U7iNqUlMb(n+=O+5Vh0V0n8;H4~c7QZA5akJQ!UY*lBO(y>A z5Y}(`{#|_I?W*Qv3rMCN?eG2i^=t31iLez(pH@*Ql#h31J@Ieb9Nwxc0kD9-YMyL5 zJh6KXNC%KtVjMu5gSq(Miay3CwV?$7p-IxT0j2$LrS(ou7Spn8rizV1IiB^##Kt?w zrw7Gt1Fbc+U#9LkG(?D!_t$F@5FJ2!h~nxaA{@aMCYWy&y~+@)+z>t9GmTrIR4`Sn zq71BJPCLbi{IH;{IJwMJ7rF}4G%bkJtlyS)))jhh;ij-GNJ;@SEcdLk+`H~v&7hjT zgQ~@X0m+r-r{wb9(txR=aGl#2bG#QlpVkHF*)}k6G|*8&=ngf>E$lLHrNOL#*D!-| zn^U5ualo1*hht_>ojUdC;yT=i$nC$~FfFke{ej0##91|Fdmd0i z=Rt<&Fl7tH7A;Np6emDp+5$_Yt9kXY^0I83cLn;z^U}S!%wk=WwD=pay6=*T53a zo>Z51<Mu?{+|iBln{j~@%8;AlUCk8k#0A)6 zq5+J^ZaKQU&!ZW_jty-E5h{sfuPCCqqMrZ87m}`!Dqw>=O|Dhc=i%Hho?oj0f(Ir= zO;*w(&S=IMMjrn*n8eFykg6{%8+6on4oMhkw%64Ktfs+ywHY1%;;bNn{rSSzmJf0Z zar?S`wQmLP=%VE65ej8~MPepqc>?M`jxy~0=Co+!S!hvNeWai*(bOi|p5GxtQ!iX8 zc>`B?M8vpUXKO2K;Bl>!oU2!uegT6l&^lBiIm_vbl6s@8{K@t)%^KYnPUxf+kusW6 z-Bj1;%#YW%AAWf2XwYhsocd?9t9r-w?JOoZ*Erl;PkQfDI73FKnPb6aHRYu`>?h00 zaGrrD6K*PAr^a9hIw`^@207ImXwCs)ntz*0Gj+AB-p_g#@W@oY%f>*DM@vI}h1{mB z1eU0HhdCjWfTEt1y})rlOSsfa_khU;bDM0ME8SHQ4=gGjZC3(fWE@kq_(3DRCgIBj zEYp8kl`6RX-uZw2Th|m0%Ejd~%!!TWy+upk?HdBCyPS#yX;2?mj*l5MkW>_qax$RPWp&Qbj!IVE=I^ymSZS zn%Zn;rKj(s&wV<}vJ3+m*wmg)Ry)YL>FVzYO?-9p)q`&_Jrv676>^k{GSo0j4dH5_ zEgcoDTZkqQNIS z2#T~kT8z(=M3cH>b%1DUd~&zkni1?7`IzogiJxH-7@1TZ%!w{(^pOz}#LD#abe!t^ zVTOfc?b$D`R#xJyi56FNx6?}6t>YBD(FyEdlt5Y;pvox1 z0^n6-V~Sd=U(*JzD=Cgn7Im^~z|CegRX;d2!M#M6o-Tz8xDtxco#b4(!N7*`Xo=4n75fvPEtD|5$$p`k z@~q#D#jk7BMT#xS0*}DP%9G?^{hVeAdV^Ck^)E$1K|wS-_|y2>)b~lS242d#i?bQ8 zTjYpd?87z;lj8A@2Y_21uLhV8MZ$M<^(&l$33sdRoZA`!h{<|Aa zmW<85OmNUEW9MaN3^xVij(h!H@O%oa=KT}s$KLPlB#`tx)jX+^C`O3<$=j^)SZgJ8 z^f|~iJk)H>XIJ_wFB1>>ZiXvs#zP-sKg*O=ErbcA=8(8;tmdc#(0=6*_}nNyeVLzs zF8v&+v=Oz~OJzDFB_w)fSIR&mDKGC}>$YT~cPOgCk zIs$9dN&EA*k>&}Y)+mne>>JoShJ53Ma~t__1VYfA zlB!hV+5k5trGbe~Ze?;TQYiYn$WmM63o@xGrScX_1<5yHZ)`^KnJGpO8PJi3bdMnt4I42zb`5p#(L{8EiCSyxnb)0$*xz>zbY|QU2gPPLZdAk zt;2n|F8iZh^s0562Mjmw^FbfAui{VbMF;YehZO(&$;iTKD1;;8Yi;MtPz$*%&f56J zxxO%?|KW$rA}k-j=A2Dj9J=CC)6~o|zZ`Ea-;gdEsJV^ipK8f=TXFE>J7G%260_e=z{l5gx0_sp*lV^R z*Rjmzey8Fxh#@RqFVs&zx50O%YHWg?gJum5zbhae*L*lo#jG?NCRnUDacF$#^^eJ} ztk4jiCMz2oYKcrebo=bs5O8Brv27**G^A$yxY8q$>jLbMiK)q~8zCc2IkJ`c7&mP6EFIGq=585G8ERQi5(Tem!0UC#=*#M`}tC6F= zx4NXn*9Yg<6=%q9XhndSr$;|{u7)%tkPbx^gT+#uHQFA;b~IE!&LZQ>Pr`+>b$tWNhRXXg9cBWZC=2fglXcl7cD%H7;`T%3gZ{@O!)dOG znos+t!&H1lrxwN=WP@_b%AhQIQRHqHcKLJsVL{7I9#v$Oe?#RoRFYlY`7V4L& z#%&>k-p)V|dANPfXop?@p&ato&SR__el{15GT6LP*)fu0atk}5@14=9KD`mW(x zDoVV!85kAHisGtQ$#f&k;UIe`ik8I9`8pfw>?brrRT4GH4#ZgblG38;MM|8t95}T$ODykEJm;$ z`WX{Laz-JqsJghgr%xwhcCG)hU*$2akm(IdH=ss0i3f`E_>gh1}Tte{f`kn>MmaYir|t`m`AK z*Fn{1-X0B^QP-Dd#RE~A-_w?l^k|clYb6=N18DhS1)d4yNOiC`4-NV{ERQe%>2B{Xi)`2P2A=Fex>E=@DoSmIh33%oR&cjfJbI5m)7C%X`BJ$(+>{jej9DCP!%acu;mY@&kGu`9gW{xMoP4jCrvZ^UL8^nmQvpT<^K6$PQm>;{M(?kV}KF_!Bj$t?uzsltbt>h>~;v31CIwDhn-{F z>^E}Z@22-}A|`Ec!1)iM^Kz(vA7Nr<^wms(U9v}KT>9PQOAzBvxf1KwaMoSU^bJ)! zOtUJW^z2BDNtf?`&+IkZR!T2S#`7!II!;(7vTpAvT@e=4T>ZK#v zI!*14-ofaLB`pO}b*NlvaaNDwZOv%$+>OAPLTTAVe_XMfNznuZ1nk&w3}9bGDzTdZ z$rp=>;$0-VsnHqz8q6uFMd93?yZkzP=W8{Qs&*{|`_2>uZ1S1$s#*$+U$Ajqn$#4g z&4!MTM@|_zEH?YHY`SC0Wj?exHI;9w3!R3vCSPA)Nc527*^Zt8!SssZ$bl&zCJkmV z;l6D;JA}@~j>3kGxVIm9|LrA5-u)p+shNFWZwipHHYaqh+-qE6rvvvTk93GkK!dWWFq}efLHCo`P;(WWv7Dp*2 zImN4fWj@q-prb6RVk*hHiOYxPn!`T<1+xC4(Cl+*kCS%#L2B&w>nF|qa9&b;DiWi% zZgHu>xww;kwT?&F-zJK{@*+P$(Ia?52CDWcIuU}F%67le1?1x!~7WHNgQyHxp3ivB13Jq|2xRHgBQK= zC|_deXUBGKP*HzFdEH@oaoSlXW?!rex;a$7Ad!!h9cErfYW7JjZ={75 zfeyh%I`iO~MDlnTL*?lO%Fz0%%!Aq4)m`1IT1<2L$sqh_B|FjgcJzEAV$SIQ(yz8f zFC6AnX-$_0e5mGH0vD!uA^QAqS(BG}?d_W*i_4|W#Y44x0iK6z3I_BR zjz@L$DOt#{*Cn2!h93WR_9;f+n5F)Ax9ETiS){Ly%=}zW`2khfSqGV(Xn^jz6KY`f z8^9byEtyJ0J^kZ9twt=95*Z^=g<~48^1@~T({F}`6A$FdX_{mD3=atA2=yT2M+QYJ zY0-WyuCdL14mCYun{t!u7j`oMB{OCz7|S8Qu4S11>)x67L>aT_e7r)m&d|E--}GO% zRJbX0A2d@y{%muKr6K)+SQ~5L)KZa=bKefl8ay#h@`+z9j)gJ^%M zbu@rlDK-!%C-i3*po5x#rf3TFm^yyEMm{I4GuA$qChhn}z#q=JY;>@wUK$Y@uB0z4 z;6Db{LzMg?wY;e|>=>+zL%Ub3#9(bzJQF9q>0#$0Y~(=;X*6#E(+*HDxMK|PFb*X& zzT_jLt$UZ1w7o@x^5jc;*P3`c^4-uuQBhk@5Qvv;y+QLfMNnlC$(veP4Gu5FltXN| zpv`lrkmkb#H=O-qbc{=qaVO%5;tN^l_4V{3)sg`jY^)@Gp_864TZPJBTfRk0F%yi& zFjqjO#j1EaBsLyZQC|FGWw87*KVl|k@dZHE@FQ^hUwT5D=R z7lt&Ib`#1R{`=h9*hdA4T1NK8y@TX;<#fdNSp(hRxb^cECc4Q)#a z)f>rW)4Gp~LQ%MfHVkdHk4p6TO#)gQEk3aarZk)$m!(c592v<^+n785l1YJQwY+41 zkq)!3+Yh=pqas5qw^^H0iWV9!h(kT#QLB=BT{GG<=gAePcG9t59|FQPW`d-Sw&lwE zk=+K(rU4iV{xD#?Ip0o)_^h-cyiH$4F8}zSwk_%*&b@QR*#md72LfHyVunOb;(jd{ zF^+aR*Jb>ZW9I;+9KM45eDhvUlKJN}UDe=*^0mch4)1r{$Yn1E(_<_&1NW;mAriU>6!!(#>-;h&9wgDW5$8=Av;)XN<)cHEI$P4+pg$! zI&MOGV(NXKZa#BAyQJvJU*~i~wDeiQ?I;%TH9?^_6oTeDG%C4ji#q+PoSHQU%<4U6 zYmL4-q9O-wKg|`^XVddQb6~L{EPTDbQUvH#kV#uU={^%-Soz0dhvFx1XO@{Y^p55*{R`m$w zyoc($eh}ICd-iIR;wyaJE}d!;kJf9v-D(_-(+_ z+o?D`l|MZa$F4;ri18MYp<@1f7@N)BP3eXk{NqMaf^UhDuB65D>CGwe*FkPj@HEW% zHZbWHkcFmSsK|79FE1k3FB_O5m%6xrc1$GEAPoH%-c+^bYN8q9oDkMotEDp*@?EcYKTuh zmHm(hgc0Y5iZdI{1%-s5x@r0i4FI<;PO+mV?yI=s;UKw@j6v&7KV)O-8y3Ge#K<}a ziJlYO9_Kj)%{-;rkZkY{a!Ljwb6(n^?ag^VD4wPV{@Ku(lb ze#Ln{OA%gu5%swGpD!s}NHuz~_k{Ogv)5q7%~cI@;~#Ans%*aZU06kVb%1EJ3vI0A zRyLe{F+8uSQf((i%hMZd$ubE%ezX~TD7+iarD;*rC&$HK5BV8-N{phKj;%Z?CG_+3 zB5=t*2W&R+yr@0R(&7~Ce+O7Zf()pcg4B) z&kF)UFwB%>*$AUt2+U~lmkop1B-eoU(HG~uzgBv`um z*7md~&PcYplYn1DVW@`E0r`;@fn-22wJgQIHbNRZ^U>pEr#jU6Er;)W&7@1X4s&6aApX%%=duS5-+&l znee{lC(_v}uu9)=%CU1yq4H&UV~r%MZu8Z=Br5z=qv0se%MhW-h*aRLc32X1@Q{3i zy^NoM$|KN6P@_Xik2LUzoIP7muccNy_m|EXb~AbzMH{34i$}emqZ)v7hKma zAKO~;+PfkUpuk5c^QMr0TRV|GPCse6`J;56FC~lV^@Q}DF zald_M_agObxM}9Xo{-jdw8Xl(H;nVHOm1|Jr6C;y5WV_HEKTt)TC;^Ch#(E5WvcD8 zw1t=%2~!;oH&A1OWOcil966gLr6 z{yXxNdg)N8;y(ZQZr2RZElQCA3IB2h8A$66{Mld_9KtQ$A9M@nmq3_5k(Ipf*Np`I zr|qkkFAvi?3b(Aq3jL8cl<~15LS=8&`ON0x0dx^IupH(88-SpuO6o(jR*JJ)SzE(n znQgN#6Taei)!DI)YH-0k8~7TAhSIYAk1S?W0l(veV10!farS8w`U%*lfSny`hH_`iToR@ zcA#M3vp@O)&2O9x;Rck9k_vRK>ib^v`a2jT@4sNs436rAP=$*eq;xfy+2veDMt)X` zmqB6$nftL}+!CeP5ev=6jT*&bVzlsUhjT+3n6VI+h6|6;@}!YB&3Y5YZ|}xRbRDBJ z6dE@vTF==Hw40#815Kh*LwH`1$P1oF1d9AJt@hZ7vDwH~*Z=3Y#05Fk=#xr^>LR-!CZmA~O>xkwLS?ErW!{!##4ir3%CEVS6XAwmLyP zi1S{WHCpO1@@jDJKpw)Z#5q&3E`)pbx6RU(kAbTwyIo^Z_CXgmf0(&AIw(ld&xdJ$ z+035F3e?E_tJ((hL&Y|ta`KU-xQb(we+%q&Nadk(8i!Yy3c1W>F{nrfb!qW$tF{9m znspu(+(D=Lr*}AHJZ40+>re5a=PaHTA~)BYFznV`Y`zWSD^dj+ z2Z^XynrPK8DJ%@ln!36=)P+2I1dK#gbEthFMAb{L8O&Ys4Bi2n2=hZ~)hp|Q;?mO6 zl9Cq|t+1MfW=*;||Mq)O=tG#NYhV!L_+$4QDdoRzzq+Un#MoxO=aO6W$YQ zoogr+mOJ)-mZp&y>$X#|>i8dUBAc$_3_HSPTTc~F{AnMV1SWy(qT$7X7}q89*yeGM znptXq=dJPa=mS-~C$+VaO-&YnGSiGJCVrU0gQQu5{?>KiFktD!xtx#BM%|ed?kMig zJJumhwY3WUjxB=WmQ%3-J&DZIOS1TS^`Ksdn(~-jgD;cTbp_eQJBc3Uq24)<4?r5E zyrRWs!{}BE8L%CXKuUjC{g<_ZodIsN( zmq7XMA-(qg;|jq$TN+dnKfigS$V@CJrWes6Mdb^t5%7N_-7Fs1+L*u_-?Bt887{pt zp=KCITegh64&wzt66Xa0GhrK&=*VfPzWrC_|8fBi6{FH`U4Q_KKa5ePgXCD&gmZCY z@w7J9c0QmO!RCRT&`N}e=JufCS`)?%_$Ar%dN1$;%qV~T!#sgy(m_3}~{j_6U!MFig zQ3KwHDJTQ>;D=s@(_g9Kv|O+~O5#tC-eFeykbPQ3S^0YFX#Vwob{N%X!}Du5196Z9 zt6#2Rn-X6{twkhyl_6(dP>@XRvvQ;JU&dDv2*p#40cH1C8tSTF3vu}FW&i^_$pT6K z4;j9_?>hKs*P8ifEKf-#*V)2fglB723&JqlnUSB|%51Q;u@qr>l%$+9gqx)N&pa-( zRX^PhA~iHvxYh+BCx8_tS~oAkJv#|I7m&Z;>dW(|dB_WL|(AJ$Z{TfZp|rNrB>cl*Z^ zIv}<0KdAndE195=4?bLmySA|YD-`vh#b5anJ<=H&Sf6qY02{jImw1D`k7;{LDrYQi z8$KbuY~%lCCzZ%gH#x1_`UWm!SZPhI^u$5@s38N?9E@24vJ`$Ttn6Nnleztg3K+G9d>2i zaE&{1gLjtyHt9^_UB}`s-muH{(8U4i`ttX)rh@~aSqA4B)0SnfHY2aFwQTuw)8PC=9nX2f* zYQ8VAq@tx-+DvDsC4>i6(*ZBrL#bFV6Os{Aa>K}^W6>0=m3|JZ*>i3Jy~k+_8Dtlj z+Dc$Ddx$})B_9ogI_-VY{K7(4u#I;!KuW-vg>=}_QPnSXUV|GxpM#}TEZSHa#^L9o zuMc%9Eq(}$lZHFuFNk`i2_#AI#T4tcWbZ1xPXoG^+e+|)Y-rhFl+qq2FODcOsJt<9 zpWda^HDOdK0;j%c7+3L!K?SX)<)syjR143g0aCXvP>+^6vUQAn;SZa2ADHlsyHU~v zV3eLNL&PLArSscuY z&_wTT9fYx3;YDg57lnI^urARxY4W0T7^>}9#<TOjVB~z zuNR)yK=UBcV?@Uuf==w7*qVLlM5G&0HwhD|@M0v-rpF)#B&)}j+5S{yS`BjZ?@FMn zJ01B$^+9jO)s8?;3c;H9VY?VYNNS6K?);#ZSKxMPFKmkCI@DO>@nC2@hF+rs25LOJ14D1F<^$ zdZg=@Q<&mj)%(q zcBRO6Fk=L^D>Pp7(kVzQxzxJg7Q1{$aNdG1(_NLA4;e&S>`MfaqZ~qH9(dyE(f$Q` zeXiuCRdJ*F>LV4>I@AdoP^dG^27?#tTjmoNVlAyhOd|4MpW?IlJJy&bHI*mg`ycv4 zDbh@!$d4N;A;GJst2-(;yerOq=x~91``IO>@NJo{hhu5tPGx6!5wli38lLx6yeTRX zqh?b_NbVGh$wpGP)aMIRLCHJu(kT1>vR4sZX#tDs&4SNRBoT!z4))vAJkjGSi6OMY zE-A8iqV}psK<(cQG!I9|$-&y%4M$#9pDpWg)1L4%erAF86j;-QsnF?k1b@@@Dzztb zd2v|87ptzUx5(>Q^R(AO>tqIM;OLo5(vXJc!lYZw)Q8d1x-9xhQhJ!sK86I-Glmv_ zSgOavwu9)iLyQcA4aken&)Hy_XLu|59ZpB-?;WYUGwn5Us#z9WzFfoY-H5ciqBn4{ z03$Q8u;}9%qKDnlfQM!RroNxDandl|{2Pe}}@i*p&nk>C^L zZK-8(FNoK7)|1EnfmR?Qa(C_8HT_q%uf^*wI2MqP(HRLJBjg$Y*r&CzFV1CFBim}) ze2QhBi)-ofmOkg!ZToygHsXhT$cD{!oY!361y?!-PN#-;yoH`E2thA2`{30Qe1uau2rampIfp&kIM>ibxVZHPz9q&mU1ct>;k_46&`Jah_vIQY#iEckI zwE%$D{@%TqVDA!9wyMFYq|ji#nw?w_$=GCo9up-EMqf1bPs*WJ8ro0NbQ)j*6WRD? z6)iiS4-q09X~U9i8{FrwlzvXO_IyE`DpiX|IWj3gv|gIs)ye^MG~%s-7Cxrcxm%Z< z%1QKkWA-N5n#!K1){t5uS+1mV4{>`w(>%RRq+)%bij>((j}1H6MkeL1hIbALf|DC3 z$UxerJz4kP=h1gDnWixP-5#BhZC0e#LCE`%md+7O*to!9s>_pzU0h%IK-IHQEWt2( zu<@Or9v;M?k&F8SnCivtL8SW*P5@n_m&I_e+S+dSvnSl2rh;z|jET_~2`>=NW=ES| z0djrHE8)xJ;Rs5y2vd3I*e+NLKByFHU=3W?$FAq;u?M23jcCAhMGuSKGd$DuPXPPL z5RII|vNA8kGpK+KWi1dE31y0bgnh0Mr0XwI4$(@}CZTQ5^;zJz>LEU&+x@tFJH@k? zSeFcAm+yw!M4i^EYI%3hB5m?g!LC@DFqX9{z2vF07NXxzqXXn&X230jro6an)gudZ zDjy)C9aQmB>)s);DR<2!!*EZN*oLx==Mv=#vqnF;ce*dHJ9Kf+Dgxixo+9=7M<VG)gayJSya`+dHGxC!?CN)1xr-#&&xj* zE;r9_CqIfZMJIF1g=mUZ(P<@zJZ4@p{n}tOqnOqdqM1Z;BDQLWXH4jrYUOAUPJghh zkO*}?o|fgA;BV^`Ty}Mm9jGFj9%u&hZgys)fk*yQ@Lv9_165MA=<)VK=hn4xraR^L zCQh)-kEYQ&%BvKXX@VPV8c4yI@<^7xc|FMJ4-nO3E_nG8?#oPX#8p+PV{+x!me>;e z!5ghuY8(6B-c>u{HUL|-?VU2@nkA&vEE0UJ4TguHPEh-z<=wwJ8emmxL$)-3uvVsH zzkTN>)nxa%zNk_iaGu|TY=eY- zsC3$pm|9*$Q4u|TwK%B0pQP@~9@vsSpkVf`PtaYWwoC`~wDZV!Fk2-#oW-qO!=|%vC9|umPKm6i!TQIjXpIf zoD*<^QB0^rr>V(t^u}9I2WX$~D#n^Hq{%SzsZ_ z*sR8FUGye=V3FZxq3brY0a>3uIh*djOKMu3I-%qHN!%(b%jo5cWm%+U(hj}%X<#7q zm0{zT3hJEuT0okeR1(`3>5t3r733lQ&2HtX;I%NL@Yki__CJnQ9nomD;#P(m-?*Hl zsy&c06oO)D>$yU>A?twi3w-b|dh`*JTuW;i04~0uxSEYTsTU ziGaQU?~q;O0Lw=Hu$sYQdWbbkf1Nm`iq_C8vDs_Kvp3#*B8h%Le=k`pEN&ta0Z zwk^NHdnw=D=(~04xqIy=r)5nB8XQU!ETZj61B7cV6w!(@Om%a55#gbLYaZ#;Z^MEQ zT@a)6?-brVqDjzYu$sZJ~MX5)85HW;*JWx0uRVwZkML9wta2uyzo<0-$ zvi83}(w4^dbGnR2se6t+beHS780+mN?smu6c4^FoE0kb@j?_K}$n=DKFZ?xC9xWU-1ha;UKt-+PJ~>>3Y0DDlI@r- zn??%-(xU&3ZQJNAP77j0Oo@BF$+hu7n}u=C#l{x#X|FlSy&q77dU~ei+qXi40)hup zB1n?{$S9+q-~ZSAp?4!@!^OkPv!k5q(Olzww`fCf_;%Tl{(ZDzTyE{4;esj)D**I_Jki)i?no20u zfN4gGnoEaH8O?o$R*8{YU!v@F8X2=Xif9#BwsMkNq*3)?q=_p#WZinK$>Ica=6iA(%#_Uo=%t!`8F$u`}dB1eJv{}A}ZDZMNPMm?h{^^jn z<8oX}zdIj@Y(z@S;W^QW-KxEwjwn4kOP+BGf(vLjyr6!oy}1Qg|8k}LG;=bQw%n~Q zjHt4?U$X|SCZ(l|`30qeC=-G1S}=cwzBWkskBCQfisoHby(&y(p+49X|0hw^l6YOuuaa9ZSBd2X0Ip<~}P=eisQy#5QaJ8Xb9_y_$ zP+e@P{>-^>WYWr}_@E?xr5J4>J9;!MH940??w}*vBv}56ZuptdsEt2%n#^uls2CZK zBgn1S25WlK=tK`Ulf7upUbL-oGsm*dd*Jp#ncX?R+*UmO@_9{Oa96`e+e4f9dHI95 zI7aUK`-S<3qP4fRKO-YOCgV?C@AJfSI+5(@+_IlKlFBUdb8>SvYqOn-4mN6jeoGO` zVAeQtarMpDKgBCQx-CD7`Rm7lC#$+5XT6qc4o-jX_p@|6U;fza3L_(#FbIg0?(!Mr7}A9xtn-duq`Q56eT|KcfeKFbEISM5!Y^E1xoUrs{dv_u5PDNm z3VU~AhDY|TcA<;2SOVP*2M_fAAMr5JOds$LmV(ONx<=RbuE1pmPdT%EQJnH`X zv7%y^a@lY?zqmt>wvKM@jo=cMJnG9db#GpiMAYK6LC#BN1#N&)m6iXsY~%Oe zP5$|JMrxit3keB9 zTIKESU9G~PPr3K**O)@xVf*d(kXCYB>!k=3PtWS)$&*@Ip_Xl} z*YY3kQ}=^zY;KjZTdzx<^ zwkJ1WQXPNU=(7E_r|T#-;ukA!JbLs91$Rz4mzO0a3*Sfa69xtb-oAZ1wtj2tSB+%Z z@zLr@R#m*Tw3yY6Ftx9u3(8k+p&0gO6c4$f66wo?>5_@5hs`rEv1|Fyo;@?J^fSme ze=suom&652Jzd44rw%QQTAuweWe`5h0oi289Ws!dHGWJ z=^>!ZiVU2banGMWx9h4hAcaJR2jM(d>aMral#Dvn-KW)nDtam20zTe9xnjkNL3xz4 zZtU2D1*daLg}nY&gy76U&*r(0kM~IG2wre1n{V}X;gy)W2Q?;>Y7Y;O{A=H?cY03e zO;=#%4ew#GQhb==dm5rI6lr|l8x$Uksj zYiO`RC52r9k>-tv-T0AuJ@vA~6XW9$krm+Og^dF(DC%@le0)6gN0lG)6xxyMU~u)F zmK7AecNaxILdrl$i0rHqfO}LCv>do0DK}g0FSPD`ueRrZ>y@7 zx;U5L*VV~8pUG?nZafNVopaYkysP5|dDm?`tp_c?K02M$UhGUf)cUCVxVT=oAH}b9 zS%dZPqz>JsaXQ!=KfRt|qNm9eE%H&R;4p!Ay^ZnCHjN2)SPtngw_3&*wYDE1AKagh ztSRzaw$gX6Vv)y7Qkwc~;bD8j_wN{|-P>Vk+eupVI_~LUoV@cd|NBU+N4;+`+HdXX zuX~sNeAyg_QKXOoHrcuJSK|ra`1e=KW)$V7^-pX<3Uy-{Ym35KI4H5NuidzDkFi9- zvN%34vuXtgWu$n)<3U_!s!E!6$&#C_I#%@!1unebtKhonE`LcI>jG)K_tQ%JvLDXX zL3vMK<>t2k#vdKtz%W9&(K$O`@U-R5{yjKWde7h>;mH%q}y7>5I zTbnE4|B+wyw?x$V#<=M3TnYFC7gZ@c(~b;_+SnMpV<+uhwn( zgCIf38ok~m`CY{NyOi>}gvLkV;a|I-#PcGJK62y;489fbVjq45X|fO=g{7IUB-JSH zH8L?nQ2GdGX5jjoeqnmNLE#kR+|;0~N!3QzhhM&Ysi{#>e(l(7;N0%mtjx$SAaM5V z*&egUq9(^X%RKk4f%4xtcFk^8FhWdG%jIjywVMO})HGbD#gOp*yygg+Jw3q773#QL&<1pS)v8sfNql?qWViA|sF=Dn zXBdRs$}lLde|+G?A)K41HZU@BuhB7d?Lo32seH5U3P7-A+?9lto`*-tv)%jm+w|0g zjq#AA%f;o@vy1angV1<=$n0~6wdY72g|gjE`PdQAwI;uu9m^pEUhIEi%o{lmd7vgY z#d4)qd)4Bhvs^&|aWI`A6PcjN_uf4TqL$}%N zkK0>tmhDh}jWXbHQNOV3L*ETM>l!VvNrCh!U08c%5XAnQQOUJJ6$jb`hhuOVT=& zIroaGVY$~L+D-Sa$;!&Yfg4xyAuY2^PeX%?@1&aAQmxU_9zK!Br|)eS3W@6hraIW1 z8TahTL4k4f2z7V;Q=B`4p3ehfV%%#GR0Ye8-CYp0DV;orAm>>{Uk!Tl=HG1C|Gwdu zgXz*_vk@j=$Y$*0fri!V)}3N3oBbU%G2x(m zx%uwiyH|`U=~2bN0iQUnq7uR!8XjIYTD5B|M{efFZG;iw%u)uAK}r_LEZL(_3+7tL zb`dkf&juxS`fsWL`|wrKNeHcJfovSn|SR}&F;K$r`R#g`%zKzxa-;|!SgS7 zb8{cl93ei_sBDDX`ugG{Yy}kTe)&Ax&BgT-CTro67LR|mA6l9*na!KD%q-;@-fhIh zE+!_{ts1`HNO<@M)PE<;3Zb&sqZ;z?VT{BBqk2XzfMe3G>t_FH`l+xy8(i`MLlP~K z0zDr|*B>|6b+c!bjHx7-GtD+dFiu2 zoi`(j4U^O@cEaD}<>ig>Y&kUZq~xfgBFGtg_wEhhff`p~$p_3#x5@iBCcBnbb_pdP zVA2vJ!6zgXCg}=k*5S53$BrEYm89}t>FOGrBnJSzE@ zy6;?kLPE@vVt0x%gI#}mfeb&2bs8EP_f%J|TGgW(E^NThX|lYusOHTDd!;cRwYYoe z@5KL&CENHgA%=HqytM%7$fqe zpHfdWnBTP@cts5tx`2A><#GrzE_TbhrlzGu4NIdP1AEbC$W<~hFe!3#bN5cVDL;Jk z=FRu-`pP#!id66_d3Kn=uJ;qyY*iTg1!^VB*K?IEFU=Pf$tWKINx!>6>T6SzC)U$g zP5_IjV%hDCXV2dDef0ypYMGa9_T;*~eUG};pUF8NpVhOvQ$y_nog!b0oo!~n@}xEK zcXIIgut;2cwD9lX=g*(U3Oo&j8$Leep?`D})%Pg&vivzg8F6(q!lZlB*#A)FCtghIB z13j|62!6ZWOMRGRod&?W3Au$xxVP6_85-$LWuEihW`%!J)4F$6sYOe1bvj_zeGnZj zxEv=bAdm(sm?qQCozmA@L}s5O2^wo&wf~x_^_#vL(q=H*uY{VEw6v~QICw#57dpi# zDXdiP1!t=RBRpFVx<+KXq0l?3e1pKp1tkq~e^p_`p^=gytrg?@f}QDkDc(@68v zr%$`-BO>Eqj#F;$8dFo#G3Si+TyhqsfYWTJhuZh9*|u#Pp#A%jI}cn5SO^->H_6B?^VeU0;f5n5zvWp*cx*AiLDbXcD|gLw2`l-krRCl=s^@%6D|GH^-oRX5j_$#|E+!6O0oS^bv3$LE-=H)d9T!{k% zcFbe)Yl6a{lQri~fq}s$xRp4k zh;*#c(i#<^=@G67voBZ$zeCwr9`5_0^Et`Ap)oDbt0J(C`w0$8DUav2V@K8FFp;kM z(igPo!JHwq%)Mj)6YA#b`f7T5l^q~LJNFYfl7%=lD5x8dAqg}>7oYS4fd}9QeQC(uOrO@E>$jA!yb>NO%mQphafxqW_Lg#c! z*VFBOegnwti^b@0SYb7aMYAz|33Lk*@e%C=^t#8$H5Ash9XOqt3B&WF)8#|{=vr=X zZ+{vpAL^_u_vemsTWcAY-WM^thki4)=@smY`=LO_Anl)(Da&u`tG4ByPA{!LJtjjo zHO^_vaJ$GWEZh`5=IP+zAgKh=1JiFoE9-m?a0`F7L$~UDR#uJkp8V@*H+myMHZB<* zo-yz;)=i2ha6Q5O@>yJYLD1xO`>2fHFwk^p{wA|ebH>CQ_G{?4q;0IL_$@9mN6O%O zxz(qCMao>8_H# zu}CcX$jodC$=}Qhb5qmFA9GlS#>NAc!S`V{a}?rew0fLttNI`m`XZ76n5fdU+OGG- zE3^QDj;GORJu&iJs7m}3YFVT!d$E1L`P}?GV)(IY((NQY6&gBVD`%7UIE zI+oIsdAx9_yx`y~JLFldtXgt~?^->TDZ65zoM~~Cz^HAs^e8WoDK9Aq+B7JGs-*#2 zMH{{Qlm|^9q@tu3fLe3(&;|euma3wnSA8P;-0!M7Zuu$6$<>RRz<>44)IFYi_tv9k zZiT)RG}C3fUFa<3x zuV=(scKij^rGh?!pF1yI=XCk{;{15BI>tb~Lc5T)3dXDNJL|Ep!8O2<&}Q))OWz%s zW7#iP&r2?#!p)?9;Rv#1<0a4J_0d3rDTg~>y+_{pc7o9F_S9$r+#;zqw3c^vVX;`QuCCj+H!sXdK=380 z+a7xvhg!{OYgA>hcl-E^JwVndcVCxuevEH{)TF6woEB>2AWHNY23`4WCG?3RwTwTU zb}yjrfRO?_;4f~oSyt=sX^Qb_1F_#7m0-3AjAH$}6+JE`lN);jCdN;h0N z`GpGSYGkr}gJe=SPAg*KfwG#~Q2D;w(DgvA&|N!swzgRf^#jgD1>-Q;DK>SN+|zM( z&9(0OQeTD>^@p4;eocs_Atyi&TwAtm0n$QG4_sIz6e%XKAV6pD=;&(oOLGS=q$DLN zQbR&QtYbomh_C*92z8-f!_+ACgAew1mw4~?jZDtWbVD!^?{^E`?NNdsF38`;e*J0{ zXn6+JAs`^&+)V{JIVI}Y`1q&CBZ#x4z(PoY*+5`?(T#DZ44p%!YaSfFrM!IkE&PCy zp<&F6zG;lgYt6&@ub@znWr&>3Cr?Eg2V>^4b`jZ>zX&h<M1`Y2!fy;{Zf#va9u=NaI~%G_iRyDaWew4v3fUeb7g&GF zc2dg-sv2H3Jf&FR)|~#A*lkKw`DJT_v!g(dN$RvWFXVk|h2Kc! zf8kY46l(2e5;iNP76T7iaKZB`Q3sEW8#jGiZI^oE#tj@w(DI*HSiJ1s6CSOjW4^x` zu7shX;o@BTiM}vPsso$N4hccV+FC1?Z$w1-%|uy(xuSSAF+HrT%5i?HK0MnGRIx$Q zAL$9L-oId>aa#d1Zuz5ECXGhXL*?G&kOfppkArNSr0W@ z4g1ZbMg3$19LOa0c!vRk>*Om_$X8bSgT)gfqD@}^OI}Z4h(cPy!s8TG?FYMk-QCHO z0El;elT}!+;D;8J*Y(9m5QNPV5aJJl2qTpMusX~p!5N*5oWTQb4Q7=3oQIE*lzQe& zSOrN{i3k5-JZOR1b66`CY7J|E`|Y<6SszOi!Y@fBoPQXH3=Wi7f|7S1@vYY)$pA%D z^C>?ZTl`6oCGNO}6a%00IE-X?p!lwbJvMI&od5&8q{fATkHcyN0(T%7g7ftVnK?e` z0l4yJe!7!sAtS%65N7zuICz2IX1|*~@n(E)>GRcH+r7NJK5bPYIJNpPHNq>f-@8kF z&~zseLt?;fS>7rtDG38yu}iIAoaQ0-F|(6lom756}1dLv|;gYKc-8c6re0D8=du$u$c~8DMGIg$>+@24b~K zy>{&yFlMY85;vB(YtC*JRaL)=z-0A6I50c1HWU>VkratTu~oYa!C7t(sYAN-Dt zaMs@PfNcmHB_?jkL1htNmZY#bap2=1RE*z%7>#;u)QE-;Pk|LD9H1kzHh2%uis4yS z#_JNC9qOcf6{!vkM%DY+5AG{ z|979{Mdgf+3=cnR&l7Lj1j_(sdPHGCz7N_JG3D@{E(S5?fl3Lu|w-nUqLE zkM{?dDpEZ>Jm3uuSiS!)5JH%ohles&%u^=+wGzr~NK;3r?&xz5s)N7(Ajl_i))Yjd zu|-5O>-?tF75XKN@i`V*E{0i~-E$=42O`1b=te{W%>Bvu|9@oUIW-sXHO$jvT4-B_ zF~`|BV?w_8Q4#$wJ04$OCGee8XoXwC!+2?B6%}p0Q)kXBQ&tY4pW|}5U>NQ>gY!XG t4V7oej_4#;9+$fm8BW6W|7ZOd^%Sqh%A{ZRcPH=vnWL*inO(qF{{{r><0k+B diff --git a/08-mcmc_files/figure-html/unnamed-chunk-56-1.png b/08-mcmc_files/figure-html/unnamed-chunk-56-1.png index 19ba8c97d2ea626afc814461f85bb468e049fea5..686da1db0c1c64274c99bfb5e0846652bdddc2c9 100644 GIT binary patch literal 112484 zcmce;eOQZq{69QIAr*=wDMBR`R)$rIN@=BsNwgj?S+#0dwVo*<)OGcESx-byi=wnx zkAz*C4AV849+*TcE3>B7!|#1|UElk-|GAIj{^NV!9np@q&hvAA&d=xle!X9>*ZaJD z(8XcNBCSOz6l#g%{(bH!)cidt)Vx-ux$v79g?(x8V`2Dy?=vXWnv2N4IqChQL=;LF z<+#trGb(?m`^6Pwzlisv54Wc8476{OX)Si#q8D(le(t9WOEnMZ-tE7TyI^sM>6V!} zN4yV^m3wFbM}wEV_CLOO{lcU_Eq>ZQQF=2apE6n>+`jeeCDAi#*#W$F*d4DwuS=(l z>C<*!Dp`1qRjUSi&TyByJ1v3HpitU7nnZJEUnQ!pPgF!+^(m;e&O=^=&sFN1eGfB7 zVFdXFDjzjBYW9T-Y7Tbx#im4*4)P*#`5u%i@}hO2?*EI!)QaYu9m)%9CJDy6TJB`k z7%UPnsRf41VhQf;tg0=X!DwAff}NXYN&vljDruhS4Te!@aMT<;-qDaO_<_9n@t+Z$ zTW<`M+tOo4gA-Kby)*IzFMOxe02u_T`c1DqCLtX)y?k82|2&)rmsg~cecIumhjoMZFTUCnZCAs>J+H6Al+<~zBhtW96*N!~o zw`}qf#X7S5V#4o>MZaA4k1Rk=_5a6o{V&b>|5t};9g0R~0)@u$+H3AGoSaCSDP%!P zz*)<6DE5Wf1@i5%n|fs@qbeB3%h10pJj_FLB@w2ho#^eRj^mx8pY+ZdpfSmjmL`2>v)6uOJBjXO7}wjfwkeptG5MQJ&gb*J zbEMIhV{Hjb@c8cT?oMif{)=gUZFb?nk_Geh_FX(aPi5Wg_;z`y+hynrM}LnR>LrU< z^wMnNxNajmw^B6m_3PK4Ki@KkKZT#tOv$P-=2TWzem`qeqJ7PtkiInP(!W#SEMU@0 zE$cW0J~f*#QhhhXW9OEkPohU`v*@#YxDvSs1^0~)@E#N!s1)Ma zoxvkl8H~5+4(4#u>Tdkf-BPW-@_#pX!DyUyns7Lxl5wLqx0FQS=Ma~+TJO&OIpP_V zq-LvhGhzqI;esWy?e_#4a~7TVx5(SF;)<@4Hv0{=i9|Q%)EGBBdoE8I0|0wAhpDdC4lTBSXI{w0;ogGwHEEM*D5%Wbi%X14?c=L>@YQo)pWi zTf6D)Jcs{TBrUzNIBVs$8sp9n)j~|On3p=ad8uvr(~AOu;IV(Wb#AjUXE=Ui<$VF35jX^3VEv88)K}B2d--TbDrgjXgQ_UA) z(n_)%GfvT0uMJ4Tj16ZH=GTUGBDTCD1;!DN*l>)r~@o4H#JpSLC(znzC zX+-{_iT~#aIri^cuN(wSvS5*(XJqRc+kZnNM$yhK#3BzaE@6=#mV2f6TgW=vze8)S zFiKs=sbN*s3&@27oc^~GEDv3hMI{_C>}{lN*SZ!0QSUbQzhE04{ejuk(6BjmonuC^ z0W2a|x2}^+X})=yZf5O=pK-|7`t zAF3=R^)%8lOTR}qg$g3jTF8R>Gt1rXr<*#}a?q6ebGsU{rV{xl>jii`Q7{&TwZM7s z&}>SvftKyMDsEG-I&0Ic~R3x@>%G)3tvyVE8c~zBDdjSAofj z#cYZ(2euu$LszM%IZlLeY3bde+$L!>Q^uQ2t@V)S+U(31 z`by_@m6Fv0m)DE`=bpK1rr4;d+ui&*0Dn9FY&hoMT%72!Avv5N!=}DWc-{5N85uJw z+~t2eVV~q9NT9XM5ZO+pq-3=mBCT*!^0(-NsKn|t)3_&xXgsQc~dnj(65l8-;p(t;X0KcSd`_ziAhrDyyD@%HN!ECygKPm6vro z;WZ^czQr{HK39zsFdZ|nb)0T9Whp&(jXJ8&ZmFV91(RG|T`gky8n37l4YEv1UP>Ct zf-6_9j7EhBBKXH)v6wpWrI@rGc^!{yjc~4f$0~)yGxn&2+lT(mOMRacW-HKme+EH3C@)HKIYuwYEpL>06N$(nau3&)bTq zzPhcrGgzI~DQ)Y%Ms69;c?12h$y( zX@Ogxe9xF8!RjcZ`pn^8*yj+RQ5t%dbf>2BiYphYL^f*W7HAX-3%Rf84q1T4acV;7 z_IxU`sLPD3P$*Y7d5`Lf8|FBGJWO&WW8DiC)JVJn;WwIAXqwAmk~8(Y)?O82l=o)L zhka2_(i;B0;$BL?kl#F1Ym8c}aC!M$tYb!0;SQ~9V|Ak|uUv?pvlW}DQepm*Nrr(M zUkN#(z1pxp#^gZNVN|Q)QuvEIhbr|QqnmoH79QkNdFVB4x2@Pmzfim0pgV%<+9k0G z`;?X{*r?kn*kKkh#zh{EKZ)K!uGQRmsC#UO`BsO#bEpIXb1G_a5s7Z2rtfIG&N49< zaCt{Z2Ou4_ClqZ0Kd;n~bJ`+L!*1(!=S!d7?Br7+)i*V*QMssU^0zT(ki|5<0-I38a@`rsj@YO@g>VU8L(b~~%SzMjz>shJ{wT~49{GI(?9!I8TQl5Fae6k>Z_ zc@G$jhK2@%)OY7&d1y!rBrP@tZh7?8*(xPHy<`#J&h6~To#<0J?#)9tP>m7ZIp#Pa z=2cQdW`HJRH$TMUO7VV;h4XfywXUIYn>pJYGvsUOD_5>edYm{RK_#Y-ewY_!NX#L^ zK)BOHbDSWwoQ>Qp~_j9#(pJU4#Hy!1M9-oW^M zLI|h-CsK*{n;kaEP3Nw#yYFLClBFn!{B#PBr-pcasC`W(IIXgCBkAXvdEU1F5>!jK@ ze<)(NfSEpg46a@2e0)nn_%#Aw+Hn#ogvx3zhUd4}V40hTALWa=FvJn)eBqAJX$K$KU4bv<6#O-I{Ln^LSRD z5|Hmt9>TI?WFmD+gn?KzjcP&^G^G(Ur0zVzIzU@EEnzK)Sz)o+WvCh$S`SLyxcbY{wHF1$tPWn)&%!D zg30<=xR{x-VS%_=US)g$5)03B9FPsc$4B|%-r`7k&_7}4Mu4$4{g{w@5b`NfoGIh zDz%^WBWdT;8sjU)uc-wM%U|C$=49xvx@Mp5b^W~Ve%=Elp&D2$M6KNi$2qR~{1loY zIx_rasqNvMXKh;(tKKt*X+39mHL+NO(r6}mvEBz}M@>k*pyG$muXBnlJijj59}^W( zCNn$2auMn^8n;?`fqVP+vvmE-W5Ume>7{UizoIP%x$_EQ5^}w>ckkVF z1od07P+;1aRm4n;9Un;1z=_s9Q z7w?=MJ9bFMKbk4?skaP1gjmoD>&Zv)ohP;h80w%B0|SwqOrqOs;m+7v9txQ|2=X-V*(~T@e4tF?5gFOnd*3RuI#o5gV`3ncA zeX6gBShkmpA-zY3GmJS{B##m5Gw&m$O>4|+dzI=d0h(^=j)oBW#c~9{^f1XeMDLtu zl#gPW<4uI_2~UO-43;lAZF^}vwi&?uW29>GZRt&5?6E{nbQWT9H83%S0~Z1g=MV)< zRuz&5r#(8qBj>qsMqwnX#M2~>e+&6^V!GYZ-N*~n{{lq>N0|f`2(l*>sv?#U^Dm`< zN}G>hddwnP;cN*5RZdV{D#9uB%3_)dfm2XI&GJ*2xlm=~a`YWT1TMU@y9z=r@{BpR zv&213dCnW30-Qlgh{QB=TVe~bAn0mDct_iSx;w@%(C@j9I zz7DgizSRRX-;1}NNZj>US?)@szwczZ^ByFX0hGeSx$@z9-lDf~+?^^!EV95x4g3D^ z6%R^eWG=Dm*!_D5sKD_U3?ohriO#CJWiS|>81+A}^D*suu|ctcJ0Rjda{%h$RL$+wI@vN*9jvgK^L(zVjF&-DrpHu0l73w>x z+okV4OYLTKMi~_qEW+3QsA#yRX3MA6*`5Dza==FEjaU}ftJ?OO+Wq}3L&Q3AeZW;2 zm1v7fm;LEpb*K`JGshjs*vET-N%N}2t0^@3rf)LR&Sq7a<6?pw9uU2a8WXx~K1nKe zUp2Chf8FJ^F$`kUu~6tSW~6B=V`z_p>$k73`Y>Xdp>@2-k3Qxk=}l?vAMa> zc_WGbbI)br%?PJT0xz9=2(Q83+F-(HqA-=P$?+Ic zO}*{YJ<*)Gfx-2HyL=IZoZg!}CRv+JqNlNsTUnvB7tW2s8sa?gGvhX6 zkX`_pI4D4lt%}C zPzk-=-Pyzn(ucFVh--9Ox9TRc0~iTh4{6aB&RgnK#k)f{mRE_6#kgT&>k`9h^N##*fiij@Nz1+_H3O z8v7JFNHEqQZfAYCb=^i%Qsm-{65YNiBU_uG;@5;tQW^4@K` zx@$)&z4W^NizFy~nm@*$9_jO@`ZO&-?Q%e+w*fj--rM15{i?W^pJ0`DNhxqIUkc@z zNcs*Rr1|_YS-0#!-NoO)P@N?tywOx=Jb>8FY8jWvH6<24C^eBX5UkyH5!QHGh z7r$)iu{|su*izc;>Hr(%vT~#<_QGc`>LUwO&i93kMMJU6V1x*oi%tz=(gtXZSJy?X zcZ0j#294qvnYIKzMZ2ggSv_2NEUYOhP{hh{FYLJZcN~?FOEfHbN9|?~*G{fFCuuu_ zDpXfE$0$D=7dKk~y0_OD^UwtyCqovrQI6a_)X@DS{_%Dk&&0%JVrqJo^G-)Y9-3gh zBJ;(U$Ekmi=uN(+jv2y*eR-w8Xj{sG>BXcWW#nM_qpH>HQP|5ujOuhV5`22ZGSwe% z=8tR$5&T1KGUg=l0!j4elvsUP=YTuDGpNpe{+JBQ70Kj7X$ooDbFhW_2!2ZmIN?2Z zW4cx>4?Lu*JYZudW~lxl#4s)uuoCg?WRL3Uy56SKBXgi=)O(twSW|TeaCYdXl8?QX zpD_{Ifo7Wb{+6iosbs;Sf=Zu!ED+r2qXJ{GTfU>2f?Z;2)#^k?7q47zR#S#)j@!=#Hs09|04#&G!Q&qI~blWOLkA1J({{oc-eIa8{$k>e9KqQtxWmTamtm z8itYH)5nV2@ZS!XTuO-b2PQ)*r2^~o448m6v)fsAZfM*Y3T3NKI@jEOnQcCg)k~{n z49*5Z#SO=?+=gDWxtkuFUELlpsvsY7?GIX&a`SXop)8NFpq%K<5IiK&2Q8{TXsBLn z^Qb;JuTdWe^*~$8G;H0xMiL!rI9Jn|({AcbF|r?mu$HDrk4EDXTHHM9E{qll9XF@AV9~Dj2p04dGZ>Pzwyh{%FYk-!aAK18g(Qhr}?k!|fK4YMMN#`Fg z$@0#*5D>M17R{=vRMgF0P@(dia;JUinl_y|1b#^tV`xTLYt-;tSfqkq3%^-wdK_4; zZ3G^A7%N6qcftMqzsOODFZ`z2gzTMjzxC4kn@n%ZY<<5R5Q(@A8V8)lA3nYFnH5Ul zOU5VnTeTp?s%oEeRAGHrNNVx>(0Unf=5`hca^$0YD))HHg8)t8=tJWJ8jpiOHT!3D z@@&xDe*dOD_~!kcCKG>GA5y#tXKjw|t*)%>`XvGET=1Xiz_dYi?SWqWyOvGp3pUAencugrRS9Z6sTq|D+x zS)9GC)kvdfku{s5;@b%{*^^9DYqLIG9=h`c@7Vo=mq~-Q+YnYjh?#!3?$+90(+kQ| z0+jT6c!c?_^8jx*?=Kw4>o_?R#Rz(D@AmFR5Wr^M_jgd@oEe{r@0B#dW_`JOmOFK} zn`hCEojuiJ;YFt~ZpL|IeRWDeBtz-t*%+Xmh@z<4+ zcbve_FNZQafvgL$7@T2KK8mD}iE9%kVn@0u%1aKOTMqhApTwua|LFgC0RS06gw?+c zY*eTR9`D|+5}X9Yp-#Gpb!fdCk()mL;s#mJf4XAP_>d}N%O!vg`)fX1<6C;YI=Hv9 zWIF~Ms&;ECTYcx=jGssJ)^W}-<(!_;y0LsPIzDLXk3I!<1z$ufT&eK5*|Y-D*%Gcf zot6`1ih*H|uFWe-ja;0_%_4RIC2PC_bUQz77pID#q{VtCYrVbF@2Y0hr*{nx52wff zTHj_C-BcLePNIJu8#`p_i7VqRkNcHg3>*`do22`PyH?64){j7Sdw0P`Ah1$D+bntV zAJy9|w(e~`=X%^br%Hs!o8u&y-;f>UlmMl^^20fuVwqpx>I$56Fm1};2$X`3lWk<} z-}+^viHrM`V1D!+?QgxADtA`8S^6H2JDJ+v+#6cI8Btw;4RqZGQZyyMGf3JU+54zU zzD@P8Us8akpYKr@1gz(kx-A?p9JpTE#k|Wngeh>rn>GcmG8>`2EBrGrFYi-$RKoMS z3;hEiETT-6OOlXpb8n;Imim7Kd-rybU#xp zC(+$K$C7G{4`iIc>R9)z)3kGQQzy{@8GALek8bE$toKzyqnFBsL2tgE-Gm9Zcw%Op z3bJG+X=9yA^;`RQ&Bwm}HPY^#Q}VR}Pk1{;sjCaZXh&cy`VhhEx3-)vQRFg;Yp8^l zp&Kr)c)abUq!xPue+wtW-2!*UNHC{ar&oq2H`W;El`gdf5=m}#{RL)$?WNHuSjs|7 z4?pgb@GyYGePF_v+kHkm&?2vdG>A!KT|1i7PwPo)azj~ttFu<0`#aiqoHeQ#caN35 z%Pt*lm%Z>?w0dhmQ1wNp{L97r=Wk-n-^<@SFAcct0L_|P3cnHI*NWY2@%wSDJmQq; z?(*g9lMjw3ySFE~jvIA+3Vx@sV8r|z>s9n_RA1%iQLWYiGthePAZ%oUPmFyhc~==7 z&A9gHgZhn$2i6CEGKCoT_F@B_nJUjs*fukyxJKQ8S-?0W8ozgrJan*1)Z=IHLmExd zHeIn8?|GX?v8yegHo~o^eXl! zZBhjeJ7Nq+*ZyN*{Pd$nzb%I}PH3rIlt*t*6AlF@i6eF+;h8LWP6^R`KGl4x3{b_H zGm=|tr}p!u2C2rJWwu#FT3lQ=8bl-jeFx&5*_3yotsqrk(k3RTgg~S`^Xy^{$Vnq_ zZ)Y*qv`wYr)O$eEDFXGdbuX>3x2Fe0zz>n%Syd~NuM~rXi`5YykHRnbNF`96cxWEl zlDoKVM7cN;$9s#$$9)i+GAoNHk9-W1Cphy~>67Y@HTx8-FR|bkm$-Tl)>^&>n zYZ@CGg6UsvexwA&vHiyIz)e4VQJOu(2G9FR|2ZLUi$_I&61z@6%I6MzNEiR%-i}F&Z0J6P{#*b$jXo@# z=^R87q!MHlZ*#8X-J-XTi-QAKu)wEL0+tfKG^zjBk~TA3Ey4gdH@?bO``jni_H*T- z@%Z5bSgd${i=7)V)LT|8Hg_$1BAtb+o^CH+ zoOmnMoP#P$h8xi9j)+}JkNf((`P5APg>56|$#kQ#K1fd;hpsymvJRZeSS$0cyw<%^3VdN!>u>qY4OhS z&iV6zD(ZI>R%>oiX;pAt?@^@y!Pt1`E%&2cMX5(RDN=fES^VM7t5dqvLE3hI9vVoX zAd-uma`d}F>fg0-CU6lwJ+B7N5cqg!$a8M$wOx0NIipdN{aa)4crcb|6jkP>L@#-D z6#ONG%IBG?E`a4c(?l$UR7!V1sm9)k(}PlO?Adc?p0@IW0rltNTZcF`Iz>}jdZMkh zm&!z?l~!U{(bi_6zF6*ut%qqkdIn0jMkN7sJ5&_w<0{ zLK@vImbFYaoN^5_atm9V-Fr?_3Igmz;z8N_sgN}&)Y>GrP2VlRc~mNuMgwn`j=??w_Z8pdveXdypG;Q_(I$$)O;VK7SiLsYy4NPfJU38Dta9#)G z5s^p)LB7b6B#5Z(ij{Ro+Ft4k8T08Cbvp4LkdJaDI+LH2+ccFI0C$uoH04Gf%x(90 zw7QzSLfN%z0m6-Oi{CSdepmXshu0bIEf#{YasPPXPA7nOIOLWt9Jdu zKG3XB);{X(@!>rHMH`e6pY2+HFXRWXjS2me!i9Rkzjd4hjSDu$bUg^WI39dV@{rIs z_0AJW_MnE2B-oD6DUC${0PLMAepr}VxuaTNfWZM7dP0z!i^j=>{Hz$3HruWHa$aed zA}R3ErR-(}q3GYh1OqD*`&X)c;b6hoy{okpl2fc`Rkb7-_M$rbp1<0^{mU#&MR7$eqx0k6E_lh0d zJk>9JAP0D_;4rFRpF)2KtvB)_A~pzvRG`XCO-+HwJnx@ibJCl6*cgr5{XPLS=XUB0 zMoHV6Q}Y?q+|aQ5Fa4r{M`Oa2J*@+7kG|0g6>UazEe=VCKVz&?9L5<8&w|OMK(fFk zLqE0nxaOcun($%O?(5E=k$0{@=>abYewrmO{Cf8OfFdWI<~qmM9*mxvhwz=~YxMRv z)HqP_zgeah%T33yu6(J!qcLaKhx%ox8=DnIS}*QQJB}Fp(m9EhM?Qiki@ha0fQT?b zf{6Qve?>PF>;M;U@oTYB7agIVBAFFvdkqVV~2$%_>0k zm1EZ{`$KzW>EUVkyU(quofQXLs)9`ppjzXSwObuv4PvyxHD=Q=H42-}Al1M;IS^c3 z+CWP<%+H~hR=jVMO|3UvJb-bTjhCZNby-l~$jSH9R!P^q>I|(vS`9^?PebmqWo!z) z6iS1?19ShCp8AeIs;VrUYsn2pd#Z_kaw@!oy@^ykyzm^9%#Dnb2OL_?Ex z*oG3HYCet!%%G*x*$rGtXHZGBHlyGRVtWMebIZskjV%O*b*93(sx0G6CF5<{t+N|Y zedQyMQL%IN_NgfZ^2BS{Lzvt}7u10BB@4!53kSxVRT~G7O@RXY*#EUub2R!c;y2KF zx9uJ|2Cdco@goRl1LLD7e9H@!MA8XL`dchFuk^n0m4(Mpv(;LntG{6E?5;ZF15}*X znpd|BeqyV8#cKx|=lKHYhL4ivqZ?K9_93h$u%XyFv1$qp-6ouE=H_>Lb_Z=v4Z@CM z?kS=WC*26inV0Xp5uy9K5Z~NAa$bq;*#jG1Sl1=BF^8vu(~_%1MkO;pe{SP!L&$VU zt2p^o{EU9PBj_8NAVT$>`K$EB0)lqBOonNkp$ow-2xKr8+=ooEIc~WvCT+Rh(mH(< zN^x`uJQ^;A?Q`6kl-GK&)6HD>%~GFYnShz?KFEp>DcL*+ESDXrU>NzbGYyb)f3Hpv z(B^4EVHaxVFBr;|X3;qmDotziNYwBk%LR-MMs>eFVP1{?`nUiB8h#N-8(_79*f%w; zV%QJSPZEpP8gK3$)}4bw(0NoRm<1yma2Y2O^wWeLC%0>>ROl$gf~1Gk3V)S$1rVY; zdtL6bVV%)?sOFlDi3X{_tT}IV%qV}7ih%LkSz$emzzaFQ0+&lSNpWOmxMiw-?PQ-~ zf@DVmm?&JQzqn3MRL@Lsr#^D2mInD(fwdG2uef5TnPMaZA!^odmvtIS9>%kS492X? zz$9-@h9x44E8RJ=hhCc3@ikth7J&)k3!H98Af7rx>oeUMt5}#cyy<;|RNvG3QI4}E zO?N1j;AQ>^xJ&ue^wQ8oa4>lk1fhD-9Wbn!G1r-2uI4zzWK?4 z)2X+nRLfoYD2+6e6;}XGsBZDx0j^dcGD&pa_Xh$Sopi{KT_K*j`pE~g^M#l(Y#7j_ z<@1S;fP({N9juI`A1kdP?LsAbz(ocav!B*H3lBQL#!yGks}x0Jw42}WANlzN3Y~il zqwEF8yjNUbiAt=cFy>4qOmk<(kpTkcXc^xz^R+BtqRbptSnteK!i;!kszn|-^8@*5 zecc%hNofU(wu9KwX!cDWpF>1Mbi4IyalD9zZm7$RSGcLe?iR5Yy{xLLD&PqC+><9X5_X?dQYpT2dk$)n@%5dQ&0H0DdDXY zMVX7ZjfX4rX?33EzLNF|&oBCp;GY!BjZn*NAqi+*1DQ3nUbu2Tz)=2+sd7i+U3qga zb2zj<=K7zY^Fk~ra|WhEQ#nJQcK=ThfU(t?KIdj91Lz~a-xvHI!dJp1aBc}>!7XFK zMn{)LS!XLuzl*-1w$5=`)dn07m{}mtyV=3sDFF&LH=)9<=+iZ~F6oOQY|SKKM=d`%V84Plvjx z5B3#Jbrnrbi)W_8CZC5*wk7;lT|1LG93jt57|%^luOwf;^6WFsq5Siz&XOVMf+##7 zV3v~NB^^6px5ZOJ5Z>5?^H$QhGBj37yPbu{TguHFb4x1%G#xV(Y({>ExTyoMQEtoi z_OYv{mx5=fO2jT3WHrNALxZ3WV8kz+<^zYdhQJmvpx zkFuX_>!_^U+_}qzFD)g#%Mo9>vba~~`kA|_WRl@UpQr=B6R_lL4cH!NtyL+MWi6Xy zAIW?|Y%diXyhX>oHgUnFR>WU3JyUQv$6V`L4u@FHZ%BCKWaw3yZIqFK^}0iMcvTZp z^x~NJAvFclE~;3mA|(N7AgLxFHL++^u0m_ywwkgw%#-TRi<0gcTW&qNyhVDnrNm-u zGf>k-Gm-=_Urc{XpZ;b&&7S#PJtJ+2A8`d@-}<-WOy6kk#ADTXHM=)Zh80C7<9L%J z7p=8bE-J3vLcyjMAHI7iC=ceAq7Ah^4a^(X+0Bos1aL<{eJE|d@PPoAYa3&FpVZ^39F^lb>qBHf~cAV&|bnn^)sp9*; z%{t)+1#7F`Z|I_W&lkG{%_RaiWJ0rB7xMe+I4O{Q5xmiA-9SCW_ z+WWe0sNR*fmsF_;GXVn!E0FODCV6$r8>9kuZ{HEtb8zRfRKydsM`>#jH?pCiO62Z@ z^hyLdPCh$!QtxRL7KAi|Mdmxoo+1=bI0l>Xjo?I!iILB8gRAY{#7Be_odjAzEH6k~ z3N2B&5Cb42M>NFwRJ&}M2d?!uYn6(gQu4hD?@q+Cs$3EO_!{=;l=51xB)UmQvgW-c zu9r#XN>YnYfpQaow4InT<#7OBN27ey?bH;Eh;Pt1J~e%?plZ<~Od3xt6R-8ERd&qy z#&SWL1Agp&ftrRMrfI(!sULShqR0m4IjBDJu`O?Qk2KC&U->|jmINhLFy;`_7dx=g z9SDRnm@Zmhln1q$V@A?WW2AGYn+bHogEk1AF`LFGr#LN>ATv$%DOyLpHu%;unLATV z`oNuh$vwN>xbGt{1QQG)W}moqrF+xrLdM1FG>=hm&wPx`Nbj?r;#p74Cd?^*!jzz8 zO28=b!Q*GXTThkEO!&=I3NbTZiY7BbfrGQ5TDR|hp&pInP4~lDTE_EQ#@PvzY$P>o zyY39dMP4aId%$nk#$l+V^4I3Eu9$!M)9 z2!8g6DM@?1AtXz(fN|`%!{NHelE&c(AUaP!x>|gy_q87POy@7X)Z$PFxQ4Wjg^J(` z!fq`27-9jd{O<;xMSAwP{>%c@qVK2-29GA7LSStLXujR60v|-WLNIIH+kuc^Fu>G{ zG(7#3$W5~C&9zYeUeR+L!8W?aE z0}f^|V3OFv(fB5U)1&TCsKr1>bSZPtxcZ&d1N>f-uYl?91QkolDD`qjS9B+sP`8ki1TF9jwzsBTvj)A#_ChxX`jD4(f>VEReT zlnHBB!loQz(VCXwK^Ppt11Y=A7!1yWjI^lz(aHp(_E(Sa- za&=q70b~dlfCt*OFj`1qQ_d2&l8>?}#W{a{*saE<3@k1ijMFOt{;)jyLz4^9JJez| z-qHq~&axTFoEk8Mb$@;{r&aQ>p+OF&2xE?WWy7F9fe*$Sh}d;UmMlmLb@)v;$9bp& z37=l8=Xqfaal2VbQNBtyC+>r{#Y~yN?*ub(#rX%{&koAtFOpj!h*tAyh2nJ0l%;lW zDrP>odgTx~{im&pDovnb#N+D_wghMZ5HO}U1-YN@y{U#uTxky~)v7F_xB7(uO{glT zof;6&O8EW5FHhE*DSL+vrM54MH;RDLOzEcYnL*%&iG$Gn6=ETmy4Q^XE!Lm~O@Kj* zlMolUba6GqC{0*wkkS_5H7}+PLctq((oS_wP4oEIJlIcW%4^t?wQwKx`Ez2uJfDl@oOcB_hweGyz!eRlL57g%hlbTh;#%5n zRL*ji73XDH9s0R1E{v0lHVeUoPIS; z@Zd{>>gXLOZPfB@oE=9}0%Y zwtQ9wPA0)3Z;fOBd~*vRB=>y>50JVBfxocN4`zX(_fhBp#YK}ZpxS50ZZ6u4#@%|m zL7RQ^{2J7ay@)Ky+J5+hB{hfmo#mTDgk3MueT(iy58E(DDjxb-zNs;8GaI{q$W0v@ z5;c$gM%4P956eCvn@50fVr^67)z`9W$iN1x`s#p={6L8-856HWcC3HleAMeLAe3|W zSPBo}so_g~?L5A4BR8iO&$hcLCOw{NvCAPs2>kr{^S6z#(Cpzkdj zL=+pf*dU8K5eqmf0-=HhFw7jcx2x>9nu3jY4*aD?zSo=mNdM+j3RY9uW$OiK`9nA^ zpmWnJH!+6$frWAWwxJ}}byw@w6N?&kY{Az6y+rh{quHj2RG@ToaCgKuTNFxVS8AXZ ziU2DRSYuF&6`@oEZ_6gKx7VXm-uGXyg?q(fVF_p+qB zfH^L246A(iE2(pN=h#=IF~WD?#r(lFZhYxu_3Rqsx-$O2X!fiD66ooVdH(eRM?-vV zqRaCIs8)|CAC#}D23SP@>PBBjADMQX(Y1YJz$dYcQo0Qi%SOmwh;IZ zxBe_8A+1B}k`D^H!N&*=yl~73r}^L~{vAHow*v9m%7Tr>UCd!tsDMc;Ob8mf`@yHB z<;nIDpLd;=gY^dt@oS@?fq|V~7G0dGfv=mC-~asVnH_-FH!DzOuWIf9*)AA%=6wu2 z^RP<3in<3(ud5tJ56|oCpKa3hn9o|n1}0Uxje8X9HNUtyB(e2k#o%Sf3<$|N{mtbM z5vvWBiyS{d6ME}#9$?dDWFVR}#ziy5VcWBjT}a2{(wJB%rp{kn(3kCAnc#Z&k4oXM zF!rAwxOW%S5=K`h03j@vv#R*i0^)Tc1~BbTMv13hvXdKNTco=O@=f)-X6diTHSdk` ze%b8BAnDQ0t^8LM9^9j}v-`ou)&aWW!-s#@+^Gu2Te>OTG%}2^gbPX>0N=jw=d{&} zDElzt~m|KkPVN-$|+F=q?s=Z_yQ_!xHwu#;5tfra7(zk^U6wlB>4 zpRTOKZF~Topc8(7CuxLLpcB>EETDFGoXjjGsoU-Q3FE|qz0V+v2+-n6@xh&f9O8Jh zSZ?)rk`LS`iH_u+Jh|MuBn!NVGd`p<7Jq=ekm381QIgb(W9CZm_-dDIA1ruyneqrwPkH9@ofhK|Ez~ z4gIHgf|qOY=#&kc;=>1b0>l4(;A9ENj^Ksi4wRC1rSTAkt03qKG^|8ntsa#`8TJR& zO|%R(d1nd^N7P-TZERijGRt$X7k)Q3dCl0&%uo#Tq#3ZjVH7o=m1UV8HjWGiHEk7BJ0T#BNvRj=^QDdWLDv2zPATHF^t zY=3=?D+J)GVBoep>OJwW#>Q!sq`5gIyn=lau6BBZao`ZLhGYFK7BdZ7L! z3sQ@f&c8-4(Rw6c7C3LrS`pFmhhQBH!$!?dL%;8GS@PBuDK`gb;PB}+-QxK66nfG5 z8%R*C2ptdKpMk#aJjkkIv{ST^KGU5rlG9S+)&olU(7RMRw^^_fV^vG^2G1+P4KJSf z^=4~g7vG9wtXLoYkq=D^COhpHzr-Jz(_qnJGCUr z@C1OyLZUZY1|4Z2qvEIagJbUMDq4Z1GRz+jTWs<9Jp@%`+HD%O_O~u~UHH|@v@+eM zb3ONJl&$WY(SS8)>Ka?-HjdO>4b^UW*4(<>9c;^#+>T)(Cay@lQgf?w8E-g3Ku+^7 zJ>JmGg4I99p+9-3{Ls!yYJ_y;o{u_Ke*cdsrxDpV(QnCw#w~+X5epzeNQOh-$1NYf zR+)77M*H}b}F_GoY1GPY^u>t*RF#RfITUNFG>MDMAKKe61J5Ku4Hl^)0;LjS6K z>V=`K*uaM$=k0i!Q2FFVoZ^YiuVv#spJ?&3oym+K@0_b!A9UoEj(>JnR=Fh9G=X08 z^$kmVi;X!OGZ)6?A{X>|^Xz%c8SN76%a>`Zzh{E+UN)chSJN>7WCT8^9~>+%U#t&T z*|z#eaqU~QFQL>`-0)VC8M9WY0b{+!`;a0RB)kQz26yRuC21W z3tVN|Y@&Cu-!IZi$MB+g1N+?Wh*$?O&__eMwemNN}x!Bjj~6KTGzDo4y2;HV(*{r>s-w@BA9!%R7sLyUY%?KVi& zX78M~yZAv4kBtbMfNh|y0?i8qK8fD5uHjF(=en0xE?F4$`SL2|1ylm} zX)Dvm1gxf~`y^OsSgtX)eu0Vwq&B>waHiYl>ZV`9A3yr9nVpaK+Z2oTkM>fxn^unJv!x19dWEvxr`YyGQr$|PfUyn!k(-tW+2 z#$Y&Qyj#*H!G>u*_cx33p8viYo}D7DU#NX-BhCZIyJvdCpndrvhWHYL0gx+0AMK*|k@B0oJ@R zFydxcOG*By2=9B^qee>=KDDkE+ubr~53#6ZEV`x-%_-_L`d1t?ZZnL$a~y8DZBn_Z z0g!};26SIys+(GDkeWvL=PkPF32{jpYDzBgoSLK(!YuND+{5E9w%s&Hy?VdKI1cF$ zCkw!+5JS6V%+Wl)X)!pk!RUm>xv6)@-FS*YHn^^f?Y7HN_VCDu=JuzeJvsdY{x^$C zD+Xv##6Qdc4}@5LUiagX)-sZo-JfE4n(%CUZB_8T8VS}quOrP5!il<_;@;)&k3~%u zG=PjmDbA;7-+6nQ!xLVmz<( zx=UGl#V5C4CaLEKXuUGT)^~1e$_uz}R&f)zMH5X*Q6Wow{<(BcNESpmobZNjQ{w~Z zgWA}l|J(hrQF|)-67=S8=~>|x1?>6Po_Ncg-2J&DSZJqhPOKJb4aUK9a%|V6K?esk z6aHO;1x|;Ranu8^p?+H34m^EsWE^iuCNDP7y(#W*3aqu9AoF9%^3~N%cl^_YiecB{q4P4$4`9VX zD%m1sb0Qp1TseT3V6oQaT5Ks_Qj`Gc5bZkAob+6ul&WW zmzQ)7ady3>G%^?t%SXt9V^90OWT0{I#1o`B;YWWHG_%-k<(_fOP%#3YzLR>_p#5Cp z0Ol1%`xoZy%?04lNBZ|qp$d`HHM>AsQg}?!W@~aJ+EUB?^y52i8Zl@n+xz)`3D10X z`Sjn=b358xH)E~vh1egbZT-jRzeby#X^Y@NMTJ64{ZZ}~HBd%rn1Qw8W4g$-569fz-;%rd`jY+;`V8n6Hxc%y}i84H?!#ei&Js%U998y7T zm$4%hR(e0*ptiv?6l%ru3Y3tJ7>LAZTw6X!`b2M+jmxvzccvYHiisDWkV^EfzqHU( zooJDlO$2Lk<2(&JnhGW9Ur?d`O?>+NZ^pS#7Wq{TjsQ7uyx3(h+UCSX+4>|i&2a5N zO?&U0Q-9^^8#*on%Qe>e60Kor4zZJJnb)x^*W5XK`}0>^?(SUk^2lD9+iRfLkw+us z6IVU|iN{|nE+-#VPVMEd`MoYf|3wXW48t+Wn|g!lK4Sor>$(1bjvo(oVv}z!@jFdt z*Wjw-SGOXq8qM9PCod?Gv(tJ>v}bOiZgbFEH1TSIazp&TvprE0Ce z8#zHkuVW0pSp8sKYB*hYTsuv;Gjbmo)A+k{>yoOSazNj@UV2$rN?P|(Woi;J#y>o4 zY|H`M<^Q4T%;RF--}hgMiZ-Opv?;_HDw6gjgAh7|Fe)vIwvqN#QArCqlBg&rgi=wN zcF{ygLTGPFY1+4GoqpGQ&gc8b@AKDrJid?bIWyDy{d(Q^bzj%>jvIWM#nR1}pEh@q z-m0yqw^>*@*4A8N=C+G|?aFZQCc1rpJX1WX!~Nd!BGc)2@x2w>Hy%>Na5M$kUgpNA zLV=;%^8Bwn+a?Xx*Vdf;t{6At>V?8CDS<$}I3=B47NjrV+OWqp%B4|y$KbA)6=JKR zR!K7zT2(C*2(dVyTvHP|Ok7u?iUV>uEQT!>)Op_i5T>EMLfUE-;73_Sjs5$z-gWx| zyrKN#Ve;%*r4M&!?r!#e4(8Id7cH)>v?cCrW#&*a!+O@jM~#wU%zeJX7iosHC-CLNg-vT*IETirjzUaB`9GP_sDyz zj#*fsZiuBhzTNd6(~bmtRMSMg5UPmw632b;hPXR|10@G85}#eLBNjIc{vy-{gn+w! zpRZyWNib;ChFtQY58w7)g1igK@1kXLhLigdIPlHtrveD@h|O;({Y1SP_^{v!F{5{B zoGt}K0oQ64tEd?2*&r<%@jOxhPgXcB_tl(y#oS}o zbf*LF`|&uVg8#mJgRqbf-X`M@(zYMifj)K00){oYxn!xUZ>edouRNsGzo>KMXK2@s z(wSG^o>rG`+Q`?R(L<1~Qo04H@Ua&(PL;+{mEJthZa5c-m$|jXU%-l;nc1PeKfaTg zF~zG)4Koy|4R7Ul5YVx+T6bt9_Py2vX7%df?qni`HQGcY^&UWNgWpGkI2o<<66`&B z8;qxXm{V;#g-D$vL_Tbk-6@uH0f~K9G!-?cE_~+DWRj~qqFYX;J>^&>0l|z z81^gq?kSfr?$%l=7lUErCFG=63-=Fiw@iqrZ1*bK5QVI0XYKvBK+9NI+;11D^wAc2 z#_}UEDCU=JBJb*uvRQrwjUT%`5_^q47jZjCW0DD;5y4NIX4Hl}ay@#%HBo74s!17j zV}p><;W#AHLvYj*f?w*WR)nHp!C(2@Kr*;eu}_cuRVAG{-Cz`#nF%yP`~&US9J!%^ zW<64Y3%re0i5X5d(yKyB@}44UWd4t$;Lh}=44S>Am)MmwM@vb*UitmyIL74T8uLpa zTa2DGml%6^*rJP`mEnZR;Ki1t{~j(CT;Cllz7VC9OC!>wH6xx9v5JBiPGn38*7(!x zh_jZkV?jA{D>wm?N#lmswJjz7-a$bF+Mf=ojT(Xlf&=^3USn~^I|vRvJ3`Mw4TlMa zvIzcl&RWa)+aW?eObrU{9a!^02ZkC{zUbC&y?JgePFZ?$e!*J(fG0(L1p?dSAN+LA za5@gTbOB$!SWm=d;zLFyL9`euwY2MFOw4P>1IrXM*qRNdPk8VUcnEHlrPjAb`6zq+ZFD zl4+{F^w_3xj{mbGf2DLQeVtjKtdalIS-q)3?p1}A+=bw{$TV$|s2qbxYM(HdxE{nU zfcS?eKU*pB5BotBEIAcCJGoS+F|0x{mYGY&K#1jsqD!v&%@$~wc)3D&8_&M{HHiGn zq;l=3Q<7}B21!&P4EKBRbbYD>>N=L^z8w#VtaOHxKnXikQ9G77W4N!+%`eBt@I#~C z4)ePo9njmkoY?ovTWnb0%`#zdMm102!@6y~M!!UMZLVP!OL6PbH}=G_(NGCf=;Sa+ z9sutN*GU<^ zDVRLjV+gV`j*)n25L6Y<=CDYA?pYk!fSxSWXEneL_A+N52z;zUu6+isW`>ZM|G^Rc zxU@$`vrkpu8{1Blgv7)R`$Wgj)Edo4|Mo@6j^Rr&d9UOCnq07%rlzJ?;zLK*-epc2 zE6wRX%3L1>C(HA_Z;Zj7prVUO>BdvA+7#CClx`Rvi1OicA4c$?5geZ;>V~g0lHDh6 zd1V~1n)tbn;*AG3(m@X6aHLH$OE2&$FlYoip<;ci#t{pPdQIGHu^wfmr-6BisdxM_ zaPBx>{^MXY#3MZFdfzE^?a{bfsdsmm{dOwatyB0BMsrOOeX05WR?Y@NzLf6Zsjgce z9h3#1B!B!PV zEVkUa)y=o2=pvv zhGDHoXU>6#hlJJi@2V-=l7%Z(OtoVxb*T*^m7g^~1}XkeBT^pS!)a0x+%C>f(0~l5 zR3FUjm6A7?fWcY&Q$^?I4wgYJa&VoU6a75_b=Px%G>TXG6E*v&U`c4XG>*KP!Ll;* zIfdV$&s|JJ=1UU-y$Se&_siptGyM*B>?G^|QgHP?Z(+gpOlLTCw5*T%;u#B5dQgyI zYOTh~xLZFkI0wIIQc=DlRzol}O*Npk!BZ{>a7KGet<>6ffvJ0gFmmGcpvlzs9N3A% zfNy=8;{&5b467G0TDHQ=1|Im-dm6;rR@cn%HS${~+|JM;iBcQpMpNgXI{hMq|NPAL z#OnpW1_3vvnekdBbh#FoaHihAUHAZEAgWr^I~qqM7TQL4`%=t>D}C&qXyI9*!iWuo zPcE5gA>sEnJ5=@KfYICq#%KQrDtF0)qx#vIy~E=j9ty&X=vhW%hKJ)-DCP+H5-Eod z#2B**Ij#KEelTVo`Tn)ECAGu2Awl0 z-H1`XI{7{~dczf?xjzRISv$`ZVhq>(Dc|L!D1$cHhDN32wam3wHGb1khF}u;FWZ!O z3&pr6gMn}aXb~{zP#fr3czXz+h-v(XZjX9Rs|yP`XV1KRqCl6!uq-z0_bh>SfLwx$ zdv2(G!Pv7jRs7=?VP=10L7-VIg&%3abiHcN@M?b_2{y> zez&MJ;1T{@i28e$J0=WO{E;76CiTP0od98Nu2M1m8}^S&IEJ2T_o-P++3F@6!V{n( zB=5P_`>cA<{Js6>U0_z*5Y_Q+VRbH9kk3J3x8u?RMd38D^Hj^Xy=hQebrjm7$Kv%v2O4 zMzQ*}?ZJpjWjJBrn1(Lmubo|P8`kBKmsCD?yN`mg>6a+|=csh_Xu~9Q!e<)VgErlP=!OKFY#{nfLRs#pMKl z;h6Nz-!;vu>&P{n*={2#ijv^=1p9m!lsc_YN^?d@(Q<5z_ME2_ADEyze0L~L)!5UNe z{Y?f<0yVOE#S9z+1vz zt6k^c1!l!~kd8KZ5~6u(aVY%{^ZK3|~xBg%Da;3WqU2Z@%#7l+XDa@`bG%Id8A7uh|r}s+A47 ztknVvSK-UmrX$tI`JT-*bsu}fIZ}N($LDiTp(`)2p`L-cF=bh-3@30pIldi|Up>K_ zvJaBPSMXm*Ja1N=0FziYfIB zIiR6E&CODB`kUU;$kRaVZ8ck7dZcMy?@RD`&b&`e2xb{F)BO~4eW%eD0aq6U*dO7# zji^)_8)Zr%qY8UHjfD5re*AH!E*g-B*WVD1sW3%cB!Ty1-6wCkE;7|WQR+C#txrg( z0u)b4My27+u2ff7{Y1N~Vw#lU8P*dgX6yXwB&SO)cwNmVVG|N69zwwskrC?`2rk59 zy<^6WS{N*Hlb%$y?1l zZl^Yd@iD-xviUq$o%+-%$v5RFkp$CYF^GAWOQU4zqNeUD4pF1Gqgz%%ep_c~P-X1~ zp;SL}enuc?X%<=`cIQ%kStwqSM|rs4KsuT3-+Os>9_JTh*sI7uPcKY5EAwpL&lfKK zUS3-AaY`Yu)@!;LranYQQ?zyzm%)9s{Lp>P2=534cSp=EO8=RIiVNzZ85$g zts2GGFLF8f?R(%A7IPREii8h1-gAFD;##p~HSlabzst=AVr?gQQ>m5-Xe9$Vb88)w zyhcoXHNR+5KG=ApD?}{Jm42zva7YyudAJQJz;vif|9=m+E%96!Hvx>pjgrIMzp@5= zt_IJ-`qieZ1ffEr7Pxp?Q`olT)aEMZ#unEC!mbSU(pjtCGw{_({J)JmrC$(R*K#ZA z(L1Y*T3T@y>&Zg>O^?+4$8NrQ*}VI_twb4lFMzlwVs`MvGJEOZd31E}DK8`5UlC@A zq9AxK%2sk1{m0tYjvmIpT;|RWin)4~wdthFlU2Gy8;}PnYQ{KlMdO_e<7JmJGsXHx zw&A=fzVN?~uW8o4XGOSDQfK=t8V!_D&yFOv?i|*NO4}bn6reJo2F`PeSoGZwaNM0~ z)81$rpYL+N6iSZUgVHRWeSqUVXwLZ*v5Ingdgs>8$JWvJ@3(cvnpmBW+o}BE<1PCu zL;W=>TklTA#YNco&}cT&JIkKNoaP`mzHg0XLLe=uy#>!`tZgeBNV)k1E=d`ADgifJ z64b7?yGIU4x3cXmCHe2ext0mzl8R}1UC(2w-NcdUeX7dJ0gp_r_#>-oXUl|O&eR!I zIz%@?zI_d#0V0z{s>ww(f_1!M{GHutX#|96BxMVr$M83hjk$KX;hjSvdYZs{d(DfA zo|et|IB-%gt;QUzq zfm()R+a@~6UvtR|AhBXtbX?BAXOHfMF@alECdIGZZ+k0nqjpOi55_O1K40WSlp+Z? zg^9e=0laj`z^h9u-V`^`J5ZuZe2uq++9ueMAQ<|*br1xgJ6qiVu_7uwEkVA>A*(wu&?z7BDQo^}!X=fqRIwk&e0xEiG8R`8p1u`Ed}`d9_s>zxcbJ1u z?vw;6)KQ<%!84pDx}TWq9H>8Bujz9ivuM_|*ELPDxVgXr!uR#4If-<4PQJll_wP8P;Cc-E63W zKR7-C*Js~8@v%?1gb&3({B8SxzvVynGL*WhDPIZ7&_CfzsiQI^9iJ7oqnIoO%EIOH zf31B5$-$@R;`}Q2Hj}C8dlygEYgW%}>=}4MSHFy9NMP6LM>`l6~a87*LQONCWN+Vtgjt8Nk6@f zeVMO4s*e5Bxk?(6EQx_?bEEjc(z7Y3uRrl$)d>I2x)ImWD@xC05f*KV`Is1Vw!Rzl z0X=&M>KwmXtyN*4&MCa!nNNN~u6bwIF;kl1q+SalfnZ%?ycb{LaBSHTi0;%_@{-eWUP?aMH4b%k>a9XfHM#Ii>~-xdH#y&!AE^9JWI?EEl=}jMS`X^28GY2o z22w|}7f)Tr_uK$k9a=jy+tU&Mx-_B<=$@(&BCx&PKV5$kKjfRg!XfjBi}Bey=lvuE z9lW1{2ChU9M86g?+>*?yTZH!oXg9lPVs^di4{BTj7TR+l1;YzMZmm625DKe=O;Sd4 zx&Edfh#h7bDL0i`HJ*v?XU~AR?B(_Sz#+6)h#J*DJdjI{V=x)7Bx9M@B#;p;EEo%s z_op`WztDW+A|0N^@`}f6eqyg{3g(YH*MYs*^k{AC)1~}2n{HbxKh9IZ0avtPtHH{k zOPF4S6q_{J6|O|^l)Ld@Bs3_B>k#lHj+#gTo1*3f`&U1m>DsQb%=ftn=c#@(oR6l3 zq;!ICpt_iz4l7xj;CHCGaD9Thm#}(I5kbnnZZAWBoN9VA*QIgXkJ|8Za3=Bifp|M; zxDDrOM@#29GZoe$j(!7qUm4E94?ln2@htPKRfz{FB4FmDL)cn<2lgbuh*T+!^UdP^ zjrjy0St;st@ZN;0c5cCcwlrGNw_T5 zUp`Mr1Hvfh_uyeS{Y3&`5NB-IZQ1#!{b(EeUn^Jb(!}B;pOM9NOrL z{ej94taX#+o1o;97{mG?+jD1y{KM76NzuW1mkS0smJyr`mZU6Q3`11+JRuTVSSa1; zZ&R{N5UC8w$H=*m^dTXAk8koXJ%?%pVj3lHjEb4py$xFY>#a^KfWeq^#jC{ZOrHt} zqS1IaPgw;`+3P0j#*R+(Lnnm`V}98^C$&b8>niU?i&>XyTh$PfiwbS?BUQ{bXo`d{ zj7mFM_R+tnx#P)Sgd7x|lcs8Y5V}Z;P0n09qz0#?8d-67lK<+j6t40fCqz`70}7EP zHBkw0AYA!TwD5Ur(NiVZ7F0~HJ%5Jdp3zKLx7gC}s+La1;KR*4W553PA(xEfkZh9f zf5t>zHs-ZDLX+wa9#n7mTh(|@m)=P=;$h4j&&pi?BDcWhY7mAzGX_&6MwhQ>oQYkV zQvO^+PX#lg8a;af)X3=#6MikQSF3D6{#tIG)^5|Q zT_UXob__?8)*S~WD1y%91&{wQ)>hOMZD;d7_Za++WC@|iDP@SBViUbj)Z@if$He)Q zt#nf=X-!bhL?a5^IZR)9CQnV*GJjrec&!LwZKQC;Y>0L&uD64OB!*0Qour|?hR3-t?2G{A)s2ZZ?byFZ)3aGsf}w46R|(2mg}Ku=M>Zv8 z2oa{3pd7g^y{b{4TMd)<59W>-if0|HrY5o9b(enyeukNwNxs@M^1B*zv8l`@}EZ`Stvz%aZXR>&({t4d*$p z)!*<}n6@2%sQUh0_UctI&&+4?>yu;-$Syy9N638iK(0PYn$XF!_e(s8=fkZ2psT^g zyaE_|WKulh2CJousH;nrLD?W&+?dlKICQYpTtsxt-7w^Hr zLFTaZzvp9_*DMx!zkqcjeTiMP3xNfVy;-IxSlRxW9jHA@^$HJbnq2VtfjdQK+5$vL z79H;7HnhNbt%KJq*@w>&8fRp7g497?Wz=Ude`IDlI)&%x#Bzrsko|5Q^YV^YsUU3u z^|SV`sMD6;SB#&ilJ5KXd25iTa)^p);Wh18G1))YS9t3^@!jDL7j9I?|Aw$O*Gf+W zSSGN)QR1YB$Tb(JQk134j>38Oy3JY6=eu9zVT0q%ZVQk?)L>;O^%!kiYwei*oDLy8gBr{z>%Zj6RdpicwHfegx^_P ze%I!aHxu+@?bx+9geDGwcFim-Yd;_D(zrW%P_LVv+)Y2w-*(w4X;sPwVUrh4%ufn# zFSkK_n4|F4O2ca8l*AdSQN!_F)cl+9}h3l-EQI9$l%z&w2V$qXBW9i#cB4P z`0;E7VZIROZw(j~sU1x|P?V<1ohw!-w+&2KBTB)Z*?3R>j-oNnTlSy&wU{)1k6lt$ zSctm{{AksvuJcaPRqrIWp;Ykp9zUVbmw(AdFwEOB!Q7gmwb-`L+Ag{1lm-d&O2%+@ z8Rs|#BQG)P;#V@OXAeS#o||L0dcP;7j}y(HU$IqKvfzhy1&M^5K_-1*gCXk{nv_`P zv4qQ7BF;BpJN-1uEv*l8Z>;;Tq0`#@qW1nf z@hYaEA!MSKFss+PW5)jMu01>6V1SL88Ug@zKQEXY7F8_;2USr!A-ER zFcv>pI1w0}a}3Q$uD)&G>}-H;a?9aNxvzB0oAHCr$rmk%SHaeqq&4~H@u)FqnVAy> z4q2ji2Sc(rQ{5o+A*|B?o{!QekxDf0sfK~M1Vx~q?LXOVBdFjy1#S4=Yv6lM=K!;h zeIUy61Sj=U5GOm|7CtsvZ?0B%hL5-xx%42`Id5d4^dZdzGv63;W&(R7x=>7c?RZ(^JTThu_;QSXITS`C4RqS8Vh5g!X*(WTMxT!b+X z{pHebFIGXw$Hc)Ih$OA)u7sxdR}GO3!$XesJ%W6~?Lf*$$3mfR^pXz8S6D{L*<87+ zl21#G(2l!0y@bhKIVGVfQ)Qg-Y|K&Br5|M`*~{oQid052e`tOLm%-`y*1?drt;IFp z8Uz)1EfeZ0F;&3Q5!ZrvmHX?M=+fAMsTvc*Oh%e2Mz33M@53zASqs;+r$O@mnXQ)Q z|I|6Yp*5X7F}3L`n-EmW82rL2Hl|xUiU1!GYjl%M^Fl*Wy}?LZOgF88 zh5vpQtBN)|%-lsW|CRrCq9Uja9WBJ6e1Nnp6Da1}e2}ARb~SJEqTcHE72d8;ef$OW zAN#4%S|i&h+hK!1(1l)DxI6w$?$g1td3m$(o?bO*7nfN|O?`T_pr2c|_aa||QqVm$ za5+#+UPYA4R`CxM1z)Rw)$ET@2!gn%eTQJAZ@9JBG#;7L`MXIO#2~)FQ!9d=;WDFJ>h!$OWW%%%=Qak)-AliVtot^hZP-|m?tYT# z%jvuULQJ=Q`AxaM8@33yo7G1Hf`WSc^Hxloq^?qkp;C*zhHr}PkC{$W^*%Y`fC-+e zv4T=?yh{daFTl9tZf8n&l9fe}Z`-D(pt3X3n6EbWj}RVGiaF_428^j#xCYk`HC71PH41g5t0&$}eUUA26rVukw%I+Z60IoI-$ zds(as>!C_9BgMPfMJqF$UWcng^Dy9ZR+8&ml{~wDnb>>QJZE7*Mz}oczkptchHpTQ~l7$*aGJy6kyl|3?4UL1j|> zyx|j*2UHHHl8-QG(O$H}-sYJx%*h8IwQYd`S32F#+1T?pJh4DMs0ew2tmB&!m$qB{ zlDhB>mB%bN2wMN`EIR%SwZ477Q1gl6;CcC#0>F&MVeCs=&@*%()v*2DqqHTV*Sd8W zv{1#_ez)M2F*}hLs-`+`i%g3=2%NiyKUxx}By$Pl<4Zz6yVxAISm-_7?23DZJb;B2 znQ)89{dIOAPiOnloWa=5RR^~-ev}dX?5rby?G7}TsEdT@B6WTi9^M090pbTf{qL92 ziz;<~qr9!`d*qF6T4_0BNdf(Q^3;3P)vtD8qCL+kVQSmWn&@lx1OTFapyXQ77nf~b zCJlkl-QW?Eyt*(}u?DIy>1as%ZO|@s)!6hbrBAeU(G)R-N%$6{w;5@wPNG>GeE##V zsMka|=DjqkCycK$=FUu1>Ym2(@ z3!!p#Xk+-LkSVqNjQ&+o5bn8Sy+LJG*$qasLtz9m0sro*!j<1W(HES~ zDc^*jJpW9y5s2guiIljIBPL1?GZE+&U^hVxx=l$8ZvgHvA2)`>N#g>N#!eq9uT zzgfFARZ_%jM+fFo9YVFMh}|PSH9PhB#?HlP3vqZ#uaDL>Y$UXXHG-ibHqOFS1^uLM zo$wz;%1IgPqC)4EOqRE6FV4e6#?82PG$6sgbdW(4roxANw+gC3=QZ^n58;bA$w;E+ zf9=$q#wx&-;WjDVYX>X0R2VG~Ji533AB{y1bz_-$yW>^5yStxT?5fdC>dlew<4@nx zCKf!optpamn`l&TqG8W`Wms_3b6XsN*6O&s!2$jrBermG86ix)a%pt`J;>nYqnIxW zyV&hZ&r(?8)8IKjtS~>E9XyAheNwai#Vvx`X&R6A6c*sj^%)&78OHM;{hI$wQP8`# z_rFQJ&pz&GWmY9&QHH9H^&5bLWnf8{aJy4efowE|>=hFNibWy+8iroxS|0-b7B=>@R z&M=iAb0D_t?t-JG&NWh4uu@#%{qPCw&7+u~xzK>j>rdxJ2MlXRpI`Z$|IFUf-jbk5 z6g~T2Yj3r?g`GfR|+H!nPheQ#=g;ZjyyTM zQ}uyDwLi8Rz=|NgQanu+$iibEVc!|6#S=ECFCV875&U-vvvV>)#+ET72tQ;ldC;pU zPQmE)Lo}C=-6z`xChsWvmd<}P-qFg4Q^+x(-I>`-Tp0YrJGix%j16HWj8_@=g!eq( zCG{&f%lN2`T7G20!L+6U>dlSYNQ4BD@J?2RO> zbUBth3X@>w1k1+koV)KQJ#x$5_k1Pa)v{^5kiicXT@9WwBt5fw`X3&Oc`0`bKvG5p zk5Nno*J3vuN|+wrcyuPw=guB{6K<#IPv9crk#E+F&7S^sb$&r(&5u zlOO+iH>&trWNyj)RO&oZ{q~mOmKa6N&(_Z4X~~HjLg_!bFzu!M&k-U})_g`hdIk1yc7mXE-*TWNpc@Oi&zxBZ+_(q;;F7o{>8lLZNL?7YoH3 zJV*5-0_E07g(`0I;Kc0z--Go64_0J@*afU`sLi)2bdvq&jN03FZQ;F@l0s z!2|V&a4Zl$hi#36?1F1g1==#z&b{7sXqs4knMN;oH|H#{hqq zO9IT={MwUh8jop2#fR+?S**-V2g?jta(7!RdjGu{r>>Wm7mWr9gv7MD5b=+X^lz*A zUrI9?JYqNI2Y?c_k%sLT*k8ap16>C8Yc}F~#R@b+u4Us?;5^lPKZ&l(0Ige0nrdacct1PQy6m*b zqfzhCB}WybI_x$X-#v9S2L-^^OgH6VxoiG$dtqInzQ^1t!F~k=k)@!?_6Qa^nmEG* zJ1hzF?y0rXL*b-ll%-40xir$VPDs2p{>Fa%150({tuN=2P24wC;ZE009rOuuJX|H+ zTP_gy`cQxG80OE{GGY%^JeZqavKxFnjOvM2%KN$t&_M8pHQ`4`Zj=Ztv_EIK%B~JW>VnW(EPh63y+>6R#3o7paVE zE2Tf_wb*UVm6vRmI>A(vDpesm}uG`XEF!z(9) zsc}W0Zc`rt+J8~D^`aOb9XZ}CrTKv+MXqZSFxd|qgu7_iuV4uaE>Ubz8YP8NZN4@F?hHFkq-mUid32AVoV+Sj< zuqI(wak0jV*jqR!*|9-T6(V1Hp_}>-TO}L|dE_Y&*kK6}i@h)Vuf+}D1nI<6cYGF}5 ztot}sq;fa0KH1-Cxw_e*1p7-_-U8@rf6u=y7)tllp)#Tf+H#}m=Ui50-l=ai`8Zl?J+IWk^z<%x^Rrp?qw%Mt$R=zy^R5_uP@7>2{*jE}2LL;t1}ar!q-@MtbQ zIY%;$Cr)@wBZFoqe}7#0h~?@?%9>2Dho|}K!h60DQkdrRL2>1#*4o`OrS_J|VbIfz z#mn!wqu?(CUszpOV}J0F9ESQexgdbQl{B?X(0-*Fwbj#r`{IZC97NIf=1G^%k~qfg z$A;U)FR>nVB}xaq|6rd>1s{)+*Uv`KA~JU43J%4iENAmZBj2;;f<|R;^H{ z42Y$~u*zM~?RVwlYlnj;4l#XXFb)!4$E(a^@eef3G^S(S77~N?^3md&k%@ivcG1K7 zsQYfH{D}pJib307suFA4Csl3+CO2W^+qP;hhi&LLBV!vF%nPYz;~@7EH*Q*p*}(8( z?58Bs?h6KoIVRGSow@8o8{(MSK6h+282=*c`T6vm%DJ#l#rx8%HekG-<|ti7Y92oO{`A)M2rS$Kmz8RisH?<;l)G5A$9gn%H-H*QtoW_HvDRa9UW!5^pQ{7# zs=p*!>|Vs|bZsp$nyYiXFuQ&q2me>f+ZpMTBP%Lpsd<$bLn8WT9W|kz7c{nGucn2? z<#5KMDT7azij{+Q^#XK?_2LjLER5F3U`=2A1=q2)OyUW{jMe$Y9syR+k184OYfSG zKJ>#i@L^tqdWN5Kz%t>-AMGhS3k&lPWuJZ_?vrjPODe4W6pMh3Hpwtm!Ge4FqzDmz zoNr%D;WSi|O|?0YtzwD>pvd>tq_Oc5o?nvFl5ka?Nbt0r=hLsHU(yEy`-{YDA9d-; z(zyPc;DBqI-HHXXz^mx;!e9MW0vO^tYaQF%srq+)w!16K!*Zbc8N6``T?Bhkw*~t; zW#cE0m1EZ2k#BDqo%7Mbwo&WTz09)`l%i(%(A(WrYY;A#)PG^;>Rq$){UbJBXK;L=S z-y0~kdd<2VHG<(#)*(zCXr^7|4W}n^{DjW(Hnpw-om7CwTXKqg`!Wpfp|2H)WA)W8Ryk$0sRs11l@B^yot z!_;<&9$(Nx*xIobohgG@VpJN`icS-O@(XR{U`SlJXN3EeI58@&6S-(@Ft?jsK?W}yWg1CuVt?k5I+M`C^pej&XxP8Z$ec>u6dnac>6i~Ds!^0FIpr2__GVtLAO{GfXzU#(@Z2N6|0ZpyuZn! zdr}n!4<=>^F+=cNTS|ThzJid*?)oc^{VBk!yPChA_82tCV^b3u*4m zA8yS)xrgY%`G>uw0p5V^Lv&GC=|ST6vuI_vvs(VR{Bs#{qPlj{2c>TH;+WC_=GN^J zGA9>_$%8y%ZwaGTLYL>_S8@f1!r;GHCF+N9{oB)kLnhecKg@A2YlR8?__HsX$os2D z-${CcQ`K6)ePJxK*mv|dlM$zyXDhal{l=3@ZO}O9KH`T>jc9n{F-_oD>zSBK5Dvl0 zhrUDGjm6PQ!TdC#oDT5vjr8TuKbzPFmzjZ+dyGZx-b69Ci>Bs336;D3*Y-(n**m$I z>vbIVexLhBWh&>DtnQ2Z&PDHBzIH-hh<`)y4={lx;sqw-99$BUFK5`E_>l|dKXU-0rxy(c_g9BA+N&Wjol{GdWqj2Ygr!z8%>_UZG5S~YIK?I z!H)2PRMjXvGm=YUnRb?5B(M?5H5)yyz|mmV#~8foij)4J6XRjPkny=BuWS9@Jcj3* z4t!`V^BrA8@v*RQd(j@cmHz8O+s?Jz=Ka6Wfndkrwxd>(5)qMZD&Lp@iS@7yCv1sG z``y%Fj<0TVzKg%2c6RKlurG!~IuYy>D4p-5sY>4&{2p#R$9bVuxKCt_=`w-}pM763{UyXb^5>jO0|r8`FiW1{&@de$cHpTnU+N>Etivbw&TZbKh+ zWn5$y{<$#y_9fgCSu*$aU`oQkP&aviJ##L$)SGli6pV#Cf%_JdPK^DhfZgPVOgjco z$_)oTeR5r_RvH_d@10p`g7{(Z@=o3dx{Q)X&*@G24A?)80rauKxe7(q|fA%fh0#`jqR7nzqVlXSFb5} zc(a)Y7_fg11Y@=49k){BJm5nx;-!#xOae2II45-mQC$E566JcDnpt#7{`R>U_KkO! zG$57Gj%$BW=-czv6IqS`Lq?V{+Y|xvj~G+4_W!Gcf0woNiXAnmsIoYNTbaz?bmg;Mp_@Ly*?wa>+F5b+Jg4x zAD;6m5rfv3M&wP+@eEqi|QC<2r_1n8gwy~PeWm_P;X;%N)wB^LGLG1~$q-i|C z4qYfQ;s_r;p7Lsrztp7zrzGCCXo!vvXzw?g?DCa=*?Z^XqQ~dmtJCk{2~&+C0{^fh zc~XhTLr(2mgQv*jfZ6n%Utj>Lm^#+!85q3n1J%2)$^(Z%FIW6~brN|9Cjo{XhIPQ$& z;&7}67~&`?3{D(szrE|1zAbtS+gr#kT3Fc3$gLG+v__J>_r1P2NKw`B!e zM2^cTJa9Sj&y*6$Rb3i!LT!@!6HI8*Cz&_>2>?UY*eUT#UFWey%tktJhAPfq&8MC4 zQ(dvGvty~e8<3B7#?{up+Gt)pQhpK?SToV5o6|USC%az)MtAG%Mvb+%!!om`WNOMyt z_-B@;7zRe2@plvIxPD^VB`jSerQ4`Gg8Lq&N^;9oju-@C`jW0_DSztR^Sk@ZC62u} zfNcmoE9cX;v_QB%8tcDnZXlquIo(e)*GoPx%Bp-Zb*j?WXc$f(Vq)l5@=+QRO5hWj z7GY!+^h*oknp5SZ!!NoF0ffi(%Z7HjXwQp9ELb%7@Zm!rzCvKPCSGV<29#T09zmVf zL5D;UvEjUXkr$7t>U1|1%}xthdfQQ6%^C@3%E~~ z4?q7Z$DSxDVg-_0{Ue4VlV=V;9aJ}a;PmT^K{av~znOEs+?s7xc2bjbj&Rqz33XbT zOC;E%9AB!ty{>hJgN9U_1oT#TCB>XuijQ{JD)g?ZEu}2ddHT{x_ zp(82~Vrk1^0w_YRQ6-LTCVI0r_xogo>rXa#k{*^JIY!T#Nz|I;m>554^>4Gc>~L!1 z=bsPYzmO*rez7lP+%G1P?eB(>CDl95%8Xz@6f|y_o`@|2`YH)~oj8$IGi3&zRKO#B zmOmf=e5+k1Ttiwo=+Dak>IDt%;aQw2X6CK%nuge%Z_1O*;}$E{^g^a*d>S8HJ|0&l z(%=cc^=tLR5?$I}qTbr6wRNmTn{{S}^lx`h>4V~pf*yv2?x{1iDMVmje*M6&e9A+E zvyJzHin0KkGz(tVJ`>d7>9fGLZ=BU|tf7IZo8T$pgN|uU!*A4=`8MCpy5OIT$vXB(QpMUO>e+= z$ouJ&!ahZb=opTZ@`tD$4=7~3%E7l--AJs{y_|W;d+xf&#mr36hy_{83CQHN9xT<` z8;A8rm_TTg_QYS(51?WT%MN>4uWA;3e>{J#f>40HB_g-j!KEmucupxlRp0ltbQR-A z9*Sm(f1PB1Ox{nUJ=TtWSif#WaOn5omQDp*qELRmd+Z_4^F?>>-YqXK2a>L>aK}(# z9YERl`Q_J2geoG?t|_u;l07mToNQ-#q+ttPIL-{?0&Fl6aytOsx6d|dXyhVgdy!s6oS zw4R@Nn53qk0>r{>&GHv-Y%O{6dkHdEsNy}<6lP&%d&sv7jrsMOCB?-Ol;PRgrhFGi zr%H7Yg(ZM`B+|rrKVcXn-Rx^Uq1X_%JW9osGjgkJk^q!wD5=$aVFy;KKaXhjY>wb- zS9oDcNyUoV*BKG&ls24cXshAS5%_{dtd|&w+UFE z+^Thf##=02GI_^#B zhJz4zft+03{n4xwt!>i-wW9YnLog+YVhm-L(w(NdO38{S0v+;XGTuklSKick!Wc)! ziDFJB04K=XG&MC<=SKg{u5+|YTBF?b~ROz-9YwJ(kT6^AnyRdx#L)Q%!m~f8=Oy@Yol+axUA#yF*KG?UP6cnjz8zLGc+6UheZ%(on@f!9 zmlYHL!{!1QF=Cl7i014db))GQucB|7&(yLos!ZuF@f*)9xQu8Du@V-S_SLt13w+J$ zuldwUW2@$?lZc~O9-%g5W*$$toaW!kevn|Kd|(X%~k3`jEt>zpqGRF zYMIc!oJK+h9_kAoetsKuX%vY>UMRs{X=t{Duap=VT+@$x5q$C)xh75ZRB6CE!PhjG z7H6#+_Bv*V?663|f5r%Ak+UJ36`k|Styx)EZP((z3bLAXciE$+jMLJV^D^ePnUp(PEHWq)aUi|8nj*-!>k^pmwM_wjob3cFHPE$3P zKo$zR(&wTGk3n+H&>_I_s810c$NA;Sa5if-`0b)dfRPVj+*J;jrpntODff)(lVUzgn-VE zE$k9qT{W<*Cc*=?N`9#*-+<60xkfai5~v|fk$V4s-bqo+EmrL8ATh98R$YxJu19&r z7J7X`&Fb8-IJW5Xc?F7j@QuNRR?{MOdFPTO85+xYHz3b+-J~%U8^SNfVdiTrUS{*( zGcQht8+F8;eC7PhaX%N!?I7xu=FpS-6bV+Fm}foAx=*WcF)6UBmLW(N(|*S z&9E{4`8xNYpcX9P&2(v$4X>a<1~_6d-r3oC%o!n)8`qJZ8%(&G_9*i#cOMi@nJxDB zSA5xBV%5smRD^2naC6Py)tI<{-SCtYWq9j7=j%(Wr9m?g&?GS`NEdAt*I)ea%F^N1 zp@zFHEUxto&cQ5c8b8*^3>FbTtT57OE8L>_(OSLd7O-m7ca02bFHHA0jYn2s zzus51vz_>`DyGww3Y?I7-l`uCc~e}T$MK{L1|OC(QX5dpd|nV782Aw!5=VV`FC&Q@hz7Ojo^Z= zeXCpmdb&ZWd+md#jQy-;*pDUN2CDtf*B-ZW93>w4>M!Ph6^9u2r4Ofj^KQmi+I8Fml??<7#?)*Cc3V~o^{Hz#${d3Uy^UH{&`P+q4C3Px-4{z`R(Mj2ucS-O3* z!4J{~uw6p`$6`(FfZYt7VR3;Aus@*Vj!)zH#XCPRAX;^?<$lOco_|V$XE)E^tfY~g zl~pTYk=<&&k+@SMYx%kPDuo9J`hy0K&Rm*E?G$*Gb=AHv!n%51XtZ>c3PXCj8~~0z2{JrRWllZNR;7q>uiF!QqHIE zHv+fb;EZW}`O{cFoiTdro$|_sL-%hig`?oeEtPk!1+3bo2X{4S#;BMoSneU-E7W`X zfzxB!cBSOKwWHFuNf}ByZu;_-2U^zlYE+$UpeVPw{oN7Ndpm%r{fA|^0oKr*!K4-t zR~scaLh4@nZIRr}!Pn4^PqE8557YHTo;kDk^V75T#sfYZCsVBKfISe1c^}Qpe7!c* zer{|GO#(g3-`Dq#Zws+9$)T)OIbB{?=5Lbx_^B~3YJ@34swJvbj1Vc;osxjLqEc~| zT3Fyzt_B+>vHxnCy4h$;MCb){CM6G-9plI76)NnBxw%_I*K0rPLj5_iqG%(ed}hD45cf>dr}kLHe8YX~#l* zAHS8ES>>%_8hVgc{aZB(vq+}4er*Q>Id}(M8traSTC4)i*B5(6tT-bW;h%pCNQ#8NzB5z zAcgRD@OsC4ZxVOAmRZ;Y^a-UJFprbg)NFcMh@5J-&O{|I=s;+b@IMOxcx|-qAk;AK zbRkoU0_g0XzIsihqMT$^$_@7M!j@3N&Ly{=yJE8Oo@$i%w-U9sT_HAld{f%7Gt;bW zPin+ZxbfhGNt-0r^@!OEZ~`Ex`eI+E+>sU6);6%eRDPJ>TDqF6lo|>V7sl`_NWW)a z0#T+=0(5FGKDbo_Fz*2qec-)C=ZyRPKbp=yoaz2=<0+&Fm9AEVN~Kchl2&<0CAmsc zDJoA%CC^F7!-_)El)6+3QK?HsREQWYmX;)m8ipk_jE0S2_xYXQeIFh7@%!UCitYRT zeBKY|`8sEquVDVc`=&e*-G&-Z!~^>nd%zRbB0NpE$x!ex}7m? z<|n_y_KCP8P%$Av$?#6vb3770CBqe1HjMQKHrQBv3?ecxE~S%i@7(?I6A9jQ?bs}? zWAWJlq;C8C;mo*I8SN5NEuWdWc}tOY?1?+{05wKUz=GDHTVLqUFab%|o<*3_KlWYQ z#jb8$PsMoXxzVQK`%@ubCGZNv{pZW$WodF+a?%7Cq+fo+IP$DaEn~}+j?mZ$8cMsK zOfTgl?`n#L+Ri?pZP+B(s~o4AOQx@U+K z4oMLS+YTD0;vt-{1S$fkFUVYuztGW&IQsuu0C<;?1{_Q^@8vA~yR8#2zfkGVEGUEh zT{J{IB*TH0fphNq(6Z~5(7XLL>FKZQmD1eyP9KH^>RFs`1z9>fj9NA28UigLnrTgv z@VyjLMO8BO0dN{z*=Aa~nY=pUaPe^H>exk!awOM2#ZnoB8690ymajQosyXB(8~s6T zRB@}imSy1qdywLM$y;lZy;u~HD}j@V&Lja~5ixqa$; zz7aFG^5|QBD8+9y3B#`+2R`&0r2{VHzxtl$*5 zh^f3O_6ZZe{lpbw;7A5CZ8m9Hge9{8y9Y8yk_%o^vReBQHKFT?R&DN zaP=p}=i1}V8W-v>rWrHCX2j}h}+69XK_7QQAWq&hD&IU*)wPRhRVGB>}9B$(xFlDV{B*XRb)3z zjg&efQ+gWmXr!3MSl@!HGR2ql_L_S9CLdv)#&EL)0kV!A>W>~FAmAc7CyR^z1R7wgTD*C3r$XL+ z#hwH9tc0V4=RGN-t1xTbl}GLy)D%&*4NtzYFz+4i*M6u=Nqi7D_6-Tf?>VmC9Bz7} zABZDlP?-GFa;*&rRS>Ajh~2^1rFA0=9bH|^T|JAMjzlgv7E&^Dh5maRaj}0LU?o(Mwp|_7&m;?ajOsF&su{y=4K6m0D-(J3zXL1@#%8jF&rPz z=`0g+b^7Npwa3a8bYYLR%ulS-y-jtXiool zZuiC(y>u>JR*tR~$j zAL_GrL-SCY)Y|a94Ob|mi;C+;v*%gRo!~rjRj3^tCz@d*LJnu8nX2dBtfgXerAk*%EZU%Iwv469%pl`wWZ#}2`o*-khK z8C74|aYiR^Cp=|AEU~Pct z4&S;WB+(6Y4zakJGR{Zy?}BV_EN!9gtExi!2i!uimG$6CXEdE6%60&^B-hb(=_KW| zqSgZe4%W3Qj=h2ex9?R|GaevyDnSd*wzQQ5im~A>puLUJ@hy;pTZSArHXje_b8 za1sa7RG873f3N_(UEL9vqo)AOQPnZhS$uQQ{+XY&|K^u+7v}+tYM@2q13-arrSA;- z>tH@=!Wgh3Opa>a)S6a=Est|;ihh(z*go#OsQ$FF0A*?6`v}c}^Zu9$-n~1zn+fDF ztbxUw6WcLZN8})jb;xMy(=h~2F0)P{d_6NSV7#>b$6l3(JXU0No6s4-#iQqqXIb{i z0Y2@;!tw8zEfONy<8b|2tLw8S1inILqQe$ym1zpLYs;(9hx)YQ zd9IxyVn=>nx;B3pZ`@zcx}sb(?eH!(KFG|>aQ`P^A3?;Ua$2%J&pu;)ZPD>h23FOO z)9{UWzGO{}aCG`>#(w@hTI`7D?_CX0Hc_p(*%3bz&xp&pb4Rt}mX;+<%sNbBRE+`d z$Sh17WXuqLV#9xbjNUcHAdgtAEs8;vqg9M4;Z54;66PAHOn2?t?IG@)3FaIT(g+J< z%u}2L1e__99iM)}1WV6{+S5mS#?~EqJt=9J{I`Z#WSstkG2?MnsURI7^Jywy23wu< zto~-Mv9-mu&l{=gzgfn_fx;Z@vj1JDXz%Cb&CB70>P9^~0_Vcii>s z*XvGRoNM!tI_RmDKQBtk5`)&6=_zjWzSUoIt=GMvQKSGPBzL}x55c$#Agg`jzRJvu z$%dB_MyA<=APrG`65V1#BcHGZVf6vlyLMgeP+Gk#l4uFy-59v*Eykmj6riYC~FsZT&} zZ|_n2T{uYAfDmSFjj)xSOQC2D9S@h#KP2MnsOB+3v!e9fBF`LB^jpNz| ztSrdL@fouCFt^94j>&a3awUNh4IApdo#D<77h$y1PF76zFX3SnWKE81$4O+sjkDCZTB;xEx!MywBET=kGCU%qK7Q@F#Y));J4E;?Nv~!ZA+;v+N3Z+(qqNsq zqW3|wS)Yj6!KLAo;w4&z&?MrKV9afSrw$njv5QazmJ@?JR7HXcziz^XfJv|X@661l zmJz3f9PU7v56tUDZ{BR}!%JqF(30D^c_nk!?cYY#u75Rclz}Yo(xhy<{JFsNFKSa~ z*sb0)9k$uv6oE(I^8#Fao=oiXq82XVy4gd0_u{+eLGi%AOYP}DnowyoICAlQReK}qslE{hoHXk?ZzkQZDJ%Yc54gT$s93gb!YpwWU6g|?W zTpXOz=QG@67^3absG}SDkk*M7z{D9aMdm{DRI|^7TJG_r-L`X5Mssxnix!yRIL3dHxq`0uIl3bl8PH{p zr6H8Xh>@Da8yYgCa^NYye*ud$KeZp-{X3}^ok4#{LJ&@CP9Se4oJI?Lhj*gY7wSxN z8)1o3t(2?6^3%8qH@3KrpCTqJXo4p0j92G!mL*mI#v2YK$dt8ZtuiErx7 zn>V+&M9wYMQ|MlMA_=7U=fh&h*&E*tL;nT{V;foh$~HJo?e=U>_zC_!rm5t~=N|BA zGgGLzyMbmJC(h4hmJthrbok)H{)C@Q`haN(-j<{c?2MOQXI$?6-$5WPxt?v|dTRAW zbZx7VzmYoSM6Dg6ls!g*LEbmPl`ZO*aYrhYr{P{(jB=b;-qDZJ>TC5CZYe6j0zbQ6 zFjN^&`F6H=n+O(6wB{Z?VLOc0wBnGvY~|Tl8Dz9=idsZtKRCZ;G~+k2dUa?#tNDMx z&yqg-N{5LT8b@E?hEK~ei$GbYDfjrK2oom@DhHP^y2yKoAVi!jB7U2jkBnnUfyj?B zh%($LMJn2hyzX_q5z%9!Z?QO=}+KE zT1*22lW1AUzRQVG)K`La5lhK z#Z5CdezF+hYR9etcVv@P=P(YE($Q$j3W}RKE_b5YSu82aZ!S}y^GyuA}(C60>zF=JkhE`zAZ<#2=o71j#MDv5NzT)OlmBomE5o zeoL72??5OaMoTU~ppT8<6u9c1j(1N2X(!=9s&%PY3v!^s-d0~_X-sM|+##+jLAwG; z#mGRH@p>ei@jd%pdVSM zuBqrN#wbppUL-5{Bd2V4?p7p@3V;8_%u~FkQq^&!BOrkUFyw}^5|7opK~I`QmeI1@ zY$6V)f!*e)C$;OE`t(5tmn~XwRYQ=!m3Y*o`xiBj`ypqvwb-kCg{AXhaWYl<; z3AnV(r>6$9^78ZZZB&dKV-QE{K3^qXzha*)+B_T+>uH2yIVatT;DzJH1tku<;jj(! zH+T208g(sGpNb9ay~~R36wPY?oj-WJy%_2ElAmTyPZJzCZ~(jh!mKT!t5FXPu8ci( z=1c{N?yztM9xZ4JY(`OBAgtK&O%Mk9Ci4F@0j~8?2C-N+H|VW;$-ChAfBhO4ok=P( zzyKn#wvL1?c!|Q6twoCusn76oPXeB8UB^Os<*=YQ{hwc^MfmDo-j(p+rmhq6amG7> zjBvXMc2Ra))gS*w@1ywpN7jYme*Vhl2_D}-?JD@#XE!LmYMHX4Z9=DiTjG`1Re0I9 z*rVf?DxEsM?oGCa?1~SPP&8ySE7vu&AyO8Xq;Gunu@~d0sB;{%L)@WbT{P)=i!n)o zh)e@Xd?19Uar?4t(Z->Ud9E&`w!u8FNX^pR4U-XL+R1Nlp55S`AK>76rYWEap$Ho~ zuC9d(pU)PoyMtz_w(B&SLeY#|iK0qz7jdq3 zwwbbQq|}WwP9`)2!-{a=Lw16pWYZtv;Y7E=WFUc7{UvXslC%6CcLbfY-|||6Ywo(1 zv)0JJfKyp6JbXYNZ4av=@1mRi;}UK;f6IS5mI*E-1T83=+1wakKi3>bU5T&_&dk1i zED@t;Auc51wm9Y7It5oriLBKu$iBZw-6hDh^Z!2-eaTrqSN6p}A6IGYKYrh7!IWyJ z^=|gPXNs<0pIz{6p{D4FzdBPKVrXLTv(X2 zbLnnQfWwwzNCS+9@EF4=g1f^Lj(=%0RIZA{gqF%ar2{9Ie~8_b=LIPp!#AD6VOPP7 zbLr1MzUwk5O_;eLr^ho0QX0_hsm3Aj6=k^VI=(qKF9pl;PVLyf+4s>Mc;gzCjYP|H z{gQhUrbkhJ9m2gfwu9Gh1+wz6bUuGnYIK^P8b)_2<}^_g4>QAV1&8{&fGb1iqvw`! zeY-ViW{6$x#0Nr2jTu9#RQ;epc7x4N%=0g zOIue9U2(3CarKT`l@Tl{404)gcZAU!uP?I(86@81P3fe=iS4lEFn)=~PZ<0IHT`7h zqspisPE$GipV%h4HSD19f6Z7uIS?XmvlehIH)%=T0Ko7wKV2K%sN*l5WUi2#JYX39 zI_4=u4$7N>CmQT$UM%I}=WUDs!bXwMph|5Pp{I*;vmg3Zb%!{y^%S)FiUplh^`$AW z#?5mDJD!$Yegvu;E=H2-8uyG&DWB6d-uVDZ!vBH_rfSMfju3=@_4yw;A!OnViO+C% zvxm1_`je|@{>pDzT#O8?k0clPB!mc;JoqrxYp?e}7JV$FO!R3acQaGY)}8O(u6M?iYcLXP-DY(1m?YNhTTXXr1uf( z#Y!GUEaGyZ_R_3z`G=9S9a#k=WS0;_(B)hIpfK6|i}?5c`s5qaQReJy55hDCBh!eq zp3KbWo4iS~nO!Xhsm97)gv2eM)@2mEy91E^hG>Kk*Hl-t)ZkF%>5Z|+BNAPfGxPSWe3AgPvaG>qISh$s?pGhWPc-4Aw+@T-jPQsdX(vepOTT|5-58Z!g9D2^noSLB3Z=}>8 z#1N>NUvnX)bf6^woWmYVrT*n$R}zC?t6HjtFdBS#RW-r3&Hx8diS?z^lFw!ItmH+> zmbdE^SD30yvDN=Hl;%g^M5*4lqYM6A?%>GBWZcy96RgQo{Xt>IWCBn>IyUtXgqardt34lGT)( z=d~=K=Yp}eU;KG`zawDcTk!*R;>>|QTcsRn5e73Jo||}9XkPazru z6A!(1j3{H%6=b2wd_G%|pGQOh=JM2&x`U42v{Qb7TrC7 zu<@90XBKb^(ZdLb#%*MxM1%~TFn*Xd=jSZ9An*OZh2iUFoVhE}r;MUrqLXSEPv zw^;VQzuGdn$xnH=MmZ4w`+e)%o&sNdVHOckvUYq{UyMmxyaYrJr-roTlW{7{!Wi$> zLHoo2&+GeDmRKeb5SKF!g09*}#oxeGU*gNS^OKmFF1P%0!k`UOr*ufv*YxQrxRgf= zU*hpw@suK1G;d)CW7aw<010T+)vy?EY;InClUZ{D)63IOGu)%;E}%L8B~KQE*79vW zsHvH959tl_RR090z-D@Tr)20PL>`x(nj$jLAcCz@ExAEN_F@Db75t!WFaq`n11n4o zN1KgPgEg9|2Za{lG8!Xzuo2Z7O@~KXo(D1@5l{IpR?54pxq8sZhX`DWxfagKi>6CG zl!av1Wsif>qAB60eKaO|?rI`AOVh+j&l}_56ydv%^K3i9)HcljBuOeu(89X-&3da^ zELTYAQ;vQ5JeueR;n>rs_;QY%c{3HN9!DHFvU2`#9S8hhF zXPkdp`Zb68>hlZlEKCFQv=C^$fya2jJAe(-@@!Sy2*&{0B8U1u92CiJ^X_6! za7qmlLMsI@2 zYPh2an5~hTqPdMPTgu{`dy;QGM-fR}1rP3_L!bUa=l<>ul2NOPjik>Vo-7`s_v?1E z5g?}9(|o`MO~m}kI5J1Ze9e^Me&7T_au`_*t@dU4xDt#hSb3j|8@?YSXxu$#Le8F@ zp3G(MkzU$GgQCB+U z#rMO9598L^RJ{1IqJ8g)OvauKFZH8ZwcXMFuVg|;s5YZz3XCM7B^b5l_4M?tYV6_< z8!^|^8UQZMR~sH4tBssHsXA3ZY9Qq9d}#V{6(bH=H2&m3HkO)kE=*wJKICFWGn0w* zMS=~0K^SMTl2t9PiiaO26c}BEQZuIdrlTi2WI^t{Y||Tp&mXVir)C@|^+tIdmqXx+ zn=lFTWRVqH$cju>hWnA<%>l_;me67-PW_tscg0bAJdi$N^zaZ{+s++y6C;E5d2CR; zY7K%@2=?e}H+$Sg_j`N5Wa|$?fb&ThHSv+g*uAR(nlkB_iaG9F4~S_TJ7vu@E%zj7 z6}*QLI$9%juHPh~3PuBQIp~irG(2=K{O;+=QjcetDSH~iyw?0CcrSq#AbJipMpv=y z`^j5B!SGGE9FPq`M))SC{Sd$^MsKl9fHweV-k-i}b4gLq_+fmI==M&uKoMYD0{!}^ zzE5K$K=Q$ug|3jaBz$wC5CFZU_?pgB9-?6$)keQ=4>MAARp9u=CHL>Ls?DffUh#=2 zXsCMvE9~k6s2o_2v$&8pG#bzUG0zoX$#!@kt}r09kSyP0)8iN%oR@#{h*AxJ-v~|o zE=5Hf5$J0i66KhWkA|6xP$m7x@W(&}Xy(Oo)xx#jlJYKBM{s6D zY2NCIjfKgaiPvZmVXW0wFwGJnr}0oD&Qr&wAZgp3zB8A6l!hMHy&@t4h&}<8+v3ijpTu4F zdIQix;IjMf3Ac(?7U7h~9Os138(d0OwGo<#HBITL% z9nlR!J9P)C$|Ra37yyyO+4b9-Jd)6$^ao*MV55S5LjY@-vNYaAVOj~#)ojuZ9!63j z>|C9fW%?D*?`FFn6u*R_bW?GLJ9^ZH{A$u{b7H^0R02muHqgc!ZkP7JB}16@uvL0j z-)chnM$?{HWv41h_Wa-ODeqFgP?&Wsrh){CMqW>zR~S3`QZh1J0|;MQX69L)mU*t) z?u;1Kxn`3>QabL}#OR|Y&lp3ZjG^kSR-oDyWaDyjbzJW7(1901`Jhg=Oh8e7eH2rt zy55wIXZ0TS0Xb#iAo7E-0hI%xt=6)fPJe!&oWT+akCURX+rs_}N+6gI8yhj4Ct?2& z@~YB=kbw{@RwJd;3E}F|5}w1BJkWLU zo4xoBV;{PRDF0i{Hu;F={(#sLdVENbY7AuyL-n*zYA01>;pR|lK)509x_v+36tsnxqT=8O|m@!F} zk5FddeiwXO^1o9>GK4nMt04XJiRy%~o?gFB7w984ia*c!{4`3e6u9nWok(S%SzDb* zWW|MZAT4B`>sWIUPxROeJCM_HGkg`&HRdfA)P}?iL$}M5aurL)08krA(p(_6*|N(< zh00m2tDAGr(Y6jXejz)f);*=e%^qI2O&h5k-|G;{pD8l1!dD~>aTY$=?-*#l{IFnM zAa-{$nF+4J&qboq)~gu9o1EH%TuKA_>J#b27Aw(2D^u3=}4@gr7t zYi?_P!y8z2j859JeOxdu@f^YQ|6{@jPeLBg%If$F#9U6f^&9h`!u9J~%bByTLx-%a zSY7gWtbBw-9nBwBi#%eP0ASI&e0~3tj%B953dR(r@Ink;>CDwxW_b!K@Vp+tR+Xhu ze<+|1j^14;>F#5>urB3!5#HGH+^49I0~T!P+x-Fs4ZuKb@fhCoh0iaipA%vf>vy*> zE1&huJxSPw1>?vr6>}ni7sn8m5}uQ<3CC(H#>G87UiOLjf!ac`$}p$kde2atIYqCJ zb90V#8H8hN#HjOm!!XX~d5vx*-g6B7LSu;|F+ym+sY-NugF|*baSpVI##?={%**0Z zx7{y!ZB-v&nE(vFDXQDyKTC{Sm2{bYYR#cW2YBb5CVlrQ0RI5;?PD)6k5)$Xi&6EK zI}Qn2kEzGOe`pPEuB^PoArrzfg!%$w@8CG}^#7@Eyb8$IDVTS7ntUH%+L$%na7|I=^W!57D?;hg0O9O^Nw zv`m1*EMii>zst={4UVast4Vup=Qu(RrmnyDf5XiU6Vw}jM3Z0BaTN9myc}Dkn7Wxi) zBmpK!C}95MA~qV@LGQP3QQEPd|sGU}$JMR%@DOr@pZdGXcySp?8@l zm85<8$|5>o|ZXBDCH7}b=bWbs>;;nhq1)@Jnj{T2}>^!8m=L^Zsi2j@gh= zQDr~_!YUH0?HN$q9Pt?Y{Tt&fl^2K~BjQQ``}aBo(P&}39htEGMB|&flx|l)*wcf@ z*6uZGj4OV(LZV&Zlh_9&=waUCO;Rc8+9=;?YzWKk6EQGNkhwPma_pbJd({AdjkKIF zSb?pn!p>haEsz&Pokca({ojc!St-V(E_g>{<;^gjCw(5n(n*WoTP3!$#p8mQL!w*q zfQ*Sue$|aZIlbr-qCKZa+#?Kqerj7BQt#dcMG9SR=2-r%jA1BOAbDD`k@N}T+6ZU~ zYfcP|40_ZW!0n&XVV{VcZhwDQ642o;BtYlge}L3gP*6H>CoDfz{HGlWGf*YRFUalu zVt}69p&wmLW3MpW7ghK}_YHTdsADqZubWO{>=U-Y*j3@tv@t9bJFC|`f5LW>UMiQ; z;XXRCDSb5Ibxl2od8Fr%$)0g_H3p72BCinBF)voS&_VeE+E0w756Hf4}N(T=nwqr|0`dh*E#rM#$!TRl8KoBTj z0JPl*=3A%ncBhffaHDzB?-$#tS4hS5fFGr0w%YhYv75be4`Y95#jOl?hkEE5efy{@ zHBD(0Z-FAP?-HHOtBIrMi6olx=(9nLWT(0p>NRfco&l7njg3p9yH$)q`pjd zOm6U-jEQQ#L@x=w`{;dcsL`lo_7x%gw{M!fkb-1uM6`|7-??)~Qx0AqUbvu0%oFDb zj?ogEjvo{UR`Gv$REs{^wx3dCoM}5f_2BQz+ZM?sE!6CkoAuH3oaVifO_R@moxAn% z%((;R^cj<7ytm7Ly;k_|uZV4NmrlHzm*AYw%o@J?qNDg%@Th~)hi^9jCTG1{U9^HG z@OQC&Ry=gjgA&*!ghDMWwPU4|Spe1nZHuKA{)YCtkYNq8A9B$<{HYve8(`jSRIFHox-dbN_vLI!Ll(@Hu z7Y^#gEa_IC@haM|JgrYYK?`R?_4s#Fk%pK<8Lg#^Sc`{E#T`F)ZB>33jj!eb!r5O| zuK;FkL-IEWQVe%J$;{LSN;4}n@SJkc_Ojyry3ARB`5ma+SX!3F&DHr^fm5k5Cm)(K zsXruKix~iWh@^Wk~vs;uXMOAE%)lVWyix&H)*%D-*igU z`j4PGPAv*?sJ}J~s3If=CI0KSo}|!HiM0)e(>mBXJ7&jIsm^&*S5=WB%_bf0S23Sy zK6Be?Gv${4-M`l4 zmSyjM(tc|F{3}CF`&oG;{g+8jFBzzQ4*h4cVX{J zr{NECX+m=~eFcus*fZK7O)L;Q>imVpAS8OJ-Lq#&_m4)*`vV{nPmpa`dVmN9|E?te zi|qgEAf)&uSH2}>AXwt#Z4LlGh(n581Xm3dLrEFNY3DFwL=MyinxHu(--nH)7I-pU zVhq-*d?9f5LuHXuiG3jNe#sTfQ`=8G$b}^IR{s4iV?yJcnF$Fz0P13oBw6^jIzo!o zXZ^WKisz^0NEZ8trZns>bzZNoYC-|UxweEDecM=KogKl!4ZShE*W~I_hfoSc=+^6VrrzveV0$YR1!7*)M z<;BWaG$G!qmaBev4&1nfuHF8?n$}@zpst}o6ZIBJb~k#Z76>&mUQ@E#a!+UFH ztZwFQpNNIa&V-FreoNVufeP!Tvv1{4%lDGl{ZuQ}l+x=BCy&m|9H$^>u zo-36jEQwcz8KPwy3jgGiEDukq7EM=Z9WaGD{cN2TI1t>z-8FW>C;ni7tElM9E-q`f zU4Ny$jg0EyB|{uDhm~ES{;}bH1@-0-H(o!e0${%QK#5Zah5n*YJ1OypmDz9lD^w|i z+2eH{^;uym)%>laUv$Uz*r=c}I-msHA+fjn+Phu(o%PQ805^Nb8FOgR;TcumbemQy zw9sO6ZXPkc(LRY%vZ55HfoC0G4@i<#NRotR6 zinxqXRi8KgH^qOP#z~j=*Q zptsLo5zpkn3l~y!bhH=iS8#Z6usbQri=`K0O-LsYB(fxSOy1KGF2PQ6twA(B%{__t zhOfBdH!Opj6|IA+`MB{mY}ni~dL#!^;nbOfXtYZN#XP(zMo|EY$3Xj)#XV*p61 zUe^M(@OtIDTpeKrkNGEFck-H6Fzl}HdtY;aorm^OWZvvkc8{VS@|P(8rPs#fU6nCN zD@G4-JX&dG3uWjyWr#ACEv^e_3M}C#^Fli|Qba!D9;eZAr%=w7b>pL{V!noTb*t$( zLo7t1+xCUyqaCK=SJ`1bVU+K0eX@8VGSUmeURq!LM^WLf>5rAO-!0bExIF$aY+uXN zwAY{q@XTGIbR*!hR$^{5?T< z!a%l~Uw*`eBw0#>fA!bL*cfzVQj{?O}4g3$kbupbUZsv_D{^ky|w{4c32%bWb1hIj(wus<2AR>g(`fe8MK9!g|^S$ zwL1czJm5@(#f-wg!yf&$jyC-5kdLkHAd5C8`2#MB)97VN|CM#k!Zut7`;1!&7&?iz zGbAN2I2bpJx@nbQj3_SSHRcjROFp0fs2~1HMcbtjK|i|b`InTc;of-$mAi3s71$@x zd|YQ-BZRWS9m#WS?{I+Zfo39!h(9-lSN9gaXZ*#h6mq+sw?v z^=N|Jq0?}_gH{SN&f>si?btwGGjaj;_oN^l?goOc*Ps=S(Oj7#N8LR{kBI7F3WJenN5M34;W;^;B2#u<^8p z%pg%uzDo-T&ZH>(kj8*g?qZC8guIO0?DI`o!_>NqQYGC_9*Dmp47x{gf5&M#F#n~O z$->6?B?5|pm?s`H)eat|%HZHTKpUxB*Br!=cM`s}2)K{bnr_q4XmMY*c#sBuEY1?j z01Paqr;rc`kjHohEINEF?JKURYV`1doN~-Y6gpe~V1!W4EN0!6uJ8+(?`cij{9c2y zoSCb-&ik+fn6h*|SSb!vU*P-@h3g9a_Sx2*eDxzW?qGhpw)LM20S=gq-l}kLbVUA| z+SXPCDB$cJqq`nos6dB=A4@D`b`6~^M&Wk92;`#fK!Z};R@=XgdFSK%?Tco68WJ(I z5vL3F6f}&2l+9~`j1n>a%Ei7=&xlNJ=%CZrIKMg=oH93Rp{u7JsS|a=TfpvI-a|%m zUwe;=dBTJCQ?LR_}saAEZVIyQVHz6)yir z*?P`M&bBwYaC3EtM^lOZcUj;Kk+wr8@jsD+#&r^p)Dv%#PdNV$tzVVq=jR9QV0cgc z#2=Hv|E$Y;d!f3~XtjcAhSH@w_OR+0A7Oo>{BUl*`rN(*tzsWH^}W|Lg7ZyR81n86 z?NruS)tQk&ao1R=>?yYyd)THfTiYd;Ujmx&J42*X*JgC^Tbkj_&9YvjW|0E~>J0)C zjEVlb=)$^QeGuRi!lF;eax~0q#)Dhj;l@PK?mRi#c?hp*IL#;N7gLu8-I(Lee-cn+ zp1r927}KvIue~QUz^ShTm;E$|0(10Xi9#bKV}_jrGG06lK}p?FyD!m=nY%mufQs9O z=Z@nq`-aD^@b2{s{u-uCu({44q;CG3QAH&b+&Q7+EOZuSU)%J*)1ySj4rY9!L= z6-K8SmspW_`Cc2<DIxc;ijDVm*iloYFWA6V~v-1E{O(*upF9pa;$uTcv(4fw*tWqS&?|qffa& zo$gD+$cH}kqQ#PGF+BncHfZSW6ZJpz7OvK5XNT~R#(^@bzhD3BMx!C+FMl!mlQ#w; zj^wI>(qJ=paJ*VPY#Nu7;SR0sZ&(HdWB2bb2C4j;qsm3?ShODmo;d+W*I>GKu8#cv z&>(n(9kY)o0rU?ESUtDtwZ8>^iYAyD4dq70Obq`1HB^+fr71)=r8PY@V|ll1%1_F? z=O5_a%yAL^qAHnA`Je}`Lw>58|JRFOjkhaZXT@iavnZl(`6YwTe8RYGZAU1OqMPinsBb^w^bFK950p&DV!I=4#8wAyJSE_ z6N}<|h@38qP5)(agEqCGpm&CKAjtA#UJZP6y^IbBx1q+>?L-o{W1dG82}FrENN6^RGMGu@2abPwgu`(eZ7u?0 zep`?IH}SxUN3z9#bj5$rQ@ka?Db5y)C}QIO9k9g8y%LG_L#K91O9ZJ~+#5)g>MYTT>tTK(^2mH_i4nF!u zDE!`ovZp|oqx9fakb!v8Ck%AFx zQc6k+;G~1Zy+@{Q2~O3=Yi?jAPYhNTen6y(91kWfGQOrLmwV&l3kj-88ub)uDrdKQ zc4llN#yO~igL;L}Cyx^~81cNZhm+ZmrXc#U%2ae*+zsn?yXn{?@xWqxMhjtP5LeNL z*C8|;Ayi-n{fb|Lohcgj1I@7A<~N_^^2Um3j|gS}+}d7;kOVmND%aTvl1cONbJ)1H$`L0$alrKvx5w#xR z021lvAgkJ-6jXjH<_670SuE~g%eNFD2r&yam78p%0`tnu<*X(JH>_(} z5SAYAmdPDiikH}LtPjhVI9R|8tcbX8f+{zPb{KSkh5vCetk2?p$la>*rXv_#;GYjG zVfT=4GN>xdvPrMztEKgBzvGd#jaWW`2he|klm@ao7LNWPCj4#nfPi=eP(VG7< zfw56B5A1COLKK#K(U{UdU9P65ySIqNi*;QdtJ_dae+jltG~ks)15O#S7I(#u<(Ll5 zzOe>|R<=-;!r9Uc^+#JUnqBQ!=hTXDavWM5jg#RJ;wHKg1@0XJJY=!h_+TycDU$(k zMz=Gq=W!NfJZ|>LkM0@z^Jmr-!S)oQ+nLPFO=LdQl-vHEF5I9#h@ag)an(&Grdk-G z8X%|+;a_M0!*~cKcP{zv>FgoEq_Ry43qQYb!#lw#4APF;0nB(CbP$*p()IAB0v)ck zpFiC-P zQz$%0*2jpC_ zVPgxRDOZCi80FW5Sg60I2EhwiTLpUBbU>IPMv~yz(xf_zlx?D z%Y~L-F6)-WR8t?XC)Xh#T)NCz55NC!oec>M(92+wd~)1IrFiIv$F2Fmv<5V3S;BOH zs}0i<%<5@uY>KX(D%6h6^9po`RuhFOf}jfjf=RG-&l7|z69;Ro(K9t-R6O~mm;4~~ zA}%CRS+@=o3OU#AYn%JktND2TwB;@3iEX)M;GF?sM4H2Ol_uw|Yoj zZ)pLyw|i@gqYLSny&+t-d99Dp4Z%R>MEp$v+NnmJZ+qiH((9vtNjspS;YCX+5Z2XB zoRcZKgo4Y=$f1oKbv9pz``b_WhV~#{AhuUyW_Sh0W%+OQ5wf$1zmM!rYGh_ z>fT;h3wji@c|aFPn>o~Dgew%1sjdSRe^=n);})`cfeuse6cQx;&4Vafg_ZQrn3rH+ zk+*7FqszY_`ugF~4DNYV5BsyHA+bq`XLLRcRO@JI(X^_~)gesAg0m1`o_2uK7}1uP z7$M>t7d~DIB8Sv(Yy{FJSUHa6_BnQYTp;2udK+KYatEnY>h23SwYr|=H~)rSm45&J z{mP>V!to_HUiOFb!FCmMR+VD9cDjmqAI*b!5Hw>RO_waKAIUGObruiF_2K%>bWgJQ zxV2@ylG1v$nFIwBQ;O;>6?d|@o#7UZ^G90+XE$2yz3~BQ132@Y7lR0T@)e}U80AA; zRd9-h46hPAo{v3uBz)zfB3+{}h0~wX(H;!Gb4^VR0h{UuyVGF)jA%Ok4>(=>sjN48 z3Po9aRb-NT2&jn+4}ro?!R>Pphqt$LES!>K2j!@C>>|()2m7`Y!4Q3;cwtcAC%Tmt zDqRll`SGgBdzs~|YCeoavHY67!ksk>jt z%L_9zolobRPF|uDyQrG)8wZ#A58;nj9^hFBLrvBxaA3t-+Gm*n8yE<5NlTkm89BsY z^EX_@hIh*Sy2(@*QfxXl+LIuphmcPo>b#3IcEMOtAa6}Y6yPDoUZ3$q#LjDRXu6&PP(a!Bu!a$m;39xQr5C9s522`cvxnG?t_Qu7)$B-FVi#zu zBJrZ-#^ryZ^}NOS}1jv#;%P=0E-D2#0q*Nc!b8rx!cf!A=9%LNyto;KGJW1a%c z&Xz4(c4E;vTikR04s%75?^J=ofRyJEYLvL=3}o{R=sC}(pj}DINWuo{LS?XBuSZe^ zn0a@NeoNk2q5DMw`|_^VTp7qJ_3WG}4~k63XZ_Say@vY09dXhS{ivAhML*%ruk0ZL z@#L*~$)8TW27;CU1}CVRVogZ=%hyDNP7vA;m!&W%MbTXnv`|~&Iog$QLH}DoQ{+@7 zy*cP(;q+9QAsZP^L#v8UNXH|`&bdPU!@R-1Kz7)H+Ls7IE5eRCGBOej9PZ$mq6O21 zM9?yVf9ZNVi75cNVc}(14-e%-N*^2)gb*#0<*o|;(kI@6E)@{ez1UX`Q@D)A15f6d zzng$a?j<5$@kUR^Ds)Sr%WEIE@k<{GHGtbY5UAfG{A@&G*@sS`j^3>2i8OFdweYD3|RCM~M@u zGa8&1gZcUu_kIG;uhoS;^23{s*qZT&LusOW+(P#xOj|hQ80cE%W(&JcPydb!#o|69 zA~74)**p)Ts!NcKZNy{&(+n{h4C2x*H(0CW|-2a-E9t7Fp4NKtfAY_{(Px>6U5jE zO+qOQH{Z_Mxb*i1RoJZmjVwy@d)JXwpf>f;Gz$w0UmD#%kKpb@axDYztSuJyi2)9j zzLqlYe00_t_7Jm5OQoD4GJ@~9|ERjN&Y|9zOnyu_Mt{~3+q`t`@y6;gltK{wd{DHK zYFG>Lw88wI4V;+_pSY7gx?(%na@NE|XGh|JuU&Ek@K8tS$KI!y1T!n(Xw z2RkvFi0W9y{4Efj(7|_Ql1e0kLN*8{$Y<=Lv6}yt){Jz z@T_rab*(}9{q!5jZU8O0*`qEd$!>1aZ+1#tG9+^k4h{O@5of(k|Hst1$Hkog?Vp5@ zgfN&6lr?K-DZ*5vHY6<}gs7B+K{PtebR-nXL~E0zC}OjUP$`{66HziUGCEF~G-^8N zI30f1d)oWHf8Rgu`?34ouWg#o=ly;iuIqWVoACf6xpXR{^5~cJcWJ6qBEo%}1}r1H zmCXTHxaEn13cs4;IbBdBxQTL6w1yj4MXEC*P7LCShkj!52gAu<#^0=aw71PL&w1ny zjToaiZ?(sRu|}2?p|Rd^lK9)%*-~S3^#mFkpl}?r>VKj5a;8u;L*>Tnz5>(e17B&n zTcO8LN5==nK!+GGcRkoaFn3rYwASRoXvS>7e8SBy#}WK776_f{-GusxZNES2yaF#Q z+cC{~+X;rgn9`5ld!u-bSK%^T4=9>!D=^xRa=rd;+=2jXWC|IkrdU=3fbFjJs2e)w zSG61&x0(#!GE?B{fB<{T=ZJ*$8m|&))m(`tpKS{FnJi<}m-LHb$`~aK(wd>%cD2#a zaAG2vYT5~@LHlu1#@?mR=wH6crS}qmM4!x{y-%DZij#^cQ7{i?tv#Ws;wN5hVqL zJ!;qQC789VD{t*k)Dz5zkppZUh7!;0L7>%m<(-Y|KinWrVk5vAnF1vAddm#v+XjGD zf)OT_`3WB3e>Mj!B9?^d7UdXO;-%uoVFQ3$h|G^k8emNizHKr>Sz7e1^BF6KY}TON zxmn#aBXF0rof(As53UfQ*W|*?%*;PR&G_snSKQc=(i;Ksa6IDIlnKNGao#4eVxYFa z__I(yT+GR?!jr>wL|(_Fa|!1pFv`PJq4T20j!pR%dYexR)Ua@${KplfxrHS}Cp~ja z9Y*!*wDg)2@^-n*{Ds{u(-fb3p!dJe{kjwQItO$JbquwZMvNJ06D@2YEq1j#7BlXX zCq9xQPnbAqG{3cwM3ZSR5Wa|r=oCK$wjMHEs#=)d0v5)#jX3iB#W>_#AQPh_c=7U- zP^&I7-YtlIPPmRRHn`57Q#G}@h+<-D3SJ^RR*uP2jvt1%H9e1(tMl7oYmRMmK7@eg z)j#}e%*@P$Uid}f0D-2`9zWHR*)Hg}nl4&~K;^*`<5w`KWUj8hHnbgzN)E^`erC6} zMBR~a-S6^q$9j0G+F{oCQ(9l`&Vj~XLqxP|_rGB&<%XtNJdpS2QQW0qqo7~W3$ z(1)To=DToSxUGPf7(KmOC_n_uf#eey;w#Fodcjqj(6$9B>RBm!gv%#(LA+>qj6ub? zQD4=<2AYbngu%c9v~fh4@>`fvVlS)^#l28YccP0+Vv#Asy{vMFP0o$#wi( zJT4%i{V|9EG;a2Q8lj<^@r^klqeVd@C)>f9Bb6kQ5_ATTbOQqzvkXgraXEK+N^os`Jz(kOhm<$?Z!8Cx64~7+P_rR4 z9#)SZ2hAppiU}6r(*X2M5p{pI1)$~>Wg2luvgAS+i=zGeP zP&49GLAaj4Fj{04iOneTUz>_q;)%Q5Pa+jXacPjeY0mr^|G>_K?V=MX{pKl`Yl%vg#S&v zSSaH#!uVha3~Zdlps1d)?ml966KLqrthU-k;ZR-uO6&K2)LSd?AS!J7%dH{t3pe=r zc_k)_0Az_;c913dREu)-TRQUP)`&m@{v~X_wV;EEV=pzg9}i*X$HPxwB%O231RA;}tXocveRFYS zgnezK(q3liAY@Z@4S5hvdpii#i>w7VYyYK9j485V?bI0C(g^Wd)NzpQo39$|(0GMm z($N)%mf%@agqyj}{)xN}U?XS{(dt=Us`-`$tqx>y3~C1xRwXhlHL{9imQ7XLDO~>X zxG4Qzr-U1bkmcc_0OfL|iYb4Am?ye!hQ+Dt_^lLCV!AQrv2o#VXC4+)`FNYWy+iiw zin=p+3DwPY=!-xJm7A{n8Bnv*8eFr)PVKql2}gBRnIGz=o@tu=@_>`7c=aCc`|pL; z8F`_NkSDnKYGOGEnO(l`C~J=NcxU6nJ9}t7=6l`jBVZkzgJFpTQ}M(%s|j^p=~FBG z-#A`yfy9hk=3TT4(b{xW3&rRwn6qL; zk^gqI#Hdhz%jA%dgW)6v8d-4ADzd4|kZ9p1ni)w^np=4kKbgu!grE0-*=S*7sJcd7 zS?>i*2u%Zbkl=0M$>4CB*+g5>PLUJ-T>UTK%Z$K3m9(sF3?EAl;^VDdsk2&~* zi(atR15a2B?j_?!%&VDFxP?Gw)#6b3^ZewopG&VL^_7~)Ub0n}JtL3=H1%bj1o}VmXv@?HpA#pR&bheOW;@yC z4`#K5erBHq>28-C5mhfHExEa8bUe=hvPhg;bDY9arrg-ne(=8|diux_O{IKTSKL=E z*L>w1CqY-a>AhD#jw6tePmCI__3t_T?0>WXu!qx29D@ciq65zry!%fHG;C|IEJ6i= zTQ#vwZEiPytsN$Zs~m*DEOau9swNkn9D75CFAG8`t4N41_AkW|2=2=q%Da|u0}C4l z55c7v#k9kem6bBp(#O-&lfyZu)k_N_Bj{QRJD8nKXULx%cM*aOQb(=zMx?k_F=T>7nfY5=2 z;?C#Hvdb*RBZ2Os##$>&0#{~f{{{kE)A)7H>;&t-2r=}8i8{m%`Q>;;kAVc<{gyE$YDr1 z-9j~PU@HfO#I7^aY~F2aOZjF#W|jq55`-z8pIyz4B?CCfN5^@!J@TMh3cb$cn->x) zC_+tF967fI-8#Q9k0zv~TCTh91J=dyPTI#dSNyUy<7W?to&^GGZzVI5l{<&~DT! ztcb}}qm2GviMXB2JoGPOFA)CdyXWB;dHU>*#grzN|5l|eS^Pj|!77SQEBJF|Jif4Bttn!Km@oXo_V z{*w>lFjqGJ!({+r%oa8nN7+^+vEH}xuBOpXn^a+NeJn#E-|O?wCE9yTxs#LO#0=r&g=H+hk{I{rNv_DpR-)PR^l`kfHRlMrs*1d^br^EqM=?)C%(F{qARN`Dj% zbC^3cEQDS6e+zlXo6>xSZ_#b;vom$XjM#2Ja-P`TCOO;9Ss|QtvsO92pfV2E?zBB* zqXB0bgSy%xQHF~cYwm22i=VXb!LvnV^<*3xv8f|Ps()e_$8~Hx+?|(_zTx0h-f3U%cT=t?|!%v!znCo}r$ASu1q! zIgcn{CA0chg`fbRy)QmEKvH-$czg> zvs3P}oStf|{#3+1oKkr%l9ZhE?~$FCA`}Z-lSQA`d!kS#r4}Jh?5+?dx&nPkF#DV0d_|`>~dH5Wdnh0P7gz9B_yT zT}5k6mR}sO=4G8|lVR=Q0W_;^>Q7NVrK1ADM2a*p4-PG|n*r}m?=?c6YR(=OMHzIT zJI?&kgJl)~bLyHr47HU<(? zYG=w|U^bPTnF$J(ZX*T<*snYlI>J0d%R6WXw%y^U2&tf#&`SW=bD^sizS;+S6Ru;N zUU%>)G;pA@gxGb#E2@)I*~{)pQd zR?`}CZap#!n}5&8TwVVJL{JBMVY^R+LHS$S46d0j%2bDaFYqEVn+c{td_}RWk7y@La=*Gd!DoSVL zws(53S>A-Q7cdlLJdto6Od}~S7#t=qGW^RAsD13y7L{yOR~Dti9#~#J)xJJ~=G#@V zb8;c3S(p=n4(sZ!(E$Hs;d^#0iF3uTD#{g%ONAj&iR$vUCx9bFq;W}F0u7e3GHprgWx!#z8z z+z{KjBXN>>6H^pZ!KprcHkOs|IT%<*>cRa@rRo=P;vg?;YHAv9)@x4wHfGYuLotlz zK(i@k{4B#9N7T}`bAK|Q?SJCLzL;+~`2BK#rKj@kqR!4?oPiwzeL{4EDrQ$csAchg zA%CL1!Lp0!PA1215<-Hs^7`a)-`gu~s`1>cjb#3@_Yb13JRC&67?t?9&Dan^==lAl zqF7lt#<&8OPpNN)s4o|pKbNI|Nq1CZ+lO-;5<6tcrt&7ZXTH4k0$U4$J3{NiXLm5o zjExc6Ea@9RMeC*?sE9ZK*A{I41*{K@x)Q4J6-=2jMU#Ij+{a;7)pwZZ-z>J?R@Qld zgqkpJ)yQPt=%BVV->p74>7N`3S)&!b>26y?-tMSS-+@4mY3;U^|9H zUyP1$&AQ;2nRxN=FdWwmBoks|-UvX@0`JK%8PTBt_w8-FMGLbQ?6<=mt!H&FtR&5! z%`Tu6hA1@;Hz=o9-?!)PUgC>Fu?!`6CDYO%4+9kaA@ed5L0nZKG+a?5d&zu4j$h z@#1j?vL;phZUr)Q{ay}aHoj}|Rdg>)KpMt2C(Wqi!{yY{&gZl+GCZnChp9R_84Rx^ zmTKY2&{$VHzYD!&h6e%n`0?YpaSDmdygaOR#fr|4M<-GJq~#@YBXl2~DBW-)Dwhgm0X zucE2&|M!1tS+&qZ+brif*l3)|0$G8DU{J_x)99e0Xq-hO+m`Mon_m8&%9|6Yu1to( zTs9j*00&{N3|J`)@7h*ujKFZlGa9pvf`5~nNdyoVBbUsJpSho(r3#O1d;o%LCHi#~ zIJUMqZ7(Jrx&>e1<4QfNeRiMV%(?Vj24WjV8y{P|9L#V9n3+uphR_`w!0Ye2 zt;ahEoyTcS?mIL-|HSN&TOf-8qXG}bH!dzqhjH4s%N|V`3EYI|Ug^J2*uYgA-xZ)d zXDtitl?_u0-HmSm(%IAMU}4jYgi@;3aR=d3K)(0INzQR46q#nz_$R!B9jVm7EuwSva!s2DV6ov`)5N9giO|%HF z&6^ENa+G)CSg<8@=wO`&ZeU=b+LA#W1IPnGjKZHfB;p!>7}EcKnQjFnjA|iPZ_yug zxAG)?DEPs{yAS9DYJ%p#$;j;54IiJ*koJ>U;ol4D{zX6_ zFq76m-s$0|aJ)A(fY=9hEie*Tk{Vi5`R|ACIpAv(rO*3_y=IgvrcCNj?nS{|8LFW2+ zhOrz%4DD0ZUN9_RE+jm4S~IxDd0#~SGn{3*zE=v^iDY4fI~bVPxKOt5=khfzb3;ZC zcOyNO-;NsMy~`A-9D|#v1;zvDNs2`23~ zR35(JtD4m#b=g2wmjLcc$WU-T-f~;po_&GZbj0Fr>~#|b?td!6RF8UHWAkwK2+Jl7*EQ|ui7{UOfDOMf z%rf_}%-4x1yEZ*55L!aqspI4P@dc9dxLKY{FTo@vZE#?KX*Dgp6{1!^sc?lOlKC(gp1!MY ze?n#PYG2(*p?XN4lHb1=Ag;Hv41G@r!~&Kq-7fFB07mDWuAaiq|61YYidNWk$9CJv zh3c9=b}lR1G67`E)6im2bkeN_Pja3CzlyRhxj$1I#VZ73m6)uF()FxxiZ>Vf51|l1 z7>)WsrqZ<9o?ztIXQh;<#_7GrJ$C`b9UPLP^s(kmS;v@K(0J_FUR4EfwVi_UGy?xm!oB?!i*GT)9p<{kDa}1ay(^Q!f3JIzA_Z(Rp$TIf)Y?3kCk1;Se7KN+vCV0nlPNs$E`(%t z9u=t->RUz9!qB;k5GRwwf+`8c)dS5pU2R#UeSuXTX${+L13KTWv>5~djNs3p^1pc_ zfri!;E%{D7uR1E-i~B(+B|jtRp@*MN3_fXqg@eFwxHD*|EGq?%8-0?RH!G%yjX*ZI ztlS6tA<18H9ZE#(D7I+F+eF^RdU#M}<9A*6p?`vIj6B8KvqqlcV<>Jb=iW9^BfH`d zm_qLxU2cSLPt0gKnwOb*G9_dYmd{ue=rednNDsE=cqenpS?oCo;ul>BX4*-}<%9eS z*<3KYg)~`Ahev|w0-z7=1aLR}pZm#Q(vd`Bt`4mk^407YEBvEwBJ_4iEd4v$A@hRU z@%vHl{>I=*xR_EC4|Yexqo7km{^6gX^=uzqv@0fw!?DpI8Hvb;yJ6t%?taPj8Z8Xe z?h|Cj^LWg~!Oere=_&4!UcH+&B!$OxGzLD_)9ad%yQy7zV)$Gb#-Uuy=^+{fBF!!e z5GdJXk8cmT0x#e^_-q_VUu#R!)-LsrN#cpoSTbJ20O#!hFBRs%WcS`J4}d*oQ@n%= zkKv-V1sHfmth(}Mfz=yAuEE~5Z*kZ@2uG+mlSg-@$cH~?r)qB~6(6lVE{WZwHvQSD z(N9zhN9VQ;PoaeDr$t|RV&A%nY2?|OA@*tiWBjCXd%7*z-p{(S)r()7JieKfl^oa1 zan&Rkk}`tyn_1w>p3VZq;m1cq#CO-+p$!{HafIjk7`6#{MYkXuAgNt_Pj zPn0B)_Ge@RhY9`+xHdukcY{t)B|}4T9y~oGvJSFv)Lbgr2&vcPyR{@5mGNdH6J@D}IWm%sa!JOx=WYH{9UK zo2lJU*48+*gkV6gF^vC-xINnSnx0j-fpT6Br+szgZA5G)&G>K44FV z6>MM4l@;KUrtf~R-)>zl#(OrlGhB`88!Pv&t~FSJWfyi&u) zi<3SEb_m2{q_2vwXck zV@W|{Um6{~Z?cbiX3Z;Fpq)?B&=rLZL0h z(T|tjMuS41rRSwt~E*2;1S%K|*XdjSM9v=8_ zB}}5dy^!$7l&|`#Kl`Lv5Xzwb93S|&5_t$oImGROO*hH}VOLj|m#r;Hsm{y0>dIYl z9V*r&79PG2;>*m1Dys=h4T_odP;|GCX1`P8_GV7t8(H2n)pCb@0T{}85$dZ|<~1a) z9?QhnGg|eLN9l5Fyft^PqR6*DvQ5L4L5*|d%`{we7~tXu7Y#xNo;990uVktc{Ayph ztmk^t>$Ials<~-Z{%8ulp41m=HgF5NWZF^Dx;5GK5?UAqvzw=G7w*BF?tTFmf^wd& zJJMR#wqg%ol2*@1k@nZsncG%uHXFod?`SXhBgm2hZUO~b`?)(fTuqFti&V4dgJGqD3Ff=}=xvQj|kYCuB^gpakLfy;|H zN-07-G2rTl1B70Ti-AEw+K^&`g=WG-G-F}mm=%)tam9se9)q=wDBW*Zg`!mRa**}- zG3WfTDUKEvoq-Ugtn6$A7M_biEbU}(rs*H)=<0Z4W%HAt{pnA1{k62Q4J=7R`kq#V zxw@xA4`j?h@D%C?>g%3Vd{MI^CURD*aFrMtS{4W(x|>Gz5Z`-E1b6-0^C!WThLPjl z(q&3*=^`v^9fXZs(;J&Mk8OMR4pyw|@78HpynPLbysxD_dzm%zKT>x57VEL543J|W z4h*gHYObOPTC`s*W+}bta!ln@3ZDm1`MbX1Rs}oy>(}T0eOrkJACFk|Mj>P|qVyXZ ze`y*(q7JgezI!%vwOrn&yZN7G#q{UGn%&*JstnReF9*Lk@?jk9?Q36r&0g3#LGdPO z)ejH+g5x3ZFsR1fCJ43lD2g=*+0z>9u~snVPh=czUQ#fJx#J~LFkA1(S3|;Y3y19s z?*Mh>%%7!{HBXn2QisuSfKr70*w#k(Z<;2O&({zR1fv68npGqoWv&kHEF~ng@RSGd z#oYVfdwP0O_vWqhfvO$oC2S|qM+D(UXZVC(_sHBGv4iP?(KTiy%q53JI|xxr|8-4z zi^6YTk~dHyi4Wp62KhGzNww9Ddro8iET6@=rt@# z`;eHPo&A_T$+8wDO?th#u&d%QoT>@|vUM*ow1Q(uK<%`T)T`<7a=_%xDl&oQo{pDo zUUzcxCRekx_O?Y#S9Oc2o!yGfF}X!EYe4Vs0KpXs$R8Ej5tjSKlY${Fo@#$J2`5=^ zsGik+JHT#`ta3dGLoXnBnObw%Dm0sAAEIz_TMD+ z#S^0yMVps=gc&Tn&Yk1uhf*CY9Uq_K``}iqC=t4dN}x;lynjtq*Vt%?(gTJDj6VFp zO?>S6vZDUMz$n*U2)0qZTCG}m2<6lqqCBjRz3O^CQmeeZNrb?~Qf`!MSc20_+(ju; zg&5(kDiQ%ZnSiVt&iN-9B5H65RmZJ=;o-2dtW#fALC_1Ss4C**@>=!}G zd4PwLC-#@*Ybm}D{^^ld z?5nCencIt_TwkZzM=dz;?JvE)ACJo(ekwJR#3GY=-fYC@ISIj#+n22s`sr%Pf-tzS z6zIXiI*dCj4&R~uNoIa^>C{~P+bm3Lyxks*cc z5P?jDrGrBbTkW|g63g$^$aLEg4k|DVaz9YFu>Dx>D8;9cpC9=YA* zPj_R_(&US(17_*vdz6|D4|r_nryC9&k@5(D0~3A7wSI=<~t& z0Nh4-H8>leZNtQMNYsvli&edY0o?bYeOcejZdP(y%%1sZ8y%}(1!uGY*d3_&Gab9L}q zZ*0Qe2d<+Hnzcd@D;*D_9Ppxq03A3dS}r-H3B`(4I0&zn-_z1ia-Mc4FYtYq6#< zm=GEd5-if__lXQUIa%HOs-zFjkXd{Eo$UZe!fG}hn@fRV7gN^XKPPc~lq)Dowzk9T z#zM@eQVoRA`Y-$`;EZObY&hLd-Z1VI8^s$oO7foKa?fUg)#}mb`)3E#`qY5+vpp}w zIrdx2Wi5!}JsnUT+1mbtCk!*AARyu*47@Z%urk%B)W~qxQgD_gmLmap7Q8SOC!V3% zM&2$LUq^krh0ROHRYR3&bmej{hr3b?E>-TNO1~Ide+|QIyv*ada@klE2t$DKkn=7U zFV*iQ^|9av)ZN0npGHShiA&fM5Bvu$*MaQU{$?t+D;Krp4aouCIhNta;k-9|P$P3$ znnytL2*m6d`>QmLTuZXKi)ts#YhZm&zqoY9^5(-&A!WZ?;#Tvk<hcY?+)O!6c~PNgO~{-j6mecr$Hby~OwZ#n{noF;2+>vs@Z*qoVzy}kcG+&B~7>5Zn(L9ykFA0;nx z5MusGppWZp_Q!m4(#PC5}jR~)2hS@fJwlkOVepP(B*R_Vm$;YUE5IBxMew$1)m69qqFM*PSbb+?E zUetptt^?HO+AC=6PN0!lgZtx3rm5-tRP5=nwaqFj=u^z8FONG;Sr_FB(tXH0mDQ1Y zpDXyIm}D9MvPAsQUW9=Jka-e>$v_Qa(t^IW%FBNNyol`Zh|`hPoy;fiRw0h$*RXx4 zzDuNCFqk2AH5WX@@JHGk9{`?&>vHBKERvpMYa#T)B%t$o-hqBB<0}qVNV{@}@#_&7 z0`!t1&2u;~a%v8b9z2XsyBQm3Jj?uC18;G8?tyS5EN-=W6`?GPC{L=Xl2{k|Y{wEE;>D9xrO?f~9HYW$=ipaxyS zqg^)}Va-i>nYc6J46?Ew+JehQVx>_2y{x^T9A+M1*lE*=F*dVoRas{MGVSO^M1J4e z&KUrZ0}JcDx&D2vKI889_R^(Yc*4W`#ki;8J1Y9TciA9MWl($4{lbNJl>U1-`z!Dk zR{OZx!D+%QgTqObj>nL=%&}s`H>5h-gZI0`cKNl9KxMldV%MRg@+G~(@BuIk zOB|g}3<>jwx)4dM$5Nzi{Dm!u^K#8oZWmq!8+a3FCd{Dvl;SkfJ)U)@m7GWwKBh~% zyLS*XF)BO>W{7JmVS)P0C1K_~G1RKWjnq5dS^%5Tr_pcH)_zAVKfg6B0r`e3|L8kN zH6}!3>@#vpnPu#0Q=oL9KD1xlu2SpHU^1Cb#oFwiyD~gOcRRa^^W_G;iG#Z$Gza^J zhjhtFa%N!Q-pPe$F7=|+GpgPQKPhfw@Ll8=Y%Ef2W*dT(Qwqlnh)@zcvm zoCTme1Hlm!gWUrHE*^d+%~FU?u-55n#=j}^4emM6IkY0OQW7h9Jd7gIYz{Ua`zjXe zN(P>ciuhr?U*;SiZ;-x=?yjAZya;63Li8DSQGK})T_&v7HYg60VKc=g zC!f@%uOxxZAM~-vQAtaF@3|L5Y7Gv$86Y?)Vzs(5&_l z?~D}b`twt8hR?t99*cZZF8bwEpLnJk3@>ZC8-_H#IlP2JAgg|#e6<>qX?(xHPxu+u zk<^Cye6^j8Y&TP@X_(SPhnlo8)bNwx5l0e}g<*w*5VuB5QjRaUoyjPpe_V@=vO<0JeGzVbgst#uCN57}u>uPMZTg>tY^YyEq6~3QsZs#|!ARCR>13=-_6zGc4=$7 zNn&D&^0WiE+E27@Es?D{)Bs}l~h78vjA?qEVpLlEL%yApXI znq`L`!c0fJ@OluELJUGib7EtL_gd#|h{SRE;RnE`N%=Lk<2NWipj1-7%c5by`wUynUj-|Da?w&qhJGq`yE!;7UL(< z3kmwx0{w7(RfAb4Q*TSN+Bx`mDbnHlGPuvL?6f5H$rL5UpyMZ2Zm+}oJ3Z|*AIKQI zN4E!Cvz;Ob@FU9ywOrk({LsRJoru~&8z=U)@0IAZuom$=_WLbVQ6V*)oSu51Uo(2rL$sl zRHLCaDukmVBrv48?XkInOc2qE(yBTJI$LhsUVHl|ZWk=aG5UCuy7^)@q+F|=vD1+U zFi+>lH(3P+lUjM6*%(E&b^fW_TzDR5g+(TfPD~s>0zTDF)A3E^3;G59_A)A4haGtdw8O$mKb|QS36fcMY zkCQMuLzJ=fMIn3aflF-~%WMf+>lq|rdP|GT6?E{J zk4TzAp+ibNXc~{LJiR1$paT|CtkL{U`9g#XLY|cA*ZrgN@KYEHZ~5%{(ZgI)vXsp4 zcjfV&ULf&yaoMVZvT*YCH2gX;Er4yO;&3CkdP=ThMsjHp$l`E}S3y*hl>$YVv$t|O zhW2Hh2z*eK;zVyzWCVf*QEnfH@;$T=QPWc6>dT}SnPJiQQ?S{K^gpqkILdcAyDNqd z=N>_P%dVXqF)o2NM|E6^w0^*(8YXQ8#ydd!phUfN7T+MuePajYs<#Cbf*%r}?BxU+ zsOe~b@2-E2Mcor9ZPz~F-5Eqw2*Tsd;x3RfN~LeXt-S&GMCWfc4L+KHxT#J2YKUQs zB)Kx(=fA72>ApJ1z4A1~*&gWdTvS+U6)2D<6{?^8Sy5pdCoxz5T2mA194#?w&6yp7 zSt!`T=e?+b;0ADIVF@3>DaR(?%fW>Am!z+q^RiaaWXW@b{(OizWaMqk$}gOi$$Jy+ zqOi^dp09*5DOiW3f*}^d(-`x(^cI*&scP8Ymq`f7?)$%0?g;yyddHO1J~%SP<@sej zYvz*=!=3W}xET)gm+o1r+oUx?zdQ15+whB=W?Zt=))w)RB^`pzX4r@OF0{Q&&_cq}1v zF6-QqG2R?TYoagOVXKIp#9)TweX`ngB0_|TuN7!rq1R(NnXMYf{=25R8e4F+c#!V` zhjBejAf~W=1Q8SZA%H<$TBLAf8{cToLaO-Tr+*4Ge7>#3`uEE-GzjFQq88jk))tz?`#XZYFQ7$QX<@!DJ3M09FO^L~U)@Kf>y9NvKp{D=hii&gV~8wu_p2nxqGn>#OqF zn`-8h`tDN1#F1;pzvei}C4x<>^BZFzBxKpvCW;I3+ygNJF>KC~ZjyyJG|-1hQ3n$U z5DpVt!vvc8K4JO;ddV&}+J2X|u!P&JuyH1)i88slI^Gqj@gn!_KQebOw2E{Sv0~<1 z$o|@F%BGHA<&7cTbM ze*sEG7kCV;k-zj}f3BOz!scAUXK5FNKpL-l0!Wq`rI^2SvDGw*Km0a`T&%=KZaO;T zJ!{`%+oM+#qP#>`R`5O^t{l2{_Gjv{d4~UTY|R56#nNetHnE*D?S5U zMf&Kf8k{n-EiUV*Ff=31WhN(sYzLQmk37m1{}txU@nu9Fb=@O{_6B97tmp0&Se+sz zaIw-$Mkr7Ja5yN*k*4%FrxY=-SmZ~YHP#*mYC8+Ex8&ruS8Hv4Vw+j#zW%!>IalVH zg^a>tBIktslhVUblwFO_4~Ac@5;wbC%?z%GDQzH1viCNBrGoIfursa zMjR9nh*d0;f4hDhE(478H4#0-GMob>N^D9JFh@t4tpyl0eM4^+4D_mKHYB`dq{0Zj z!gyH@WeVMic)ANb|848ScR5l|}eg=5Ale@DAbSx4rz z(9P?s9()X1OLDT~-o4^*s(UGZ;U3CIr{kA>YmDOCkC>_W_D2J_@N~BkPd9Ijn>(o< z%+(>bi20@U5k%=(typyGsKgSjhlA&nO2U2!9l805_BxH|{2wGwwBcgleGE>eoq9#^ICsSLMNx|@`XeG3+sv7JG^p+Ouh zBywv7-F~F0g}+C@z}gOTurzvEXI#_5KNKa|&;R{phd&bdLSqb*fq@q;4B_%>aLTC1 zhp{(28uJYdjzWA%dRA*~p2Or$gPMRZzU+Y+))#p+q}(qFmskHzeA0K{oW)^E1sy6F z<&|OXdLInFN-&4^8RiqnIjFXEKK3sP?E@n9$OVH|3$e#2g34(sO8d)Qroxu*zt#TM z8oF764EJurP+Z&ik?Qfx$d5Y8xTWS<68t54R_N1dVPFw4sP4}K@@ibhVn;F40!-U2 zACUf8(t)M7zrQ_wrXs61RLPlw&~ap#!0NYsC>f}>;4fOsnKOk@$d+uiwf*>Muk)mmMksS9(eq_x_tGS-UCTu}{Re%mM zO(ueVq+wAPJ2wRD{IJ6|8W$3XyYQ?Fyn(exu)7z2L!EmpgH0_-LrR*bF-YVPvanWM z$DawNtPmf-D9Rg451Tol!~|EMiE z*?Co6K6RgrOP?*YN>jMD84`>&^(i;yzY|mRq31Zjw|5Z)0<=EH09q4S)kQ{@p*1^C z^J04vYm3OEbhZmC1||+{taWk#zuSx7b5VB15>=h=^knh|hhpl=+j++So5H=>J z@rX>Y7J!K&?j0H$sxr)$`A9W{vYzgPxpnxcz0VcZ*;4tFo!j#h%)C}^cldG;MV1d zA$HI_VXltD6ZOITwR{K@cp3B(l_&gFM&{~}qL*j|5pxct2%(zD2~OZ;~zMPH7p8_80_a&dKFP7c93A-)2?=>3u@cj+cD^S zTzT_ox|>PZ{F)wtVIx_+e$XuJJoMZpEY2WgymGLP6Hn8mGsGDhcrx>{uvs5@<`V8u zn5d6s#C8gF$CVlxcXHli$<4R0@ke9`YQ&6k(`rhFxn%yD6GaR|rwxYo4 zVT}wdNma4uf{}Mj*PL{`{_EYhSqr;xJidxpgPOVP+H!Ed<)$Rv7xN&=;Fc^ov8MnW{GrJ0Jr-G>+gg9_3_*vN047U=a z;YY`n6#LdC6@15h@%-|@JRnNxE~<9cW-XS#G?;98J z6^9mv7j}2gu4Bl#Bpe4+(*nbb;!LSALQWf3lJU8<0N3EVh_Qa2wXSwWt|kK#H6xIo zofc~M)Ge@D6t-H33gF~3AKc1CAc(sS(8B1jux+=w0!ggdPP@KY{;_0O`?SlC%ukNCIFRnWHlRdcq_6UjzQIO=UZ&gHdgV;$ zKb)hZLEL9hA=X6kW=c^7M~FVt%K@*1h(oYWt}u~K0DS1DaA;Pz$0oDA9n12I)c?O9 zylcXkh@d+WIVTT>-+J{^5V%oq{k#KxcL$5l_>V7&_~8c`0eR_{010sidfU&~X--l6LgiExO0Z6Tj!-kqob=j@um5M%uR`0Wo z>caOn{_qXLS@NXl%!kOkQ2)SVJ0OaP@Q4z^W@=6S(`VwN`^m{tKnTmT_=SliKF}zD z#+>HmFl+PZNIf8*b$d8|u{R06*P*Nvk38&e1!a^%KQ!87Q_o<)`=**h9k&6#SfRqxLhfAs^)0C-ZOTxZ0r}Oo1A+T^ZIU=s<9n z!nSrT$&RQ5){<*d=!N?%t0xviQXusGP0P}bGPO`j>Al8Id@f`+3~Jk0sC|9%W++;v zy!Ah&YB;|^+*+j-VPWGBDh^;DB!6p*mkTG3*nyKi&33ViYVpSQ)7EyCiAi>LHc3aF zNIlBGX|h`OP(R4euf!;*y&jWB%ax+e=b@qFg$tap{#5eCk{Ljpm_Q1S|d){kb zI=9%9#rIhAVv-12oW?|6+c_*=kS3SEC+cs#^AavA1}WdYx$$IShCk=fv8%3dfh~R{ zZkXl*5kM(dlpd{=-w&hVE?+Z;2-sn5u5|gf$W0G?M{u@X6zTNn3SEMP%Z?GP(zaJ zY9MChvmJ!wDhA4gkV#O;cqVJ|?TBEMT`Gmk$X>$&r_M3dHB=T*W9e>dbC1L*MBDfb z_qtJfSM_3(_Y>WWTJeofwGKke2%k)g2vxBb6r<3dt@Z*jRqr7tQpFQx_FKP0 zC|SfSTCxHs)D}v0fpSp|#zQ(Ps5Bp4Ej1b@TOpJgZ&9t6$p>>2Xf_&%i^eV&Gl77| zl?_~gPd|u}c)A$FJ6F4eg2iF=pj{nZ@!5}`(?bh`@+x`avOWZe*YNhm4K6TnjB3P} z>}~>A9t)R0p!5BMxEC^8ON~&Bpt*3tVyqPNPVD$OO!V#eFzAK_hVB05QH`MR1P=VU z$dT6-sOWX~>MPb0IU#nQ7B-l3Y=}gUUknKX)GVi7WPRSfcaWfoBjIk)>ZEcaX#$?{~!>m0_VWWX$*z>#Q@$<=At{y@!)JIXTDEFl? z1|hEpU=UIU(qoC^bBN;LE?&KaCw{#jDU?Yp(n@ND)YZAS1=Msthrndc#kNKC?lGpb zd=Y*y^OooEqmGe^Y}SY}E;Zn;@kKF?^YTOBK2H2bRwDo%5>I}ns3j#e6*Mh^;(+q> z-!z=>1pHkaoA`_66}YjDIQ%Q7YXndptj`Dl3d0gi`ZU*VJ1$-P}ZXEoUrbEZ?hf)=gByozXuK z{bYFVFiml2{-@t{l$ZK5>Kj4*9UU>lb8Tf^o5_KXU@JetkN|AJuU|n=)9_U;`JR<4 zYH|Oviszz-4mb%cq$JKWXA0azmr(Ma^SjbW#J%v;lSpH#+IW1wzdl?RpY%_1G7-r| z>Zp+HFtNC*>V~VGd@#`X2BOXb0+6GqO4xSAow0)p)(^{TluOcJFhBfst8G`+YT&qO zVVCaooR+Ouj1)E~bkxs<#QHoTqXrv~b__g9R;8Md0Xe~eobI9<|$o&lJ z#9#&Nl7Yd&J`!*Za;e4C6=g(O@-KZuNt#;dm|wba66|=M#PV_wj~?wL*K{>=*+`OF z+8>@YNRno`iJG2}H3XN+kM84N?!(rNGVYs_W3K=C&0h@PMR=9NeBc1gImC)m;}2cz zJ-Muy%A-(?m9;%q)B@byBbtO#GCzM_BMYd(sVbF{r7MZ_8Ebv~#}k*akPkuDZ=*Z8 zwY$5!xp@)KxeAHiU(KhHo)s+n~4K6&NnLumv zAN?S(^cnWhNT@>ADj|Zc6=FQXkYHeGXl;K4TGp@x*mZ$vq!i&!4XcO0E&HcgaT?u5 z!{9AC(zX}voPS|?k$((Sw8{LF3MEWUW%@fK#fA_}hixY4bVMy6=q4va`m14qWxU`! zXjlofnHSEw+TjUKV$C;<^T6}6-;Re+sbgQy91(p=Z`rn#xya+pYm5?Hez=L?+sWtp z8~()44@q|UPcmgMGFqvstGZ_GCoqUbE$ZetKnSPtFM}xZ9+DkRVi_0Le^}> zAt*`QP-1fG{%nU+!bQk z#WV3ZRFe3^tg-CYH$~hn)cdJw#|PTl+`YVPh08l67B)YbOYj{^s=j^&*V{3*$K~-) z%Eb3xg9iskEAGwb+9OrVNgb73nTTW;nGJWE!8ndYi*a5jG%SL3YPa^ofq<#Mrc>c4 z=A5eQ?}~Z?V!6jffbe%f#aDc(q?7t8&(#hFad!AT7%4Wp4*WV!ds!#N6)k$9(%Xz> zMVA8i3YQltBRSJrSLFqaY7QB!Iihrfe5hIDCMjUoP@L?0aLjX(E02k_GJCR+R^;7N9TvU(B@wp-;Ze-tnUwyNPC&*I5N#HQ+5ximO{Ic2bge*Kx zDe^Zx7!CsyX=m`q@+IwDgBOKGcK$SB5m#aGEayh2OKQauhua-2nbD%yW zWvrX1=#6ib>&lfYQyp`@$a)l;q_qw13$j!_F7qb1L(8kz5#b@{=`8n__dOk9R({WC_ zLB_p1_z1_UxHuJ629KXe3(IkY{a`QbijmN+yHZNjB3i1|74 zu?`$~I1L!onHHxgMj(QEUB}7z?ZD&Lo&FgjXDzMkEp8$>l3cz1y^*+-pW=svw-Z9c zmi~TY6(waMG*A1mM)WsS1~3G+G{@jaI5V(Vw=$v^!h@+50eC9j6AZwS!Q>QkKw#L^ zd6#8;ZDU)jqQ-1+_;?EP!70<$eR{N&7qnb8krjhgn}rQ7e}Tq*8SVu`>y5?Yhtvcy z1k-PjvoYv#rmQ3ll`-ia=BdM?LC4Hx2@DSOFO*)7z_sKW6x;VROr5?(6o%0Fj(wICK)mUA( zQZ|(sBG9sM<8-CSA2L^m4Jvu!{coh?4!7pO!-KqqaSJO?>!4*$UPS+lmtJrT6wYS$ zXtjt@fRd)I8HZ$0u&zjshlT}bvAdt22}Ko%e+l}Ra|ykOg3yXUFvB>AG-H7*?HjX*jBg}DC}iaQ*=7ph4RiLF))k&8HSoiME}mrljji_5P{ViA#w+-4wRi;-FBmzD=-mP_- z61*vJ%%u+q0+)@PiykBAqG}(2%2!;$PjC?8A2z;$)E{nK0&RUX5NQ~9g{~>uNO`Qd`;V<2j3-j3=3!64v zWM`ds3A-?uSdABxP&k8iV5-9~%EAVbs))4Dc7X6?<1b_#`Xg&`oT;KvxFj3-{=gG~ zhVHAAydpIa@|D26Sr(VEOR^<}E#bvOlOrE=w7G(<*uG4&9W{AWH)X=Py8Hl&MMc+_r zv`K)lN-`EWgxmQQ0td#8Zw3qkYdIMx+7uwu5iI2k@9m+ekw$F1V)m9tL&Lr<5t47f z{Ac-md6Wb#gN6k}fkff_P=KpC_5U&VrGZp#VcWY|nw*nLGNdD!Lo!P#6@`dIh9n`G zGS3aDBSXnh#v+7}IkQp}A?-wj3T-maGvBrLdEX!3&+p&2f1IKA-p{kwTF+Ydecji6 zUCp3W3U$1)U=?q(W8!e`YP_b9_iHqBMjsQC^sg9L`3~)v8{(d+jfR7}T`h#N(VCAo zV;c<`K#*)fqf)mpQ%L!oY@C)u0t&+h5_)25+Cndbc-_>38_VSU{u5mCF>0hy+w@zS zP9|#9%t}QWW^f8(-`!Fr_#;8r<_XCPiYTPMu4mqkqwQK>Ip& zST~%IaqyqbRcIXc5PK{F{d-gs2P`*50?jDQt zkY3QtI^XRI?`Ur2-qNmkS?hOsR<$gZ-EwRDcAB(=)0vj~!Iitrbg!@+XTcfwrwF!# zr2if!4@6Q}nVO3h6?qQRWqQRJFu<2-QjFE}BMAe8>kfLU+760e@E+3 z>1Cp6#I_oCr!F4=o};b-dWr$e`5?^zHBTiC4d%+9FH`xMm$L<%9Rm-#u-&Ybcb(|i zY2w0F{~kg}`O-lRvt`4?L;)Trw{8R!q4c>$n+TWFos=8Ru~`ic4#L>C89fC#W)1gq zo#i;vQfsoI;JI(si_Wetv7x6KMz;W&N&!@Tbh7%%{HTkde>^&$GqLN_7O+`EoZdX$ zz8=!%Ugak|!EykvfBmv`y$9m%)<%sJIi*$?#Anf}5fiMBirnZMLgE^Q3@HwE2!rJX zAM$1bugR{y@k0TzQ2DVj)*^DIB;Sf2(vmyC>R9n#QgO#=j$YnoxDJ1m>c z2K@y#<1$pOAgv$I`w2Z+)4i2lZfw6gi!%gj{}vb;*k918ernkEYB}^G8J}mSGA@Hk zp}}m`2G?Eun0^_P7rg%9iz|mn(ekaJQ;KtJ!%MyNL-PYUQbD6^E8-M2m=_wohK70Q z&*;2Aef|9CafNcFoga#5fD!Wt0q~o9Fe_o@ei+Bfopci-w2$+uv}m*elHQ~AepZ2@ zld)S@9|?JOww!(I+3~gw(%a-+^)Nds`O;=lJ6VVNJUnLt*m;yH^UY0-2Z#u z>-Bb*s+|PeLiTdT+?!gQ8=77!8L!@ArFPjM=>BD0Gj9cN7iIVI;o{EH^t~~iOYM~3 zY%5(TH;OsdbR=1*@Ifgttx0U7iNqUlMb(n+=O+5Vh0V0n8;H4~c7QZA5akJQ!UY*lBO(y>A z5Y}(`{#|_I?W*Qv3rMCN?eG2i^=t31iLez(pH@*Ql#h31J@Ieb9Nwxc0kD9-YMyL5 zJh6KXNC%KtVjMu5gSq(Miay3CwV?$7p-IxT0j2$LrS(ou7Spn8rizV1IiB^##Kt?w zrw7Gt1Fbc+U#9LkG(?D!_t$F@5FJ2!h~nxaA{@aMCYWy&y~+@)+z>t9GmTrIR4`Sn zq71BJPCLbi{IH;{IJwMJ7rF}4G%bkJtlyS)))jhh;ij-GNJ;@SEcdLk+`H~v&7hjT zgQ~@X0m+r-r{wb9(txR=aGl#2bG#QlpVkHF*)}k6G|*8&=ngf>E$lLHrNOL#*D!-| zn^U5ualo1*hht_>ojUdC;yT=i$nC$~FfFke{ej0##91|Fdmd0i z=Rt<&Fl7tH7A;Np6emDp+5$_Yt9kXY^0I83cLn;z^U}S!%wk=WwD=pay6=*T53a zo>Z51<Mu?{+|iBln{j~@%8;AlUCk8k#0A)6 zq5+J^ZaKQU&!ZW_jty-E5h{sfuPCCqqMrZ87m}`!Dqw>=O|Dhc=i%Hho?oj0f(Ir= zO;*w(&S=IMMjrn*n8eFykg6{%8+6on4oMhkw%64Ktfs+ywHY1%;;bNn{rSSzmJf0Z zar?S`wQmLP=%VE65ej8~MPepqc>?M`jxy~0=Co+!S!hvNeWai*(bOi|p5GxtQ!iX8 zc>`B?M8vpUXKO2K;Bl>!oU2!uegT6l&^lBiIm_vbl6s@8{K@t)%^KYnPUxf+kusW6 z-Bj1;%#YW%AAWf2XwYhsocd?9t9r-w?JOoZ*Erl;PkQfDI73FKnPb6aHRYu`>?h00 zaGrrD6K*PAr^a9hIw`^@207ImXwCs)ntz*0Gj+AB-p_g#@W@oY%f>*DM@vI}h1{mB z1eU0HhdCjWfTEt1y})rlOSsfa_khU;bDM0ME8SHQ4=gGjZC3(fWE@kq_(3DRCgIBj zEYp8kl`6RX-uZw2Th|m0%Ejd~%!!TWy+upk?HdBCyPS#yX;2?mj*l5MkW>_qax$RPWp&Qbj!IVE=I^ymSZS zn%Zn;rKj(s&wV<}vJ3+m*wmg)Ry)YL>FVzYO?-9p)q`&_Jrv676>^k{GSo0j4dH5_ zEgcoDTZkqQNIS z2#T~kT8z(=M3cH>b%1DUd~&zkni1?7`IzogiJxH-7@1TZ%!w{(^pOz}#LD#abe!t^ zVTOfc?b$D`R#xJyi56FNx6?}6t>YBD(FyEdlt5Y;pvox1 z0^n6-V~Sd=U(*JzD=Cgn7Im^~z|CegRX;d2!M#M6o-Tz8xDtxco#b4(!N7*`Xo=4n75fvPEtD|5$$p`k z@~q#D#jk7BMT#xS0*}DP%9G?^{hVeAdV^Ck^)E$1K|wS-_|y2>)b~lS242d#i?bQ8 zTjYpd?87z;lj8A@2Y_21uLhV8MZ$M<^(&l$33sdRoZA`!h{<|Aa zmW<85OmNUEW9MaN3^xVij(h!H@O%oa=KT}s$KLPlB#`tx)jX+^C`O3<$=j^)SZgJ8 z^f|~iJk)H>XIJ_wFB1>>ZiXvs#zP-sKg*O=ErbcA=8(8;tmdc#(0=6*_}nNyeVLzs zF8v&+v=Oz~OJzDFB_w)fSIR&mDKGC}>$YT~cPOgCk zIs$9dN&EA*k>&}Y)+mne>>JoShJ53Ma~t__1VYfA zlB!hV+5k5trGbe~Ze?;TQYiYn$WmM63o@xGrScX_1<5yHZ)`^KnJGpO8PJi3bdMnt4I42zb`5p#(L{8EiCSyxnb)0$*xz>zbY|QU2gPPLZdAk zt;2n|F8iZh^s0562Mjmw^FbfAui{VbMF;YehZO(&$;iTKD1;;8Yi;MtPz$*%&f56J zxxO%?|KW$rA}k-j=A2Dj9J=CC)6~o|zZ`Ea-;gdEsJV^ipK8f=TXFE>J7G%260_e=z{l5gx0_sp*lV^R z*Rjmzey8Fxh#@RqFVs&zx50O%YHWg?gJum5zbhae*L*lo#jG?NCRnUDacF$#^^eJ} ztk4jiCMz2oYKcrebo=bs5O8Brv27**G^A$yxY8q$>jLbMiK)q~8zCc2IkJ`c7&mP6EFIGq=585G8ERQi5(Tem!0UC#=*#M`}tC6F= zx4NXn*9Yg<6=%q9XhndSr$;|{u7)%tkPbx^gT+#uHQFA;b~IE!&LZQ>Pr`+>b$tWNhRXXg9cBWZC=2fglXcl7cD%H7;`T%3gZ{@O!)dOG znos+t!&H1lrxwN=WP@_b%AhQIQRHqHcKLJsVL{7I9#v$Oe?#RoRFYlY`7V4L& z#%&>k-p)V|dANPfXop?@p&ato&SR__el{15GT6LP*)fu0atk}5@14=9KD`mW(x zDoVV!85kAHisGtQ$#f&k;UIe`ik8I9`8pfw>?brrRT4GH4#ZgblG38;MM|8t95}T$ODykEJm;$ z`WX{Laz-JqsJghgr%xwhcCG)hU*$2akm(IdH=ss0i3f`E_>gh1}Tte{f`kn>MmaYir|t`m`AK z*Fn{1-X0B^QP-Dd#RE~A-_w?l^k|clYb6=N18DhS1)d4yNOiC`4-NV{ERQe%>2B{Xi)`2P2A=Fex>E=@DoSmIh33%oR&cjfJbI5m)7C%X`BJ$(+>{jej9DCP!%acu;mY@&kGu`9gW{xMoP4jCrvZ^UL8^nmQvpT<^K6$PQm>;{M(?kV}KF_!Bj$t?uzsltbt>h>~;v31CIwDhn-{F z>^E}Z@22-}A|`Ec!1)iM^Kz(vA7Nr<^wms(U9v}KT>9PQOAzBvxf1KwaMoSU^bJ)! zOtUJW^z2BDNtf?`&+IkZR!T2S#`7!II!;(7vTpAvT@e=4T>ZK#v zI!*14-ofaLB`pO}b*NlvaaNDwZOv%$+>OAPLTTAVe_XMfNznuZ1nk&w3}9bGDzTdZ z$rp=>;$0-VsnHqz8q6uFMd93?yZkzP=W8{Qs&*{|`_2>uZ1S1$s#*$+U$Ajqn$#4g z&4!MTM@|_zEH?YHY`SC0Wj?exHI;9w3!R3vCSPA)Nc527*^Zt8!SssZ$bl&zCJkmV z;l6D;JA}@~j>3kGxVIm9|LrA5-u)p+shNFWZwipHHYaqh+-qE6rvvvTk93GkK!dWWFq}efLHCo`P;(WWv7Dp*2 zImN4fWj@q-prb6RVk*hHiOYxPn!`T<1+xC4(Cl+*kCS%#L2B&w>nF|qa9&b;DiWi% zZgHu>xww;kwT?&F-zJK{@*+P$(Ia?52CDWcIuU}F%67le1?1x!~7WHNgQyHxp3ivB13Jq|2xRHgBQK= zC|_deXUBGKP*HzFdEH@oaoSlXW?!rex;a$7Ad!!h9cErfYW7JjZ={75 zfeyh%I`iO~MDlnTL*?lO%Fz0%%!Aq4)m`1IT1<2L$sqh_B|FjgcJzEAV$SIQ(yz8f zFC6AnX-$_0e5mGH0vD!uA^QAqS(BG}?d_W*i_4|W#Y44x0iK6z3I_BR zjz@L$DOt#{*Cn2!h93WR_9;f+n5F)Ax9ETiS){Ly%=}zW`2khfSqGV(Xn^jz6KY`f z8^9byEtyJ0J^kZ9twt=95*Z^=g<~48^1@~T({F}`6A$FdX_{mD3=atA2=yT2M+QYJ zY0-WyuCdL14mCYun{t!u7j`oMB{OCz7|S8Qu4S11>)x67L>aT_e7r)m&d|E--}GO% zRJbX0A2d@y{%muKr6K)+SQ~5L)KZa=bKefl8ay#h@`+z9j)gJ^%M zbu@rlDK-!%C-i3*po5x#rf3TFm^yyEMm{I4GuA$qChhn}z#q=JY;>@wUK$Y@uB0z4 z;6Db{LzMg?wY;e|>=>+zL%Ub3#9(bzJQF9q>0#$0Y~(=;X*6#E(+*HDxMK|PFb*X& zzT_jLt$UZ1w7o@x^5jc;*P3`c^4-uuQBhk@5Qvv;y+QLfMNnlC$(veP4Gu5FltXN| zpv`lrkmkb#H=O-qbc{=qaVO%5;tN^l_4V{3)sg`jY^)@Gp_864TZPJBTfRk0F%yi& zFjqjO#j1EaBsLyZQC|FGWw87*KVl|k@dZHE@FQ^hUwT5D=R z7lt&Ib`#1R{`=h9*hdA4T1NK8y@TX;<#fdNSp(hRxb^cECc4Q)#a z)f>rW)4Gp~LQ%MfHVkdHk4p6TO#)gQEk3aarZk)$m!(c592v<^+n785l1YJQwY+41 zkq)!3+Yh=pqas5qw^^H0iWV9!h(kT#QLB=BT{GG<=gAePcG9t59|FQPW`d-Sw&lwE zk=+K(rU4iV{xD#?Ip0o)_^h-cyiH$4F8}zSwk_%*&b@QR*#md72LfHyVunOb;(jd{ zF^+aR*Jb>ZW9I;+9KM45eDhvUlKJN}UDe=*^0mch4)1r{$Yn1E(_<_&1NW;mAriU>6!!(#>-;h&9wgDW5$8=Av;)XN<)cHEI$P4+pg$! zI&MOGV(NXKZa#BAyQJvJU*~i~wDeiQ?I;%TH9?^_6oTeDG%C4ji#q+PoSHQU%<4U6 zYmL4-q9O-wKg|`^XVddQb6~L{EPTDbQUvH#kV#uU={^%-Soz0dhvFx1XO@{Y^p55*{R`m$w zyoc($eh}ICd-iIR;wyaJE}d!;kJf9v-D(_-(+_ z+o?D`l|MZa$F4;ri18MYp<@1f7@N)BP3eXk{NqMaf^UhDuB65D>CGwe*FkPj@HEW% zHZbWHkcFmSsK|79FE1k3FB_O5m%6xrc1$GEAPoH%-c+^bYN8q9oDkMotEDp*@?EcYKTuh zmHm(hgc0Y5iZdI{1%-s5x@r0i4FI<;PO+mV?yI=s;UKw@j6v&7KV)O-8y3Ge#K<}a ziJlYO9_Kj)%{-;rkZkY{a!Ljwb6(n^?ag^VD4wPV{@Ku(lb ze#Ln{OA%gu5%swGpD!s}NHuz~_k{Ogv)5q7%~cI@;~#Ans%*aZU06kVb%1EJ3vI0A zRyLe{F+8uSQf((i%hMZd$ubE%ezX~TD7+iarD;*rC&$HK5BV8-N{phKj;%Z?CG_+3 zB5=t*2W&R+yr@0R(&7~Ce+O7Zf()pcg4B) z&kF)UFwB%>*$AUt2+U~lmkop1B-eoU(HG~uzgBv`um z*7md~&PcYplYn1DVW@`E0r`;@fn-22wJgQIHbNRZ^U>pEr#jU6Er;)W&7@1X4s&6aApX%%=duS5-+&l znee{lC(_v}uu9)=%CU1yq4H&UV~r%MZu8Z=Br5z=qv0se%MhW-h*aRLc32X1@Q{3i zy^NoM$|KN6P@_Xik2LUzoIP7muccNy_m|EXb~AbzMH{34i$}emqZ)v7hKma zAKO~;+PfkUpuk5c^QMr0TRV|GPCse6`J;56FC~lV^@Q}DF zald_M_agObxM}9Xo{-jdw8Xl(H;nVHOm1|Jr6C;y5WV_HEKTt)TC;^Ch#(E5WvcD8 zw1t=%2~!;oH&A1OWOcil966gLr6 z{yXxNdg)N8;y(ZQZr2RZElQCA3IB2h8A$66{Mld_9KtQ$A9M@nmq3_5k(Ipf*Np`I zr|qkkFAvi?3b(Aq3jL8cl<~15LS=8&`ON0x0dx^IupH(88-SpuO6o(jR*JJ)SzE(n znQgN#6Taei)!DI)YH-0k8~7TAhSIYAk1S?W0l(veV10!farS8w`U%*lfSny`hH_`iToR@ zcA#M3vp@O)&2O9x;Rck9k_vRK>ib^v`a2jT@4sNs436rAP=$*eq;xfy+2veDMt)X` zmqB6$nftL}+!CeP5ev=6jT*&bVzlsUhjT+3n6VI+h6|6;@}!YB&3Y5YZ|}xRbRDBJ z6dE@vTF==Hw40#815Kh*LwH`1$P1oF1d9AJt@hZ7vDwH~*Z=3Y#05Fk=#xr^>LR-!CZmA~O>xkwLS?ErW!{!##4ir3%CEVS6XAwmLyP zi1S{WHCpO1@@jDJKpw)Z#5q&3E`)pbx6RU(kAbTwyIo^Z_CXgmf0(&AIw(ld&xdJ$ z+035F3e?E_tJ((hL&Y|ta`KU-xQb(we+%q&Nadk(8i!Yy3c1W>F{nrfb!qW$tF{9m znspu(+(D=Lr*}AHJZ40+>re5a=PaHTA~)BYFznV`Y`zWSD^dj+ z2Z^XynrPK8DJ%@ln!36=)P+2I1dK#gbEthFMAb{L8O&Ys4Bi2n2=hZ~)hp|Q;?mO6 zl9Cq|t+1MfW=*;||Mq)O=tG#NYhV!L_+$4QDdoRzzq+Un#MoxO=aO6W$YQ zoogr+mOJ)-mZp&y>$X#|>i8dUBAc$_3_HSPTTc~F{AnMV1SWy(qT$7X7}q89*yeGM znptXq=dJPa=mS-~C$+VaO-&YnGSiGJCVrU0gQQu5{?>KiFktD!xtx#BM%|ed?kMig zJJumhwY3WUjxB=WmQ%3-J&DZIOS1TS^`Ksdn(~-jgD;cTbp_eQJBc3Uq24)<4?r5E zyrRWs!{}BE8L%CXKuUjC{g<_ZodIsN( zmq7XMA-(qg;|jq$TN+dnKfigS$V@CJrWes6Mdb^t5%7N_-7Fs1+L*u_-?Bt887{pt zp=KCITegh64&wzt66Xa0GhrK&=*VfPzWrC_|8fBi6{FH`U4Q_KKa5ePgXCD&gmZCY z@w7J9c0QmO!RCRT&`N}e=JufCS`)?%_$Ar%dN1$;%qV~T!#sgy(m_3}~{j_6U!MFig zQ3KwHDJTQ>;D=s@(_g9Kv|O+~O5#tC-eFeykbPQ3S^0YFX#Vwob{N%X!}Du5196Z9 zt6#2Rn-X6{twkhyl_6(dP>@XRvvQ;JU&dDv2*p#40cH1C8tSTF3vu}FW&i^_$pT6K z4;j9_?>hKs*P8ifEKf-#*V)2fglB723&JqlnUSB|%51Q;u@qr>l%$+9gqx)N&pa-( zRX^PhA~iHvxYh+BCx8_tS~oAkJv#|I7m&Z;>dW(|dB_WL|(AJ$Z{TfZp|rNrB>cl*Z^ zIv}<0KdAndE195=4?bLmySA|YD-`vh#b5anJ<=H&Sf6qY02{jImw1D`k7;{LDrYQi z8$KbuY~%lCCzZ%gH#x1_`UWm!SZPhI^u$5@s38N?9E@24vJ`$Ttn6Nnleztg3K+G9d>2i zaE&{1gLjtyHt9^_UB}`s-muH{(8U4i`ttX)rh@~aSqA4B)0SnfHY2aFwQTuw)8PC=9nX2f* zYQ8VAq@tx-+DvDsC4>i6(*ZBrL#bFV6Os{Aa>K}^W6>0=m3|JZ*>i3Jy~k+_8Dtlj z+Dc$Ddx$})B_9ogI_-VY{K7(4u#I;!KuW-vg>=}_QPnSXUV|GxpM#}TEZSHa#^L9o zuMc%9Eq(}$lZHFuFNk`i2_#AI#T4tcWbZ1xPXoG^+e+|)Y-rhFl+qq2FODcOsJt<9 zpWda^HDOdK0;j%c7+3L!K?SX)<)syjR143g0aCXvP>+^6vUQAn;SZa2ADHlsyHU~v zV3eLNL&PLArSscuY z&_wTT9fYx3;YDg57lnI^urARxY4W0T7^>}9#<TOjVB~z zuNR)yK=UBcV?@Uuf==w7*qVLlM5G&0HwhD|@M0v-rpF)#B&)}j+5S{yS`BjZ?@FMn zJ01B$^+9jO)s8?;3c;H9VY?VYNNS6K?);#ZSKxMPFKmkCI@DO>@nC2@hF+rs25LOJ14D1F<^$ zdZg=@Q<&mj)%(q zcBRO6Fk=L^D>Pp7(kVzQxzxJg7Q1{$aNdG1(_NLA4;e&S>`MfaqZ~qH9(dyE(f$Q` zeXiuCRdJ*F>LV4>I@AdoP^dG^27?#tTjmoNVlAyhOd|4MpW?IlJJy&bHI*mg`ycv4 zDbh@!$d4N;A;GJst2-(;yerOq=x~91``IO>@NJo{hhu5tPGx6!5wli38lLx6yeTRX zqh?b_NbVGh$wpGP)aMIRLCHJu(kT1>vR4sZX#tDs&4SNRBoT!z4))vAJkjGSi6OMY zE-A8iqV}psK<(cQG!I9|$-&y%4M$#9pDpWg)1L4%erAF86j;-QsnF?k1b@@@Dzztb zd2v|87ptzUx5(>Q^R(AO>tqIM;OLo5(vXJc!lYZw)Q8d1x-9xhQhJ!sK86I-Glmv_ zSgOavwu9)iLyQcA4aken&)Hy_XLu|59ZpB-?;WYUGwn5Us#z9WzFfoY-H5ciqBn4{ z03$Q8u;}9%qKDnlfQM!RroNxDandl|{2Pe}}@i*p&nk>C^L zZK-8(FNoK7)|1EnfmR?Qa(C_8HT_q%uf^*wI2MqP(HRLJBjg$Y*r&CzFV1CFBim}) ze2QhBi)-ofmOkg!ZToygHsXhT$cD{!oY!361y?!-PN#-;yoH`E2thA2`{30Qe1uau2rampIfp&kIM>ibxVZHPz9q&mU1ct>;k_46&`Jah_vIQY#iEckI zwE%$D{@%TqVDA!9wyMFYq|ji#nw?w_$=GCo9up-EMqf1bPs*WJ8ro0NbQ)j*6WRD? z6)iiS4-q09X~U9i8{FrwlzvXO_IyE`DpiX|IWj3gv|gIs)ye^MG~%s-7Cxrcxm%Z< z%1QKkWA-N5n#!K1){t5uS+1mV4{>`w(>%RRq+)%bij>((j}1H6MkeL1hIbALf|DC3 z$UxerJz4kP=h1gDnWixP-5#BhZC0e#LCE`%md+7O*to!9s>_pzU0h%IK-IHQEWt2( zu<@Or9v;M?k&F8SnCivtL8SW*P5@n_m&I_e+S+dSvnSl2rh;z|jET_~2`>=NW=ES| z0djrHE8)xJ;Rs5y2vd3I*e+NLKByFHU=3W?$FAq;u?M23jcCAhMGuSKGd$DuPXPPL z5RII|vNA8kGpK+KWi1dE31y0bgnh0Mr0XwI4$(@}CZTQ5^;zJz>LEU&+x@tFJH@k? zSeFcAm+yw!M4i^EYI%3hB5m?g!LC@DFqX9{z2vF07NXxzqXXn&X230jro6an)gudZ zDjy)C9aQmB>)s);DR<2!!*EZN*oLx==Mv=#vqnF;ce*dHJ9Kf+Dgxixo+9=7M<VG)gayJSya`+dHGxC!?CN)1xr-#&&xj* zE;r9_CqIfZMJIF1g=mUZ(P<@zJZ4@p{n}tOqnOqdqM1Z;BDQLWXH4jrYUOAUPJghh zkO*}?o|fgA;BV^`Ty}Mm9jGFj9%u&hZgys)fk*yQ@Lv9_165MA=<)VK=hn4xraR^L zCQh)-kEYQ&%BvKXX@VPV8c4yI@<^7xc|FMJ4-nO3E_nG8?#oPX#8p+PV{+x!me>;e z!5ghuY8(6B-c>u{HUL|-?VU2@nkA&vEE0UJ4TguHPEh-z<=wwJ8emmxL$)-3uvVsH zzkTN>)nxa%zNk_iaGu|TY=eY- zsC3$pm|9*$Q4u|TwK%B0pQP@~9@vsSpkVf`PtaYWwoC`~wDZV!Fk2-#oW-qO!=|%vC9|umPKm6i!TQIjXpIf zoD*<^QB0^rr>V(t^u}9I2WX$~D#n^Hq{%SzsZ_ z*sR8FUGye=V3FZxq3brY0a>3uIh*djOKMu3I-%qHN!%(b%jo5cWm%+U(hj}%X<#7q zm0{zT3hJEuT0okeR1(`3>5t3r733lQ&2HtX;I%NL@Yki__CJnQ9nomD;#P(m-?*Hl zsy&c06oO)D>$yU>A?twi3w-b|dh`*JTuW;i04~0uxSEYTsTU ziGaQU?~q;O0Lw=Hu$sYQdWbbkf1Nm`iq_C8vDs_Kvp3#*B8h%Le=k`pEN&ta0Z zwk^NHdnw=D=(~04xqIy=r)5nB8XQU!ETZj61B7cV6w!(@Om%a55#gbLYaZ#;Z^MEQ zT@a)6?-brVqDjzYu$sZJ~MX5)85HW;*JWx0uRVwZkML9wta2uyzo<0-$ zvi83}(w4^dbGnR2se6t+beHS780+mN?smu6c4^FoE0kb@j?_K}$n=DKFZ?xC9xWU-1ha;UKt-+PJ~>>3Y0DDlI@r- zn??%-(xU&3ZQJNAP77j0Oo@BF$+hu7n}u=C#l{x#X|FlSy&q77dU~ei+qXi40)hup zB1n?{$S9+q-~ZSAp?4!@!^OkPv!k5q(Olzww`fCf_;%Tl{(ZDzTyE{4;esj)D**I_Jki)i?no20u zfN4gGnoEaH8O?o$R*8{YU!v@F8X2=Xif9#BwsMkNq*3)?q=_p#WZinK$>Ica=6iA(%#_Uo=%t!`8F$u`}dB1eJv{}A}ZDZMNPMm?h{^^jn z<8oX}zdIj@Y(z@S;W^QW-KxEwjwn4kOP+BGf(vLjyr6!oy}1Qg|8k}LG;=bQw%n~Q zjHt4?U$X|SCZ(l|`30qeC=-G1S}=cwzBWkskBCQfisoHby(&y(p+49X|0hw^l6YOuuaa9ZSBd2X0Ip<~}P=eisQy#5QaJ8Xb9_y_$ zP+e@P{>-^>WYWr}_@E?xr5J4>J9;!MH940??w}*vBv}56ZuptdsEt2%n#^uls2CZK zBgn1S25WlK=tK`Ulf7upUbL-oGsm*dd*Jp#ncX?R+*UmO@_9{Oa96`e+e4f9dHI95 zI7aUK`-S<3qP4fRKO-YOCgV?C@AJfSI+5(@+_IlKlFBUdb8>SvYqOn-4mN6jeoGO` zVAeQtarMpDKgBCQx-CD7`Rm7lC#$+5XT6qc4o-jX_p@|6U;fza3L_(#FbIg0?(!Mr7}A9xtn-duq`Q56eT|KcfeKFbEISM5!Y^E1xoUrs{dv_u5PDNm z3VU~AhDY|TcA<;2SOVP*2M_fAAMr5JOds$LmV(ONx<=RbuE1pmPdT%EQJnH`X zv7%y^a@lY?zqmt>wvKM@jo=cMJnG9db#GpiMAYK6LC#BN1#N&)m6iXsY~%Oe zP5$|JMrxit3keB9 zTIKESU9G~PPr3K**O)@xVf*d(kXCYB>!k=3PtWS)$&*@Ip_Xl} z*YY3kQ}=^zY;KjZTdzx<^ zwkJ1WQXPNU=(7E_r|T#-;ukA!JbLs91$Rz4mzO0a3*Sfa69xtb-oAZ1wtj2tSB+%Z z@zLr@R#m*Tw3yY6Ftx9u3(8k+p&0gO6c4$f66wo?>5_@5hs`rEv1|Fyo;@?J^fSme ze=suom&652Jzd44rw%QQTAuweWe`5h0oi289Ws!dHGWJ z=^>!ZiVU2banGMWx9h4hAcaJR2jM(d>aMral#Dvn-KW)nDtam20zTe9xnjkNL3xz4 zZtU2D1*daLg}nY&gy76U&*r(0kM~IG2wre1n{V}X;gy)W2Q?;>Y7Y;O{A=H?cY03e zO;=#%4ew#GQhb==dm5rI6lr|l8x$Uksj zYiO`RC52r9k>-tv-T0AuJ@vA~6XW9$krm+Og^dF(DC%@le0)6gN0lG)6xxyMU~u)F zmK7AecNaxILdrl$i0rHqfO}LCv>do0DK}g0FSPD`ueRrZ>y@7 zx;U5L*VV~8pUG?nZafNVopaYkysP5|dDm?`tp_c?K02M$UhGUf)cUCVxVT=oAH}b9 zS%dZPqz>JsaXQ!=KfRt|qNm9eE%H&R;4p!Ay^ZnCHjN2)SPtngw_3&*wYDE1AKagh ztSRzaw$gX6Vv)y7Qkwc~;bD8j_wN{|-P>Vk+eupVI_~LUoV@cd|NBU+N4;+`+HdXX zuX~sNeAyg_QKXOoHrcuJSK|ra`1e=KW)$V7^-pX<3Uy-{Ym35KI4H5NuidzDkFi9- zvN%34vuXtgWu$n)<3U_!s!E!6$&#C_I#%@!1unebtKhonE`LcI>jG)K_tQ%JvLDXX zL3vMK<>t2k#vdKtz%W9&(K$O`@U-R5{yjKWde7h>;mH%q}y7>5I zTbnE4|B+wyw?x$V#<=M3TnYFC7gZ@c(~b;_+SnMpV<+uhwn( zgCIf38ok~m`CY{NyOi>}gvLkV;a|I-#PcGJK62y;489fbVjq45X|fO=g{7IUB-JSH zH8L?nQ2GdGX5jjoeqnmNLE#kR+|;0~N!3QzhhM&Ysi{#>e(l(7;N0%mtjx$SAaM5V z*&egUq9(^X%RKk4f%4xtcFk^8FhWdG%jIjywVMO})HGbD#gOp*yygg+Jw3q773#QL&<1pS)v8sfNql?qWViA|sF=Dn zXBdRs$}lLde|+G?A)K41HZU@BuhB7d?Lo32seH5U3P7-A+?9lto`*-tv)%jm+w|0g zjq#AA%f;o@vy1angV1<=$n0~6wdY72g|gjE`PdQAwI;uu9m^pEUhIEi%o{lmd7vgY z#d4)qd)4Bhvs^&|aWI`A6PcjN_uf4TqL$}%N zkK0>tmhDh}jWXbHQNOV3L*ETM>l!VvNrCh!U08c%5XAnQQOUJJ6$jb`hhuOVT=& zIroaGVY$~L+D-Sa$;!&Yfg4xyAuY2^PeX%?@1&aAQmxU_9zK!Br|)eS3W@6hraIW1 z8TahTL4k4f2z7V;Q=B`4p3ehfV%%#GR0Ye8-CYp0DV;orAm>>{Uk!Tl=HG1C|Gwdu zgXz*_vk@j=$Y$*0fri!V)}3N3oBbU%G2x(m zx%uwiyH|`U=~2bN0iQUnq7uR!8XjIYTD5B|M{efFZG;iw%u)uAK}r_LEZL(_3+7tL zb`dkf&juxS`fsWL`|wrKNeHcJfovSn|SR}&F;K$r`R#g`%zKzxa-;|!SgS7 zb8{cl93ei_sBDDX`ugG{Yy}kTe)&Ax&BgT-CTro67LR|mA6l9*na!KD%q-;@-fhIh zE+!_{ts1`HNO<@M)PE<;3Zb&sqZ;z?VT{BBqk2XzfMe3G>t_FH`l+xy8(i`MLlP~K z0zDr|*B>|6b+c!bjHx7-GtD+dFiu2 zoi`(j4U^O@cEaD}<>ig>Y&kUZq~xfgBFGtg_wEhhff`p~$p_3#x5@iBCcBnbb_pdP zVA2vJ!6zgXCg}=k*5S53$BrEYm89}t>FOGrBnJSzE@ zy6;?kLPE@vVt0x%gI#}mfeb&2bs8EP_f%J|TGgW(E^NThX|lYusOHTDd!;cRwYYoe z@5KL&CENHgA%=HqytM%7$fqe zpHfdWnBTP@cts5tx`2A><#GrzE_TbhrlzGu4NIdP1AEbC$W<~hFe!3#bN5cVDL;Jk z=FRu-`pP#!id66_d3Kn=uJ;qyY*iTg1!^VB*K?IEFU=Pf$tWKINx!>6>T6SzC)U$g zP5_IjV%hDCXV2dDef0ypYMGa9_T;*~eUG};pUF8NpVhOvQ$y_nog!b0oo!~n@}xEK zcXIIgut;2cwD9lX=g*(U3Oo&j8$Leep?`D})%Pg&vivzg8F6(q!lZlB*#A)FCtghIB z13j|62!6ZWOMRGRod&?W3Au$xxVP6_85-$LWuEihW`%!J)4F$6sYOe1bvj_zeGnZj zxEv=bAdm(sm?qQCozmA@L}s5O2^wo&wf~x_^_#vL(q=H*uY{VEw6v~QICw#57dpi# zDXdiP1!t=RBRpFVx<+KXq0l?3e1pKp1tkq~e^p_`p^=gytrg?@f}QDkDc(@68v zr%$`-BO>Eqj#F;$8dFo#G3Si+TyhqsfYWTJhuZh9*|u#Pp#A%jI}cn5SO^->H_6B?^VeU0;f5n5zvWp*cx*AiLDbXcD|gLw2`l-krRCl=s^@%6D|GH^-oRX5j_$#|E+!6O0oS^bv3$LE-=H)d9T!{k% zcFbe)Yl6a{lQri~fq}s$xRp4k zh;*#c(i#<^=@G67voBZ$zeCwr9`5_0^Et`Ap)oDbt0J(C`w0$8DUav2V@K8FFp;kM z(igPo!JHwq%)Mj)6YA#b`f7T5l^q~LJNFYfl7%=lD5x8dAqg}>7oYS4fd}9QeQC(uOrO@E>$jA!yb>NO%mQphafxqW_Lg#c! z*VFBOegnwti^b@0SYb7aMYAz|33Lk*@e%C=^t#8$H5Ash9XOqt3B&WF)8#|{=vr=X zZ+{vpAL^_u_vemsTWcAY-WM^thki4)=@smY`=LO_Anl)(Da&u`tG4ByPA{!LJtjjo zHO^_vaJ$GWEZh`5=IP+zAgKh=1JiFoE9-m?a0`F7L$~UDR#uJkp8V@*H+myMHZB<* zo-yz;)=i2ha6Q5O@>yJYLD1xO`>2fHFwk^p{wA|ebH>CQ_G{?4q;0IL_$@9mN6O%O zxz(qCMao>8_H# zu}CcX$jodC$=}Qhb5qmFA9GlS#>NAc!S`V{a}?rew0fLttNI`m`XZ76n5fdU+OGG- zE3^QDj;GORJu&iJs7m}3YFVT!d$E1L`P}?GV)(IY((NQY6&gBVD`%7UIE zI+oIsdAx9_yx`y~JLFldtXgt~?^->TDZ65zoM~~Cz^HAs^e8WoDK9Aq+B7JGs-*#2 zMH{{Qlm|^9q@tu3fLe3(&;|euma3wnSA8P;-0!M7Zuu$6$<>RRz<>44)IFYi_tv9k zZiT)RG}C3fUFa<3x zuV=(scKij^rGh?!pF1yI=XCk{;{15BI>tb~Lc5T)3dXDNJL|Ep!8O2<&}Q))OWz%s zW7#iP&r2?#!p)?9;Rv#1<0a4J_0d3rDTg~>y+_{pc7o9F_S9$r+#;zqw3c^vVX;`QuCCj+H!sXdK=380 z+a7xvhg!{OYgA>hcl-E^JwVndcVCxuevEH{)TF6woEB>2AWHNY23`4WCG?3RwTwTU zb}yjrfRO?_;4f~oSyt=sX^Qb_1F_#7m0-3AjAH$}6+JE`lN);jCdN;h0N z`GpGSYGkr}gJe=SPAg*KfwG#~Q2D;w(DgvA&|N!swzgRf^#jgD1>-Q;DK>SN+|zM( z&9(0OQeTD>^@p4;eocs_Atyi&TwAtm0n$QG4_sIz6e%XKAV6pD=;&(oOLGS=q$DLN zQbR&QtYbomh_C*92z8-f!_+ACgAew1mw4~?jZDtWbVD!^?{^E`?NNdsF38`;e*J0{ zXn6+JAs`^&+)V{JIVI}Y`1q&CBZ#x4z(PoY*+5`?(T#DZ44p%!YaSfFrM!IkE&PCy zp<&F6zG;lgYt6&@ub@znWr&>3Cr?Eg2V>^4b`jZ>zX&h<M1`Y2!fy;{Zf#va9u=NaI~%G_iRyDaWew4v3fUeb7g&GF zc2dg-sv2H3Jf&FR)|~#A*lkKw`DJT_v!g(dN$RvWFXVk|h2Kc! zf8kY46l(2e5;iNP76T7iaKZB`Q3sEW8#jGiZI^oE#tj@w(DI*HSiJ1s6CSOjW4^x` zu7shX;o@BTiM}vPsso$N4hccV+FC1?Z$w1-%|uy(xuSSAF+HrT%5i?HK0MnGRIx$Q zAL$9L-oId>aa#d1Zuz5ECXGhXL*?G&kOfppkArNSr0W@ z4g1ZbMg3$19LOa0c!vRk>*Om_$X8bSgT)gfqD@}^OI}Z4h(cPy!s8TG?FYMk-QCHO z0El;elT}!+;D;8J*Y(9m5QNPV5aJJl2qTpMusX~p!5N*5oWTQb4Q7=3oQIE*lzQe& zSOrN{i3k5-JZOR1b66`CY7J|E`|Y<6SszOi!Y@fBoPQXH3=Wi7f|7S1@vYY)$pA%D z^C>?ZTl`6oCGNO}6a%00IE-X?p!lwbJvMI&od5&8q{fATkHcyN0(T%7g7ftVnK?e` z0l4yJe!7!sAtS%65N7zuICz2IX1|*~@n(E)>GRcH+r7NJK5bPYIJNpPHNq>f-@8kF z&~zseLt?;fS>7rtDG38yu}iIAoaQ0-F|(6lom756}1dLv|;gYKc-8c6re0D8=du$u$c~8DMGIg$>+@24b~K zy>{&yFlMY85;vB(YtC*JRaL)=z-0A6I50c1HWU>VkratTu~oYa!C7t(sYAN-Dt zaMs@PfNcmHB_?jkL1htNmZY#bap2=1RE*z%7>#;u)QE-;Pk|LD9H1kzHh2%uis4yS z#_JNC9qOcf6{!vkM%DY+5AG{ z|979{Mdgf+3=cnR&l7Lj1j_(sdPHGCz7N_JG3D@{E(S5?fl3Lu|w-nUqLE zkM{?dDpEZ>Jm3uuSiS!)5JH%ohles&%u^=+wGzr~NK;3r?&xz5s)N7(Ajl_i))Yjd zu|-5O>-?tF75XKN@i`V*E{0i~-E$=42O`1b=te{W%>Bvu|9@oUIW-sXHO$jvT4-B_ zF~`|BV?w_8Q4#$wJ04$OCGee8XoXwC!+2?B6%}p0Q)kXBQ&tY4pW|}5U>NQ>gY!XG t4V7oej_4#;9+$fm8BW6W|7ZOd^%Sqh%A{ZRcPH=vnWL*inO(qF{{{r><0k+B literal 79095 zcmb^Zdpy(qA3u)Ip{NvfDJnUXYF8F6*Fp?Y>QYUunp(`EEG=g_&AAdqQDiO?ikh05 zn#?JOQi&ziVl+&lr8$p~)9>+ey+6P2?{@qC^}Bt)*X_El7TfFfd_513$Nh1?-yger z*nZ#grR$cWP^jg0|Li$}LM_^bLdn%A%EC{=<@Y4PA4~lHA)QB|HpCsEehlYmses-C8?GiC3&2gEEp6$z->r5 z_e(m%^qQoOnp@;1Lne7` zEtH!y=?v|@Zqj*Ue)j62h;O5#qrXq*qF32C6?!c!bWLX~Oo6`pTtta*mRCK)i=K>+ zzLI;^RHJI{x1@S9v3hbaq&l3Rx3F$qn*E1R^Nqey(oE3|(@lLKc)E`d>ts3m#-wVb z{!rAYTGUrHV~br2)8*VUCqE3+Y!cONV)^@H^18T{bt7t3!`L(vLGPCha zrlzd3%5s+w!Ryzrnej1db%#0!zkL~C^B4Z9z#XB7Ry;iZd;hdb&HTHjnRojvM{f$8 z!@UXZZzpD5ri)$7t*qvM3##W{8$^xpbLPg<=3h&nD@Sz63FbdX&xxbU*}|a-t+02t zgm+@8PssrnIvJbO6e-HT(xG4e{P}0>z+jN&Qws*uj{kXL7OyPd^q4K_3tT5Jv;Af; zfx)Cx2!2quu|{Jzfzn8K5DMu{v5)}s%$9Uk zF0CBBEi+?jFyGL!41T1S*|ZQWp6m{eT4ZULQawLiEx-J(jr-o7Z*n23AZMy=V#ZiTeq+UCeDbD{vZ-( z%W|f7+7jk^4$bvAihk2^|5Dn-R`XK^k$nfORc0CrXBze@C?cPzv1pxI9coL6no5t} ziRV}UE~x(9A)4*bR&)|rSX!>Jk+&Xxcqo!39PkN?S-8dXN0EwMLFDe+{!#MzvAX*9ZX;SR0J6{_6?fUTNW4 zl4sKJ|DtB7(*N7x^Z!{CzJ^yuwXUU*=n&8F3?`A7!7S@riL6=Z9>uN;Ar8dm*RO2} zstLJ!2=^rAZt6+hfo2v4{ydOz*9)uMfqw1acePPQI*y=RY59 z(5wA=Lmf#3HS1JDQ6(#FZs+7A*PU*XUevy!5Gm49S}dKKX)E$5XKQI_cm>};rb<&T zp;e}&UizH1jmKH@aoR>jo=K%sGQ?AR-zfOK5vb#-@$=i|H$iXbDebV8RYJ(&`*X76@c1>61qFJn@x^B~?)wVmWtd6Vp zrX6?g3pC3Xdxu8A`%sz+F!rpesv%SRg63@rxzu${QfFH4YSDx*%YGq+P9(vY{vZo3 zY2TRN9;Hgn#P0Z6iSoN6ct+D^`v3NcQv)c9}EU1QP zV#oEea1<(dHIm$?nQTc>Q4t4|hd!ceOC;*-QIGT2mU%3X zTCmvU5_xyNWQLj5D)xkUI=uWl=GeM~G=G zmR@QPkywm5V0mVs8?co@;=->s#vUe)GmA!VshqmL34T0rY2nAYk}y8jWOF^QID{+^ zn4?iBKjr_%&N<-3UOL)koH*?0mBnCkQgJ&__8w zZa%j`Q*$qDkT0Vqdx=CfH8nSN_9I_d9IloO?#X>7pQ=$uP<_aPe^hJ~SH`(9n3c{$ z^yO@n=FVC}v#cZ)Kpdt?y%!^hL|a0v+Yef{n3k!z369`O`QaL4Mw8fInm%BiBNQhYEQdwj03!|>#i`ktCY`TrxW%Ma z4ecZBK`D3XE7jg{-T-*@(zdahmWM3ZqnY0T72O&#xrpG{;ZOi}j{6kvqL)&B!rxJt zO)(1GB(}s&T|YhhB)9c_d8aiJR$2{ZLtQ1NNqOk~3?`oMWRKP=(*c)WO=c znw7J|vrX1r*VotoS?;Xi%Q$0}MW;|1Or=re0yxcM%tc&6J|AXOG<0aoAAD>OxlmG$ zIiT|@b?YH`NajMwckO_)=Y5a$)79|bCNYD#eN`WkIF2(=l*MlfK|)DrAiQDwebzY@ zd25wpM53UWNsV(m%s?Vm=riQQ9_n#!!-PffcTMwE{xYZqma~% zf`hUKIft&P@87@Awv0T-`0i?W;?~StX@pV6wY{6j0>{TKXZ9(gYUm5_d3`E{L{N=$ z8w;!K-MgOaJuy97@1DzI4NZ@Ap-{W-UV-&#y@TQ9qED{PT^|R?7Lcp-`nBb#81LGp zFq}}2Ao5l_IJkT)=k0AV%|O({VSCyVe14lVse1{ZeM($LNpKBiWK>-nbnT3?>@TYj zRJX5)b5n;&k~fg1Q|e5OdSpSq}(*y|Xhty;rIe?4~! zFJ$c(j7vNUSW9dDdjEtu)LHn*CY@Kky%bg34j%#6n|7FwEwd)C$v97*xO~2EL*0_v z;r@QFkvg@XP)dsdpm&GK+fl5(#1beO8QdYqVMa|MfcnH(}tI?Xsk zqQh|ruzG%s-V1Q|EcRUSNyeK202K)@kq0leCD9409k+CSg~3STsCsvFY&ueB50RK! z|H@Da&xf-qF;m(t2yzKXwtz4fixe>J|E$TVpe}b>ljF(wPRX_rj9+etMeZnrU{lIxN9cG5SO&2-2o1?UmYaQf2^R8e^cs!ooUo#PwO;RVp zczU}Wq=LaKs!)^pW%`sj5}QAMBoI`Sx_^{A3yL4vM~8;CO2&KaVP%FtER4xJkgT;L zo=H7JVxspWpnkEnE6E|B{}=u|UrzqXT0H-48P1jfcf%z1;kxc3MP5wE9Z6WV2#ypw zA-Li(l|doJy&%gE|FcBrOc6<=&gKd_LDhCi?P312;0nA{vCDddzYN9|J1~e+wS_F7 zmDNkL%s8k~x8&k3MSp+)n_?Ot3z1nkfKOi8>iA#k8QhlCjcYn&Z@>7`ivYEH4rXiW z)m(H^cl+t{OHsTB3+c0q{mnEf_knOgf8S6-?!U}7pOQQ@gu~2r>z_;@&j)J+2QP@6 z$t>e6jq?_=SZi#b&Rvj6mS3nuW6Y_Hy@XqOovt%YSw2YX@vi zlul#U-KYL6_aO^LuOKJF>cii%Hx|YoLni)TXpHOK_If*y1NqvyaN=h{Vdv-3f!;DU zFF3@t@xOOx>BgE`S!pHLWs4VCKQZk*SNsXPA-S#)>Od$NyA);G4OkzL3eEga9*4!k z@J=RmuC^r*cPPq|ArYYyP93e4^BX#G0f8dHM+m9})gZI1G>;8+S92e9_*k9AoA(!B zc;8I*c^v9GJl{+BD>7%|)0_Xe1am53mrpN==483J)VyrRCLRZ!0CAW|RMd%8tbNja z4%sov!vx4A5W99E=Us~PWk8bUahwE^rRAqWkHPy@?^79R9=-lk>Rp4dAau&sty?>M zjt8$%v2iCs`ct+2h=nZe9d<2Q4cQhoyX&PhGc(Vr4BLu+LnV(Ql8Su0Om}Yv^G^{$ z?~lyH+|b!^ffhSM?C<(EM$PP6nTm+#Nw0uzCfHNM3P?THYU|9Y18qi zZ|~O~_!Lyxd~S)(mei|5(_C)}oc|yOlixSi)pdv8cf%%G42UQfZDPBYPN^S`s=V}4 zS*2#^8mKJix=rUUZ z)TU~6`|@tOsS89=H3RNZDpE_w#2R0dd(^O~C{5d&-Voy;5G~}n0*InvrW&hiAtn+V zIL|3r4cq~A!dve*m5LW@f;t=uh^ntQ9{L-9)U2j^(c5QtSS*J(YDD5?w|{>DOe!DCmN?I=F0yu2-%FxL>_f(d#V@NJX0B;B z3iMdLtcL5aQHKT4p3mYEbww2Dly`(z-T=cmTq3Sa^ zlxz4~5uhfAGao%jYvOdOJ5b!i)goWU_a8sd3oH@70H6r(<5_pcnS~^;wL^AtK3N6M zifNM8@2jJ@~AQ4s_d8m&++E!|=cyW95@pMWClS-m5ys_W$ zS+B2Q`#rX#(b>F7x|&15_91PMl8{2x^2`TH{wR=B7x67@7hDo1Vd?r~pb)q!5;sJ&ym7Z^sYI>L#Xe)+QX1{x$dfn9}a-4{u>i70De#eQu)0PkC zDjuK{Sggq}?S!#^+sP0eAj^!5R_?M;m7UzsRX*rte1QL%JD^v6$1dd-g{uC>z8#Lm zaI1RUU+PNkWo-@xn~y)8Y+f9rusQa|`qDtMsEB9+AB8ko(Xqzn;FdoGLEb`on(ilT zqjY9?_z6NHTmuBP7aqI+D5~ZXWFKST`?g3wsjY1Zmu^0Ys$L%YuF!L0mWii%tQ<-$|E#eY--PdQmkSB zDz3MAQjy0_I3B3*hv)ysBNJO9h0T{2ln#*d1K(2&32gu?Jf$Htx^rE^^ET_zO@nI}>X z<|r|!_f$S+X|}jb<&;30zNAaW%RuK<+F%|K$aG!1QJj^9#RjFtiMz`b1kv0pRz@#oDFo~22wLTm# zbOMwCX_R0hQ8@6+-DoEc=LOtWxr{;gNW?`*eO_7RY=9m~NlC|$g7Fs~!wbN!>!npa zzX;%quEz@?s7x=-aB0CdYCc*jn|U93oW!6>iSmt{R~G1rQC{h|ro>!Br98knqLClv`pIuKaSH)2=^MQRz*4$VVR?)sp+iTAF@(!7{xu1EheZ!+LYuYsp>f47KTS(9}BE~F^0Fw zriT_)DG4VMDWsp}_H(%5QTG%ki`A5Eae#m93{McWJ=PS5gPk@_Seaq43?;N>+qMVl z0lZeV)mymALJ0sqWAkePVR9k_H!P7uV$rX>zDm~Gq*@-I3M zrVi9w$<=JqN&GbQVs104X46;Gq@n4&k7tcCOaZmSy(uKfY3r_g3Ae;34Bli*vg{!c zV`L}s$v?6IB(&-WL_I?%q*3hwgSwTPoPPi{A|$vU6*rOg(9+_fT9 zds?mhK)XDA3Qoo`fKlvczaOx+;rYQ81E%kpalj%hJ6n7*Tii?2l)s?z(ojjrow$>? zI%WqTj3;EJ+8Yn!>gwtSf`uGRnLFh4-rnA`*rgX;UGk5~pu!LGv8066C}(vUT+Cy> zPe~?or>W_c+<%O_Zbk-D?rZ&Qk}K^n5AIxya@~iF-HgTh6=op_+EDi=LK@)t7#@@* z2;Clt;vVB;{WZ4QZOkM=(I_+)tw+T~+MtwO59~~;bq+y=93wXO^-;+Jf@=LaH_k*M zX7%3hD^RXhhFUI?l~dM-kO3w@_A=)IXyM zx#n5#zd@p9OU^OY*scTsXEx+hT+SAiBP$F`6dSRM`;LKdM#HU0;>y%3Zw#OU+gk82yPENWof%LU;ILbXJsqV{N1{_1 z->2s`DmFwkCsrw#v+ipu+LJzUDa%mQ3SE*6h@v7?c&JJZR zrO%&V>pr2l()K29RovZf(+-~rX7wd85CTAA=Kez@;`t2bN+2`-Wm2m}9@d&Qr}rXj zD=n*}X5gYW_tdWYQQkQKv61bhE(n^{|N89OVzs~KSC3APif$Gw!)}$714<`0b1=!t z$(hWD3&_#A>Ry}Inz|8pBa)BIf5ft%>GRUkALC(}8+1@!D$-X_W#wnuSUQXP+oH|9z|^yvzs&@GO6FCQ|?B6 z6Vtqhe=w=Prf0jmyRrDfp|k&SPq0Lr1g(_w9Etn!vdk9oQ*Wi(Czt{@@KuGk0oz*U z#JiQYhHal-@k}_NCxFohS6E~mOwn~)ET;6(^keXp@B7~LMlIl>< zTh4C(8c^os5&3p8!|eM z`3>lb1A3XY$I0HJ1=8QyzRxV_?<{*hc06*v;n)?GjY+55p87(K8gpG(TNveJ4>5vY31BxRMlJ$gYt5ErWJS7l(5MxiJ0Gj}G%|ew-x&$C@2@su$pM$cPKvZ%{ zhQF1vSk@{qOIlAnN<3>cwF9GdHR}Ay6J1@dMj3Cv1#^@^xdw<6w^IJaZk#WjA{L7S z)*Y*I@iQ-IB5sKls|3++KR z$HsIApOZBsID>?Zf*?R#u1A4bI5iMS7|~bSE#!t*cJB6yDU_VtJM`GWb7yTeh6l$1 z@;D#s+cYEE&SI@te91Hk5IJQLQbadOpKB}ri;)|C3+c^q&zfCTRGEF9M*4$iP$At0@4Cf9MEzZ~^1yR<1`BUv!4VoPapteUCneTV? zmVr6ot5BtNV}RRN=Bhd`&Z3y@cO_v3%_p1A13ExAG_>p08Xn|7LdvR2jQ{@j6{zFG z#fn}l`Pf=R2n{D_T=deZf5%rWMLn_OJnq0(@_UkP$buQO{%0HvA4?vqKd%vgG7{wg z+za;#g~VX?(wtRar+K|AXH%v%fXCl~L)HB5$PTp)Xkq_h19{~hwH*EM4tl?O9Gx;A zX2Ix`E4>KJ^hOpd*er`lb&otP2!d&`h=;)P;>86q?a@rXDBt|Jobx}gLGX{vd3*{{yNKt$xO zIa$VDANLiQ%<&cHIFVTt(j)%hga2QU++nCx=MU(MNGxi*mJ@~I!E!(Dp04r+Cli7a5-HvJMicI{Rwmm zY=jb_k;9(}-zFzZsSLy)QTx@8f4V)moUI&Rt80hh!9_HmdRH``yNRo=h*hz<;>a!K z9mVq>`5#7cL9allA?Xz8g+lK1?A)oRP(S44JTFTEUgk(sxS~G<8H1wT8DAiPMu!@DO=w4Ryt`HLDMTmKGDg(erUf ziX0}rHhUQ+lWa}ZKPJg5tR%Z`EHQ+kzA5uJ=ci;v`Li@`HT@4MDc3bxM z^xR{6>d3#I(n^LDLUYa*KXy1kP^~re5;Ch%F=-1|l^czWHr0T@BM3@Ao>ssD*FyUc zxyt4WlDVI@@7K;ih+469Dir5ad@?b*ipAo3JJR7aIH=kpRjbe0F2}C~??)f7jX@pz zqF&3iFZyp8tA-ru%>%(unK?ntcT^EJ2%WN!4ozi;!TxTMn=S$EM1R7SRVU<9L#!l?mN^*lnq-`>A1am*{s6xFha z*bIPjx=K>ctB5eq0@W38K3^^ZEuF$ONkP1X3itMkEN0)wk8oL|^f|M#{I30^(S48? z11xj)5p?x7AySYcNN@b8>iN($Ju+Qe0CsD(LrK;oPTc0eVwojDnb6jyfLjGqAoK=7 zyCMP)#C~{k_g^}%;C%=aN8v-GGHmX`6c|0Sc*cBCD3ru{gm00iosV{I1 z4Fvk^>}&_(eMHS_?N^j>?S`em-LYLvMG#%R(vb}HsRj6ZDRa#oRKFHkV9_KTL$}<+ z93bWR_8z={Q1K8yuy@FK=bv80uH@qw?sZ**Du)<%ns(#J*tZ%1zg;dH9{y ziM{SE6u5wC%JDI*bhg-no4yFe4s}YcK(#!iGE9@UrrMPV$yGY3n;Bk0w&XW+5gOG> z9WvcP75;kh;ssc4(kch3j5q!fp`qxBbvR9gB@aA$l0LJN)OJk;rMcPxp88fUI#wmA z`;pV7Q6#g~`D-59zx|2AgT1tUMk0ef%}}?Eq^&v2**Wv|t6QO< zfVIEnq|0rXE`Hxzo3Z2sMB03RrYOyWk}d0NjDq@MI0hm^cWCdQWj9_f)qFA=s{*Df z5LXb1vhY|Qpc{e7_T2;|XVZH_acs#K0D4-JfI$F_cz43A0ew#9J&)Tred-JMG2}<) zXmNRfaZWr+2^ZDZ zUdHQJ#3yz8sV(y=!!@n8^(Ti=90NoXdFTLgI%;kUgIRp?ah=1Fx!3UNp^0wOmY_(2 z4!92xC&`Ja74k84aVX6iIpEnlV}Y{HY{cUKuu;@`X$VK{ru9-+&-!z>^bS1K6B%sV zyJLU*CecJBB5$!h@%&cmA{1}ZUViw=$;Wggd-l@whu*j^{!-Y& z3jq~p%Ewl83^Mo0blIxMt&IEn`t@ZoP0)1Y`lxkt5SdQlV}a?R+pd_>hotqZ27D#h zM!d2@&HHXOC<5Bwa=r2VQCvEuCjAiM`smlsK^9r|MHoj70)r`($-fTvb1!+s9wCtucMGMSJ;j@gI11#3h zo}NA2AE_N5FROsWc&Z;PIPIeYCg5xC&NqL@&&KB>$=S5VnyRXzm*|ERQzg7GE5F%S! zgny?2(|hu>n&L%QFl}wvuoj_Bjm>S^?d^S`76D(!%nra??nVUF*IaML6IAG5$UQ;7 z1-OhjVy@=?qj{_NH_)F2-lhBOQUHK0n2nTldS1G!$Jr9vRj(I5+S@l>)om)-FgKT4 z6iTO%AI=oA&gJuWT3C?FvSb`7NKpRV7sx*N@+7^vFEAI)!GHmzCK1Y+n8u3I(tr4Y zMj4^m0?GI>;&$FB%#-mE*sT3wuPYz0et!FQ$|xhyEUUM*;{Tvv9>?coylC{?Ef7iT z7ab%XwJr^O1{w1ky+tW8@t^6%D1#V-6{yxHh@ql9dz(RG zJWTllm}@-QNcP(8IEp9<45qhR=bmga&_GHbfpbs-7N?voDD&J+9|wqLcug(TS?5)K zy&Z`Tf_MQjPV<@|?uN{sQP0SWw|GJ_6 z@D%f{+f&2RY!ui6VMd<+>qT+^^_1NoLb^WG-{0S0pSnP5&A1OZtX_hEeNasFT;g-l zFAaNyu9;v6k%S?u;*|3`RU{t$YyDcy7%~JI)Ow(8w;%XxbjuL4*A$(wvAd+4ornH} z1#xBVAK)td6;?T}OEAHo4+}d$wCfD)bYn7YbduAZR3WC&T zpJp=cQrvNxdI?4vD+EuRX#V~qV|_>YScOY3HUh-{IW`t(sD3b?zx~hoGyjzvlCmX< z4UV4wIR2BOYnK8A96Urs(3<0ooJSRp4mIp|;!StLa)4&J$nCUjE81w!{zPznm_sybg^7w) zp=GGmY{n zTtK$?vRi0GM7w01ej3-N5rthx%P!fxq}35<8gxQj?bq?6+2Z;|t!d_jp-3fb6{qTh z3}*etbF^&V-Ke4Is1)6WimBw}(87mVDg43;nrp2f7 z4_pp1+t4J%HKmdkBgvq5dd~QHqMurvn}&vluH7l&uUzAJNqIz$T&UfQ5~?O{XHqw< z6KY6I9uQXjayh!-b7N9dyl9C+o^`#-Q;_XRaE@^RMNeJ>US_IBnUbfQq?X zCoqx#G1s8_Nv^CC|0Q7cr4U^gxcBj>y*-$k!ItpU%2{KJrO!=?#FEF?Hpf6|sf^0p z8veFk<3NV*L!`b1J7)!%?&%Xym+L8c)X1G(FpNNC!W^KzLfn6X)RyTaJa^Du5X9sB zEYEI&lE8Bc=|Le>I-b(Xe8GKk;AjMij-;D zb^Z~4eqH7Ii-a<$Y4^mzt*EY>sm=K&76}``4A;Lom?GmqxV7L5!bt9_(KpoHBr3VT z816k9M9!zKlYbFb-ZmhQ7!Q0HTavmZzM*AaQ4{G09Olx4zNoe7CFH&>o~StX5`^7& zgjx?ip&}n2AKyK4g4o>q^Dv1HrbQ4Q;+D!XsX+Jm`T2!~eE~$CI6xtRRPpg_&-5Ib zk!zs|BDgaY-94PLTr`FBUM$T;E7gXwGcX80cGK%N_;XmS(S#H9ao2h9%NZjk#3!}x zQe#`f8-xHbI)m`N>)OtHTCDxt;Zwqvyl{nz2E#foDAu^tZR&|0sB(l7ar*>hT)J+3 zz;+8h7V2GTOXQuC>M$z^f8B3f=MSQrw~$2NzTzZ(wfu`OzpM&aW*RHHO^xwK9pa#w z0NaR=gM(pjo;YgMfq-!%NDBt-rjBh3JIuL|6Y;Qb_X?DG0x~>l59hIp4SkpJSj0xP z3u?CGihF$X5zTXph1+syKWGy38mHV(y>)1IkVmyIa%o4!Sm>Boi3BbMtZjCyGOim4 z(`eZt=`R#H4G;Snsvicg zSnx8WB0LV!pv^1zK5NR$7-H$YS0Zy#m41_yNxe0swrDIens#107MBl{ zJ@6Ndy~a|<-T8}AHIV={P+ba;S~aC-8D|(wDubZfSMDSHMK@S61W^zS8tz6^sEJ2| zh{P;}q_~T2fWjxZ>NA|Cg|f4k6bE-QR5Gy)$PoIHS{kmQnqV)b^lA#Mj8TAQs7p~X zT7YG6n&H_Y7T;m(a0h_L^17NHLZhv<1z#k|{$CTNJb{En-^^3-3XavQ-vv(`Skcj| zAydYIH#@a;b}4Qq6%R5oi>Fq&u%Tn4H40ITW@5Z#LypcvQw>-Mu?e-j2LScA)fzff zeR=EvXQj6#M!0*;h4UI76fewiE?AQ0YqAqnYzVim=PyB_vKJQ3$}jxbCSK%rwe7Xb zplBl8%KVkUi<2GwOZfd)nl~+Cy#u#*-85c`AD#U5Stth^NAv|1Q@qLsu#?bdZQN7u zk=g+r$n4O8;!P>;*eKrbbC>ng-15w(o|*Uf)56aU-1ZSRmEop7+C~YgL=tVq5gMVT zWLfQvglniLj$8?M3F?Um_D&ktkxl_Q)EnKl9W=?fuYqQjmbyB7Kn`*64BuP9?`dzu zd-fBFOLVy2QTtNz${(s;#8q)`F4J*OjD20V|GydoSaW_Kkn9-;f0hT6kG}_R@XpM} z2F^2ZAUq$x_6N$(fIAYh67?jSF7$zES9>bO6-s`C6F?yGuHS!0QVz?@GpaR=5V>fi zyB#5e^O4u@^IVsY-GSFjuo;Z44luS$F;w#1wpV+#?M(`aEC5Dua703->PyPO+aaDx zTdD8B1^-6vKj0s-u-MK!5?sU&s$@$zn0gix0Rpj}J*q{#gfmF_H{hTmZ}D|O;O`|1a_X9@{~+bPa# z_qtqPt^Y-2&D%=#TT<%-{?(yn9~X>=;(kR|L)t$V%kvUyu80q~N<>r%&~h)<_}{kA zFIrxt6kaU=<-bm8aj??%@Nv;nV5qi=F9!?q{682f}GiY4=ZU#6F_Tc zt4wI#v79JFy1+oIMOu`iX6mA6(xdv)TOTT-guCKOY1sQy>SF!_>4;IX7n_I;C30T0i5=$B&x9o~IrcZdDlQ+b9vA4>V24+nkt%~6-7%P zm#Er8+lFrywC}{Lj&%mUG42d*+)^T~+;iQ8~KxNb8%4C_>6qm>JQU zA8~}9y*y}otR8o)2AwN8DQT`td9KS`H1$4bwk>D&yYJk0v-qW`6AwFlz&iqMDUd&& zKRsKqIkUjm1LcBP0hm;F`_Ybb#Yh$HIWHTk^9p(e`&T@fDFj-L6Ai_eiQ751d1cz#U2=atEp0B@|Q!{6P*m7O~0X7|S3?{2`n0-YaO`24rRsJ6c}eCLy$DW;dSUY~-y*+6q-|r+)0SD!;v5EAFd;DIs zxe8>8BzbCRe$LmHU^(+u*=6V4SLNtQSoS2`GE^&6BVh5}-E7yhvVKeI4gN($eBi$bPRUB$rYmawtmtNZY!;B=4->#!*5=hR z5Pba2aOODz7j0cA2`d!n@jgw=+D?S>I3S|-MF5d;8X7C>{2!qk#)D90-b4G-PTHMW z>};ivSYnMcEoux4SL`C(nu?hFXIt-J28#trzAE_o7hm8_8Dhl!2tk)Z^6B~Vko9wV z?&HUg0r(+A^{3G(oQoao>WA)x39#=<${!hoF4Wdw{Re|&VLnn++vlfJ+8Q2vAAftr z%q}I}V2!rN+Ha=LQO-MGgH;0|F}B)qBfErxcZ4APge(+%kBr4DmFul#3_7D7QXu%EinFjp_9bpA5rlyTh3 z!3`xw=GS>86+Y*-{Qi)T`vE%;E}G7E>RWB|_Cz3d9jIktVdXao9cpVwva_-lS%aVF z`E@@KRA=Gb|8187VnxKJjfuDQM1@~N>O4qgO9p|P2gN1W-~Z!4aA8g($ICJYOvDuj z^|}Tf*q2?8KN{e!nMm?1spyFvC2Rf}{lw?X!;(+XH44QqB7lbVmd;d?%61nDB#|@S zTGdfA1unB7*3Ev^n)@2BE>3&8K})L|`h_KhqQvx&hzL;cNf$)6P&x^M%#QYhgB85S zVD4uw1~xIm(&gP8z=v`l75VTR|A0ZJ2s7QKU=>QaA8D!qA&7&qXp)SFAx(79c$K1y zG(tmpvteSzEeb6#FwiA@`94B0<+NDRV3fU5=REo4h*M1#d>2oRC6xu(s#Um+$ zxiF&`9&i|(z6)Kpu!GN6aPsCRqUTFQL!ze#!NWB_2WP}7=-@A%n4yVj_#8ALHu%$e zm`lq|#^sL?gO-P!Hu}ZKdMgjkXzEOD(TNe+avE3VRFHLJTlL``GZ-OJ#<{}+XsBVQQe_1=YbT7AOYG;eaqCK{<_& zgO2>?o-&#nzm{a}Y+7X;^6{GwbY;9)hV&bYXY0e+Pfo3m-j<#IF0Udx3CxD<<+&cW z|Bn{{-LN?( z)%bQ>f^+oj`10$^7R+bRZN~4rwl@!-+^e8bxAyv8yOdVIrcnO^!Tcs5Q}YWM{Gh?X z#+u3CD)R<=I0v(!z(A>QJ|lxV{A*Lp{MDSvtI$nbJ(nN-J0I7iHm#s9GGdCeKte}Dv+~r#^u0)fnw2M5 zdqFY6)fyfnUcR?S-k(GV*cLPYr0Y>n3n|1}Mb{1{0)*nT8)LK;FHU}(+#^2&0kC>j zSUro37?~3=z_oA(V8Ww+i=*c}0xs$(UevxaO;BCb>HA>zrJ&N=vCd!K`iXa@jfo{@ zLSe0|>s=}%*``Jil%;D&Q1upW{3gy@CX3vlbn;*M8Kj|GBxQRG=aE#Mw>=Jiqiwks z_&%g14*gf0o4mDY|Hzyjn4gdqk}q74mFbjwb&(GwV4nh!&EM+FgZV>M_q7tRcreyr z)*zNEVbF$J!=!F>!o_w2xn4W8eE(>w-6fBz^)+YI7aR49 z?^KnumtEAx^D9eBwH1|W53BYT*4q!2L&GK(KYb+}h%T~;Qg?h6%v3qMqQI^S4QhMz zT<-)9y6-1&hXg?y4+F{I@;O(`IJiYP0P~a+c75T_x?M{yYAb%525L^J)-t@^Un9;< z1vhv8L%G(CoTdRl5|p-pG7z0eoXjlsN$EY4)tjsMnY z8kRc&nh(L`?CsSOv>^<%g3k$4;+^Qil?Y-ea(Zv^>M-3rTRquMUrl`s)kA@O)MyyB`i76#sIekfic7W*d|U0@5a%{I z+Izq*%=b$#eJyV_r_ntNIHreI`G?D$aW}@NIah>j)tno z0U3t04~1)phH+LI2R~ucbeHId;hKP2k^D~net$yXS51(0uJb^)xiW9xuoklKE>3EH z4%#3ubEMSed8nKEn}9MfsTe9{i=oS^8$j6L>+Ez&z2UpZM_Ujh`ISpCIn@&NvqEEN zPsBEGW{x(8hbVl6O+~9>dp>)m22QT!wT3?kbslsc_?v;i5{zTcnt4n`JCpWnH)J&@k@Kn zi-PF6(=#y1TALP5%oP`TBJr_6l9{D1m=2Ch1h}RWZ*z5}#g}CEzfieQ5wJl< z5b|fObA5!WtR-^b%h{614xn)A08i8 zk>_Lo>YtVRhRr{@vsyNCY5ZQ)zdiXfp)loIva5!XJ(3T>02&9re+La4y8R?U@Le1E z`54|C|L0EnwuEQijw!l=pu0BV#lg`8wXh+%H!1Uev2Lx&H+L^NP6V-QQE>WfJ&U zLFEMuH8GYiDK|}$;!3=y=d4gjQ#}`4k`B>9}9*6L63)Zq<;w4 z8^`dR1Oo*lA(0kM(pu{=uJ_k{fKQp!i`w$mhl#7}{1bA=@<#nNLdf~(rOtIXU$JF6 zXSH8@mpOfNtnh6P%A%}wfTSSg`gT5t{ce|nYs%+?y7!~C&U7zXU}9ooOK>N>0c(Y6 zg|}>uF`WVpk($XCO{uz9#k83w;JX1|uDc$!By$%W?C#yN*~p<8yWqRFzs~SZMZufZ zwioV!A%PD+fnY?{Z}{WH*WEdJDMQn9K#r-}(jdGxHeT1YJNsEpUdBV^ zUrjO15`UCL*V0^MkN{tm0ySsxNfNzzeltShfOZ8{#>DLFQ+KIfLUDB6CA|{^!OJ`= z0mOIse0+4F=^6ruzq*RJ1EIL6u2YuIUH7%>{^D^eqJj`}_c-Ci$Vz$Zh-)9_D_6mG z&9OWj_u#{~oRG9_bF`ARQO9pQU@<6d?nW2h#&>!$w%Db>cTXfITO}x!g+H1+K~JNU zNzBHyal;qUci~AV0YMnE}!ZYc^oEnT^w}I^064+{*G&I-{RC;G<$LVB*RDi8AG`p}lpnG_4-q1k14`XrI zYNMgr_D|-rdQ}y#Ryz+BwQIhdwd-niR16hOm}D;Jh<=}Y%%s|-sK?!;w4HjoODn4S z`FL2PA*g=Y;=AQl9X{SdpneS1p%y|X$jaHMzg@ogQi##l)1)=WQz>Pb1Ey*XoNKBk zw^|5a_f=`TLpNzT`!v`U&oSbv6D+x?;4q{UO|(1d+NFu2^O8uJ=^TkQJ}^Ghw6B z?gt?#$>`ARH--4_QnqC9TuQXEUX{Wb?qxUl`kOOF@C74vex?Ea5hC#2|NgzM;(Fg= z)K?IJT&klwf;zzDaBvG^xP~vVYHkK2F7zYRepT5#G8F+`$*Q(P$6`Iyp~n_?r6b(B zp=(ep2KmyLQnnC#Jr}Jqb9NNkg`u+rzqV>f5LD@;@2~dnem@Nl>^h5fmpfDjI)Q_c zG^On!K(p@Gzh#kdx>f1_JS{;L4X6+tAKj(s1YNs8vH@a==W+HBlrG-!c7$&tc$}J; zJ8A#_q3Yb@TJHb+pNLqOi8{dzs0&&T6&e;#EUM@#7ko?2~_`5}Gt zIfMw~1?pc*Xr$~^AFEs?$*_-!YBHrVE{;bx)!9jM$B7-8PL!gWM8BvTxcw-(Iu0zQw*3s=CtrxXP`T{<#l#DSbVelhRGpnj9L`Vd`97+uUbm zB+lbXA-rlkcS4A^8jCPBouu!=W}o}t4_)btg2Bv_^|*A2G=tyCe8Q`%{Gr`vjlY^k z{=EI2Uh&Jq8{;p$wI8~>L~NmVTd={ml0!RU?yhlz;{B3;7N%E0X#y0IL#uBl=`Y(5 z-jbcd*|O8Lf)NSZ7Xz0o-2`uF@0vAhNJjvu7VjRMKW=bn+((aP=m^k7x-W|xcxTi0X@bbj1h3|j*)henSr?JI#y<4O2 z3x^yv4Vn)GJPv%MQx={|-A?}WG9`lMUfLb4dIP`z)3a8$`3yJ@;zN@ra%k`=B&wB- zJ*o(|CbQ&=5vHhcrT9+YB^BlHteViY6_37ieekHFrIXL?$j)@i*>w}Wjl7}M_x#Xe z35|v_W-0B0NR0oUpM@jbXWJrU#KwtCHnhlgJk!+J?ZxRx{v3ayrLFzUX`xaX{UV>C zFK3zWkGLolDdA6euHAl%N+h>NqX-aYXLWkyY7^(go}fR)>h=j7fm)T#0x&!1D>#o@ zC%Qj1$Qfs%5atR^li48+?m6eKjW`z`l#@CVRbNx{F5Or7%FWdDX36Bn`E5;GP2fqz ztVHFSpx|)e8g~mp_Uf-<7lyoHTFMF1zx8YFEn=Fyb1kWJA)HK}Nb2^9@BdW-x<|uI z34s^a6}^oiZXitBPo4V0Kk-^yzg)+NU&F?;gU-@pzkZ=ng|}7MMlHsdQYs+og>1{z&j(6< z*J}i-54=C3akIqTRBMHRVWk${m|_x=HuhwuoBen0-KiUjaQh8MtBf~8!$E<2NACtK zG1+rA9JcTN75Hi|R0rTWxjt0)>}v25yyu~#E>1jW&6{|UR)k9$t^buX;8w|QFddb% zI2MuPoim#_YPzLfsEbW*T{^qG3$6|Vn^@bvvuIb9DSYo>Ec%0%f`k)=e# zm%o4O>)FIfI%R2bdebQ{hG`x9cB0xtPo)*=12CCoSfqpu>z|M)?e#qCOMY~wzkO_b{F?aQ)@ufyY z?_TCgYQ+6)FpyCRZ`Otvg$jO**?F1SS^jE2d@3`l9l?hf9foZH2hRRB?_6h|yKaI3 z=id8(lZbTHTsxNH@ZCFC)8ur2B+f%aoO^m!V{>gPtPOrJcE;FY_%&u1xAZFLEg1LT zy7d#<9RFaxxUl z>2R{U(9WC>tSz5V#a|eLF^i&HwhC-qf=Lo2nGfmI@I{gQyx4f_>$p8?Px+k;b9wYx zL9xJR#{lttC(P0SODU)~e=FJQzB^~dx zyN7gTnZ~oe{w$}T+iyosDoqUCxusA%dagjr9|OP#<#mp*H5jr888-y6F1EUFo*0Hq zi^|*+LlW!LmmO01rBb}_QN__`XWjtWMHssfkapy4nK9PWvsb=wG*E&q%5XyH=H*M6 z)aVPQ2FY>L1YUSvn57&7Psdf+B{vyw-q_E zCuUB()v?8+2T_KX%8bCu^)fGSb-2x%6;XUfaXNZn^pJf6b@Mhvo~8f|aB$7^-+BAS zV(qG3ZAXEYMqLX<5NA2fo8WvW2(!Z#e6hO97DMINgco7crr(C89gCZeGgpCAfz$UdnJ9!(iIu#Q_zU z6o&<81x}d<=?i*vy{cS(>FOZwL;s$MZ|1z2a@l{6u}g+G%M8iO{D4ukh}RK_}&dZ>HTHwP~I+DDF22 zH$=8D8(rsG{@Sh2a@aZ7MZ<0R^YrB)-w?uIp-tMM)t9HjH@9GQ7Zb6FkyR6^lQROc z=It-5WMAAbuAM#2Z8r1B656B{g=+r(bz?6w1!xF&*>@$h^7Is5~l@WlFb)kf=9^!0AirN?s z4g8YJwU@%lcwLZ5c;q)Xsg%WAlRplwi7i$&MnejtPh82-Xw}|+$q3Zp%+j?cvrR-K z4j4#=pWU=7=uZ7b!0%9}XP(a5`>;MIdqnIyad>4&M{IGEbJ$@bb-ji4ywFHa^eVH$6H^nJDPD_3Tll=tmC=6ya-{J~A@BA;9*{^+z!p7<2j%pads zNTtbYd_e(iwEnGtv#0TL*yMmyTdnAO1zw}gpBEcPlQ?0C(v#p}^Nf#5lxDSr?&JJq zeyNRC1rsMVp?|K>r{bvmmm4Bgn*fDhIdP}s1!e!5nl>oTT#M@ESc0GXBXb4suc;|1 zZ)gZ3as_P1G-X)Dl|2?kyq955y%&H~VMBLn+g|S)f-#FHsBM%zDdY!rRIq@Mx%UTq*Mm z)Aq$qc8G&*F&p!G%pLqDcy5}PbLF<0J1j1hAV3zHQhx9GXmT`DObcSUe zIWpa{6Y@I4$Qutz5q`8cpCp1w^lEg%`b^57N52!0xDfC9bu{i-@M1dV@FD`lmde}E z$8l(=dtL3HKHeVv^HFLZJj~apo{XFPKT%F)Y4Zh3`&c=iQVhp6DpinS%jY+w|oQpesjH5l{^+;igB%^=yT2vZ-fKa+eLHQ`3GBc~k|N&@1oJ z7F9bIrMEg;QvxQY2v>x6rFbvA+1J;`W0s1m&vtrVSa<8zts1TM#F#`bbJO@pOL=rt zT+&v3y{|XI6JHNfrdo^Ks?(`(;XN_SaJsj%j;*k*6HMIFvEfnz_FL`vixDZzcG=9` zy5Uew5nuhM+J}6f*&?s_#o-^>wY}a*aZb|@3v~N>5t-tF=S~Y1y2>sVH_bZNiEo1( za%Pqrfg5hSXnD`-N6OKYJe#jKk96%6yRWQ@$xi7!olaFsIZh)pBEcEU zAL%<7FTe|pPI)lG&K&iZ#*NJ^w^OHrCULe0ygW2M>S}^9%D`JTil)ma$02O{+L3_=&6@5U)h+? z9X$R}GvU@P=uhSzs&)Dw8iCI0EBc|Lp~9E_?ZJ?x!Y;o2a16u&D zs7OBDn<=rfH2ovJBs=B3B{8t{Wc*KE8~_wQO2n|jkX>h-s$hb4xM`hHC87uiVE z(Mb1W@n#mMqnan2)+i|}dyi-!ZV8f-g#|cQJWURbFz_@ncACcsdk<8yFYFhM(x-h@ zdv>p1vAt(&a=uVe_MBEC-&M*bOHVqD^ZWG^MK;?a;r8v3Ya`u+j2Oh1RqG?>IQa5R zO)ql!mbT(N*~-^R4wiYoUgJvt=Sdx1O~r`PBO$JanL@~RW=g8shnwq9Qj4>D=RQ4| z=?u~dMgw0ZOeSodw(*$+*R}aP=H4S@I0B&xn5{G^Km2K2&XPUz_e7s`^=$*if55q% z4o12W=XC1exM*NjkR;U75a5B5#2=|tklSoHcL;-?9hJ26tE7V*;`HU7Qhl;$^kIXf zMy(NU-HW}EEBq?it`t#k%)LB6cX#-`{ph|`!-JAb^B%yW=@J+VH+ z=~i&-+$s;QQpah(tIEWy%9Q%=Xi_ykMS&v5NjZAqDkpB#V$F2@h^}?ps&hn(mMcs> z{jg&3TN!tcoCG?FkK|{(;Cy132W#b)R7ST2b$)TWN%>pXLorJ@G&E1RYY2uUjA5N~ zc6?V_J!j`YX3RP%Z8-D(Z~^YDD%R4{%6|Fsf5HRh^qw0qjHC9B3!sr(+oonW!k%ABah{M9S}SLmHdd?Kt~eUtrzdI8LpRpo zl67b`m*3g04#zBkDC@5M1~%e1VJ|-ZkCRm13A6kBlu8!}Uyh~J-@6-3bSg{!jNg?< zgOVIr@+xM2yOPgYOP}di^!tHVA7KZ@)4S1BX_lVm&|Hp`u`PHRYG3QM7OVy@NedkTL~J=Dp|DEz9`Qb*w` z9Je)&Mi*C7QUWFfeoA;(1AZ3Jc8rTX)?|NN$>uSzgq2SE%5G!G40U+GUAuyk)Ds1Y zU4skR@N-FtNy1DQp+Z4llwdFs2_r)-Wv(mcpV^~}t9pqJPHAyZ!j$n2ZaTHtX17<` ze&wF&?C*FY|l)4KgJxyA8!>SrGng#C2czfs=s zdD(gskQnXE_2rtgWqc&}e!^8^mFYCy=T+?*yzRM*=Ny^a^Q>QoA@x5HvO)1IJMW_Q zuAFXo&?rFpOO6CUb~qQKE}>eHmi#LRk3~_7ue_I1_<@&rI?|b@rc;6o#OuyHqeh%> z2Ae(#w@yV@k^`iuT{+g|vc4eY8d3kJnqSW!2({vPch_3w`JSitH=P1t;4lq2@P(ww zU{LS4_;3)nT(+~kVV3lYkI1$9@9FV()Gj^kJ8RU*&Ri?C~#1%ftVv zTo)oaE|WpLywu+Bc2m?ob=yeui9r9lb?Yvv{_ZZ-Gh)G0J^B(C`Jf;H2m)rQN_?6H zwKzP{^MuZ;6k+aGJ=G#>_3Kr@mxD!{r$>?Le=~MTBT#n|Q{g#H`I*Fn4VjS}h-*9l z$lqRdOrKDXrbT%ar|;g8_ds=2ZgH)rbT-6l_?p6l93!a$Rw?yGrz0T2$VZNYL?tRg}Ul5D=U^xS<w88o^JHoD=%p0l(~~1B z_2qtg|LaTKU7c5n~ro*jT(KAN|mX*?JQsR2+FSL5CTXx@^UPLEFgNcGbkl+A6g& zxA(9`<-O0KC4C%2PPaDIw*Q;(g+p8@mmaNpcNEhRE8AM)4)pc@`=TgCHMpo5M<=Si z^V|+l0IyV6?5J^LW3tMOQ7AbYIZ;cD?DCRVNPp$5>}KjMxX6f{&Ov0R=D^N;y=MP; zZo&5s!bNW!U1o~J?cE!P2(9#PkxZqBuVM6kq{t&CeVTV&^yRCP%%bL&>@9;Z-!1A? ztQA*X$xZ==$J-4b_r@?HnY@K?%96okDsCED%d5ihZ6Sb-7Gm`zD1h($?ThOU3Y-NFL!;b5Igff zI*7&J?>!1PF5&oV%62BaD#{5I5$wk1IQ0mm#R4h)F{opxN4Dh)8>3Zk-@4UPaLVWK zKO>``B=6r-;oSliL110c&e*A>8|CQLjNvVu)2Wpq*6?x?Px)^_?hH;CpAo*uGehr{ z3gy$7ePJjUlj&rjcC&mus%A&>HE+(Cd!h1*YQg^se08~LhLvo%gqx?kSj-D?$K4Ba zpv!@~33_WVgw}Vns8rxWwb7S@U;|fC1Ujx$rzGcT5t8Mq@Hgp?a~B?I*WFPdl-DrA z*V?N8r*8L0;evEOqUk0RudOCZ7Pa>WVkZ4=X2@I+HYkqeu4)cX#P}h-!;+0hlUj`X zp?<*(c5AP9u6C29{3MNrXw|7fP}Q4GRR>HmJc=B8O7M$?mR!b0g5`o#a|Tdb*hvE= z!n6xAO)0pTbQ6P}3m42C57gO@hVFv8$CCGoC%C0WX&2_Lv1IxU$>)ThC~`eyYDz?~ zQp{Gy*i{PGefi>Ht9o5Wj#*fWRJ;JvVO#dc48?y4;0N`27KR^ERHIYj{TScilV%$(!&b@h_#0?p$eY z?oK1WK9Aer(6sMxhlzdOqybSYYgA%qu6S_^79m91+It@1t1S0R+YkR#ak}!JN6C#| zdDQLAM?AYA%lrCXsLDvEI`Q(1ILFLG?4X=mz6FP!pd37vIQzWluEdUB?@5uGI4Q|e zXOyJ@N(s6o*q}A3EH?62AGP=}1@hBB?c#NJe*YK^p8T;2ZYgi?IJ^1V+DBTwDO`qj z^Sxgl(1?jBr0m#%j#qud(}|lc=#Ts$7cj%ld?>Hp$ZKu=I<}}Vr0vVXcqEOu>U$Fa z+G5?I`tEbCp2#wt6P_l__BZ|L@w+iDsW-Us`o8)R=XimdwoSS|4;d$BBo3($*=l6jd#bOY#<8hG-QZJQsPWG+9k|*GNP* z+xOLtu=aoBTcyS4g#3gTn6ESz#s;O_0TW>Ow=;Rf6u=uX0Ki$JRZYtGrCJvJS`~@V z=L`;R8R9E|T@(_^#}@14dS3pSbgFf5W~RhrNMsLd(y1UGfYyc0MRAiSIGU6XuQS7 zCDP@Di$rm{^ce00Y$ho^VgA4$Su=PLb2xbajG${CR#SGVgw; zmw?cC;E9|1&=PTUpx!&Kt_M>dX z*!6AA7Q&#`13%gAaULi8cTh@$LY^yL+C5$ zzDhFObn5ZX1LU|q%#Edw!Sy7pbcplsESy&br|4&=yaP|<4bf2(fjUI8Q&UqvN3529 zgN~=Pn-IYF&;=aVJ3=j92C-hL;&>qqq-_O2^Vr~L~=W*aZFxTy<;NX?TpEJPuID^5H>1n+xb zrIT=-R<_5Qhz}XmVseO)hs2KB%d_D8yJr+d41&Y>S*S-9Qiz=ZWSLmI`T3?XOPuF> zj12V(EqK1h(b*|0i)R_MrUC1qxo5UzHPh!lQx1S z!H6WHdqbrGqtEyZC;%AaXyI6C+wowJz8v;b`SyN*uKr?u?n%IXZb5EW4zvuU79*s{ zad}qlLRqgE1@38bnIyh>3U^mLGtEitpQ9U?n$LZ<6z{sf!~eZ!3EaG1i&uHtPBOcz zx4fKlTVVfyyAp;llkT41`0j`5CLhfcSy@?e>=le8$`b6%6T>bxbdPq&CFy@i6da1a zpPdq{3N*T(t3Y!+tFt?b}S_uze5uAw7wj*_|5r^ME&(9NygcwY761T z*50t;%-N#%g;<(E6ob8j#aP|-dso1l29SXamJPT2V{otls~gbm+obI_Woz8{0qZV0 zd>j0J{=?)>PnWr2d{5nkJ!{9Uy#;^oW>K)JaU}n>-$+MoqS~cp9)whmvo&r1bEk+- z$FFtjL;kT1=H+x3^WcYhCxDuwk%E_Yj27mdL(=`-C|C_b zK=EtVT?zfYF~-jGD(w-z|Hei^Wx@X|LOHdE(7DDGFDdFx(De)No?r+$IN3iOi=yhdA7{tC|?jcnFP*?tQMVo2H`7sf=aI6a zs434+oO5w=ld^ivd02txw1m;QXPHHOyfb(=1YVen_zy%BO7;q1h_RacrYfD<^Drj`=ecq9nvU!qQxSeh#?Kc{(|LGAeX)~ZGIxr7 z*v6lAr(Ql5Y7xef-(uY@Q^CxWx1+(bIgx;NVU*>1%P30GdT(C-i_i9Fr#x^t01Hy@ z5N;QcdAYW}j~(LZCMTVpac;)e-41ZV2PRcO`(x<~@{|ov+~}9(#KS1~6h)BTUQvN2 z!^(dUrB~L2r0koW@WOLlci#+c8cL@ID|awu3)@C}nWe1Sb6xc#;cDTLe8f%Q0H-0| zHQ0s9BExNkM`wWFiOo+mPU6=zjzo2 zOCC~)z1~lN{5Wk6ju*_R1&7O0=fCKG^l0V4APm4;da(Rr+~h_xd0Opw*erB5dS1VJ zJv}`vd5Kmn?S48r#QF_wbH8?DGx%lZ?(4TBhHy4boOhBuc?%|Qd*zoDrdYSyk@jcy_r;CzN?(Rdvs)q%hEULtu|?w?5Z=`M1E5E z;NGtJPr7oxvnj&-1o-qBCFwgV*`E3TI(S$1XcII+bUH^~K~3w87i_py(Z4Orm9jX( zd5tY;EZnt6r{N;%(z*xf1^?7_ze44+CU*OgjKyYHnFa;p&he4gKHT#Yx77=K7bx^@ zb?f$1O6tKgJzs@nAoc2`=E5CM^S!#a;GA&6#t@eL49;QTf97Wi@qe0U=<4S7Hl2E4 zGDex~k%55$e9nNwuQlmLR*b30Z{NMp0}9AhcvXn;3p`J=r=bFM=>F)jwk^lw?9dpZ z33h{n-Ea|vC1%0Q%y2nwB%-rioE#7499S;c1q4IdWfc9+XN;WQ8ELISlj^yts|JY4g z?JfKDVzVZ$>m-NcaR^JA$rr*4(#1SFp)Swwpy`~(CIzlOU7`DSzv2SX65}ths#n)t zT4Ovb#QJ*%wnk!^4N(gOj=&Em%!UJU0Lyp~(&$7~vIQwa(Pi7H7b*h^KJc89IPejN zoThLc;^s=>9`%tKCVZZOt=^98c!B4}cQCk-Fk&kPKb3E(K)>Y|26)iJ!5qc0Ik;Kq(5v8;9jH~nh%PQBMNxT^Fe8{{yKLwKs)Z#q<5iM!S zs@g}%Lj#?*1EpL-h#0QJ?1)3d^08G-CgsZR?YpatSUOTy^Q6A zcJt?ZVoj(kg>>s4l96Hp3aY-EC&(1%DTS!m2s$_V)d%!6&-C9bC-rghon3J6XE*^C zihMa_-=FsPMWHjvAqCb2?J|1)!vlDjVAOrEXPDkqC#Apti5W`a8%{hN5Sl2r)|qfv z#co=N7*?{6yn#!tv>Ti|^BBhN*WVCN<=jpwJu6Cpq_SHndnzV9uO#fux71HKDkX0S z%*CH!l=x4z;Jf3Fy0&q&&KQ(0<#_?O*3n4Mg!}WRTjsA*QcOGEOxE+=S5B{Fi=%t{ zuTcsNGmF%mraVwNgVHzh=QmieDuuvDtel6+7W zA6NClleKo5b=p_@^WV5qRD})J6K+*B-18S!;0jp}$FOlU+E*eGuNL^g0UaP3wXz;8 z3`5frk~>L%W1E6y`^XVpElF>YH~sANAc+&+@@=4xa$SYJxW{y6%CJV7Vyysd<@KSb z$Ei-J&O4sK|Jlt155YS(gSuVrEG*)Fy@wY>J=MDU!Fqb=H@9J@$7UvM`ZTTosfAvo?e*Mx z(}!z{Pvz9w&=t1ft}V22MMX*bh}tIQ!qKimo6ZM%BgUo`FwH_ex+AmX{68B$eDAO@ zh*RkC4Y0~>HM;6&9z&olBd^ue)L=LbX#;W@&%GSeb9|4)Zsv{kQm=gnieuNTD#rLd z#JW{+*PSunoLVC9>co;qt5kUle2nWwW1tG4dO(4@Eem_3Z{nDut)t!Ed6~_nee{NS z;$1l(a})HJl{)%zax|n{499_$jSC9QOJk6T&=fN|Y`1lpewbrMYMq-5bP8H};qE(@p+IQ+WfR7z7 zfcW#x(*DRR>mP$ex$kbbj5w_*3JMs-px#e%CiZUX#|^;?U~zhY#M#VxzMpz{5VA#V z@xR1+()Z~#M8-c)bee)BAE@2Ys-~vka7)3_N6W+|rEvohemFE3k*21F=U*d7QF4^# zFN*l-XSA`L9;K-B=J^;hwn&;1{XsLJC=PLN+7&N5hFFtA4fg(mFXh1GOFen}sgAt7 zSFbj2)cFX0X@{SZKpMBTt7}f?g&6k!Z}(y%ze#-j7uWRUXG7#guRlOqBUuLgQ+6z0 zzY2(T=}j?qiE2xYgEkD(NQSJD?UqXf0{G7R^@$})TlwK6sHc>OFQ!w;cvQ`J3fC%2X2x0 zP~R|oi!XI%?6Wr8^mGp5+>)`yS1akwiCG@s!tmBNfyz ztnR_QAZY|4Ihjy>IfS#BrT5etvAD((4IjcUH7t2UVK3lM?|#roDj9a>qr~X&S#+Db z_BiWAZrxaKrIns{kNvoV%hCr3Iak*+U$X7Y8MRohV^ZGczOq>3mcU)RyAx}Tt8`rS zbFerSzX-Q_&rt7)=R@~Ylx8W+p5|%k(#w?r92vo)I>r1ci+g-Z6<8fln{5>j`x5iN z;WvLT5BeQlugb6eBQsi*=JvGU$TISNh3S4zi-i%1!c~zkflY<&c@uT0?s2ucTqU@$ z$Tp$}LTlH6N?lt0ZJUjAGn}Tc%wa_O>~Y&18@1&gfiRBX1N6W5DZBtoSiM{+vY`g# zuMTk`s{>=#SOIN}rMowg;knkV_wR%Mya3kZu=Mq$iF#nlHZ?6N`aVD8jK8j~E^@By zagSQ>qkXBc%B(5|t@2s*YlBhTOZLH~>7?j|hW?R!e=)BfwGBmPL*&8Lu^6oTkHlGD z2W(-`S7r{D`k-ZjBeITbc1OOHc-^-&1?+o$@3Y^_L))UiCWIge!~?eoF9V7t!C*wh z^bl*aN7u&n?#PKZM{4VQ0{0Gbe*2B*!gX{mVlV3RQC6ScftV$u{_WmL!u<$2Hur>l-F!rgRNB}4C`Z<6;Wt>_64fw# z(lD7F-udg-QjHzI4ziNG*ZjyF|5s$jO-|xt?+wt+1mX-%% z&Y6c)90xKFW`N5tWG0ll))W>_di4#J2ColKtVJc3H1_mi$I7@V5ScNdezYpFb_$-G zxG!n{Myq0CiHqX1Jv^N-Mi6Xji^_3E5#}YZ=%#;2e_ML@#GQI#NGV?K#F)1fj!5GhyfA6}yzTeceR&0w6)oq=bpVA&BFEE^0 z#P5&v#FEr*Uyu6<#5~CPZ=mM0M0K!@h!Ax*Nscg#Pvva)uCzLv@{Rt4x_yV$y}XeL z`(&)oM~*bO4B$mstR*w@Q<{ZIM5OKgZw2cVICU14%OPd8LYY2Lv;z)lb8Of-^Ble+ zyqF(RCw!(m<S7Ig_rVzK zuWVQ)@=^?`x=ap@k%E@pu*4YG3<~nB6Y+S*>u2mm(`2%T(TA8_#c@;9iuU@c$pD_> ztLbBlf4i*+w^922Ksc1L0s3pR!nW@nPZa1{#(WHRn(cZ z68du3!T;V)46quG%^O^FR`yLYLn#oM9*ys2+bCjwL&WPbcHHx>6?bsOJ}clp zy%ZNUm912inm~mJA%+!i*T;^Nnm6&jekZzrOj4aI=}!o;0R8`uRiX31%i%C>>hKX; ztNa`S76yU5i(3#SslsYwVi1dU;?&}jqiCb#q&N*UqL08pW!-|u!UF{T)-&G7+lq&C zu*mge_ptRhiCY~mc~7-BB8Gz%o=&pMivf<>Uv8UhH9kSwPeqN{#pGTtaMQw}1aC}o zKk?2@_#??G%_uu*QHi+Jm-VE&-RpIAbaG!z8kr~EDm(9lD0&SGv> z{VQt}$voP(NWO&IgywAE#HOm(&}YOo;I`Wbg8}onDt~Y47r@Nd~&6rdqX;@EJ0Q~kQg#xrD?s+$Qf-3s!-NQlQ6!&Bv=oh zw@lcTQ(H=KpBz#XSxTSL*{PSeU(G13~{vfiAECHx}hPO821QZWyBneW4xDt~r^TA%Z@g$mH+fWe~$` z>h%Ae%+d(wy|c*A%QG{@03S)pvq%(-Pk0Pj%4FH{8Ba@Kwt0&uP*2iP7eOB8=xuua=X#>3e1&y2rOpIcv z2_6A3!x!2hIq9f*FaHQy%SN-m&&K@SCWfrnpKlAi_Id}jut#3~U^p`s0ZB0YjKyY8 z%z~70U1K7tmXqN$$54M6)3+5xZ$BdsCius-yXS~fFTC@3Ct^gR5}N#jsIO;OdSESD zERrUdWT(^*0A5VwOWq1*E~ZolcM^ zH-3YGD6zSxr-xV<#>)(`ejTPb(;JYtaztvV#d7zj?7^y|A87%?dfBc%3=mU7^6Ae> zHTi>K<(!ur1MEJ&o*vYJlemjHRyfb96#$URn@Q-ZQv5}|Rp_h3cKsRHyfr#cE&l4@ zEBo+lf7-F;GyQ%*eh_PrAyj<6X9N@_Q;CZ`FV<&#_R_wmb+b=d!=HTeRU z>)OhYS?~_MJ5(f+L5TG?!Y@wYHhGN-^v2-aexLqoKUGTK6V0(V&Z!W)+ty?kyJOgL z6^Dn58>NKvzdQ%lTx?q-h&T3&)WU(@%y0tmsJn*1jGevPS?xIa;Di`EpqJjzFmg7I zMxPwXNBsM98T^AYsiAozZSG=Jv2`;KS5CqD3q~a9Cw@v-fJ{-om^$`3XXC%Mv7>h;+8Vq+5!VMhJ2J9g-=mr5 zbEAYHWv(Ys2IKp6jiY}^|A3R+WY6>TZlKxwmsb<_UtTiklv+dF# z;qZ_P{Zp%i?Fvn&LQiTOOY^WaasIcm!hhGNsf;j%tuh<*|1mbZmfSiP(6qv;YPHXz z<%D$us{7Rr_%C7Zb-ckQ&E=F(a~`!>9?=0 z(#0)gE1!7icffs3oUNTM#Oj~8BrMSO>XQ17FR|iy1>J-tpPX!Ce=7+JzRPz+KwtTZ z=T85Ljajv|>P4vO6r(Pr!AzBexaGJC0!o1D)I~MzB2jGdlCRYJFeafJ-s%4{yMj&h z*SLE6#l-j$OXo2i-2yBrg^NQNyZR11N`|wTmyzH<^t+^F1`%Ojv@lg9rkh|I6w(l} zCJzyt>mQ5L!NGCltuF3D(jmji!vf_h?k-2o6yYM5NcE6R95sjv7kAmyhthU6>^185 zbCKz?)eD~DFkzhGp#JCNd8;Q)rY??evyjz{d5ux@rJa}%<4r9oN~e0hvyKjx0Fn<* z&+x>OqZ8M{yY%$-6n(%HR1RS_;0jHpUz|%VCZ6-C)$2WfSce!XwUYq4B&oleAzrK2jTBxhG_BOTHA#Tx%0Il2p z%aV}4Rtqmnd!Y6~ww<#$9l~_YWSN=D#jNlBwr3(bOorb&5;fhxve40UL~R!qAa{v7 zdV9w4a=OYPcyVTwi^2Fm^>VoRUKD`#zV+Z7kvKUyIRx5Hi`tIp1!2P~r(=E2nBr=3XBR2*kBC{L@#z^7Cq*8H5?FTN6Jv?om%q#J75+`s@ zaINzc{m4QLuV&hS&0kK(#8AKwHae_%^Y*kBV%piL{r9yCki+h#^2Jq-h~zI1-z0Yy zamezcKK1=r<6|6+$i=f<%hb!KLhCne%(XMOZv|?JSgHUB8rmRcDeP@e;{tjs_CXWv zk+BFj@x<;009dD-bAq)*I;ha*Ow9mB9Of}Pr3O+uT-P$>3XYlo@=}axi%87M$-#;b z+65GMXb?Z!@2%|h&nHMyy;oirwE*@QcAIksL>h-UOX$&6sDFPA+rPwH>`Kv>+iQv@ z%bJ{6oa?ZFC4WzC0sbhn5FO*H*GZ9Q?{>wj;&MFD2OqQx1Gx)~-x(Ry={i_xJD3+m z$7jQ`T2Bf_Kdshix{TOHfNh>`s2imlxqm%6W55R8PFikz0XRp2ojJZ%)Lsuk=gUnw z(Y))zy-@3otPP33;a+NU4^oDe&BtfD@yq>GH!z?^TU$wQ=GY3bVpp(XS`~!0*c?0a z>$%83^lQ(32mdz7_Qip_Pc2yTN8Uh!(8q%7XuIn4$3*Qur>}y~*y5_i#R%oDdY(fZ zg4d&?{rN^@u!pbTFldXlJMW-p(}Go)AroHuk!$ssOo*twHsm>uK5OtA1yUg)U~~`; z_IZKo-w2C1mO%CUab53JVIaRyXf^J}@Uk$Q{23qp%@RhWfikSF za9(TNXzds4jSZGI!;cR8+KwN{|6_aU36t`U`+#c4ob%jp;odqE@y{!}(1l-ij5@-o z0a6f^onZkPUe2`r@JxW5+uk0Y_>_7glV@!&^0JhJ1@G=JEL9lsmlf!}4S=S*628b` zpibI7jH7py*R;838Eh`&-~LL65_GQ>j;{d|;tiHDd{)&PiQV_to&<~$hjD%mr(zjWduh)TF|uUtfmE=W62O za!Z0;c186wTgP}-Bp-=c{f#X7cdvshZ~~0GgARb$mb_x11#upguQ!v-SI2e_*3d{_ zpX8+AQbgK`I=70AAaObsnPzJ7kA`|te~>bh$qY+mB$Up#Wyw3lxwF~-5@4y6cHjW-qG!|>#!v1NCiO->F=<(M3Z>771$aS_gGMTNfw zQtX61Hm!z0|0XA^8te6Oh)o8=&Rz3MyWcqmczR;lNcf_1`aQLv*5}me1r7wZ?EED! zeI$rpKb;rR3}*#K$F3h;DcSW{C1JM#Ah~c{)QEPs!K>nnt61Lfg8DnptIzrATdhJv z@bkpjowE*$>qllkMHr-vvk8Y=$8)79BfK`@i1F~r`$D#5QX>R|c(U92aaTjpse?-q z9pv*m%#t_tLh-?K3DN0Vu0vc$V!rQS*U%851mn+RAAFM6*Vy=`e}o3OYfADohvB%S zh8Wy(*jRJ76c6lEhQ!GL^O!u5t#`nXGVLeVLcQot-7e`M7w^sThK{R;54&R^jG-Cz z?}uc7KxMRQ)joWgo&Yd|*vgRUU-cjXxoneiT(5`Zl@=+$X(}?^iy(F=cp$$1Lmm^+;;Yrg*NI5rKYCmGNSloJ2o*7Jlg}{ z3OVI}-M&6ThV_%7}8)lcLTalaZGR3iEBk2HEIW~3rD(uItV+Tj3?%~-B8 z&&t;oi6?d~9BlJ>G*S_n>-x?D8xo@LCpqYfTh}rmu|P+IN}kEvr8j~ccUFx_IflJB z4rWB|TnGOlGqgx|&I1e@-y?obzP2)ak+kG2zIvb0Zpxwld!J#i%|M9URKCfDAsrNG zcj{wH{VT7<(r*R_H_(wo*nb_}j|)TjYMxN5lHD1Ros#b-b|+8fy0*8sUmE&ECiVo0 z;3c~~+TNZb@DJQ?kVlf0~o_uRDx9G8Jd<9c@*m(|8-bUhnfXe z**5oqG-YXmEHY7vvZ681svC)Q-)SQ8NhHdpI%WTQ69(=m-^I^py=SCHxwMK;OHX>q~g}QrW4Z#rEpfrCVOlUArgQZ)^ z$pmxnL2}E;NG_psDzDgOYI^I0Cjq~A)I_Ez`aY*2P#sv4j!EQ@yABJ?NEjBW1;XeC z6$>1J=)oTxc(1It?ay1^_Vb>W}nT&=XWnV+6lAZ!GoTJdkW|mG~;``6tB!@*u6fNA6lXaQQja9r19nwVG$4&=(QtIpL z*UXK;b0;4n$!I~5Ln9F+Nz}{O%#2qoz2~WVH z5ep44(UO)lHTA16O}`)*{OuNQF;P_p=RZ(gcfKi}MAvLmj>qywzQF7HN7N>i+feN2 zCAGB*>CK>7oP`X5^9+nbnJKr-!Vb406Z>cO1ee5OqFz z61{J<>h+6gxX`w5+}iIa+XSp3**3{xvVNfBhE@UJzf5tNw4|2cPK+(^pLj7pXbleoAkW4lg3R*qmxqS(q84GF zHn)2iQ~#8gwazHT6GdsyqvkPgmVBYNW$$ENO>#h%(GLS7UfU6K#gGPsmSMVypBJL? zX@MgTS+cOlwihmPZ6o>kKJ!M0PLy`{iFIrdK&irxk=38J{g_9N;)ao!|1P8z(R`2% z$1_S?d!zIJJEY`QZ`>Z0E{t^3>U*LQY9nBLqL)AgdUeywUvg#51$DJ!j;|K`#;b?0 zFtmVs6{keHjCK{WCMe3Y(WGR&Fl3$G8p-#3all%wO{|+Dp>nazr-5b_h}OcQ0CtVq%I^J&OsTp z-iBrBMIBG}NTDRzZ^dmN%Bf_TvYCo#(g*U8;vw7KEJ;c^;dmZTQ1D2%pj3f-=K5y; zn~7@D?AcO8r!_uF)|W$e-UPskrc>A&9+z~fv1+@KtZ!V>^{sqk>*Ypd?YN&G(l-m3 z-#>Z9!`H-}tCbA>`gmLs+v3&&G)5*Bs z-^bGuuz<0kSDcrhn|sY}5RXWnXk|F82|J5h;*wxO9UKN%WGA}^fry$KjP9rllw~9y zbv=jzGH&yTK?lG2XYH;S^^nsu3|V>4ddFSz0ownaIzhRZ>F2HKpe@<*k@s8QkVS}G zWUt<3U_QiaHkMci6Z!n`Jkg)1+m7;9v99qf=})T0WLt+g?E6523!<48agU_)GDv|ygH(px>3JO*0yI&3Z zesZO(sJC|3D-k?O-qf@(sNL1`OxzHn+n!!m(d0owqllVQL}H|7AZpwPs4mhr>~wwq zIunCCxE_4FeqwJj+_+cev+6|~B8v$??X3(6gl=vy0l|`%Bu{bAQFzlbbG-}TLf77d zSta*Y{1;x~yPL$pxs23s%7{bz@iyc!a zT}a7?8w4YBW~sqb%B=5q!&NT8J+u@sJ{obpBqw8PCO2kg3ZNgv#XQl?q(M+>i>h$! zO{=@K6@HDg^q?lP?Z9eE7piz2#WSZbqyc78>zpxTVsP_p?;QGxW}r`UZX5vscHJ=3R*Z)RNEGKl3CHPnz0*M{Fi9 z1La6d3r@mC-spg2Im+RUN1vgjyc!zyulMyY0sT4kD(@_!?;}A4D8nb#;$u9`r4=xN z6qYSar`Y|bVC&7f5tx5yhTI4MBkY5@R~IhiV{o}!*#yhs(9!n6aQH3(%kx0&*#ZcH zS~w$eWq9LW?I|mA#UueyiIoGmvTd<#k=0I}to$#~=7gxC!k$tmWEDTYAXn9XM( z&sA3k0vg>!y$DoT^w*L64kpT046#si5NKB$+gH@>7L~h>c7dRuPF;58y*>SVn>(@Q zY>y!eBdv-3y5By*aP?ktQR6O!E(#aMiaYj@4QoI`y`b*)RK+EapwWGyV{vSLJ)G=# zw5(t#GASp*ZQOppfq6K+oU~2Kvr}#oi+?a9^el(lH~F~cO)PdMv6Y}MY123G!@0TUeikwfL#OfwbPlBY=YRDRH_sECW046uO$@5eLPfSz^O9VB1 zQ}lgIuGklcH#{%Lh$DT-nhd-4wTFXwNDtzAy3KhV^}=_@K$@+rgO)2T*gq4qy#iOV^8ttNvh+VMz=N-To=Q8)vDt`SOE+;HNawYYZJRsx$T!uV z^TMbo$W!U>D`y4OYiA@b{7Vv32204n1`87}tIsuLna6D1%}HDr{r{Ny^0*lH_Wy|} zM=C@~izN!7l8l7-?}P9#%J`&85N zdw=FR=llAdf1bzl9Cgp!_kDe?>wUeKo<9SlJ`XJt|I>I4(T1DGd~a$3n>4W<6zjlz zfG04rb+}?Vl$t7i`&Ro1z%@c7KvSY7pjCjnrQS+if08|asc)f1D|NoHCfS@`ShPu9 z+5S_8dc<3dYl23N2o^70B6^GW;Ws=#V~a2L`(u~c^@ALyV)|Qfq)NNgy^n^K9XwZP zS}i__Adqx;<{1C+H{fm#G-6?`LJA?M%fypjm^*^V1BWYjXgfM^h)00cY8M6?C`r9~ z%?v*~_eKeprgDYuGYr;_&E7mfx3PiM5c}79&Jt`m8P^(m%2zs; zR-S@FcAUyV08l zT!RU{kOPT8-z>e!P}LMfo6O#Rnrqy0iLK;`e0zCe9>xnSB$(WNPoOD9_g&|bcLYp9 zni5ni1oEn;M{4O<#UjH+eP*FQ?Xr{q-i#KrbLKGBFVv9cg*pe9mF5HF_ zBV7`tu6vCDgStE)J>F`ncLXD!y8`F^rkX(@0WF=B;=xCkPDI$&o!6YcK+3Hf4S{F9@DNW>sIJphRcAxPTqyH}U2f<1}bG6*qle_x3k1`*Xib%(DtzNF(zS zZ@M^)!cRFZ=)t84wSsm_#Wl zN`$L`5k5UIn%^SxEG;$FnH{5o+Hzs5v?ywQ0O0+cJp(|EWN-@Y8`F?5U&{A_&ij0D zP;`ZmMiKbOzXjy9Sj#EHeHP2ZTCw4{F~$#?yOD|jxmky8h%^8}JhT`Mx3Gro|6M49q` zpX+|#o{eKU(I`t1)ajQ@n?;SV_82=wE=g7))l--8(%<`HL~Cp|^b~9F59zzmer&bv$nQ0JL*gyL%qa z3R+teJv8cauIJ$HL3BizIZHDq=t2Z_~UaXB1(H%lW5K102? z95mPvTO##Yd`L-kcBZq~=5w-VKvpXh&pohN8jBs`4hn1*Z?wnzq}WEG%+1;?Y6Dz> zSv(w69WZTnv6_FdTeuVn_;>CI?0S@{8~^!>ev}EQbb6#8$|Im1I} z6|%E4oCRPEUgrryY+-<2l>~E{FvcP!<;@p}+sf`2US#oc;Xk>3*CxL#=Y=7lmMfGd z752;{9s>dYOAU3s%9$obhdIj@t=FWJ%|+hKwae)Fezh z+AJ;c@ezht=M=`kds6ihi%yyn2tE^PWoM*C9jum{+R07-UH3d8YW@bb6UG+xr1Ss^ zDtKFxMg&6uW7_d5Kc8VJae)gFL_ZBGH%L_jaadT_;5l<gKH}F*Rz= zUdvg*6h1QC6-v`=@_{}?Xg;Mt)|IduN(T)I0`KoB61nTk0l*;MS~LCMU5%)CFjn%? zda|Xxf%%5>GIN+^a$D0DYPDnjIeJ*A5UD;j%{j=&=gRgs0K>DH=4YL->`lhfqWG%- zor#7N7G5NqdD_PDpPv`r?x{Q|RtN48(6J_pX9)$x=N* z=8}njf~I$btHVteZ09nq+#k}}Sy@?lHW6175EKxQSLdWq3KByU$H+o->1bi$)R&`} ztU_&xt*1;~W&=F|86r(mVCb)pV*|q90ExSL84y&NOPtrKsb5xNY1mR*8jWT6+dwj2 z6z)s{^7Li#`)hLOr@iR(R|nL0SAf48i+&DVM|0Re1rIE+hl7kW4En%Vk1iFD1YB1G z+%!UyxM~>c>6K-40yi5P8rtg~?R7x@MkcVq)*EF!b9i$GS>8i~;&SGLbfJ zeAhN4$OCz2CMZ~1civ}2B=iHinBh}H|C%)r5S>yYOSk5{KF^^hwu9PPh6sm5n8Id) zmc5c-i$;f)r%$*m?6(A8k=BpOoCMEnV!iOb0JgTO;#8OC>N8vVO=B=5T2>Q6gw%17 z5@cpU?lnI|Ljs*j6N|Jj&l7vV6oK0A!?AaAg)bI{^v(<#BCVt0hW|e8`8x=z3u7QO zc|5QJ&_8f5XoaFU^_h`Gv%8hDlq>o9tfl3~sHtAQu?{$dul^E$1ZJIC)t=SBf{5`~ zp`0JO>oshCK#U45Auiuh{ufpSq}_yFmoaq1E3hH^qbPIhqje>VCftG3qBW!|ZkTGD z<|tp$j~^=j5U-gDpBIZ^2lS<%hJH!g=6{(S-t zfA?Xrpq7PdK?IF<>E}k2E8rUqqR8s9dY7!%C)8JbI*wTx^NsO$f?(v!{P&^Xy2FP8 zEU+4I@L;i_Ao(kHRoE0kBXOkxI2&sFMf)?|`Vm}i-~ykZa%GV?v;w+OS{om{g$J0# z1;;qZr4>R$Hr`0*@%_}=ncU_rJQ50Zv@yz5j|JeL7$p7K6Ed?^Qj=ja9`78V2Pzp(DLBxpr)WFktM&{|LvM zX$C-(qf2X70x~R?767e8q;brH>Qk5ehclg#DgY&3fq(>|Ue?TPa6v;AVw-nltLsdN zfFKUV+{N~noBsMckH?#>9-UOQJ7?xC^rsY$V(*lG z;BOyh>PoBF`)cpZ<{OJF3-a@0LxN(=Py=rdiDRWp83H%Ya}Itbx7ES`%;Yox{;1OK zjS#-U=NF4iPM$vw>&$UhlK9SZ8oDfA`;v)nP{rz;0y}aRP00Vw{z>hgI@Uz(^*SLJ zlIh&>LSW#`w)>MNF?Fxnwr<2X5jnza<7<#)d4+0%2xuW=T~n7C88eijK6^~^gu&3K z*^1F0&JxLu{EQy_-8o97>8Yu&&!B&sjjsH+Vs@VT&PN_i{Fd1Tw-u|-?CNx1SDRkC zVroXOWa!jSBNj3nqu~5YQWT*geL=Z9^61hn@+T0WbI=8nbmz!FAf#%gZqrrN>H>p= z+TGI9^85EnGQ*)9R`;YvmoBxJI5D4kh57-t6LyotB4}JIi7zImBsN-cvvfO|PAezb z{ty14n;0AbmKt zWpaJLoE0IA{=GTO`>=<#tmt{3Ab%ioY)6Mc>90E^#o2 zU+Oa87!`BntRhZ>w0~5OXm-U;P1{?Ytz-kRhNi&sCH|Y^y*EAQ`G) zJkcsRf7|9aod95fTF9PY@$g!fx;N(qO^j`H>6n;+=!N*$CAKFdB(zw4*{xdE*WxB^ z?5-2PdVYA707hIgh{nVo#irSQVwrd_Y=?5`MI0n@=?}_2-BE>TQ*7m8)s;Cpa_^6-q3-1K_dc|0Ci5(C@j8pM?_V zIKH1IfMG%Upk&A6B$xQ8S!jY%2E^wQ?boJ8>v|28Y-Zx4BgooiEucQLqGFg?;7B^L zAadL5a=hdmd`6g}AOWpsuO+fyt2$mf%8!+5X8u@Uf4SE$Yt@=44q%5jOhJN|pwR!R z@Ws0DFAP<>qly1K4#$I~W%_-|)%r;|YY(is1s8sug|(HF!=;8WaI%E~Gn{r{PK{aS zOa};sJpP}}Zf58}JMY+UDVKv^91LCHe)s4p{Qop0JaX+B<*ZjPpes{hW9p@P4bQL` z37LWJPN5WdN(-z&Ak91)v?Kn)>7Q6hSt?Bzv5)~hB6q6BkgDm|%&uPVT~#uxyL;O0 zH8EzhGb_)BR)s?I&alPCwSt6baj{1wZ_-a{If<3ax4-Gi_Jkd?nQ#N5tTZZnnK1d3 zR$+0{05`Qx!Gxo)lhwXhhcE45eLKp_ai(n+E;mZF4e^b^<6vAjladKrV<+=6bO#fPP5C0oQRs=KwAPF7w`fH=M zS>by{5jyXW-JjaSA@o5o>GaKL-l12M2+$PiV$e__=sIl}ML-i=L2Y9+&!nu0uzm^$F%l<5PyT?IO07A$-|0-=MDJkWEfl3%n z!4t&KEVA25(uTZ0h7QHhen0qv) zor(u2isM8Gb&$9%JQw|3A8i-rX*`jN1?~!AKd!56Zd3ZJTXP*89h7imSC{Rml5ut` z>sLXiR&l>%`DzP0DUzaRMGYyhJt~>f3T^!bS{!OKNAu2(y zDTKSC@MMq>W8jnxR9>AsHRubujqd-h8)!S8e-He6oo*d!dpY=7#{H$0CjQLG0Qe_OSVC>yiqrgdB*GI_^=G)= z?%`%{(*%F2)-ZJDc$?(8+a>|PRj!Vv%=|`owwnK~rn1`whOl8oC8E)M10@%i51+b! zGM#S}%m{W13W`1}LKW|UvowN`v9Vb^2CWFF10??vyFTk0w5InKm1Piy!S0DYuV6e1 zcU2!Do7mxBUzlhR&ma?zOO8lqa^Goy>5=kw{r66@s$Ac}KXm*)wb))LeZ4TmQ?%@s z!;B=*iEZWJB-%a#yH{M>{?LaCs#AiY+YSCPvS$WN2yY)$*IKs>iGbM^8rx-~w%wt>exdmYGJIr$ngjq8gH0~Vt*7C zq7+ghMhzBI%Zi$X{FfBw1uPSGGZ(-}NK>l*P!0m#Y_v+(#BBuTZg zkijpUKNE&Cs$$$6(zY%BUak#OHssqXi*)#s-Q2MwF)Fm#jct1>K$!(~O#WY@LG&Ea z7qGN(s5|uvojAh5N<84~)`nam^_>Ihp|-VjcqE0`iU&VucWImXd3!heVEwyjmE@`) z+i!YV^G8Py#ykL}=diMV{{gQo66kobc4?4g#)5-T`S1MJz#&II0{$(4W;r=}5)5S}r5F{2d_3v1m0L1P=}I?4 zEz>#NN;kGvGn5}N=>}@bd2PL?ub!krbN@TLq;KQ&&Yn;AQ=T~=I_XX3u}d)~x7dz_ zcrIv5OW<6#R1~2uI1HNa+T}MLioK~~8tV}2@T}(a_Xwy=6AE=;^_Rj%KW!R=uX4DD z1gMl|sEdk0moklq&r_79Fd7>6zhf_q0cOksAqAm`6YGFuSLZb~Dt#&{lfOX)vV&BN zEr4)*KK?#%>+qNh#$q`35SlbL3=&)0*nn&Fm5m`(ynT0r*&eXZENkarJ0J6aR)L5z zj@$dfol+fZ!j}BAzI*O!_mnhEi*}NCdJ;q_+r-d?%Bd_KxS!Z79j>t^SX1tdpo#t@ zO_D$-9;_B70b?($U@c_u?8EA9mnf}*n{6O*!2xArR^js_Y3cllaQ`S$B70^3I}bGf zEXSDx*qX_;o23*?!xaC;;yj`#zrxtbPFsFs)CJeYCmS-mDo@IUELQ&|eicWL*`7j; zFK?rwJW38g9@=rE-KVpp@L;rYZ-)B43iD}B@4XGLcuKUGZwMNdclWJ*WH=rHR9a24 zP}+F*krk)9G@0#G^iT}7=LN1Lk_EaBpF~)+zWlOuuksI17+HJM;L07+;%~sq-W{Xz z59e_z=HpW%|HIM#Gwvz++o*v*&V-HWTu~8j6Qh`8!-#6F;tAzno zYo)>$C9?}khuVy%$gYb0fwfy)0D>Md^^4$iw@yTD%Udg)SeKS0Ok^>hG9a_^TOm%4ek-@j3 z9lR|qF$+S~lb>IDC)mNN?8jdup*Gak8#H4QDT!P}1%)xYq$R?d;P7wrXd?0Zvxhan zY}Y21zC+pDB4lm0xFJwFB{LKJp35LH6rS3fvmy-kEpf@Or+8>}_7-X!Rm3!<{c!0q z$)-!k*Obkf=kY7Fu%6aEYs!R}t5V#^Ki^7N&NsJOE7-NHH{ z(Ypwg<@nF7)R0X9Yp<6(z<>qzdVRSUn>T-zVrH-z=eku(cMDb1&;zkxjn zso@2KEs-WtG;LS_NVlmb<&u0@yQ5L+zK`5*w+9U^`+HE)=IFG)Q&(Pg8_2e`6iV{p zC+4PjjHW*7VAWa!01{`rCf<-H{;a}H%Nh}73RG=(3bv%x$}@+|svbCorT7IY&lP^h z*8kOAIpQd7at+hTRjxZGERIm_JPnEAg6?jFAw_(FSi{>J4@K*cH|=+}WZh&>59Fm6 zz1W!~iF>M#e`@&FeY8{Ty_Q`9rF73fhaUy$MRqUFHQzU)EP9_lwj{3Y=xviazZew+ zn>hoHPzyW2F`2llUPjfz8UZt-wxo_9vXx$q2To!?FC@w+l(s<75&@iczGAdVmG*U& zk%206y7i=+@8M=q@q958RZbLm5v!lVDOHO&8w*Go5PIwagfv<pWKu(bxOo{*vM<41C;K16s{K#xe@>M@@qleei6l} zRf|?jJ?T^^y%&Up%2guUerYMLiAgOxI%W5-c zaSA}5W%f@Pt|1NlaQuJYx6}>h2D3uB3r4tP*fDLE)+k9${fcGIk2n28BY=Ech}^$!p|;PXPs4=>e>0> zg{y2mKF+t%ocJ!o@iQ9C(4LY$8g;N_Yx>f8Qa)%!ZJAMz#?;H0OeS<^HT2gDoN{3U z<$yW;QR#(B*smSnebJUesw2*V?|?*s_Nl>h1li zh%=rY{Ojs=@CA;)Ad=c+xZl`O7!_%jEQ;^VKj|`8^ewRrwY1d#+@kq;+u>aGva5B* z7I!^4wst0UdiFRpB3@6%$WC(zObtKL)LoJ^zhiOVY%f(Ju(h4ai)A)^1OA;`rRUKg(-7}lcs6*b+RApiPEO`g)#nq11*hFtNnYa zvu`~i00yQ`lVzzPe0?0=TE4+O$_6I8acwm!uq7$Y_D54uL<}DIua?x1Qlq~kFB~TQ+HA#~4dc;WfPE0^6Rztt9W)}ft zG}1ZUFeKa^+Wddnw)YnkpEVA(+%#`$6bCwJENu|knsiv9w3Oqno3KR!qrTJat+?FA z-`ODONsB_?ux;t5my5knk%%e2eE!UZV~*3twbMfz6xaED`p{(AH!Q#C?}^eQGRKF5 z7u|gT__~&9qSW{yG@2fe`^Vko7j4B2gQ~QtUIpLu54M7oEWrU!D${vq%s@|1fgI*= zhco!n+vRzj>xA@rnJ@D1N=kcCe3w}NSHvjpS{|Xv&g2VVu7KDU4%H*Y2ifd(V1GsR zyczUeO&B2J$4#og2j-hp9JY$JkU{S(>iwzF;%ii;?lIbwuA|Y0j`R|_`IU89@=Diu zhC^Y`HKLWz87tSFQDf*0e%ks0G1^?+ZfToUPysKOT-rzD2Q-1^>JB?(ee^6YuMT3G zz*K5Nw+Fw{a#z^n~Y-}hzH|Rqj^m~=M391uhS%b5Bpg+4@U6e+x4<4rt9+f^vj>{>7V-?e zv*enSbQ;Yy>E1mrE#QilIP=srb}mZBnq`ZR~@I;|9rl+TrMX!7rQP8 zt2OgyR%uV$+!Fw*Ay!uV-efw@0)YTn>AE4W;&nfJR3pa|rVV?&uI$%Kb4aP7mxO71({o7LQV45qP*}kcOP_ zvWy-u?P(5`<3Bg#yIaf78Et5!4?Qzgdgv~GRd1wya!aGW2lZx2-jlB)T0OfBqZPe# zrM)NEnbq_LcZH`#m;k^#73xo+1$4%fp6PsD1!EdR4IV}$NOhy)vVZ7`q9QRp9@di! z4Wxxd;qNb^WcppCG%K4)LI_+o$VX~eh!tvxZoaB=#W4)t@gXB3?V4+;94gT0N#)L|9jCW|Gj9CQ#sZP^NudN*+;x`_6vIoQM|GH^BgEM zY~>^hdjci_V@DylO_~iSDsZ#OObd6^&l{RZDmr9SDQAXNOr^C#t35=^?fVs$jH!O@ z*zMnRG#atP7rHzoCT;r=Cc>din4Vk}>puSXTTg(I*Eu{as1c3i72+MkK40g>3;Y;anP;ob};PHMyK70RL_VNKwj(iQ6Kv4b_jGR)gkt{!gbRlUS zWcAuMnR8;r^#^DlD|gj@lSQJh4?%TcQYyH9AbgT_jO;B_T4Es={;gTyW31xfwA zcGt5D0!pZO7^7KIh$Y^-G_hXzP@C*xXA%MXQ{^!LLa3>i8=IQ8(lPS)63PiM(%lAz zhVaYI?1Il##0&MUeG0kVzxHF3BU4P0a^77WOJg~UmcMYF+2X#5QXIu=?e&Up!M}J0 zQNvURX=6>(IgnQMOX}%^m{4+38($8JI#I>;GMv~Gb$-|eOB6D>Fh;b;@}VVxwtB7b zDOfx0-xscElkud7+(P*V&Cem<8+d$TA24IRi(H9@1cK-Jezf3TXsr(zfi0gx`O@FX zo;_+a$Bu8G6-o0E{U_ls?(R%~(MnET@8Jkdaqps^OSfai08a{b$!9V+-sDipd|k(f zHao-?nHoX`d*6%4;Kacdw$AAoq(K1Qw9Noon$3~r_EKB0vo!3%oNe5rn3$BDc8&AMhhQm<#2uKtiS z)97OoD}4Dz8gyBgzn8iqrb9mRYV`(*t#QeRkhL0YGGeG>m zU4URG;xm6<_Zb&~HX#0*#-P0>-WJVnR78Qi#^!!@TVPDD#@BYAsK|jT)~JnGpe*Yg zy0kp`jBX@lrM0AQkg%sIEsatt9BOa@A?Bnu*cOmRGFO?-k?418D7<&>{A5MroItLO zO%Mzt%QB$#{9f>Xmv?b_kFZ!>-n?FS8-iYvmVW{*VUv<3vGkaeQwY^ePKD(X zk}Fnh!htBj>BZ#kwJcUZ<3)NyP$)F2CyPG+Z+H6q6d1veeB0W`^Ntt@=ZB=fgU$=T zId@JrAYp9q1>;In`)%buVs#RjegNt1ci;#HY{23Mr}uIKGUvf85bA|9)c0E=f1Y4S z_^IzfeeQ=D7h11OXU&fxM<)*b^{Z)`!P%KV4(~@`h8dh*wX!~vYEhKw>`@HUU0~V;KGYIW3mG9gCEJyI z2YG|^gm2B}8486yV-~Rv9?b-5#Uak*PTzc$P&p=}^YkLGspoO^gNDY7uB>0G^&(^F zRF=EFbf!tO?ZxS|qdNDmMV{NdPQ3T{IT2Cu8R?g2FDg2GzG(aQ+@qWJvob`tA5Gt} zh^BGesqW0WTh-p#aG1$?vT~KyI<0RnT>D$!l&`37sJ?k~wnc(PQ$_eb%Y7vq%{@Ko zZ9Lj!`=plwhD^dM$#Bk5`va`Tol0j+ERIheZ-u&qQ$Lg< z_pdqJd7qcfOd8lJ%kE2Tzv-|dJ0m>NGw%qtNenfkeX_+ZsuotA2)t(FJ7%vj!X2a?Ym_=CxL(Oc@wG!<9dVAA3R3up)d^Y0WcZ>w4oLJ@-Ip z9twYeTRh%`e zQeuTlQ3`gXVeWTrXauzX2Q%8NarJLiYCUc@dxQ>OWf^-dk!U=6o>C@cRCabGG|R=K4y$%1qrhDJz1|54evU+Cz$7~YupvWSGcHhs$iyd z9OxV>e4y8LG2F3;lls;VJtUmq;y)KHo`hXm=Zgwfe*zC7T3~M6>y18>c3p{1{LQxZ zas%_5T(aOy%H~ndsfJVVE$!J{Gx+u>%y8VO_-dt1ia6By`i)R8{3(>4B0Nfqt@80v3nL;)R>Y**$9fP%J|64kk}CZ62D3UCSXZ)4BsM z$&iYM{2&{Jc-a#i;f}*X=0gVT(n%vz;;z2(gYk^)_dTZ-Lyqav|I68Oe*H;Cp57o^ZXlFFFvG;0t8MDBcT~2)}c&H)VF45uRl2sHYA zbN`WEnt5kQyU&`T50DsT?7BFa%`CPRLFn&NuzEoSsIjV$okA(d5WXh5kDacZ>5I1I;6hqCWI|*VmRJaqskWdx7I9?gM%;pIwpJ=&-0nwV!O&N&t;}z zjFVIaC1qvg%$1#y3qiiNS(RtbYSXVrHNI#&8zhAfVrP+|4(wFL6!3413On<{qN7Yb zO0&XZeC+2VU$p}|9^RTCZk$#l%w#7F+uxo!rZL~&oW*;hYPy8%tFXI@p=&w=b?iMf z`=@zePWfPXo`>c=Fy+#(ts$^Otiu~-&H?od^|^xI?g|)dWs3a`uyzK|^_L6r(8^H9 zCnYJlEVq^|DOHOLr&7viPN7jK3sI@zb6)4Pe0L@!=N%rf&@#S&{i0%NC4KzYukCkN z@@cMGcP`8E1guAQWDD6ws&B40^0-!$rq4hi!JU>AGI4NvK`~c{=)9S-YmQmPwvWJp z_TkQ3MVuMN76`V`)rEJO)X-JPC3F)S-<&Na@pIq$FHtCN+h}K|Q;ypI@Co$xhCkH+ zA|C@=X4+7xR6G`l<*9lJ!BqTbTp5zBNv13}8&n}Ie|{x9u9S=nf6QatOQ0SI%n)HI zG2#$Tymph;G;W8^mb6DLxb+zyX}GR9f#YT}rMI}1Hq z{AXy#ve*=&SourE5%dc@DEX%#UP<474iP}n3FT*XetR_Ck)!M7g_Ef&zT{QeK4Y8^l zc2=qmcG=C(Q!xb;?W?b;;G!X?VyY!4fz#7N7jHz>ONLsJMNscb_u0MS8wRc#;xjv6 zB871J#|$T`!YFHPAlY|kGwcwNRQb)t&rgq7gh)zB!LA9C8imSbyF1Sy&MEfcNnZ^7 z57xR^8LGG%CWan1> X`$pV!vKzWl4Z-gt{>gARE!2Q(psgHeO73^J-Cu0?=5jB1 zG>-GeFDz}nHT;S~d9Eu;?*Ertu~A~1-FjP#1$-W6h;2pF(9B!Pg^(-Ouc?xdxJM9GFs4bn77N#p8DAFxK9cc!*ttB4s7K`J0vu7|6XaZuhaYgcFk=pSk@R zlY1~0@mb_sJrqlCFUP9M$aRREli@uQ4=E(KXwbS|@xo`ubE08ReW}P!Xqy=h?4wP)f7+& zLyfUEZ=iVfIDI;3j77(DQd7a<%nuAWal%AqD5&mM0H!0=l!0(YEt`$xptRE~*2>r8 z%Y)@#z)RI1u_w zW031`)DrmnW@(b)o9Mm$UTP|-uazuGiW}?SJMs!#T?I)ZP1~t(7=Er{jAzdf=YGVy z<&w4;6s7(KhBH2Z5_)`{P!sSzyMN@cc9Lvpdszm4K0WWpzVTNl38S5xja_$)O8RG| z(%zvV&nMM$Y-$=C6JeLNK7pH^mU9_<%O_JQcfEwq<8=qCF3&@4Lx|2asO9mEC4g6? z<@RAY5|`YNqhHsHSed^NfMs0+>_z^3v7K$)PY>N$ z!AG_3?6v$Mz{U)AzP>XbEiP9IV2kfk3stQA@O;hsaha!s|=1)5AJT zeJ9PKhvu4o;Bw)}^$$hFxMiUz>Jis!A%$Z82l<6&$!cNTY}I8y;3tW809uI}rZpTw zNhokG#367WJCx;eWh!(WSE2?O>%M<@>z%%O?eVf_zI8A*x7llX)BDDvlK1#Lg&MSq zxqG^yRpSX5O@S6NU-Oj{#V7^K$-&$65^@g`yYiJgXmlZ)KrWy9ztgSVkHZ)wd>n$c zFvjhQ_9e#QL$2@SLkhxMeKgas5lu}k;!K_0j1_|aNCtT$mzkbH88|Y>*do6v$XeDH zMPoYoASnP`9IPgYhX{R1l)v0D!0COh_6H8;{x@o!&|#ow zt?COe-r|IJ>)CpBDYT%$!WOiM4l~T|?{Aj=EC@d}5}1!Q=OY|F?PS0)t5gQ<&*Ie@ zoi-R7SBQ9bgfAOt-Gno;HHpNuYsP=hZh&%;QOX)d914X0FY4MTG|JHnr2Y3kXk?+H z(}HlZ;7y|TR6LL9dv7@4b^J9i>o3MM93N!JT%BA8 zn*FvvJ?Lhy+_g8;lY0@W-hq{2ANz4!Dx!z{kh+sK}l+p?P01A0Vk%5;NUJBt(Z#D zNjOtdlh3v0jo!2wxrq(+T6;|j<)~#V6@Cra(SCghJ*r#?Y@#3*KB6~vClVdA z*uZ-*5^CSYL3IpYnd;Y?%%e~zOdUhmY{ow@EC+dq*N`J?eC?OL>M4PXUfT~Z!`FKPn2Y9_w9j(!-&Il1{@{DNODp@H~Z5 z#)}4TT4Q~^mf5-}`(F3nA`!~DS!ch^8Rh4;>jzEpgKTOBQw#fV>o1QIP_L3 zu*WZ-?`Jr0PpU36@5Ztzlyl3ph}8{-gOc}MJRXLBe5n^MTzGr*Pnk<{;$RG!Rej3X z6%hr?CDWK!tN(HuWWzRk?7rF@lUBm}dr8J^USl5g=`zN$YYvMSK4)^p_Mc>XN{gym zcT*^}loJ8_{U%1*ZTx$SZAKs3_}1h!E;Icru{~%sC1|vvX}kfqL;y0(#P76;Fq38q zC0FsXn%`d%FgJMu^N529yHjeoP)~Gtywi|**1Y`smD@AcCV##X#C#EWAUX@3yXqf>U1R0d+Kh{su7cb8~aUK?+J+pri=JDP|ch7H0CJ z731G4#>=p{G@R@=ob0Ta=tK{qVhYCv|6-YJAg~7~gD1y{mQ)uMr_I!Nr*K8f|#tSnDws za(KB0!w2CDKJFi*a$3$8)!FxH+tFI`J8cB7Z2X{Lo$TgKbcY813RNh*rqXdq_Q>!h zo8e0fH@Nr@?hhJto%recwOf*MjvnLiMmY7GSTLJR2ma#%czAn*cLLVrF|8SeV90fM zb>S1AWgHt+=4pZQcJ-gmU1T<>&Kh+)?s{B@t7=L7PdWDoRaMo-h>DRRj*bFdVNk9A9eKx0I}{ zKfT{ap?up~Gk7HJgj~sm&y8?BmoW}6UJ}K@p!7Y@&r2s>QCT_sJN7T6#$wzatxYqt zv}Cy0L|k4calfkLaJC1K8X~`Y!l9y+V3AnW0YI40TD=?Q2@h@vanIJ_;4Y7u3iF_( zu{Kpg(+?WsDCc7~`G7dXu>vuJ9-YSpbtxjngNoX2*oHY9QM552} z6=f8RYFo6KdLtk=96EG}ZjJp7XtKD?L?-odVuGc115QE+>w8r5raYSozuTB1{y6+n zu+r0d1Jp^y6epnnymtVeQd1Llx4*r0!s;83Z*%Ln2!)zoF5eu);|KDPyfJJuRt!hR z@as~(iTr0xqtAp_Iuf5hLN{}`NPNzOuXW$5{0t_SxS)`u^!l>;@)XBYawSeWe(+_% z47(Tpgx=`~_F6vV`Xc$p;_2$b@H#r(TEJ=|HY8-46T9#h7tWzR+gIj(7fZy1C@P|{ zVI~)6taiWMfmpZYkF)c~m*ToM1ada8Z1wJlS?Bp$ zj@h}o@*+;-t2%*M6ikI^G;P@W6aT+zZD&6}L3x6ngVm|HMmmp%P#RLJAR2!7TV8P1~xQbkHyh5 z=(`r}U%0`)@c#bCNV>$g6d$9K#|z-;3FL8P+3&3KfGboseP^2|!qppcRFmJr?a${( zVtZ;T4)*eEP7YQW0OOLK**H!2zPEYphGm~x*fFc201zoLw3VI7V$UlEmmP5&JpRJS zZ7=Hl%M_)`dEEum$WPn{JkQ))8IlBqMH){4NSCtDnvEuX$}+$)*44$vf`~S|vR#nt zvWtgl|I9e80z{GX-wD0FECU81;=$R>d05f!^gsBdT3%v$7~|>LYj~-vQh%arJ(rbF zjlzBa)1qG<*d#zD(32xdxTgnPMG_x_-$BBBkVr1~iB&!idrNYBlGI2~4-cSl4pw4f zVmAHjZI;@Nd0-<`@2>Dwk8<>dus7RrrFG=Og{hSslxjk^zvLKqYmGIkm7M_AOqIg#`G@*=oWkuWr+^TLI%p>Uhk)ncV5E$Q=i#nJaZHbsZZ-F(8rMA$!^R-ax*b& zDwN_IoZ~#Ci$lB0R-j0E-s_FIsCfk(+lfOOf=7sJV0=Y8$^a-o8BYP)#(xH|CKtk0 zm|O$LY;N{RE7=f|PKK~AZuU1iveuEfNdhlf-WeEbdV720_KQ;rM$@MfAU0JU(aJ_A zz}>|rOE@LQC0pluTXedHE1g-g(Zu3q`Hw5d`_|@`@v@jcpw6(I0}eU_7zb%O1g z(}19@;o$=^vj=?h=uBzKx%Kv9WHPw%Xk(VM-|5qI)-5QH40$!eb7n z=7ok;Y_TEIkyC#o(7h}JWwxIz! z4K0a6_q#{Z0N%jjV9=MCiN4Iw$DaL#I$WnoXKWl|!+!TW8)uKZg1flQE*N)$ag(l+ z&QDB!JWzanY)My|&o-Pbr?<`3qfio$;LD8tfsuTCd>reJ1hi~muB9J9YQuh;fLH3! zvS+9tnyfEU7|v$GLV$RERXUm1Ao>^2#%iG2JMOm077y7e<0{RH1qv9tUf~;3dDG$H z3%4=SGU59zZ0SM1n6kuljJ!YH7@cbu)z$C6W6szE*7wiIFIXXhO0 z%#$?+2e;j)m7G;koXZC(Rgv|B*^nEjA3)SsUS3yrcWTXaO2J$sOpMKrs(%6X zV)z{ zYVZJk?7;G7FF_#^J?#v>n~u)QAEc#KoS6Wy zknTxrtz^0A+qVHIHQQ4I2QOlH^^rs+8*hb)p(nrF+QQh79N)8oH_>b`feP#Qxd)C1 z?^nV~TkB44-^W!z;-l=Vw2N=hHQ(d@XxDg|~~!wA}k(=!5l5HWQ6T5e>v2{@anRB3SBL=Gqj1i=YM{9pOYtggMLM_f)rznn$ zF)R#kFND1dFp{NpvkIlzoF^zs#Ij$%Iwd;nRqaIs_?~Av2cV(BcL@sQi5L zgcn^nh0C003{j6`T#QNwam?j4><1K1LltCj?AS2+)&1DE$(4_$aQ8%ZbMbVj353IrW$gRHn9)Izplc> z0BA$WAdG=JVyRt-ZCZ$}j4?ouAwHt3oL?OT8wm@}VEljVi zcYSgIjerHQ%|hj1>9Z3~@!q@sc05R26~do+S6*hRm%(C8^t>}0IjCB9?(P-6yq3(~ znTz#$h}G9*dUQbNtjS+lf!r*#*EPAg-f~&%8c?AW8{ng=&PA#{N?*+&itlpMC8K$1 zw#$SAg>EBo;*PHm8ES`X=H>l@M+cSbA{PP~=P$&d)2+jG{3sNs=d*nF1x!witLBN~ z2WwizTGuqx*UvdoE*J-X#<+Uq<$c-nKC@PldIj_(L;bY2d|Wap@fb;Ra!#X;mL;}B z1x$@{X2T9Qg760i1rU+eJO^x*`1h>3^RglnH9_Mw{Gp*Ed=p0hEPyuD3aktPBcn61 zMFfm5CNJ!|Pin8RVPQ?NR@F2kWNOb>S*f;Fq@~A`@S<+7%)>gT9WmN>cA-Oa2FMlG z#jiX``m-wS89l%)vn)gcU0nf&tL6bKE?;I9%kCQTH^9&aHvIfU-+BJ+dc_NdsZp|| zK{)-s$Jheij+WIPM67AHhk&-GppklZ#qk8V7c?bEY!0Y155KXq+V`aT;9x4QyH#g# z!3nG7N)^{pd#E$5V$p*Vj1|2W;+^3r%jaY7=U_$HXD<_PlEeda%OSQx=m3*CIK2Q9 zEM$m?HsFi~tHCAhge5Qlt9ZBRh&KO5*O!w>9M}S+17SO`L`RGa+30{O62{0-FE;ho zJmpfIn!2*=t1wDPdl+okw@2Z$2QFF}03{?HBO4@S5dEm<^BHi%~o#6SKqn@ z%mi$^0-SL}GEinp-Hi&z)~ioPhkD`jjGm;CPbUoe?^K+O14acL5%XsPOpU6DRsQ5X zseoUmYtat%8(G}&%n9)K@ASdsYbOu1&`t~OzO5{yy70LmEzg~>wZ z%9;VjCVfI2E-oMQ{f4iY#NLxs8B>zQ0{v50XXh{rt9%5b_m4FSKd-L@2i`c*J`zJp-2`AOcwX7K;6H}Fk3&{Ef05?3dduP|sgPO$x zkJ6Na`mQI9T`(NJkTh~9$){l_?49Z3v(lEA^~pCrG@5B+Y$4v$UgW)`Ci(Ms4(yL`G&w3pt`_YytWNTq{&Gx2_QnCTZAj&OEF> z^@dp%G~@KriKGwtJ^kCqu72QmkG1-F1?rEQ$49%XIM1Cjb`vAv;WvE`l_!&3N0ZG1 z`>um6G5Xc8kH*vI`BdBr93yR!uw)#ZSUH)eA%PtdfT+~eCoI|6?&jvdYq-5VKWOz$ zSlrQP1(l}bCcwG#y4b4&D=b!{Xg{eQeJ9Iuo16%!(l(w4YZFFT;KRZ;tQBGFo0X-0 z8nf!VOEWQ)_;$Z(r}narV}nN)9(YaMPT^KW**Er;KW=e*&+oqLJM!aJK$EMse01N3 z*3Sc^+EH|v_;0t0@fM}$p)L>GJ-)wOMw3Tu%)(ate1dyzWzq$;v6Q>g9=nNeD zBs)x1zA`>}mo$enT7c z?5uLLGkb#EcK~a05=ZvWo7@o8zX1a@N0H~fWhY)#1>iz8+#f#Og1{^`0=ktXrsMNV z6j~;IqOGVgBr%wRC;6jKu#Zc2#Ig`E?)>qan1Ih^Jv(c&Wo=m>IYf5E3=oiS5-^LJ z!EKcfr3ORk_)GbH0h0t&Nc=Sgl`XBv%A?fXH!qQ)max0j{qFit=VhPu#i-0~?^zgG zg3TXl+1t09}CT5PRrSiH$1^D!e# z>tAPzQkoAVOhrSYhAu3gxXKK5v#Nd8MK~r&R!BBeFa9$ih+01kO6p~_3iE0n7SxgH zGenM9R+HfIAUp{Z1YAWZ*NeJNTu%iJG3^00UROG>$ZhT&W(8sAht37My22JG9aI)# zlC;kkZx0d)B(_$)#L1H&*N*^LSZJ($JqPTG zv>J4I>N{sA?mxI4Z9%eQgG)`uQ*z-00X7~l<{A$&mQ92Kl`LR?dt-=MlCtlk`(2be zRNICI2wh=4M!L@G22kGIhmJ@v7fOa=&#DN?dvsJ(a#hD~;a{Fl`VrbL0*N%fcIW)A z#?}I`L)_0Df?6~gOn}ow)Qot5JG&49;i1b=ghk|&L+E8(%}E2-qhV=@9?sYTmQq=4 z3z=f~+~3;pF|15Q7<>f%oaxV0etet0SV-iy--oJZ(qAhK_eR3Zn1&LJUN}iWv@hoB8 zK|&lDeaRi*(BVH*Q=zN{c7!eu4bNujr!N2B?}tE&L<9rld#5o#Gyin8iXK4Uu(}K} z8Th~0lH}a><9Dx@k9_uQbrT=TM`!@*0>vn_1n zLpNd}0~3p$o-gzU@I~+_*q=WAq^e_>We&ug_Uff-9`1OL&N9XsOH1qnOXzXQ)pP)& zD7*{Xmg^vZ6fspOofyH8_hPokjMF|J_(tT3TD%{Th&ko)tMJwQ#`+3~Zyq14()uFY zE)~;{*j8J8I*(|oh%|d&1x%CMFjJB%4K|NCh7OeEY8nM1T<#&glTn5%k4wfqN=-#q z5VoarEUlY``}6sK_h%1j+Ta_8EZA&jR%RyJW(j-x*5+vzca=ro5;me~)yrP*?>xwS zY&rt)RKyc};M@iW_RzO)-w>dYnu>vxyaAbchyxhf!8=4y(PYPOP*ZZChp-LY0^iE=kTvLyzcSg{TfB604Xhl&;DnKXM8=i3$$E;TWVh zcLi0#DEgRjxFJuX@Z_t5iR}oPdV3URzRR!++1^RMN0VzRFegk+g&e@ra{sMI7+19A z@fc&nPSpGAm=$OEqfI}PtBCzw)}ocQ0ZsXyT>v66hQ|Jw*RYcqA(6+n!(;h%9M-3@ z*rdv+2;X{OWfyI|K?<$tPYf8UJO1KLwh`>HrA09%#Cc-$04;9Gc$f=zJR7$Nzq-X` zTA25%z%tBGN5Dun1@(+9V1Wq+=BKIc$cM4-|7-8d!@2Cbwl7J!n-GOEBq~ZNCCZdJ znUau94TL7iJWCQPq|jg}LxhM(=1QeVGA9{InWqeydC&dR^FGgUeBbxq_xZx~{$V+H0?MuC>l(p+vl9TCSYe)epmNyVij8sNO!gwiIY-%Bs-MppqabpuI83 z3@U~l92~%I-t`3u44;4W)INXRJc~v!}-{}Xsh9Yv>HeVTEz6^whS;W zq6dshZK5ro##1x2sYyyoqQdvma z2R=kV9%l%zLZB~;keG5SRh~#ku95cb+|+Pa5t5pXJd?5vxF5u>0EOoBzF*CZ2mu6; zRJFlJnul^p0HY)$1?-lmv(VNlnk*_eOT$4M@S zN`Mg~T)q1~F==xHWE||#7OgNlTbyR_octN)!H($^YG%Wca375;L*fJj-dIalpk)_^ zpW36V2zwZ?84By+&;yQ->zS+?K>E@iCE7Zd4(Go*2KrYHUo;!IUk+4`mNutnBdMfa zO3*8kH-t*|tuzptqHPr+U0uT`b;q`&rv1bkIOEUH>FYubR3&#J^O%@am6o6rU{kVt z2#9N;F@g^-i;slW_Bo(+YKS73ZmLs3W%~W~l@DeaBd-2Y&WJQ3?uSaZ99xxLnTC@$ zFb6@jIoR5n3r1D~+M(V24h4`+#J40OwYUewFRoFD*Q4rzIVI*e7N}zd*-foCVe%6Y z0dDi=$#@GVLdEj!>sQ!wNrZo3vPxuZ8`e~Zb_6FTi9l9&mFu3p4j~6JOwL&(;@sah zLoQOeO{7!>*=wX&;6Mm$-70!yACcCc;b3;FXI1&Z$$-?1my+x8%G@M>6dBlEl}D?0 z8G!F+Me)Je^&3CXQR@hl_%e3o)#jeuKkh|INxv33k&fPlh-9jX6x4LtDb7r9_N}F( zE@;y9aqLR>-d!4H!$6mRMQI|HZdgi58?mNNRRcc^~h=4@ART8New?np1tJ?fnL0T0O zw~q0!E*LS?iU4_l;8HN4%Px218a;KPdH$k9Y)aLc=o4^0`%I&QL6}p zqyT0ZP5zOA1aQ-yxw(3mh|vq|&V*`hU9pN`+S?;AaXPDN*A3+ES8p)k0&cU9$bV2N z>O#@Xnq%3b!hthiMLQ}XBP6L8bQ@QTf5||ZAETdNJX#DJS#jw71!}YV>BjX1h)`PH zL!YEPW1D73V8lAwa(uQgsPDmr@bWjD0z8F$c=sYuZvZgO`4WtW&TAq&5-F_BNZFuy zMxQOd(sJ1%dL?bdw3VVv>yYXFWm%b2?jmUXMXDh+_JEC7R=h;5ZQ~y^(VON#xyuSn ztPRMToqS4+Sj|lu)u>w|n14Vf{k3pxD;;S9KtHjXZIV2vtv}v%gF~(LqG!mn|ajI0wP@a^9$-zY8)3Nbj+Fdzf4CMyr9j(~gLQllM*$ z!m?0YraVHxp|2?SD}RKBI=RBI$1iVmz;@%r5E4_Cnfqcoi+8ARCwQ_y9h~MXhAj}KT@_NxRBjN&V532`YdImgRU+B z?=CwS7>BkYuGCI4&%9IsN)mn<)e!Jx5#k4to*yu8XQn{_YOjI(v1K$73nBIwBob-N z{n8b-zhA|JR!oAcxzJs*V%Xf6^p#rSvMSJKWOe7zI~ zj9L!bB&_vCIGW<|ztbN^dXpmrdP6z3v2R;)0QwCmX=6TcL^?^C{BXj~qNT7=QY%Yr zCTC{dWWX;Q_6rM*e4{6Ihqk3!A&)IYK!`X8hxRriQgocANN*yO+Sw$#5ro!O_w-0K z!Rnsc;~1^#!?!!5*}9`=?qNs7nThmDqnA&p$99>K5T!G2`UXv&3|m)HoGE%9!J z3;4)tTTi|VhcD8mw-o-^f_PZiMY(@XZ3G+;0%>QMq@gYCp-(T-THV}$c_9jP7`>mF z0+}jTAR9LUJh3oxcCA5%CYS`oBVe3oq#zp(TLVyAyzt8ZzEUp?qXjsHe4bu9P@fiW z=PH5go*^t^eg%W(A%m94LeIT5H?|q))Jra&v*k1kF514;-G0E6TM0GA|h0cP@5Ja59@c~Y+fk0 zZ!wG+9+C@4Y4T~H^nX8#Jo1-_rNtU1=V51nL8^{sA#k74Qy8XlZAl zH(VT}3kKI9PyCf{01QQVCnX`-FtrEK(6WrqQ#c zkg$DeL*8d}-IWL=br|ZR7n$_g2DU zV3D)mxSpgfTzt0}e(BlWw7sV8dwikXy0Rh8yw4DY`{n48f^z-VTZ+o!)wQoa0&7Uj*ZbNgLg3^S`lw)n)U3;IwweZq$4mE?7 zK;i<3xPAIr{_ef|(^Of#FcEg8!)#*#KjwtX=Hio@pQ=U_Uv4=;Mb55&zY%_*#}Dr{pe5vK&Qaip2^eo!14B|(54CfHDUyLrr*zL zhgC?~i8KYr1%>`nE#6B=wnn9bXaY>z!)-dcqp!HfQFT-_!?O9iVaQ0euKf_Wm_6YF z>276#+Mb_yE#2D1c_nj9L2iLFc}WLAIfmx8y$G>;crpNqKNkD>P5)?jZYs|g)+0^E zBmuVj`eobSihgtZ$D1QTd6CvJAQ1*ivO-5|Epy<)?iuuRrqUO^T0-K=>}NvIp%!JG zZZb$UFfV&^a;4|Mc(Nl;U|>G=4#Q?2;Q z5(c!S;v1AI9d?uAk?qoLMbtt&?AMyvz>{6wxti6t2bvlW5^^f=ifDwVMzkjcM+qQB z_uiwfT#pMEkl$%;kc_y94zbCkzQi$iAQw9SSEQ+P)G*NR*T}S<)|Syx9IMX?ah6yx zUBr)4QHiGWjC;VQi=xR-arm&MrzcW=#HP7RszS}d0x{8CuzZ4+ z*g9D#d%ryDNzXeglc@sx8BT-Mo?9%QHC$QBj!deg)d3}n%Zs-m&e>vX7_DjHA0N+vkjQ=iH6A zAT)&3yo9gb*r!7CGOQK$>sI8jwd9O{`P@O>qsFKP5>VB9x))l8WU^CIsQ$GxF0yG; zUZ)zQ-S3=}TC|%Os!<(WTj0`upWnG}ZO(GMLvlxNN#C-eSulr!3cczT(1ois=%WOb zDv^?o7)*N7qagb$asaK6D%2*S2K$n_PwHeS9#dUit9yt_>mRx;B2~B1EiMU8JseK; zF}&^H=LiKHVtac*A|>hcTzcwYQcoeea-zN02fWI$Hk#4aR&8HUdzzb@JJg&rdiGbA zz>I8O9v6haReS#PXXn6Nh(u`B0L{6fiuXe?mCQPwfFO$hCHGm?UEl?%AH9|!`)0Oi za{&0j5$^r_^}9H%NTrbH#Zt=jK$Ry+R|3`vQk%*lM7TI;`g9{YYb>HS2%E!yy}LMP zt<9W;Rl!|<{LZ5waUaY|0u4xs@HaO=QdqscYKX_kuIg4#Rc+!B16&7k^_=MWg|sut zzbBVeJd7U=8BuZ7-Kv^anjxTy8XX?&|GyK1#M;L_M|)p-s_9Dqs92pLFf(8-WFmvs zfLEeb2^f@b0IAsN-*$uqq)-KZWt;3S{*{^&BD3K4dVg2(o3+8m$T z%zut7DQ&hE6Ws*&?-~ZPo*PtkYc&&|1zf=u^R^n8Ucf0-=rPGYYfTa>&NTueo+w-J zFKIAvuhn-CwJ!}92pNecSapmbARqVAen&|571~2mkY>EXe&(=(>dJC7Ue^pU z6H|jk+0q7T03c`X+v&*e4bh>nb^{O^L;t^@&V~2l@g95TZ*o|7=9a_MVU}rL6yU&Z z2f2%R&R%yWOl#C`no#H=hdxZeT|SI=W&>~P8N%_?($FAOcBrNb*7ViZavUBJpxtza zuRc0$wP4!QuzpSlB>SLMs;dKvoNUO4y>f|myeRg9D}g6^=*rx~B$9d$=6Ko>Of!c* z#U*VXo;x$p+!mKKkaubBl*K?^@5KfNMWeSK#U62}pV%dqsaI`z&obXoiGht}RQtR#GmBZcd3ZsEl;>FwKSO?L*~hUlNz+s95j&%8KYhF%ityalil58e7>^%j^lYxwHYJ>xk+IFxgJ8Cf zJoxv`0RaK16x7ftpA%Tw#VoqyceUi+L$$RY3wfx?VooROST-9vcCxcyWj^22^`V!| zjj_$u1%9?0gETdA6~pgMEiEk-;`MN9r!?a>-7+>dF7zhfh3viT-z+4wr)Oqt@%9Vn z3=BHEgoK1XxTsMFowx=UQ4aMgJ$2lTU-x=lO1sW2dH&lA+$be`A$5hEjt=@|0joC9 zPp;3^UCe#h)D#`MpEa+f*m$rBzZi2zM$)f6Vrn9Dx+bxAH$8Rb0PQP|#>ORHg?_1) zKlc~$Ev9A!;2Py6pZfV;iC^W^-qR-;i~2etMGvAO1IHX|>+5ANzUR9ec=Yc66ob6o zH{Xwxw9y^&TiHtI)g*S}jbGTwz=`9&`jwt+^6=+iPkq+Hx<1WIN>0AY#Oq;ShtQ0U#&r8GL1}q4h3*&V?(Qy?=eYTyYlKNb5LAI{K4-Vky<|2E{|D1`cyn!2 zll#TJ#vvaPnOOZRV^#8i(@j2>XhGgWdia6(=Vu#4`HBTS_U$cjcugF^2hqKv=ez-s}~^?AvOiHZ67 z)4|K=-8SD$OiosdKeVTN3AN-pZRL=x>}g@4;Tv08-4zuTrMR(3YB8m7m-dms zTdK8d`RvX$3%{h_Cksq*-|A(pd7Ufy1Z2k_V9@L{)V}Xz(85lh`-&EY3vTHtovx9l zmT6#~f*B0;QaD~Feq!ODzRpFB+@jqUkIBtC1A#~rI}@;VoBMx0;->`3P7Y?^SH3Qh@er1f>ZZ4R_{~sTZY*54gNnan8m}v5t=7sQ!unKaL>H!aoT-4N%a$@- z1?nL2ZPqP4pqKV3(L;H2?Uye|ezmP$L9wl)y@H~zsfzv@d2?G^Enit~rg#Bh#?%pj{AmQeutPr3eX!{Rz)_pQVCAZt#)vw0weC^iAw%YMh7j~(us8n7r}r34St<~CkKgPudT*RYfB zK})X~o!42*bKEZ<{Pg+9zs3ecFk-gaus|aekG^JQg?lK_rQB}Ufx8q4T9A-?p!{&>P&rm;(xzle0)4#F=bj) z6%u=jda#Zrc><>HVr@GfAMWgYFDF7ByhG-GZIrvix>z@V?!Qx@pri9nVWofY{+|z4 zQG)7Z5X%?yMs)dQj;x^WLQ8s`l^Fi$hNGE5lL+m@JjrSnf4jYQ4(&1Qf9GfUuV0)@ zstF3VwkwYQ-F*$8t8aDr*=cKY>=9)z_`70foqoT)el@Q8;d?_Cs#An4%-Yo=pX?OZ zM}AV`rw%64Ua;=T+V_cJVQ0taCU_o@)Uz-dQXn7 zl23f{#27j{!@Mj^*x(|niI~>z7H(;Rg5Uo1a=VA}3TpDnzHJYqcUpW((oGJO_~Dl~ zP&l;-t4``U5XR~N>vXiZwMn5NJ>~G^(Z&{TYTsElc`whNC)r`!jE@={yO)dA*VNWt zVFv8v*koV7;TD)$-7Z4zCeAZcU#{%29crSZ-YD}e97j=zjL&xS(%a|K!gzO{`gr^* zcbH}ZyYP|VqB_cJe_41(9zErEL!NPPi(U#NpE}sQ@)}*Oy9(GTj_c3Qmpd+|nAcum zZf)_Ln_-q8cstzKU0~k#HOsm4AF7jyCXjlJE%GhM!<7H>yRjWiHwuh~jt-Wxp$D?E zvj^;+(+;%AKA!CQ>S|W`PVm?!ROgtiHVD^DfX~3{uUNR2?<7$1v92;lezTN>gc4iv z@l~5v@)ge@kW#+IJ)URMxk(A!9Xyi2c zBl)dX;PUfRSAx49mTOcehz~q&+D2df?OVjaYK|Auf1Zb>41as8f0Fj&x!E;#N|UuG z6)VBJ`|J@N9UVi%Mu+UNLY0=TftOh1v)wh1C7VHY@frtw`pJ^^n2K|l0&y|18$8mv ziHXcIZ@1U%5)-SftJ_P@t8#z$xy_q5uaR+cA`|fV@aeL!tyx)F6X$(|lV#ejmwp>? z;Cvbu7Df(~AM#Em5;eQT#ZmmwKhCFf;$eEa%^N?KiGJ@(==5-xL%QYWQvDQ8#KLtZiZv zrM}U&Kse((p1*3b)^E3F}yLXM}^PY@#G$57cR7F%%ZLQe3uV@^Y zHEL*R*aO>=^oeVE0sw2@YPQ#$ zI>?-#of?qLUI6kD&B=@O!bv$2&Go2Y#cg@R!r?wjRyyYNmSOr$~%N{gm=)tcRQ zw((U+hhK(5+D;TwSc=iz-@!~W@Be*GRTuQ*p*@}S)DmJR{nXOXD3qkUz7Rb;Js~@{ ziKZjq-Ruh!SjovW(eG&cc`?Pdk(@^%>h#mp0$IEjQGXkxrSI0FGub1izgm5hby4KN z3TmAu(V(uPxtl%G3NF^+%e0d>D*fb6!6?xU7VgwOI&!-9PK!G&a$^qV4>4?TWrXO)yF7`Z==73Y{wF%wglo#mM_M_YaqDWi~0?m$dm&d=a$qL>s^E#zuA=F0A<&{fL}lfFk_%7r=?Xva;x!r zsP>nc?2P4KqL*^Srry|5No!~{&C`8+@H-1bknHUE$sp;~+S}d62h%)fdMec>P`dxr zZDPpJ8&;M3?`x*lqkeuplh)VYA1HWd$H{j!k9GK$!1^kX?0>=UA{37HfcW$JB_zd1 zg~wSS=0Qx%4-l=M8aYH>T)f$dKc@9*@d`;KTf}ax{?$c%Ty$DU?>x8oFWa7K@zvm{wA6 z5$!SA<>x&)If)!dQ5PXprH_$j?~oMN-gHuctSGlRG`IcU8J9VXPy{Er4b#*W5x3)L zzRhxL#G=ftR##uCh`-ym%*fD?RI{syn4{6nK>o0%;wxwPcaxKdDIwKZ$=r+;kDXOs}<7IgT*Wi=)Y8N>gkTjE*NXZZ_+WXpD|F}FJ@C$ zlc)+?1l|}OLW2aqJUw3Q2->;Mcq7mwO!enkE6PP1wgY}3><9rSrPC9`>>?&y+E3?Z zrz#@$>~smae?Hf$`jG|;1MJr!!tdbc-QM1Q&JadNlZ|a&DhGYz6G&K;33!TSTV*;lRNMptQMJO+BOW^ARK z9m~wlmW5og4D1K26STKG(T`IPg$vj;$|Aoqt2HHu-t#LkmY0_+DM{uq{y=G7P*hxI z=15X_=e zOXMuEFu+roB@G|6KLd^Em@}V)j)KvTt%!{vvkA|$1*C!++|8k1!Q2qYP&83)9kYp3 z)`R4>aTVOgf{VDY&LMAi7TqB*JTx8X@9gvwK`tKC z3YrrCC^P7ZaAOC9kwfhj(Y)?#t@v{Ej+4qG0@=+jJu3K%Hc*tTDZ_TC#jNMgcgM7X zk-;x24nJ6Rh$0)ei`L$*I1#t+ODk`Ua8}4OmhiZqeN%v?)r#C}Khjyr!T{ETUfU2< zUgzT{Az_ox=dWMCHZ#MF)+S6w+_R3n3^s^ zX?L_=vuF_n$X!zu8df`2S&40W63vP*|NKixGmOCwoYNGd89wUecYDwGo&+q8XXwjfB0|0_xJXs z5LyQ)BDdjkNHhz>=;&yrVLNH1KH)VD9)&JVCLNF728-w$QE`tRwIlg?U?%U`Guwo` z{E6X?xgYFBes_NEjGj;*c{RrT`doI?bDOqze%`=zp?Hlwp5hc8!6NOqHX;W94+-7^cQg$C|TcS-+HvB zLx8q~WxY35c>HB1cUx7(5gLl?CZ&X50j{tT8_@}si(BsBC)3Gg^M+-r_nDTWoM-b+ zQ!rRns{X80;k_Xv=lWT0@wsfGE7cOJ8=EhJEu?qE%ihYW>vsunQT5rPEeqUE1zfup z+cKnV@!kZENI^+KX<3=$n%3B$fYE^S{60^s?`Ci5v<*>Q&tm+!gZ_}7-fC$D#)sHK zE+HN=>nfQ%MhtzJ<=5Z*GNU54g=s&)9X+1lPSqH#YgcBa*SQzUhkP&_5pb6gdB~d< z?2+mS6}WZl*1Xd~xHvj37&~;fb9hx%^y0V*+6|&BtZ{>s6vu+JV7~>1?R_Jj3N@}u zs(9(ZvOe0CW@FhOD_^D52Y(e+FOWwYhx^+d*D|G-d8hA4^^8 z6FAP@eKzFv#v_ZwI`qSj(GVNIv8I#O1*3W+wF}{; zR_e3*Fcao6BuT?e!Cs0?y-GCxNW2D4mCA4xU*Z;LqwXS{^V zRvl7v{_d2NSnk#AkC=xubt#;Z4!waLZj;|c>uYKhO*NS1k6^c{si`T-DJT?Uf}wDm znz-Hj)EU3O=MTCr^E(T>v{NhfiqrYKhDVPQ(RMpy_l8BK7aTDxw|4E`z3phGU~Vm| zrUc)ldMhv_m|ZN|2lezEVCX4{klbwl!hlW6hV7);j&;$DgQ6UuTGZh2{+XS@F2nlu zeW?Yr;vXC+%Ib&o_1S4-CKL!x8s*Pdz}TGm((P*w{9x zo0;)w7)AiSzofRK>s(-AfCVbv!1Z_I{Akc@XHX3Pk1KwC^qtg()G_xil*Fk`GOEjtVL<;gA_ZyD|}opX8Z^G~J7qZG??=WZ|# zF1yIQ!2LI=c8K$y%gyoOM{$>VE}R zxQeIl^2>Fa^wX(vhaQ{G4uxZ{n9a%34*-Sz|KFLT`6!)`meeEZ>+99JdV9}89rgEb z+kA1^29Kjhj{@2J3%(gXKdUOR690Yx04EIGE-UL?bN-%|8^P&_$DpLo(a!Gn?b|=| z*hR73_3%~ojl)fhoQ*W_M;{TT!nMcO;gs)(8VMWn9RKrxjlxhH+S$l~u zE+HWSQi+Lxl4&V;$&Bbt6_6=J4&B5TD3k%ag((V^X1l9s{yD89BLByy0Cdp*&+AFVi-aT98&e!$C-&GsFU zj>LfHovS{&$o2XtW5)Za6@TL7*7h$PPjT)|F9Dr{qf0$r%A)*U*6G?LX8CjH`Ur@P z5t@An0RxW{rCJU{4l(_g!n^IWr1J%Gja7oZKyb>|8l<8sOYnOv`D%htMbUYnV~Qi8T|&aiw+s%Tqpf z^X)Ywg-@Wf+)EvU_Y1h3Nily~awKS7PjA<{`V%Y|d{YMK?O^E^rKF_5h-%a5aEJmm z8uRPhLORb27M_5ydX?MZ$lgd3sO@c~$M$0cU;6ikdA(i7nEaGpu(mpu zK?I!!=CYG3mOjDW^V#k^^t12$KtcRib4vKD;0(~T+3hW;PUC0@`;R%KOJ{VHp^vs5 zD4O$Nd^i^1cW$&f1MYy)?N`B7uDajxJYHZ02~jSmp==SzW!iFMpbKT1!FvNp#MVtYVDPOM>V?u83ULUeFv^z~bKlKV>jn%?}+qR`XehlcV{GQku zGGaiWbA*b`rR+b36#U*5L$XaxPTt~kP+L2_sV_7%l+Oo(|MzZ>a&sq>O=r3>TQJH{ zV~6*jjh>tCAg~CI7mwCUix=VLr+Im^~oy)=obFIaf6`PAAcMiHs!Zm?5 zlb!8Q-4r>JmFE6ru2?0ItD&Z*rm8BVsjndWI>(On?B)l99kN605a1K@Ym_Eu z&#WZ7AFS7KSTv($q#^Zoh+}_@mYp*NPaItC{3c^9nF%w-@4*Tyx@Hpoirr0V?qxi9 z#|3VmG$JH^<1?$XXY(=pE-o(eB!~h?s=vGY-tKcp5p9O-ckUNh3I4ebdB&ERen;0J zJzr+1jR7baxM_A!52lk<;V#yhVXt^jN_z`uBwT*QKk$89dRx52GWCJ_Gv&xD1Jc^q zl!ao=I1fqjWf{QNgUTxdO2>)o*R^26AKgbrAy&V#QOD=;Fug>(fx zL}70v4~#W{`8FSSl(-pL%}=?3nbu<0FAtVuICY9rCA1}(fjecKX;}%y41sW-{#`;Q zxOc|A=v(Nk;30TSvcNdNyE)L^ecIAe0$>`64#1r4`_GLX#F_b>L^&xhj=}${=&;wa zd>GCCEn_d~nR=7Pp`Q&iEw!Q49kOKs_%&(_L3_8qu%Y~<33eU|pv|@Pwh%&f?;Q~s zWegZ@!jYtgX_WkRTSuM|9-`#dBk3pJE)~gtTAimUJ2L_T?yJl^kmb8OE!tC5C_zD- zZQGeozPsLlE$V1*t*>7X{3AQr6=0!jNg$8(UiJdI`A~X_m6eq{Y$NvI<_C6n`GyM%Palg@LlDqs;o?JDnLwA%cW?;>{Z$6 zvz zYm|KhIFXRP2K~!m1iD`y6i0ODnnbnf*L1f zGmHdPg>l*4oeRWB=ka02?=XNd&#nrLaN+@8xD~ElNRdE<&+%ek2&lNvV3nFklgCsa zNPlMtfy3v4YaMi6(j*cf&-lGMde&}0B-_-rFAFD}QP$~De0uC4nUt2CUtxv-2-2_* z2^jLiiHBN5IE}|6S@@N|;g$uS(M~`7w?!@Xk|SY_*?RaLE^|(OS@m_P#`jxJQC{Z| z0eU$=xO9l|uE40Iqy*0;+~}feq2vN;mP{O6R||^{tXVx0g9>t~i6 zwT>i0j@M-uW`QgTX+pRUo{!!bMDu-&*z*j}dn)7$bts zPB;EhNix;)d(XIIr Vm~W9AGKt4fs!E!Qsq)9X{|kpNaOD61 diff --git a/08-mcmc_files/figure-html/unnamed-chunk-57-1.png b/08-mcmc_files/figure-html/unnamed-chunk-57-1.png new file mode 100644 index 0000000000000000000000000000000000000000..19ba8c97d2ea626afc814461f85bb468e049fea5 GIT binary patch literal 79095 zcmb^Zdpy(qA3u)Ip{NvfDJnUXYF8F6*Fp?Y>QYUunp(`EEG=g_&AAdqQDiO?ikh05 zn#?JOQi&ziVl+&lr8$p~)9>+ey+6P2?{@qC^}Bt)*X_El7TfFfd_513$Nh1?-yger z*nZ#grR$cWP^jg0|Li$}LM_^bLdn%A%EC{=<@Y4PA4~lHA)QB|HpCsEehlYmses-C8?GiC3&2gEEp6$z->r5 z_e(m%^qQoOnp@;1Lne7` zEtH!y=?v|@Zqj*Ue)j62h;O5#qrXq*qF32C6?!c!bWLX~Oo6`pTtta*mRCK)i=K>+ zzLI;^RHJI{x1@S9v3hbaq&l3Rx3F$qn*E1R^Nqey(oE3|(@lLKc)E`d>ts3m#-wVb z{!rAYTGUrHV~br2)8*VUCqE3+Y!cONV)^@H^18T{bt7t3!`L(vLGPCha zrlzd3%5s+w!Ryzrnej1db%#0!zkL~C^B4Z9z#XB7Ry;iZd;hdb&HTHjnRojvM{f$8 z!@UXZZzpD5ri)$7t*qvM3##W{8$^xpbLPg<=3h&nD@Sz63FbdX&xxbU*}|a-t+02t zgm+@8PssrnIvJbO6e-HT(xG4e{P}0>z+jN&Qws*uj{kXL7OyPd^q4K_3tT5Jv;Af; zfx)Cx2!2quu|{Jzfzn8K5DMu{v5)}s%$9Uk zF0CBBEi+?jFyGL!41T1S*|ZQWp6m{eT4ZULQawLiEx-J(jr-o7Z*n23AZMy=V#ZiTeq+UCeDbD{vZ-( z%W|f7+7jk^4$bvAihk2^|5Dn-R`XK^k$nfORc0CrXBze@C?cPzv1pxI9coL6no5t} ziRV}UE~x(9A)4*bR&)|rSX!>Jk+&Xxcqo!39PkN?S-8dXN0EwMLFDe+{!#MzvAX*9ZX;SR0J6{_6?fUTNW4 zl4sKJ|DtB7(*N7x^Z!{CzJ^yuwXUU*=n&8F3?`A7!7S@riL6=Z9>uN;Ar8dm*RO2} zstLJ!2=^rAZt6+hfo2v4{ydOz*9)uMfqw1acePPQI*y=RY59 z(5wA=Lmf#3HS1JDQ6(#FZs+7A*PU*XUevy!5Gm49S}dKKX)E$5XKQI_cm>};rb<&T zp;e}&UizH1jmKH@aoR>jo=K%sGQ?AR-zfOK5vb#-@$=i|H$iXbDebV8RYJ(&`*X76@c1>61qFJn@x^B~?)wVmWtd6Vp zrX6?g3pC3Xdxu8A`%sz+F!rpesv%SRg63@rxzu${QfFH4YSDx*%YGq+P9(vY{vZo3 zY2TRN9;Hgn#P0Z6iSoN6ct+D^`v3NcQv)c9}EU1QP zV#oEea1<(dHIm$?nQTc>Q4t4|hd!ceOC;*-QIGT2mU%3X zTCmvU5_xyNWQLj5D)xkUI=uWl=GeM~G=G zmR@QPkywm5V0mVs8?co@;=->s#vUe)GmA!VshqmL34T0rY2nAYk}y8jWOF^QID{+^ zn4?iBKjr_%&N<-3UOL)koH*?0mBnCkQgJ&__8w zZa%j`Q*$qDkT0Vqdx=CfH8nSN_9I_d9IloO?#X>7pQ=$uP<_aPe^hJ~SH`(9n3c{$ z^yO@n=FVC}v#cZ)Kpdt?y%!^hL|a0v+Yef{n3k!z369`O`QaL4Mw8fInm%BiBNQhYEQdwj03!|>#i`ktCY`TrxW%Ma z4ecZBK`D3XE7jg{-T-*@(zdahmWM3ZqnY0T72O&#xrpG{;ZOi}j{6kvqL)&B!rxJt zO)(1GB(}s&T|YhhB)9c_d8aiJR$2{ZLtQ1NNqOk~3?`oMWRKP=(*c)WO=c znw7J|vrX1r*VotoS?;Xi%Q$0}MW;|1Or=re0yxcM%tc&6J|AXOG<0aoAAD>OxlmG$ zIiT|@b?YH`NajMwckO_)=Y5a$)79|bCNYD#eN`WkIF2(=l*MlfK|)DrAiQDwebzY@ zd25wpM53UWNsV(m%s?Vm=riQQ9_n#!!-PffcTMwE{xYZqma~% zf`hUKIft&P@87@Awv0T-`0i?W;?~StX@pV6wY{6j0>{TKXZ9(gYUm5_d3`E{L{N=$ z8w;!K-MgOaJuy97@1DzI4NZ@Ap-{W-UV-&#y@TQ9qED{PT^|R?7Lcp-`nBb#81LGp zFq}}2Ao5l_IJkT)=k0AV%|O({VSCyVe14lVse1{ZeM($LNpKBiWK>-nbnT3?>@TYj zRJX5)b5n;&k~fg1Q|e5OdSpSq}(*y|Xhty;rIe?4~! zFJ$c(j7vNUSW9dDdjEtu)LHn*CY@Kky%bg34j%#6n|7FwEwd)C$v97*xO~2EL*0_v z;r@QFkvg@XP)dsdpm&GK+fl5(#1beO8QdYqVMa|MfcnH(}tI?Xsk zqQh|ruzG%s-V1Q|EcRUSNyeK202K)@kq0leCD9409k+CSg~3STsCsvFY&ueB50RK! z|H@Da&xf-qF;m(t2yzKXwtz4fixe>J|E$TVpe}b>ljF(wPRX_rj9+etMeZnrU{lIxN9cG5SO&2-2o1?UmYaQf2^R8e^cs!ooUo#PwO;RVp zczU}Wq=LaKs!)^pW%`sj5}QAMBoI`Sx_^{A3yL4vM~8;CO2&KaVP%FtER4xJkgT;L zo=H7JVxspWpnkEnE6E|B{}=u|UrzqXT0H-48P1jfcf%z1;kxc3MP5wE9Z6WV2#ypw zA-Li(l|doJy&%gE|FcBrOc6<=&gKd_LDhCi?P312;0nA{vCDddzYN9|J1~e+wS_F7 zmDNkL%s8k~x8&k3MSp+)n_?Ot3z1nkfKOi8>iA#k8QhlCjcYn&Z@>7`ivYEH4rXiW z)m(H^cl+t{OHsTB3+c0q{mnEf_knOgf8S6-?!U}7pOQQ@gu~2r>z_;@&j)J+2QP@6 z$t>e6jq?_=SZi#b&Rvj6mS3nuW6Y_Hy@XqOovt%YSw2YX@vi zlul#U-KYL6_aO^LuOKJF>cii%Hx|YoLni)TXpHOK_If*y1NqvyaN=h{Vdv-3f!;DU zFF3@t@xOOx>BgE`S!pHLWs4VCKQZk*SNsXPA-S#)>Od$NyA);G4OkzL3eEga9*4!k z@J=RmuC^r*cPPq|ArYYyP93e4^BX#G0f8dHM+m9})gZI1G>;8+S92e9_*k9AoA(!B zc;8I*c^v9GJl{+BD>7%|)0_Xe1am53mrpN==483J)VyrRCLRZ!0CAW|RMd%8tbNja z4%sov!vx4A5W99E=Us~PWk8bUahwE^rRAqWkHPy@?^79R9=-lk>Rp4dAau&sty?>M zjt8$%v2iCs`ct+2h=nZe9d<2Q4cQhoyX&PhGc(Vr4BLu+LnV(Ql8Su0Om}Yv^G^{$ z?~lyH+|b!^ffhSM?C<(EM$PP6nTm+#Nw0uzCfHNM3P?THYU|9Y18qi zZ|~O~_!Lyxd~S)(mei|5(_C)}oc|yOlixSi)pdv8cf%%G42UQfZDPBYPN^S`s=V}4 zS*2#^8mKJix=rUUZ z)TU~6`|@tOsS89=H3RNZDpE_w#2R0dd(^O~C{5d&-Voy;5G~}n0*InvrW&hiAtn+V zIL|3r4cq~A!dve*m5LW@f;t=uh^ntQ9{L-9)U2j^(c5QtSS*J(YDD5?w|{>DOe!DCmN?I=F0yu2-%FxL>_f(d#V@NJX0B;B z3iMdLtcL5aQHKT4p3mYEbww2Dly`(z-T=cmTq3Sa^ zlxz4~5uhfAGao%jYvOdOJ5b!i)goWU_a8sd3oH@70H6r(<5_pcnS~^;wL^AtK3N6M zifNM8@2jJ@~AQ4s_d8m&++E!|=cyW95@pMWClS-m5ys_W$ zS+B2Q`#rX#(b>F7x|&15_91PMl8{2x^2`TH{wR=B7x67@7hDo1Vd?r~pb)q!5;sJ&ym7Z^sYI>L#Xe)+QX1{x$dfn9}a-4{u>i70De#eQu)0PkC zDjuK{Sggq}?S!#^+sP0eAj^!5R_?M;m7UzsRX*rte1QL%JD^v6$1dd-g{uC>z8#Lm zaI1RUU+PNkWo-@xn~y)8Y+f9rusQa|`qDtMsEB9+AB8ko(Xqzn;FdoGLEb`on(ilT zqjY9?_z6NHTmuBP7aqI+D5~ZXWFKST`?g3wsjY1Zmu^0Ys$L%YuF!L0mWii%tQ<-$|E#eY--PdQmkSB zDz3MAQjy0_I3B3*hv)ysBNJO9h0T{2ln#*d1K(2&32gu?Jf$Htx^rE^^ET_zO@nI}>X z<|r|!_f$S+X|}jb<&;30zNAaW%RuK<+F%|K$aG!1QJj^9#RjFtiMz`b1kv0pRz@#oDFo~22wLTm# zbOMwCX_R0hQ8@6+-DoEc=LOtWxr{;gNW?`*eO_7RY=9m~NlC|$g7Fs~!wbN!>!npa zzX;%quEz@?s7x=-aB0CdYCc*jn|U93oW!6>iSmt{R~G1rQC{h|ro>!Br98knqLClv`pIuKaSH)2=^MQRz*4$VVR?)sp+iTAF@(!7{xu1EheZ!+LYuYsp>f47KTS(9}BE~F^0Fw zriT_)DG4VMDWsp}_H(%5QTG%ki`A5Eae#m93{McWJ=PS5gPk@_Seaq43?;N>+qMVl z0lZeV)mymALJ0sqWAkePVR9k_H!P7uV$rX>zDm~Gq*@-I3M zrVi9w$<=JqN&GbQVs104X46;Gq@n4&k7tcCOaZmSy(uKfY3r_g3Ae;34Bli*vg{!c zV`L}s$v?6IB(&-WL_I?%q*3hwgSwTPoPPi{A|$vU6*rOg(9+_fT9 zds?mhK)XDA3Qoo`fKlvczaOx+;rYQ81E%kpalj%hJ6n7*Tii?2l)s?z(ojjrow$>? zI%WqTj3;EJ+8Yn!>gwtSf`uGRnLFh4-rnA`*rgX;UGk5~pu!LGv8066C}(vUT+Cy> zPe~?or>W_c+<%O_Zbk-D?rZ&Qk}K^n5AIxya@~iF-HgTh6=op_+EDi=LK@)t7#@@* z2;Clt;vVB;{WZ4QZOkM=(I_+)tw+T~+MtwO59~~;bq+y=93wXO^-;+Jf@=LaH_k*M zX7%3hD^RXhhFUI?l~dM-kO3w@_A=)IXyM zx#n5#zd@p9OU^OY*scTsXEx+hT+SAiBP$F`6dSRM`;LKdM#HU0;>y%3Zw#OU+gk82yPENWof%LU;ILbXJsqV{N1{_1 z->2s`DmFwkCsrw#v+ipu+LJzUDa%mQ3SE*6h@v7?c&JJZR zrO%&V>pr2l()K29RovZf(+-~rX7wd85CTAA=Kez@;`t2bN+2`-Wm2m}9@d&Qr}rXj zD=n*}X5gYW_tdWYQQkQKv61bhE(n^{|N89OVzs~KSC3APif$Gw!)}$714<`0b1=!t z$(hWD3&_#A>Ry}Inz|8pBa)BIf5ft%>GRUkALC(}8+1@!D$-X_W#wnuSUQXP+oH|9z|^yvzs&@GO6FCQ|?B6 z6Vtqhe=w=Prf0jmyRrDfp|k&SPq0Lr1g(_w9Etn!vdk9oQ*Wi(Czt{@@KuGk0oz*U z#JiQYhHal-@k}_NCxFohS6E~mOwn~)ET;6(^keXp@B7~LMlIl>< zTh4C(8c^os5&3p8!|eM z`3>lb1A3XY$I0HJ1=8QyzRxV_?<{*hc06*v;n)?GjY+55p87(K8gpG(TNveJ4>5vY31BxRMlJ$gYt5ErWJS7l(5MxiJ0Gj}G%|ew-x&$C@2@su$pM$cPKvZ%{ zhQF1vSk@{qOIlAnN<3>cwF9GdHR}Ay6J1@dMj3Cv1#^@^xdw<6w^IJaZk#WjA{L7S z)*Y*I@iQ-IB5sKls|3++KR z$HsIApOZBsID>?Zf*?R#u1A4bI5iMS7|~bSE#!t*cJB6yDU_VtJM`GWb7yTeh6l$1 z@;D#s+cYEE&SI@te91Hk5IJQLQbadOpKB}ri;)|C3+c^q&zfCTRGEF9M*4$iP$At0@4Cf9MEzZ~^1yR<1`BUv!4VoPapteUCneTV? zmVr6ot5BtNV}RRN=Bhd`&Z3y@cO_v3%_p1A13ExAG_>p08Xn|7LdvR2jQ{@j6{zFG z#fn}l`Pf=R2n{D_T=deZf5%rWMLn_OJnq0(@_UkP$buQO{%0HvA4?vqKd%vgG7{wg z+za;#g~VX?(wtRar+K|AXH%v%fXCl~L)HB5$PTp)Xkq_h19{~hwH*EM4tl?O9Gx;A zX2Ix`E4>KJ^hOpd*er`lb&otP2!d&`h=;)P;>86q?a@rXDBt|Jobx}gLGX{vd3*{{yNKt$xO zIa$VDANLiQ%<&cHIFVTt(j)%hga2QU++nCx=MU(MNGxi*mJ@~I!E!(Dp04r+Cli7a5-HvJMicI{Rwmm zY=jb_k;9(}-zFzZsSLy)QTx@8f4V)moUI&Rt80hh!9_HmdRH``yNRo=h*hz<;>a!K z9mVq>`5#7cL9allA?Xz8g+lK1?A)oRP(S44JTFTEUgk(sxS~G<8H1wT8DAiPMu!@DO=w4Ryt`HLDMTmKGDg(erUf ziX0}rHhUQ+lWa}ZKPJg5tR%Z`EHQ+kzA5uJ=ci;v`Li@`HT@4MDc3bxM z^xR{6>d3#I(n^LDLUYa*KXy1kP^~re5;Ch%F=-1|l^czWHr0T@BM3@Ao>ssD*FyUc zxyt4WlDVI@@7K;ih+469Dir5ad@?b*ipAo3JJR7aIH=kpRjbe0F2}C~??)f7jX@pz zqF&3iFZyp8tA-ru%>%(unK?ntcT^EJ2%WN!4ozi;!TxTMn=S$EM1R7SRVU<9L#!l?mN^*lnq-`>A1am*{s6xFha z*bIPjx=K>ctB5eq0@W38K3^^ZEuF$ONkP1X3itMkEN0)wk8oL|^f|M#{I30^(S48? z11xj)5p?x7AySYcNN@b8>iN($Ju+Qe0CsD(LrK;oPTc0eVwojDnb6jyfLjGqAoK=7 zyCMP)#C~{k_g^}%;C%=aN8v-GGHmX`6c|0Sc*cBCD3ru{gm00iosV{I1 z4Fvk^>}&_(eMHS_?N^j>?S`em-LYLvMG#%R(vb}HsRj6ZDRa#oRKFHkV9_KTL$}<+ z93bWR_8z={Q1K8yuy@FK=bv80uH@qw?sZ**Du)<%ns(#J*tZ%1zg;dH9{y ziM{SE6u5wC%JDI*bhg-no4yFe4s}YcK(#!iGE9@UrrMPV$yGY3n;Bk0w&XW+5gOG> z9WvcP75;kh;ssc4(kch3j5q!fp`qxBbvR9gB@aA$l0LJN)OJk;rMcPxp88fUI#wmA z`;pV7Q6#g~`D-59zx|2AgT1tUMk0ef%}}?Eq^&v2**Wv|t6QO< zfVIEnq|0rXE`Hxzo3Z2sMB03RrYOyWk}d0NjDq@MI0hm^cWCdQWj9_f)qFA=s{*Df z5LXb1vhY|Qpc{e7_T2;|XVZH_acs#K0D4-JfI$F_cz43A0ew#9J&)Tred-JMG2}<) zXmNRfaZWr+2^ZDZ zUdHQJ#3yz8sV(y=!!@n8^(Ti=90NoXdFTLgI%;kUgIRp?ah=1Fx!3UNp^0wOmY_(2 z4!92xC&`Ja74k84aVX6iIpEnlV}Y{HY{cUKuu;@`X$VK{ru9-+&-!z>^bS1K6B%sV zyJLU*CecJBB5$!h@%&cmA{1}ZUViw=$;Wggd-l@whu*j^{!-Y& z3jq~p%Ewl83^Mo0blIxMt&IEn`t@ZoP0)1Y`lxkt5SdQlV}a?R+pd_>hotqZ27D#h zM!d2@&HHXOC<5Bwa=r2VQCvEuCjAiM`smlsK^9r|MHoj70)r`($-fTvb1!+s9wCtucMGMSJ;j@gI11#3h zo}NA2AE_N5FROsWc&Z;PIPIeYCg5xC&NqL@&&KB>$=S5VnyRXzm*|ERQzg7GE5F%S! zgny?2(|hu>n&L%QFl}wvuoj_Bjm>S^?d^S`76D(!%nra??nVUF*IaML6IAG5$UQ;7 z1-OhjVy@=?qj{_NH_)F2-lhBOQUHK0n2nTldS1G!$Jr9vRj(I5+S@l>)om)-FgKT4 z6iTO%AI=oA&gJuWT3C?FvSb`7NKpRV7sx*N@+7^vFEAI)!GHmzCK1Y+n8u3I(tr4Y zMj4^m0?GI>;&$FB%#-mE*sT3wuPYz0et!FQ$|xhyEUUM*;{Tvv9>?coylC{?Ef7iT z7ab%XwJr^O1{w1ky+tW8@t^6%D1#V-6{yxHh@ql9dz(RG zJWTllm}@-QNcP(8IEp9<45qhR=bmga&_GHbfpbs-7N?voDD&J+9|wqLcug(TS?5)K zy&Z`Tf_MQjPV<@|?uN{sQP0SWw|GJ_6 z@D%f{+f&2RY!ui6VMd<+>qT+^^_1NoLb^WG-{0S0pSnP5&A1OZtX_hEeNasFT;g-l zFAaNyu9;v6k%S?u;*|3`RU{t$YyDcy7%~JI)Ow(8w;%XxbjuL4*A$(wvAd+4ornH} z1#xBVAK)td6;?T}OEAHo4+}d$wCfD)bYn7YbduAZR3WC&T zpJp=cQrvNxdI?4vD+EuRX#V~qV|_>YScOY3HUh-{IW`t(sD3b?zx~hoGyjzvlCmX< z4UV4wIR2BOYnK8A96Urs(3<0ooJSRp4mIp|;!StLa)4&J$nCUjE81w!{zPznm_sybg^7w) zp=GGmY{n zTtK$?vRi0GM7w01ej3-N5rthx%P!fxq}35<8gxQj?bq?6+2Z;|t!d_jp-3fb6{qTh z3}*etbF^&V-Ke4Is1)6WimBw}(87mVDg43;nrp2f7 z4_pp1+t4J%HKmdkBgvq5dd~QHqMurvn}&vluH7l&uUzAJNqIz$T&UfQ5~?O{XHqw< z6KY6I9uQXjayh!-b7N9dyl9C+o^`#-Q;_XRaE@^RMNeJ>US_IBnUbfQq?X zCoqx#G1s8_Nv^CC|0Q7cr4U^gxcBj>y*-$k!ItpU%2{KJrO!=?#FEF?Hpf6|sf^0p z8veFk<3NV*L!`b1J7)!%?&%Xym+L8c)X1G(FpNNC!W^KzLfn6X)RyTaJa^Du5X9sB zEYEI&lE8Bc=|Le>I-b(Xe8GKk;AjMij-;D zb^Z~4eqH7Ii-a<$Y4^mzt*EY>sm=K&76}``4A;Lom?GmqxV7L5!bt9_(KpoHBr3VT z816k9M9!zKlYbFb-ZmhQ7!Q0HTavmZzM*AaQ4{G09Olx4zNoe7CFH&>o~StX5`^7& zgjx?ip&}n2AKyK4g4o>q^Dv1HrbQ4Q;+D!XsX+Jm`T2!~eE~$CI6xtRRPpg_&-5Ib zk!zs|BDgaY-94PLTr`FBUM$T;E7gXwGcX80cGK%N_;XmS(S#H9ao2h9%NZjk#3!}x zQe#`f8-xHbI)m`N>)OtHTCDxt;Zwqvyl{nz2E#foDAu^tZR&|0sB(l7ar*>hT)J+3 zz;+8h7V2GTOXQuC>M$z^f8B3f=MSQrw~$2NzTzZ(wfu`OzpM&aW*RHHO^xwK9pa#w z0NaR=gM(pjo;YgMfq-!%NDBt-rjBh3JIuL|6Y;Qb_X?DG0x~>l59hIp4SkpJSj0xP z3u?CGihF$X5zTXph1+syKWGy38mHV(y>)1IkVmyIa%o4!Sm>Boi3BbMtZjCyGOim4 z(`eZt=`R#H4G;Snsvicg zSnx8WB0LV!pv^1zK5NR$7-H$YS0Zy#m41_yNxe0swrDIens#107MBl{ zJ@6Ndy~a|<-T8}AHIV={P+ba;S~aC-8D|(wDubZfSMDSHMK@S61W^zS8tz6^sEJ2| zh{P;}q_~T2fWjxZ>NA|Cg|f4k6bE-QR5Gy)$PoIHS{kmQnqV)b^lA#Mj8TAQs7p~X zT7YG6n&H_Y7T;m(a0h_L^17NHLZhv<1z#k|{$CTNJb{En-^^3-3XavQ-vv(`Skcj| zAydYIH#@a;b}4Qq6%R5oi>Fq&u%Tn4H40ITW@5Z#LypcvQw>-Mu?e-j2LScA)fzff zeR=EvXQj6#M!0*;h4UI76fewiE?AQ0YqAqnYzVim=PyB_vKJQ3$}jxbCSK%rwe7Xb zplBl8%KVkUi<2GwOZfd)nl~+Cy#u#*-85c`AD#U5Stth^NAv|1Q@qLsu#?bdZQN7u zk=g+r$n4O8;!P>;*eKrbbC>ng-15w(o|*Uf)56aU-1ZSRmEop7+C~YgL=tVq5gMVT zWLfQvglniLj$8?M3F?Um_D&ktkxl_Q)EnKl9W=?fuYqQjmbyB7Kn`*64BuP9?`dzu zd-fBFOLVy2QTtNz${(s;#8q)`F4J*OjD20V|GydoSaW_Kkn9-;f0hT6kG}_R@XpM} z2F^2ZAUq$x_6N$(fIAYh67?jSF7$zES9>bO6-s`C6F?yGuHS!0QVz?@GpaR=5V>fi zyB#5e^O4u@^IVsY-GSFjuo;Z44luS$F;w#1wpV+#?M(`aEC5Dua703->PyPO+aaDx zTdD8B1^-6vKj0s-u-MK!5?sU&s$@$zn0gix0Rpj}J*q{#gfmF_H{hTmZ}D|O;O`|1a_X9@{~+bPa# z_qtqPt^Y-2&D%=#TT<%-{?(yn9~X>=;(kR|L)t$V%kvUyu80q~N<>r%&~h)<_}{kA zFIrxt6kaU=<-bm8aj??%@Nv;nV5qi=F9!?q{682f}GiY4=ZU#6F_Tc zt4wI#v79JFy1+oIMOu`iX6mA6(xdv)TOTT-guCKOY1sQy>SF!_>4;IX7n_I;C30T0i5=$B&x9o~IrcZdDlQ+b9vA4>V24+nkt%~6-7%P zm#Er8+lFrywC}{Lj&%mUG42d*+)^T~+;iQ8~KxNb8%4C_>6qm>JQU zA8~}9y*y}otR8o)2AwN8DQT`td9KS`H1$4bwk>D&yYJk0v-qW`6AwFlz&iqMDUd&& zKRsKqIkUjm1LcBP0hm;F`_Ybb#Yh$HIWHTk^9p(e`&T@fDFj-L6Ai_eiQ751d1cz#U2=atEp0B@|Q!{6P*m7O~0X7|S3?{2`n0-YaO`24rRsJ6c}eCLy$DW;dSUY~-y*+6q-|r+)0SD!;v5EAFd;DIs zxe8>8BzbCRe$LmHU^(+u*=6V4SLNtQSoS2`GE^&6BVh5}-E7yhvVKeI4gN($eBi$bPRUB$rYmawtmtNZY!;B=4->#!*5=hR z5Pba2aOODz7j0cA2`d!n@jgw=+D?S>I3S|-MF5d;8X7C>{2!qk#)D90-b4G-PTHMW z>};ivSYnMcEoux4SL`C(nu?hFXIt-J28#trzAE_o7hm8_8Dhl!2tk)Z^6B~Vko9wV z?&HUg0r(+A^{3G(oQoao>WA)x39#=<${!hoF4Wdw{Re|&VLnn++vlfJ+8Q2vAAftr z%q}I}V2!rN+Ha=LQO-MGgH;0|F}B)qBfErxcZ4APge(+%kBr4DmFul#3_7D7QXu%EinFjp_9bpA5rlyTh3 z!3`xw=GS>86+Y*-{Qi)T`vE%;E}G7E>RWB|_Cz3d9jIktVdXao9cpVwva_-lS%aVF z`E@@KRA=Gb|8187VnxKJjfuDQM1@~N>O4qgO9p|P2gN1W-~Z!4aA8g($ICJYOvDuj z^|}Tf*q2?8KN{e!nMm?1spyFvC2Rf}{lw?X!;(+XH44QqB7lbVmd;d?%61nDB#|@S zTGdfA1unB7*3Ev^n)@2BE>3&8K})L|`h_KhqQvx&hzL;cNf$)6P&x^M%#QYhgB85S zVD4uw1~xIm(&gP8z=v`l75VTR|A0ZJ2s7QKU=>QaA8D!qA&7&qXp)SFAx(79c$K1y zG(tmpvteSzEeb6#FwiA@`94B0<+NDRV3fU5=REo4h*M1#d>2oRC6xu(s#Um+$ zxiF&`9&i|(z6)Kpu!GN6aPsCRqUTFQL!ze#!NWB_2WP}7=-@A%n4yVj_#8ALHu%$e zm`lq|#^sL?gO-P!Hu}ZKdMgjkXzEOD(TNe+avE3VRFHLJTlL``GZ-OJ#<{}+XsBVQQe_1=YbT7AOYG;eaqCK{<_& zgO2>?o-&#nzm{a}Y+7X;^6{GwbY;9)hV&bYXY0e+Pfo3m-j<#IF0Udx3CxD<<+&cW z|Bn{{-LN?( z)%bQ>f^+oj`10$^7R+bRZN~4rwl@!-+^e8bxAyv8yOdVIrcnO^!Tcs5Q}YWM{Gh?X z#+u3CD)R<=I0v(!z(A>QJ|lxV{A*Lp{MDSvtI$nbJ(nN-J0I7iHm#s9GGdCeKte}Dv+~r#^u0)fnw2M5 zdqFY6)fyfnUcR?S-k(GV*cLPYr0Y>n3n|1}Mb{1{0)*nT8)LK;FHU}(+#^2&0kC>j zSUro37?~3=z_oA(V8Ww+i=*c}0xs$(UevxaO;BCb>HA>zrJ&N=vCd!K`iXa@jfo{@ zLSe0|>s=}%*``Jil%;D&Q1upW{3gy@CX3vlbn;*M8Kj|GBxQRG=aE#Mw>=Jiqiwks z_&%g14*gf0o4mDY|Hzyjn4gdqk}q74mFbjwb&(GwV4nh!&EM+FgZV>M_q7tRcreyr z)*zNEVbF$J!=!F>!o_w2xn4W8eE(>w-6fBz^)+YI7aR49 z?^KnumtEAx^D9eBwH1|W53BYT*4q!2L&GK(KYb+}h%T~;Qg?h6%v3qMqQI^S4QhMz zT<-)9y6-1&hXg?y4+F{I@;O(`IJiYP0P~a+c75T_x?M{yYAb%525L^J)-t@^Un9;< z1vhv8L%G(CoTdRl5|p-pG7z0eoXjlsN$EY4)tjsMnY z8kRc&nh(L`?CsSOv>^<%g3k$4;+^Qil?Y-ea(Zv^>M-3rTRquMUrl`s)kA@O)MyyB`i76#sIekfic7W*d|U0@5a%{I z+Izq*%=b$#eJyV_r_ntNIHreI`G?D$aW}@NIah>j)tno z0U3t04~1)phH+LI2R~ucbeHId;hKP2k^D~net$yXS51(0uJb^)xiW9xuoklKE>3EH z4%#3ubEMSed8nKEn}9MfsTe9{i=oS^8$j6L>+Ez&z2UpZM_Ujh`ISpCIn@&NvqEEN zPsBEGW{x(8hbVl6O+~9>dp>)m22QT!wT3?kbslsc_?v;i5{zTcnt4n`JCpWnH)J&@k@Kn zi-PF6(=#y1TALP5%oP`TBJr_6l9{D1m=2Ch1h}RWZ*z5}#g}CEzfieQ5wJl< z5b|fObA5!WtR-^b%h{614xn)A08i8 zk>_Lo>YtVRhRr{@vsyNCY5ZQ)zdiXfp)loIva5!XJ(3T>02&9re+La4y8R?U@Le1E z`54|C|L0EnwuEQijw!l=pu0BV#lg`8wXh+%H!1Uev2Lx&H+L^NP6V-QQE>WfJ&U zLFEMuH8GYiDK|}$;!3=y=d4gjQ#}`4k`B>9}9*6L63)Zq<;w4 z8^`dR1Oo*lA(0kM(pu{=uJ_k{fKQp!i`w$mhl#7}{1bA=@<#nNLdf~(rOtIXU$JF6 zXSH8@mpOfNtnh6P%A%}wfTSSg`gT5t{ce|nYs%+?y7!~C&U7zXU}9ooOK>N>0c(Y6 zg|}>uF`WVpk($XCO{uz9#k83w;JX1|uDc$!By$%W?C#yN*~p<8yWqRFzs~SZMZufZ zwioV!A%PD+fnY?{Z}{WH*WEdJDMQn9K#r-}(jdGxHeT1YJNsEpUdBV^ zUrjO15`UCL*V0^MkN{tm0ySsxNfNzzeltShfOZ8{#>DLFQ+KIfLUDB6CA|{^!OJ`= z0mOIse0+4F=^6ruzq*RJ1EIL6u2YuIUH7%>{^D^eqJj`}_c-Ci$Vz$Zh-)9_D_6mG z&9OWj_u#{~oRG9_bF`ARQO9pQU@<6d?nW2h#&>!$w%Db>cTXfITO}x!g+H1+K~JNU zNzBHyal;qUci~AV0YMnE}!ZYc^oEnT^w}I^064+{*G&I-{RC;G<$LVB*RDi8AG`p}lpnG_4-q1k14`XrI zYNMgr_D|-rdQ}y#Ryz+BwQIhdwd-niR16hOm}D;Jh<=}Y%%s|-sK?!;w4HjoODn4S z`FL2PA*g=Y;=AQl9X{SdpneS1p%y|X$jaHMzg@ogQi##l)1)=WQz>Pb1Ey*XoNKBk zw^|5a_f=`TLpNzT`!v`U&oSbv6D+x?;4q{UO|(1d+NFu2^O8uJ=^TkQJ}^Ghw6B z?gt?#$>`ARH--4_QnqC9TuQXEUX{Wb?qxUl`kOOF@C74vex?Ea5hC#2|NgzM;(Fg= z)K?IJT&klwf;zzDaBvG^xP~vVYHkK2F7zYRepT5#G8F+`$*Q(P$6`Iyp~n_?r6b(B zp=(ep2KmyLQnnC#Jr}Jqb9NNkg`u+rzqV>f5LD@;@2~dnem@Nl>^h5fmpfDjI)Q_c zG^On!K(p@Gzh#kdx>f1_JS{;L4X6+tAKj(s1YNs8vH@a==W+HBlrG-!c7$&tc$}J; zJ8A#_q3Yb@TJHb+pNLqOi8{dzs0&&T6&e;#EUM@#7ko?2~_`5}Gt zIfMw~1?pc*Xr$~^AFEs?$*_-!YBHrVE{;bx)!9jM$B7-8PL!gWM8BvTxcw-(Iu0zQw*3s=CtrxXP`T{<#l#DSbVelhRGpnj9L`Vd`97+uUbm zB+lbXA-rlkcS4A^8jCPBouu!=W}o}t4_)btg2Bv_^|*A2G=tyCe8Q`%{Gr`vjlY^k z{=EI2Uh&Jq8{;p$wI8~>L~NmVTd={ml0!RU?yhlz;{B3;7N%E0X#y0IL#uBl=`Y(5 z-jbcd*|O8Lf)NSZ7Xz0o-2`uF@0vAhNJjvu7VjRMKW=bn+((aP=m^k7x-W|xcxTi0X@bbj1h3|j*)henSr?JI#y<4O2 z3x^yv4Vn)GJPv%MQx={|-A?}WG9`lMUfLb4dIP`z)3a8$`3yJ@;zN@ra%k`=B&wB- zJ*o(|CbQ&=5vHhcrT9+YB^BlHteViY6_37ieekHFrIXL?$j)@i*>w}Wjl7}M_x#Xe z35|v_W-0B0NR0oUpM@jbXWJrU#KwtCHnhlgJk!+J?ZxRx{v3ayrLFzUX`xaX{UV>C zFK3zWkGLolDdA6euHAl%N+h>NqX-aYXLWkyY7^(go}fR)>h=j7fm)T#0x&!1D>#o@ zC%Qj1$Qfs%5atR^li48+?m6eKjW`z`l#@CVRbNx{F5Or7%FWdDX36Bn`E5;GP2fqz ztVHFSpx|)e8g~mp_Uf-<7lyoHTFMF1zx8YFEn=Fyb1kWJA)HK}Nb2^9@BdW-x<|uI z34s^a6}^oiZXitBPo4V0Kk-^yzg)+NU&F?;gU-@pzkZ=ng|}7MMlHsdQYs+og>1{z&j(6< z*J}i-54=C3akIqTRBMHRVWk${m|_x=HuhwuoBen0-KiUjaQh8MtBf~8!$E<2NACtK zG1+rA9JcTN75Hi|R0rTWxjt0)>}v25yyu~#E>1jW&6{|UR)k9$t^buX;8w|QFddb% zI2MuPoim#_YPzLfsEbW*T{^qG3$6|Vn^@bvvuIb9DSYo>Ec%0%f`k)=e# zm%o4O>)FIfI%R2bdebQ{hG`x9cB0xtPo)*=12CCoSfqpu>z|M)?e#qCOMY~wzkO_b{F?aQ)@ufyY z?_TCgYQ+6)FpyCRZ`Otvg$jO**?F1SS^jE2d@3`l9l?hf9foZH2hRRB?_6h|yKaI3 z=id8(lZbTHTsxNH@ZCFC)8ur2B+f%aoO^m!V{>gPtPOrJcE;FY_%&u1xAZFLEg1LT zy7d#<9RFaxxUl z>2R{U(9WC>tSz5V#a|eLF^i&HwhC-qf=Lo2nGfmI@I{gQyx4f_>$p8?Px+k;b9wYx zL9xJR#{lttC(P0SODU)~e=FJQzB^~dx zyN7gTnZ~oe{w$}T+iyosDoqUCxusA%dagjr9|OP#<#mp*H5jr888-y6F1EUFo*0Hq zi^|*+LlW!LmmO01rBb}_QN__`XWjtWMHssfkapy4nK9PWvsb=wG*E&q%5XyH=H*M6 z)aVPQ2FY>L1YUSvn57&7Psdf+B{vyw-q_E zCuUB()v?8+2T_KX%8bCu^)fGSb-2x%6;XUfaXNZn^pJf6b@Mhvo~8f|aB$7^-+BAS zV(qG3ZAXEYMqLX<5NA2fo8WvW2(!Z#e6hO97DMINgco7crr(C89gCZeGgpCAfz$UdnJ9!(iIu#Q_zU z6o&<81x}d<=?i*vy{cS(>FOZwL;s$MZ|1z2a@l{6u}g+G%M8iO{D4ukh}RK_}&dZ>HTHwP~I+DDF22 zH$=8D8(rsG{@Sh2a@aZ7MZ<0R^YrB)-w?uIp-tMM)t9HjH@9GQ7Zb6FkyR6^lQROc z=It-5WMAAbuAM#2Z8r1B656B{g=+r(bz?6w1!xF&*>@$h^7Is5~l@WlFb)kf=9^!0AirN?s z4g8YJwU@%lcwLZ5c;q)Xsg%WAlRplwi7i$&MnejtPh82-Xw}|+$q3Zp%+j?cvrR-K z4j4#=pWU=7=uZ7b!0%9}XP(a5`>;MIdqnIyad>4&M{IGEbJ$@bb-ji4ywFHa^eVH$6H^nJDPD_3Tll=tmC=6ya-{J~A@BA;9*{^+z!p7<2j%pads zNTtbYd_e(iwEnGtv#0TL*yMmyTdnAO1zw}gpBEcPlQ?0C(v#p}^Nf#5lxDSr?&JJq zeyNRC1rsMVp?|K>r{bvmmm4Bgn*fDhIdP}s1!e!5nl>oTT#M@ESc0GXBXb4suc;|1 zZ)gZ3as_P1G-X)Dl|2?kyq955y%&H~VMBLn+g|S)f-#FHsBM%zDdY!rRIq@Mx%UTq*Mm z)Aq$qc8G&*F&p!G%pLqDcy5}PbLF<0J1j1hAV3zHQhx9GXmT`DObcSUe zIWpa{6Y@I4$Qutz5q`8cpCp1w^lEg%`b^57N52!0xDfC9bu{i-@M1dV@FD`lmde}E z$8l(=dtL3HKHeVv^HFLZJj~apo{XFPKT%F)Y4Zh3`&c=iQVhp6DpinS%jY+w|oQpesjH5l{^+;igB%^=yT2vZ-fKa+eLHQ`3GBc~k|N&@1oJ z7F9bIrMEg;QvxQY2v>x6rFbvA+1J;`W0s1m&vtrVSa<8zts1TM#F#`bbJO@pOL=rt zT+&v3y{|XI6JHNfrdo^Ks?(`(;XN_SaJsj%j;*k*6HMIFvEfnz_FL`vixDZzcG=9` zy5Uew5nuhM+J}6f*&?s_#o-^>wY}a*aZb|@3v~N>5t-tF=S~Y1y2>sVH_bZNiEo1( za%Pqrfg5hSXnD`-N6OKYJe#jKk96%6yRWQ@$xi7!olaFsIZh)pBEcEU zAL%<7FTe|pPI)lG&K&iZ#*NJ^w^OHrCULe0ygW2M>S}^9%D`JTil)ma$02O{+L3_=&6@5U)h+? z9X$R}GvU@P=uhSzs&)Dw8iCI0EBc|Lp~9E_?ZJ?x!Y;o2a16u&D zs7OBDn<=rfH2ovJBs=B3B{8t{Wc*KE8~_wQO2n|jkX>h-s$hb4xM`hHC87uiVE z(Mb1W@n#mMqnan2)+i|}dyi-!ZV8f-g#|cQJWURbFz_@ncACcsdk<8yFYFhM(x-h@ zdv>p1vAt(&a=uVe_MBEC-&M*bOHVqD^ZWG^MK;?a;r8v3Ya`u+j2Oh1RqG?>IQa5R zO)ql!mbT(N*~-^R4wiYoUgJvt=Sdx1O~r`PBO$JanL@~RW=g8shnwq9Qj4>D=RQ4| z=?u~dMgw0ZOeSodw(*$+*R}aP=H4S@I0B&xn5{G^Km2K2&XPUz_e7s`^=$*if55q% z4o12W=XC1exM*NjkR;U75a5B5#2=|tklSoHcL;-?9hJ26tE7V*;`HU7Qhl;$^kIXf zMy(NU-HW}EEBq?it`t#k%)LB6cX#-`{ph|`!-JAb^B%yW=@J+VH+ z=~i&-+$s;QQpah(tIEWy%9Q%=Xi_ykMS&v5NjZAqDkpB#V$F2@h^}?ps&hn(mMcs> z{jg&3TN!tcoCG?FkK|{(;Cy132W#b)R7ST2b$)TWN%>pXLorJ@G&E1RYY2uUjA5N~ zc6?V_J!j`YX3RP%Z8-D(Z~^YDD%R4{%6|Fsf5HRh^qw0qjHC9B3!sr(+oonW!k%ABah{M9S}SLmHdd?Kt~eUtrzdI8LpRpo zl67b`m*3g04#zBkDC@5M1~%e1VJ|-ZkCRm13A6kBlu8!}Uyh~J-@6-3bSg{!jNg?< zgOVIr@+xM2yOPgYOP}di^!tHVA7KZ@)4S1BX_lVm&|Hp`u`PHRYG3QM7OVy@NedkTL~J=Dp|DEz9`Qb*w` z9Je)&Mi*C7QUWFfeoA;(1AZ3Jc8rTX)?|NN$>uSzgq2SE%5G!G40U+GUAuyk)Ds1Y zU4skR@N-FtNy1DQp+Z4llwdFs2_r)-Wv(mcpV^~}t9pqJPHAyZ!j$n2ZaTHtX17<` ze&wF&?C*FY|l)4KgJxyA8!>SrGng#C2czfs=s zdD(gskQnXE_2rtgWqc&}e!^8^mFYCy=T+?*yzRM*=Ny^a^Q>QoA@x5HvO)1IJMW_Q zuAFXo&?rFpOO6CUb~qQKE}>eHmi#LRk3~_7ue_I1_<@&rI?|b@rc;6o#OuyHqeh%> z2Ae(#w@yV@k^`iuT{+g|vc4eY8d3kJnqSW!2({vPch_3w`JSitH=P1t;4lq2@P(ww zU{LS4_;3)nT(+~kVV3lYkI1$9@9FV()Gj^kJ8RU*&Ri?C~#1%ftVv zTo)oaE|WpLywu+Bc2m?ob=yeui9r9lb?Yvv{_ZZ-Gh)G0J^B(C`Jf;H2m)rQN_?6H zwKzP{^MuZ;6k+aGJ=G#>_3Kr@mxD!{r$>?Le=~MTBT#n|Q{g#H`I*Fn4VjS}h-*9l z$lqRdOrKDXrbT%ar|;g8_ds=2ZgH)rbT-6l_?p6l93!a$Rw?yGrz0T2$VZNYL?tRg}Ul5D=U^xS<w88o^JHoD=%p0l(~~1B z_2qtg|LaTKU7c5n~ro*jT(KAN|mX*?JQsR2+FSL5CTXx@^UPLEFgNcGbkl+A6g& zxA(9`<-O0KC4C%2PPaDIw*Q;(g+p8@mmaNpcNEhRE8AM)4)pc@`=TgCHMpo5M<=Si z^V|+l0IyV6?5J^LW3tMOQ7AbYIZ;cD?DCRVNPp$5>}KjMxX6f{&Ov0R=D^N;y=MP; zZo&5s!bNW!U1o~J?cE!P2(9#PkxZqBuVM6kq{t&CeVTV&^yRCP%%bL&>@9;Z-!1A? ztQA*X$xZ==$J-4b_r@?HnY@K?%96okDsCED%d5ihZ6Sb-7Gm`zD1h($?ThOU3Y-NFL!;b5Igff zI*7&J?>!1PF5&oV%62BaD#{5I5$wk1IQ0mm#R4h)F{opxN4Dh)8>3Zk-@4UPaLVWK zKO>``B=6r-;oSliL110c&e*A>8|CQLjNvVu)2Wpq*6?x?Px)^_?hH;CpAo*uGehr{ z3gy$7ePJjUlj&rjcC&mus%A&>HE+(Cd!h1*YQg^se08~LhLvo%gqx?kSj-D?$K4Ba zpv!@~33_WVgw}Vns8rxWwb7S@U;|fC1Ujx$rzGcT5t8Mq@Hgp?a~B?I*WFPdl-DrA z*V?N8r*8L0;evEOqUk0RudOCZ7Pa>WVkZ4=X2@I+HYkqeu4)cX#P}h-!;+0hlUj`X zp?<*(c5AP9u6C29{3MNrXw|7fP}Q4GRR>HmJc=B8O7M$?mR!b0g5`o#a|Tdb*hvE= z!n6xAO)0pTbQ6P}3m42C57gO@hVFv8$CCGoC%C0WX&2_Lv1IxU$>)ThC~`eyYDz?~ zQp{Gy*i{PGefi>Ht9o5Wj#*fWRJ;JvVO#dc48?y4;0N`27KR^ERHIYj{TScilV%$(!&b@h_#0?p$eY z?oK1WK9Aer(6sMxhlzdOqybSYYgA%qu6S_^79m91+It@1t1S0R+YkR#ak}!JN6C#| zdDQLAM?AYA%lrCXsLDvEI`Q(1ILFLG?4X=mz6FP!pd37vIQzWluEdUB?@5uGI4Q|e zXOyJ@N(s6o*q}A3EH?62AGP=}1@hBB?c#NJe*YK^p8T;2ZYgi?IJ^1V+DBTwDO`qj z^Sxgl(1?jBr0m#%j#qud(}|lc=#Ts$7cj%ld?>Hp$ZKu=I<}}Vr0vVXcqEOu>U$Fa z+G5?I`tEbCp2#wt6P_l__BZ|L@w+iDsW-Us`o8)R=XimdwoSS|4;d$BBo3($*=l6jd#bOY#<8hG-QZJQsPWG+9k|*GNP* z+xOLtu=aoBTcyS4g#3gTn6ESz#s;O_0TW>Ow=;Rf6u=uX0Ki$JRZYtGrCJvJS`~@V z=L`;R8R9E|T@(_^#}@14dS3pSbgFf5W~RhrNMsLd(y1UGfYyc0MRAiSIGU6XuQS7 zCDP@Di$rm{^ce00Y$ho^VgA4$Su=PLb2xbajG${CR#SGVgw; zmw?cC;E9|1&=PTUpx!&Kt_M>dX z*!6AA7Q&#`13%gAaULi8cTh@$LY^yL+C5$ zzDhFObn5ZX1LU|q%#Edw!Sy7pbcplsESy&br|4&=yaP|<4bf2(fjUI8Q&UqvN3529 zgN~=Pn-IYF&;=aVJ3=j92C-hL;&>qqq-_O2^Vr~L~=W*aZFxTy<;NX?TpEJPuID^5H>1n+xb zrIT=-R<_5Qhz}XmVseO)hs2KB%d_D8yJr+d41&Y>S*S-9Qiz=ZWSLmI`T3?XOPuF> zj12V(EqK1h(b*|0i)R_MrUC1qxo5UzHPh!lQx1S z!H6WHdqbrGqtEyZC;%AaXyI6C+wowJz8v;b`SyN*uKr?u?n%IXZb5EW4zvuU79*s{ zad}qlLRqgE1@38bnIyh>3U^mLGtEitpQ9U?n$LZ<6z{sf!~eZ!3EaG1i&uHtPBOcz zx4fKlTVVfyyAp;llkT41`0j`5CLhfcSy@?e>=le8$`b6%6T>bxbdPq&CFy@i6da1a zpPdq{3N*T(t3Y!+tFt?b}S_uze5uAw7wj*_|5r^ME&(9NygcwY761T z*50t;%-N#%g;<(E6ob8j#aP|-dso1l29SXamJPT2V{otls~gbm+obI_Woz8{0qZV0 zd>j0J{=?)>PnWr2d{5nkJ!{9Uy#;^oW>K)JaU}n>-$+MoqS~cp9)whmvo&r1bEk+- z$FFtjL;kT1=H+x3^WcYhCxDuwk%E_Yj27mdL(=`-C|C_b zK=EtVT?zfYF~-jGD(w-z|Hei^Wx@X|LOHdE(7DDGFDdFx(De)No?r+$IN3iOi=yhdA7{tC|?jcnFP*?tQMVo2H`7sf=aI6a zs434+oO5w=ld^ivd02txw1m;QXPHHOyfb(=1YVen_zy%BO7;q1h_RacrYfD<^Drj`=ecq9nvU!qQxSeh#?Kc{(|LGAeX)~ZGIxr7 z*v6lAr(Ql5Y7xef-(uY@Q^CxWx1+(bIgx;NVU*>1%P30GdT(C-i_i9Fr#x^t01Hy@ z5N;QcdAYW}j~(LZCMTVpac;)e-41ZV2PRcO`(x<~@{|ov+~}9(#KS1~6h)BTUQvN2 z!^(dUrB~L2r0koW@WOLlci#+c8cL@ID|awu3)@C}nWe1Sb6xc#;cDTLe8f%Q0H-0| zHQ0s9BExNkM`wWFiOo+mPU6=zjzo2 zOCC~)z1~lN{5Wk6ju*_R1&7O0=fCKG^l0V4APm4;da(Rr+~h_xd0Opw*erB5dS1VJ zJv}`vd5Kmn?S48r#QF_wbH8?DGx%lZ?(4TBhHy4boOhBuc?%|Qd*zoDrdYSyk@jcy_r;CzN?(Rdvs)q%hEULtu|?w?5Z=`M1E5E z;NGtJPr7oxvnj&-1o-qBCFwgV*`E3TI(S$1XcII+bUH^~K~3w87i_py(Z4Orm9jX( zd5tY;EZnt6r{N;%(z*xf1^?7_ze44+CU*OgjKyYHnFa;p&he4gKHT#Yx77=K7bx^@ zb?f$1O6tKgJzs@nAoc2`=E5CM^S!#a;GA&6#t@eL49;QTf97Wi@qe0U=<4S7Hl2E4 zGDex~k%55$e9nNwuQlmLR*b30Z{NMp0}9AhcvXn;3p`J=r=bFM=>F)jwk^lw?9dpZ z33h{n-Ea|vC1%0Q%y2nwB%-rioE#7499S;c1q4IdWfc9+XN;WQ8ELISlj^yts|JY4g z?JfKDVzVZ$>m-NcaR^JA$rr*4(#1SFp)Swwpy`~(CIzlOU7`DSzv2SX65}ths#n)t zT4Ovb#QJ*%wnk!^4N(gOj=&Em%!UJU0Lyp~(&$7~vIQwa(Pi7H7b*h^KJc89IPejN zoThLc;^s=>9`%tKCVZZOt=^98c!B4}cQCk-Fk&kPKb3E(K)>Y|26)iJ!5qc0Ik;Kq(5v8;9jH~nh%PQBMNxT^Fe8{{yKLwKs)Z#q<5iM!S zs@g}%Lj#?*1EpL-h#0QJ?1)3d^08G-CgsZR?YpatSUOTy^Q6A zcJt?ZVoj(kg>>s4l96Hp3aY-EC&(1%DTS!m2s$_V)d%!6&-C9bC-rghon3J6XE*^C zihMa_-=FsPMWHjvAqCb2?J|1)!vlDjVAOrEXPDkqC#Apti5W`a8%{hN5Sl2r)|qfv z#co=N7*?{6yn#!tv>Ti|^BBhN*WVCN<=jpwJu6Cpq_SHndnzV9uO#fux71HKDkX0S z%*CH!l=x4z;Jf3Fy0&q&&KQ(0<#_?O*3n4Mg!}WRTjsA*QcOGEOxE+=S5B{Fi=%t{ zuTcsNGmF%mraVwNgVHzh=QmieDuuvDtel6+7W zA6NClleKo5b=p_@^WV5qRD})J6K+*B-18S!;0jp}$FOlU+E*eGuNL^g0UaP3wXz;8 z3`5frk~>L%W1E6y`^XVpElF>YH~sANAc+&+@@=4xa$SYJxW{y6%CJV7Vyysd<@KSb z$Ei-J&O4sK|Jlt155YS(gSuVrEG*)Fy@wY>J=MDU!Fqb=H@9J@$7UvM`ZTTosfAvo?e*Mx z(}!z{Pvz9w&=t1ft}V22MMX*bh}tIQ!qKimo6ZM%BgUo`FwH_ex+AmX{68B$eDAO@ zh*RkC4Y0~>HM;6&9z&olBd^ue)L=LbX#;W@&%GSeb9|4)Zsv{kQm=gnieuNTD#rLd z#JW{+*PSunoLVC9>co;qt5kUle2nWwW1tG4dO(4@Eem_3Z{nDut)t!Ed6~_nee{NS z;$1l(a})HJl{)%zax|n{499_$jSC9QOJk6T&=fN|Y`1lpewbrMYMq-5bP8H};qE(@p+IQ+WfR7z7 zfcW#x(*DRR>mP$ex$kbbj5w_*3JMs-px#e%CiZUX#|^;?U~zhY#M#VxzMpz{5VA#V z@xR1+()Z~#M8-c)bee)BAE@2Ys-~vka7)3_N6W+|rEvohemFE3k*21F=U*d7QF4^# zFN*l-XSA`L9;K-B=J^;hwn&;1{XsLJC=PLN+7&N5hFFtA4fg(mFXh1GOFen}sgAt7 zSFbj2)cFX0X@{SZKpMBTt7}f?g&6k!Z}(y%ze#-j7uWRUXG7#guRlOqBUuLgQ+6z0 zzY2(T=}j?qiE2xYgEkD(NQSJD?UqXf0{G7R^@$})TlwK6sHc>OFQ!w;cvQ`J3fC%2X2x0 zP~R|oi!XI%?6Wr8^mGp5+>)`yS1akwiCG@s!tmBNfyz ztnR_QAZY|4Ihjy>IfS#BrT5etvAD((4IjcUH7t2UVK3lM?|#roDj9a>qr~X&S#+Db z_BiWAZrxaKrIns{kNvoV%hCr3Iak*+U$X7Y8MRohV^ZGczOq>3mcU)RyAx}Tt8`rS zbFerSzX-Q_&rt7)=R@~Ylx8W+p5|%k(#w?r92vo)I>r1ci+g-Z6<8fln{5>j`x5iN z;WvLT5BeQlugb6eBQsi*=JvGU$TISNh3S4zi-i%1!c~zkflY<&c@uT0?s2ucTqU@$ z$Tp$}LTlH6N?lt0ZJUjAGn}Tc%wa_O>~Y&18@1&gfiRBX1N6W5DZBtoSiM{+vY`g# zuMTk`s{>=#SOIN}rMowg;knkV_wR%Mya3kZu=Mq$iF#nlHZ?6N`aVD8jK8j~E^@By zagSQ>qkXBc%B(5|t@2s*YlBhTOZLH~>7?j|hW?R!e=)BfwGBmPL*&8Lu^6oTkHlGD z2W(-`S7r{D`k-ZjBeITbc1OOHc-^-&1?+o$@3Y^_L))UiCWIge!~?eoF9V7t!C*wh z^bl*aN7u&n?#PKZM{4VQ0{0Gbe*2B*!gX{mVlV3RQC6ScftV$u{_WmL!u<$2Hur>l-F!rgRNB}4C`Z<6;Wt>_64fw# z(lD7F-udg-QjHzI4ziNG*ZjyF|5s$jO-|xt?+wt+1mX-%% z&Y6c)90xKFW`N5tWG0ll))W>_di4#J2ColKtVJc3H1_mi$I7@V5ScNdezYpFb_$-G zxG!n{Myq0CiHqX1Jv^N-Mi6Xji^_3E5#}YZ=%#;2e_ML@#GQI#NGV?K#F)1fj!5GhyfA6}yzTeceR&0w6)oq=bpVA&BFEE^0 z#P5&v#FEr*Uyu6<#5~CPZ=mM0M0K!@h!Ax*Nscg#Pvva)uCzLv@{Rt4x_yV$y}XeL z`(&)oM~*bO4B$mstR*w@Q<{ZIM5OKgZw2cVICU14%OPd8LYY2Lv;z)lb8Of-^Ble+ zyqF(RCw!(m<S7Ig_rVzK zuWVQ)@=^?`x=ap@k%E@pu*4YG3<~nB6Y+S*>u2mm(`2%T(TA8_#c@;9iuU@c$pD_> ztLbBlf4i*+w^922Ksc1L0s3pR!nW@nPZa1{#(WHRn(cZ z68du3!T;V)46quG%^O^FR`yLYLn#oM9*ys2+bCjwL&WPbcHHx>6?bsOJ}clp zy%ZNUm912inm~mJA%+!i*T;^Nnm6&jekZzrOj4aI=}!o;0R8`uRiX31%i%C>>hKX; ztNa`S76yU5i(3#SslsYwVi1dU;?&}jqiCb#q&N*UqL08pW!-|u!UF{T)-&G7+lq&C zu*mge_ptRhiCY~mc~7-BB8Gz%o=&pMivf<>Uv8UhH9kSwPeqN{#pGTtaMQw}1aC}o zKk?2@_#??G%_uu*QHi+Jm-VE&-RpIAbaG!z8kr~EDm(9lD0&SGv> z{VQt}$voP(NWO&IgywAE#HOm(&}YOo;I`Wbg8}onDt~Y47r@Nd~&6rdqX;@EJ0Q~kQg#xrD?s+$Qf-3s!-NQlQ6!&Bv=oh zw@lcTQ(H=KpBz#XSxTSL*{PSeU(G13~{vfiAECHx}hPO821QZWyBneW4xDt~r^TA%Z@g$mH+fWe~$` z>h%Ae%+d(wy|c*A%QG{@03S)pvq%(-Pk0Pj%4FH{8Ba@Kwt0&uP*2iP7eOB8=xuua=X#>3e1&y2rOpIcv z2_6A3!x!2hIq9f*FaHQy%SN-m&&K@SCWfrnpKlAi_Id}jut#3~U^p`s0ZB0YjKyY8 z%z~70U1K7tmXqN$$54M6)3+5xZ$BdsCius-yXS~fFTC@3Ct^gR5}N#jsIO;OdSESD zERrUdWT(^*0A5VwOWq1*E~ZolcM^ zH-3YGD6zSxr-xV<#>)(`ejTPb(;JYtaztvV#d7zj?7^y|A87%?dfBc%3=mU7^6Ae> zHTi>K<(!ur1MEJ&o*vYJlemjHRyfb96#$URn@Q-ZQv5}|Rp_h3cKsRHyfr#cE&l4@ zEBo+lf7-F;GyQ%*eh_PrAyj<6X9N@_Q;CZ`FV<&#_R_wmb+b=d!=HTeRU z>)OhYS?~_MJ5(f+L5TG?!Y@wYHhGN-^v2-aexLqoKUGTK6V0(V&Z!W)+ty?kyJOgL z6^Dn58>NKvzdQ%lTx?q-h&T3&)WU(@%y0tmsJn*1jGevPS?xIa;Di`EpqJjzFmg7I zMxPwXNBsM98T^AYsiAozZSG=Jv2`;KS5CqD3q~a9Cw@v-fJ{-om^$`3XXC%Mv7>h;+8Vq+5!VMhJ2J9g-=mr5 zbEAYHWv(Ys2IKp6jiY}^|A3R+WY6>TZlKxwmsb<_UtTiklv+dF# z;qZ_P{Zp%i?Fvn&LQiTOOY^WaasIcm!hhGNsf;j%tuh<*|1mbZmfSiP(6qv;YPHXz z<%D$us{7Rr_%C7Zb-ckQ&E=F(a~`!>9?=0 z(#0)gE1!7icffs3oUNTM#Oj~8BrMSO>XQ17FR|iy1>J-tpPX!Ce=7+JzRPz+KwtTZ z=T85Ljajv|>P4vO6r(Pr!AzBexaGJC0!o1D)I~MzB2jGdlCRYJFeafJ-s%4{yMj&h z*SLE6#l-j$OXo2i-2yBrg^NQNyZR11N`|wTmyzH<^t+^F1`%Ojv@lg9rkh|I6w(l} zCJzyt>mQ5L!NGCltuF3D(jmji!vf_h?k-2o6yYM5NcE6R95sjv7kAmyhthU6>^185 zbCKz?)eD~DFkzhGp#JCNd8;Q)rY??evyjz{d5ux@rJa}%<4r9oN~e0hvyKjx0Fn<* z&+x>OqZ8M{yY%$-6n(%HR1RS_;0jHpUz|%VCZ6-C)$2WfSce!XwUYq4B&oleAzrK2jTBxhG_BOTHA#Tx%0Il2p z%aV}4Rtqmnd!Y6~ww<#$9l~_YWSN=D#jNlBwr3(bOorb&5;fhxve40UL~R!qAa{v7 zdV9w4a=OYPcyVTwi^2Fm^>VoRUKD`#zV+Z7kvKUyIRx5Hi`tIp1!2P~r(=E2nBr=3XBR2*kBC{L@#z^7Cq*8H5?FTN6Jv?om%q#J75+`s@ zaINzc{m4QLuV&hS&0kK(#8AKwHae_%^Y*kBV%piL{r9yCki+h#^2Jq-h~zI1-z0Yy zamezcKK1=r<6|6+$i=f<%hb!KLhCne%(XMOZv|?JSgHUB8rmRcDeP@e;{tjs_CXWv zk+BFj@x<;009dD-bAq)*I;ha*Ow9mB9Of}Pr3O+uT-P$>3XYlo@=}axi%87M$-#;b z+65GMXb?Z!@2%|h&nHMyy;oirwE*@QcAIksL>h-UOX$&6sDFPA+rPwH>`Kv>+iQv@ z%bJ{6oa?ZFC4WzC0sbhn5FO*H*GZ9Q?{>wj;&MFD2OqQx1Gx)~-x(Ry={i_xJD3+m z$7jQ`T2Bf_Kdshix{TOHfNh>`s2imlxqm%6W55R8PFikz0XRp2ojJZ%)Lsuk=gUnw z(Y))zy-@3otPP33;a+NU4^oDe&BtfD@yq>GH!z?^TU$wQ=GY3bVpp(XS`~!0*c?0a z>$%83^lQ(32mdz7_Qip_Pc2yTN8Uh!(8q%7XuIn4$3*Qur>}y~*y5_i#R%oDdY(fZ zg4d&?{rN^@u!pbTFldXlJMW-p(}Go)AroHuk!$ssOo*twHsm>uK5OtA1yUg)U~~`; z_IZKo-w2C1mO%CUab53JVIaRyXf^J}@Uk$Q{23qp%@RhWfikSF za9(TNXzds4jSZGI!;cR8+KwN{|6_aU36t`U`+#c4ob%jp;odqE@y{!}(1l-ij5@-o z0a6f^onZkPUe2`r@JxW5+uk0Y_>_7glV@!&^0JhJ1@G=JEL9lsmlf!}4S=S*628b` zpibI7jH7py*R;838Eh`&-~LL65_GQ>j;{d|;tiHDd{)&PiQV_to&<~$hjD%mr(zjWduh)TF|uUtfmE=W62O za!Z0;c186wTgP}-Bp-=c{f#X7cdvshZ~~0GgARb$mb_x11#upguQ!v-SI2e_*3d{_ zpX8+AQbgK`I=70AAaObsnPzJ7kA`|te~>bh$qY+mB$Up#Wyw3lxwF~-5@4y6cHjW-qG!|>#!v1NCiO->F=<(M3Z>771$aS_gGMTNfw zQtX61Hm!z0|0XA^8te6Oh)o8=&Rz3MyWcqmczR;lNcf_1`aQLv*5}me1r7wZ?EED! zeI$rpKb;rR3}*#K$F3h;DcSW{C1JM#Ah~c{)QEPs!K>nnt61Lfg8DnptIzrATdhJv z@bkpjowE*$>qllkMHr-vvk8Y=$8)79BfK`@i1F~r`$D#5QX>R|c(U92aaTjpse?-q z9pv*m%#t_tLh-?K3DN0Vu0vc$V!rQS*U%851mn+RAAFM6*Vy=`e}o3OYfADohvB%S zh8Wy(*jRJ76c6lEhQ!GL^O!u5t#`nXGVLeVLcQot-7e`M7w^sThK{R;54&R^jG-Cz z?}uc7KxMRQ)joWgo&Yd|*vgRUU-cjXxoneiT(5`Zl@=+$X(}?^iy(F=cp$$1Lmm^+;;Yrg*NI5rKYCmGNSloJ2o*7Jlg}{ z3OVI}-M&6ThV_%7}8)lcLTalaZGR3iEBk2HEIW~3rD(uItV+Tj3?%~-B8 z&&t;oi6?d~9BlJ>G*S_n>-x?D8xo@LCpqYfTh}rmu|P+IN}kEvr8j~ccUFx_IflJB z4rWB|TnGOlGqgx|&I1e@-y?obzP2)ak+kG2zIvb0Zpxwld!J#i%|M9URKCfDAsrNG zcj{wH{VT7<(r*R_H_(wo*nb_}j|)TjYMxN5lHD1Ros#b-b|+8fy0*8sUmE&ECiVo0 z;3c~~+TNZb@DJQ?kVlf0~o_uRDx9G8Jd<9c@*m(|8-bUhnfXe z**5oqG-YXmEHY7vvZ681svC)Q-)SQ8NhHdpI%WTQ69(=m-^I^py=SCHxwMK;OHX>q~g}QrW4Z#rEpfrCVOlUArgQZ)^ z$pmxnL2}E;NG_psDzDgOYI^I0Cjq~A)I_Ez`aY*2P#sv4j!EQ@yABJ?NEjBW1;XeC z6$>1J=)oTxc(1It?ay1^_Vb>W}nT&=XWnV+6lAZ!GoTJdkW|mG~;``6tB!@*u6fNA6lXaQQja9r19nwVG$4&=(QtIpL z*UXK;b0;4n$!I~5Ln9F+Nz}{O%#2qoz2~WVH z5ep44(UO)lHTA16O}`)*{OuNQF;P_p=RZ(gcfKi}MAvLmj>qywzQF7HN7N>i+feN2 zCAGB*>CK>7oP`X5^9+nbnJKr-!Vb406Z>cO1ee5OqFz z61{J<>h+6gxX`w5+}iIa+XSp3**3{xvVNfBhE@UJzf5tNw4|2cPK+(^pLj7pXbleoAkW4lg3R*qmxqS(q84GF zHn)2iQ~#8gwazHT6GdsyqvkPgmVBYNW$$ENO>#h%(GLS7UfU6K#gGPsmSMVypBJL? zX@MgTS+cOlwihmPZ6o>kKJ!M0PLy`{iFIrdK&irxk=38J{g_9N;)ao!|1P8z(R`2% z$1_S?d!zIJJEY`QZ`>Z0E{t^3>U*LQY9nBLqL)AgdUeywUvg#51$DJ!j;|K`#;b?0 zFtmVs6{keHjCK{WCMe3Y(WGR&Fl3$G8p-#3all%wO{|+Dp>nazr-5b_h}OcQ0CtVq%I^J&OsTp z-iBrBMIBG}NTDRzZ^dmN%Bf_TvYCo#(g*U8;vw7KEJ;c^;dmZTQ1D2%pj3f-=K5y; zn~7@D?AcO8r!_uF)|W$e-UPskrc>A&9+z~fv1+@KtZ!V>^{sqk>*Ypd?YN&G(l-m3 z-#>Z9!`H-}tCbA>`gmLs+v3&&G)5*Bs z-^bGuuz<0kSDcrhn|sY}5RXWnXk|F82|J5h;*wxO9UKN%WGA}^fry$KjP9rllw~9y zbv=jzGH&yTK?lG2XYH;S^^nsu3|V>4ddFSz0ownaIzhRZ>F2HKpe@<*k@s8QkVS}G zWUt<3U_QiaHkMci6Z!n`Jkg)1+m7;9v99qf=})T0WLt+g?E6523!<48agU_)GDv|ygH(px>3JO*0yI&3Z zesZO(sJC|3D-k?O-qf@(sNL1`OxzHn+n!!m(d0owqllVQL}H|7AZpwPs4mhr>~wwq zIunCCxE_4FeqwJj+_+cev+6|~B8v$??X3(6gl=vy0l|`%Bu{bAQFzlbbG-}TLf77d zSta*Y{1;x~yPL$pxs23s%7{bz@iyc!a zT}a7?8w4YBW~sqb%B=5q!&NT8J+u@sJ{obpBqw8PCO2kg3ZNgv#XQl?q(M+>i>h$! zO{=@K6@HDg^q?lP?Z9eE7piz2#WSZbqyc78>zpxTVsP_p?;QGxW}r`UZX5vscHJ=3R*Z)RNEGKl3CHPnz0*M{Fi9 z1La6d3r@mC-spg2Im+RUN1vgjyc!zyulMyY0sT4kD(@_!?;}A4D8nb#;$u9`r4=xN z6qYSar`Y|bVC&7f5tx5yhTI4MBkY5@R~IhiV{o}!*#yhs(9!n6aQH3(%kx0&*#ZcH zS~w$eWq9LW?I|mA#UueyiIoGmvTd<#k=0I}to$#~=7gxC!k$tmWEDTYAXn9XM( z&sA3k0vg>!y$DoT^w*L64kpT046#si5NKB$+gH@>7L~h>c7dRuPF;58y*>SVn>(@Q zY>y!eBdv-3y5By*aP?ktQR6O!E(#aMiaYj@4QoI`y`b*)RK+EapwWGyV{vSLJ)G=# zw5(t#GASp*ZQOppfq6K+oU~2Kvr}#oi+?a9^el(lH~F~cO)PdMv6Y}MY123G!@0TUeikwfL#OfwbPlBY=YRDRH_sECW046uO$@5eLPfSz^O9VB1 zQ}lgIuGklcH#{%Lh$DT-nhd-4wTFXwNDtzAy3KhV^}=_@K$@+rgO)2T*gq4qy#iOV^8ttNvh+VMz=N-To=Q8)vDt`SOE+;HNawYYZJRsx$T!uV z^TMbo$W!U>D`y4OYiA@b{7Vv32204n1`87}tIsuLna6D1%}HDr{r{Ny^0*lH_Wy|} zM=C@~izN!7l8l7-?}P9#%J`&85N zdw=FR=llAdf1bzl9Cgp!_kDe?>wUeKo<9SlJ`XJt|I>I4(T1DGd~a$3n>4W<6zjlz zfG04rb+}?Vl$t7i`&Ro1z%@c7KvSY7pjCjnrQS+if08|asc)f1D|NoHCfS@`ShPu9 z+5S_8dc<3dYl23N2o^70B6^GW;Ws=#V~a2L`(u~c^@ALyV)|Qfq)NNgy^n^K9XwZP zS}i__Adqx;<{1C+H{fm#G-6?`LJA?M%fypjm^*^V1BWYjXgfM^h)00cY8M6?C`r9~ z%?v*~_eKeprgDYuGYr;_&E7mfx3PiM5c}79&Jt`m8P^(m%2zs; zR-S@FcAUyV08l zT!RU{kOPT8-z>e!P}LMfo6O#Rnrqy0iLK;`e0zCe9>xnSB$(WNPoOD9_g&|bcLYp9 zni5ni1oEn;M{4O<#UjH+eP*FQ?Xr{q-i#KrbLKGBFVv9cg*pe9mF5HF_ zBV7`tu6vCDgStE)J>F`ncLXD!y8`F^rkX(@0WF=B;=xCkPDI$&o!6YcK+3Hf4S{F9@DNW>sIJphRcAxPTqyH}U2f<1}bG6*qle_x3k1`*Xib%(DtzNF(zS zZ@M^)!cRFZ=)t84wSsm_#Wl zN`$L`5k5UIn%^SxEG;$FnH{5o+Hzs5v?ywQ0O0+cJp(|EWN-@Y8`F?5U&{A_&ij0D zP;`ZmMiKbOzXjy9Sj#EHeHP2ZTCw4{F~$#?yOD|jxmky8h%^8}JhT`Mx3Gro|6M49q` zpX+|#o{eKU(I`t1)ajQ@n?;SV_82=wE=g7))l--8(%<`HL~Cp|^b~9F59zzmer&bv$nQ0JL*gyL%qa z3R+teJv8cauIJ$HL3BizIZHDq=t2Z_~UaXB1(H%lW5K102? z95mPvTO##Yd`L-kcBZq~=5w-VKvpXh&pohN8jBs`4hn1*Z?wnzq}WEG%+1;?Y6Dz> zSv(w69WZTnv6_FdTeuVn_;>CI?0S@{8~^!>ev}EQbb6#8$|Im1I} z6|%E4oCRPEUgrryY+-<2l>~E{FvcP!<;@p}+sf`2US#oc;Xk>3*CxL#=Y=7lmMfGd z752;{9s>dYOAU3s%9$obhdIj@t=FWJ%|+hKwae)Fezh z+AJ;c@ezht=M=`kds6ihi%yyn2tE^PWoM*C9jum{+R07-UH3d8YW@bb6UG+xr1Ss^ zDtKFxMg&6uW7_d5Kc8VJae)gFL_ZBGH%L_jaadT_;5l<gKH}F*Rz= zUdvg*6h1QC6-v`=@_{}?Xg;Mt)|IduN(T)I0`KoB61nTk0l*;MS~LCMU5%)CFjn%? zda|Xxf%%5>GIN+^a$D0DYPDnjIeJ*A5UD;j%{j=&=gRgs0K>DH=4YL->`lhfqWG%- zor#7N7G5NqdD_PDpPv`r?x{Q|RtN48(6J_pX9)$x=N* z=8}njf~I$btHVteZ09nq+#k}}Sy@?lHW6175EKxQSLdWq3KByU$H+o->1bi$)R&`} ztU_&xt*1;~W&=F|86r(mVCb)pV*|q90ExSL84y&NOPtrKsb5xNY1mR*8jWT6+dwj2 z6z)s{^7Li#`)hLOr@iR(R|nL0SAf48i+&DVM|0Re1rIE+hl7kW4En%Vk1iFD1YB1G z+%!UyxM~>c>6K-40yi5P8rtg~?R7x@MkcVq)*EF!b9i$GS>8i~;&SGLbfJ zeAhN4$OCz2CMZ~1civ}2B=iHinBh}H|C%)r5S>yYOSk5{KF^^hwu9PPh6sm5n8Id) zmc5c-i$;f)r%$*m?6(A8k=BpOoCMEnV!iOb0JgTO;#8OC>N8vVO=B=5T2>Q6gw%17 z5@cpU?lnI|Ljs*j6N|Jj&l7vV6oK0A!?AaAg)bI{^v(<#BCVt0hW|e8`8x=z3u7QO zc|5QJ&_8f5XoaFU^_h`Gv%8hDlq>o9tfl3~sHtAQu?{$dul^E$1ZJIC)t=SBf{5`~ zp`0JO>oshCK#U45Auiuh{ufpSq}_yFmoaq1E3hH^qbPIhqje>VCftG3qBW!|ZkTGD z<|tp$j~^=j5U-gDpBIZ^2lS<%hJH!g=6{(S-t zfA?Xrpq7PdK?IF<>E}k2E8rUqqR8s9dY7!%C)8JbI*wTx^NsO$f?(v!{P&^Xy2FP8 zEU+4I@L;i_Ao(kHRoE0kBXOkxI2&sFMf)?|`Vm}i-~ykZa%GV?v;w+OS{om{g$J0# z1;;qZr4>R$Hr`0*@%_}=ncU_rJQ50Zv@yz5j|JeL7$p7K6Ed?^Qj=ja9`78V2Pzp(DLBxpr)WFktM&{|LvM zX$C-(qf2X70x~R?767e8q;brH>Qk5ehclg#DgY&3fq(>|Ue?TPa6v;AVw-nltLsdN zfFKUV+{N~noBsMckH?#>9-UOQJ7?xC^rsY$V(*lG z;BOyh>PoBF`)cpZ<{OJF3-a@0LxN(=Py=rdiDRWp83H%Ya}Itbx7ES`%;Yox{;1OK zjS#-U=NF4iPM$vw>&$UhlK9SZ8oDfA`;v)nP{rz;0y}aRP00Vw{z>hgI@Uz(^*SLJ zlIh&>LSW#`w)>MNF?Fxnwr<2X5jnza<7<#)d4+0%2xuW=T~n7C88eijK6^~^gu&3K z*^1F0&JxLu{EQy_-8o97>8Yu&&!B&sjjsH+Vs@VT&PN_i{Fd1Tw-u|-?CNx1SDRkC zVroXOWa!jSBNj3nqu~5YQWT*geL=Z9^61hn@+T0WbI=8nbmz!FAf#%gZqrrN>H>p= z+TGI9^85EnGQ*)9R`;YvmoBxJI5D4kh57-t6LyotB4}JIi7zImBsN-cvvfO|PAezb z{ty14n;0AbmKt zWpaJLoE0IA{=GTO`>=<#tmt{3Ab%ioY)6Mc>90E^#o2 zU+Oa87!`BntRhZ>w0~5OXm-U;P1{?Ytz-kRhNi&sCH|Y^y*EAQ`G) zJkcsRf7|9aod95fTF9PY@$g!fx;N(qO^j`H>6n;+=!N*$CAKFdB(zw4*{xdE*WxB^ z?5-2PdVYA707hIgh{nVo#irSQVwrd_Y=?5`MI0n@=?}_2-BE>TQ*7m8)s;Cpa_^6-q3-1K_dc|0Ci5(C@j8pM?_V zIKH1IfMG%Upk&A6B$xQ8S!jY%2E^wQ?boJ8>v|28Y-Zx4BgooiEucQLqGFg?;7B^L zAadL5a=hdmd`6g}AOWpsuO+fyt2$mf%8!+5X8u@Uf4SE$Yt@=44q%5jOhJN|pwR!R z@Ws0DFAP<>qly1K4#$I~W%_-|)%r;|YY(is1s8sug|(HF!=;8WaI%E~Gn{r{PK{aS zOa};sJpP}}Zf58}JMY+UDVKv^91LCHe)s4p{Qop0JaX+B<*ZjPpes{hW9p@P4bQL` z37LWJPN5WdN(-z&Ak91)v?Kn)>7Q6hSt?Bzv5)~hB6q6BkgDm|%&uPVT~#uxyL;O0 zH8EzhGb_)BR)s?I&alPCwSt6baj{1wZ_-a{If<3ax4-Gi_Jkd?nQ#N5tTZZnnK1d3 zR$+0{05`Qx!Gxo)lhwXhhcE45eLKp_ai(n+E;mZF4e^b^<6vAjladKrV<+=6bO#fPP5C0oQRs=KwAPF7w`fH=M zS>by{5jyXW-JjaSA@o5o>GaKL-l12M2+$PiV$e__=sIl}ML-i=L2Y9+&!nu0uzm^$F%l<5PyT?IO07A$-|0-=MDJkWEfl3%n z!4t&KEVA25(uTZ0h7QHhen0qv) zor(u2isM8Gb&$9%JQw|3A8i-rX*`jN1?~!AKd!56Zd3ZJTXP*89h7imSC{Rml5ut` z>sLXiR&l>%`DzP0DUzaRMGYyhJt~>f3T^!bS{!OKNAu2(y zDTKSC@MMq>W8jnxR9>AsHRubujqd-h8)!S8e-He6oo*d!dpY=7#{H$0CjQLG0Qe_OSVC>yiqrgdB*GI_^=G)= z?%`%{(*%F2)-ZJDc$?(8+a>|PRj!Vv%=|`owwnK~rn1`whOl8oC8E)M10@%i51+b! zGM#S}%m{W13W`1}LKW|UvowN`v9Vb^2CWFF10??vyFTk0w5InKm1Piy!S0DYuV6e1 zcU2!Do7mxBUzlhR&ma?zOO8lqa^Goy>5=kw{r66@s$Ac}KXm*)wb))LeZ4TmQ?%@s z!;B=*iEZWJB-%a#yH{M>{?LaCs#AiY+YSCPvS$WN2yY)$*IKs>iGbM^8rx-~w%wt>exdmYGJIr$ngjq8gH0~Vt*7C zq7+ghMhzBI%Zi$X{FfBw1uPSGGZ(-}NK>l*P!0m#Y_v+(#BBuTZg zkijpUKNE&Cs$$$6(zY%BUak#OHssqXi*)#s-Q2MwF)Fm#jct1>K$!(~O#WY@LG&Ea z7qGN(s5|uvojAh5N<84~)`nam^_>Ihp|-VjcqE0`iU&VucWImXd3!heVEwyjmE@`) z+i!YV^G8Py#ykL}=diMV{{gQo66kobc4?4g#)5-T`S1MJz#&II0{$(4W;r=}5)5S}r5F{2d_3v1m0L1P=}I?4 zEz>#NN;kGvGn5}N=>}@bd2PL?ub!krbN@TLq;KQ&&Yn;AQ=T~=I_XX3u}d)~x7dz_ zcrIv5OW<6#R1~2uI1HNa+T}MLioK~~8tV}2@T}(a_Xwy=6AE=;^_Rj%KW!R=uX4DD z1gMl|sEdk0moklq&r_79Fd7>6zhf_q0cOksAqAm`6YGFuSLZb~Dt#&{lfOX)vV&BN zEr4)*KK?#%>+qNh#$q`35SlbL3=&)0*nn&Fm5m`(ynT0r*&eXZENkarJ0J6aR)L5z zj@$dfol+fZ!j}BAzI*O!_mnhEi*}NCdJ;q_+r-d?%Bd_KxS!Z79j>t^SX1tdpo#t@ zO_D$-9;_B70b?($U@c_u?8EA9mnf}*n{6O*!2xArR^js_Y3cllaQ`S$B70^3I}bGf zEXSDx*qX_;o23*?!xaC;;yj`#zrxtbPFsFs)CJeYCmS-mDo@IUELQ&|eicWL*`7j; zFK?rwJW38g9@=rE-KVpp@L;rYZ-)B43iD}B@4XGLcuKUGZwMNdclWJ*WH=rHR9a24 zP}+F*krk)9G@0#G^iT}7=LN1Lk_EaBpF~)+zWlOuuksI17+HJM;L07+;%~sq-W{Xz z59e_z=HpW%|HIM#Gwvz++o*v*&V-HWTu~8j6Qh`8!-#6F;tAzno zYo)>$C9?}khuVy%$gYb0fwfy)0D>Md^^4$iw@yTD%Udg)SeKS0Ok^>hG9a_^TOm%4ek-@j3 z9lR|qF$+S~lb>IDC)mNN?8jdup*Gak8#H4QDT!P}1%)xYq$R?d;P7wrXd?0Zvxhan zY}Y21zC+pDB4lm0xFJwFB{LKJp35LH6rS3fvmy-kEpf@Or+8>}_7-X!Rm3!<{c!0q z$)-!k*Obkf=kY7Fu%6aEYs!R}t5V#^Ki^7N&NsJOE7-NHH{ z(Ypwg<@nF7)R0X9Yp<6(z<>qzdVRSUn>T-zVrH-z=eku(cMDb1&;zkxjn zso@2KEs-WtG;LS_NVlmb<&u0@yQ5L+zK`5*w+9U^`+HE)=IFG)Q&(Pg8_2e`6iV{p zC+4PjjHW*7VAWa!01{`rCf<-H{;a}H%Nh}73RG=(3bv%x$}@+|svbCorT7IY&lP^h z*8kOAIpQd7at+hTRjxZGERIm_JPnEAg6?jFAw_(FSi{>J4@K*cH|=+}WZh&>59Fm6 zz1W!~iF>M#e`@&FeY8{Ty_Q`9rF73fhaUy$MRqUFHQzU)EP9_lwj{3Y=xviazZew+ zn>hoHPzyW2F`2llUPjfz8UZt-wxo_9vXx$q2To!?FC@w+l(s<75&@iczGAdVmG*U& zk%206y7i=+@8M=q@q958RZbLm5v!lVDOHO&8w*Go5PIwagfv<pWKu(bxOo{*vM<41C;K16s{K#xe@>M@@qleei6l} zRf|?jJ?T^^y%&Up%2guUerYMLiAgOxI%W5-c zaSA}5W%f@Pt|1NlaQuJYx6}>h2D3uB3r4tP*fDLE)+k9${fcGIk2n28BY=Ech}^$!p|;PXPs4=>e>0> zg{y2mKF+t%ocJ!o@iQ9C(4LY$8g;N_Yx>f8Qa)%!ZJAMz#?;H0OeS<^HT2gDoN{3U z<$yW;QR#(B*smSnebJUesw2*V?|?*s_Nl>h1li zh%=rY{Ojs=@CA;)Ad=c+xZl`O7!_%jEQ;^VKj|`8^ewRrwY1d#+@kq;+u>aGva5B* z7I!^4wst0UdiFRpB3@6%$WC(zObtKL)LoJ^zhiOVY%f(Ju(h4ai)A)^1OA;`rRUKg(-7}lcs6*b+RApiPEO`g)#nq11*hFtNnYa zvu`~i00yQ`lVzzPe0?0=TE4+O$_6I8acwm!uq7$Y_D54uL<}DIua?x1Qlq~kFB~TQ+HA#~4dc;WfPE0^6Rztt9W)}ft zG}1ZUFeKa^+Wddnw)YnkpEVA(+%#`$6bCwJENu|knsiv9w3Oqno3KR!qrTJat+?FA z-`ODONsB_?ux;t5my5knk%%e2eE!UZV~*3twbMfz6xaED`p{(AH!Q#C?}^eQGRKF5 z7u|gT__~&9qSW{yG@2fe`^Vko7j4B2gQ~QtUIpLu54M7oEWrU!D${vq%s@|1fgI*= zhco!n+vRzj>xA@rnJ@D1N=kcCe3w}NSHvjpS{|Xv&g2VVu7KDU4%H*Y2ifd(V1GsR zyczUeO&B2J$4#og2j-hp9JY$JkU{S(>iwzF;%ii;?lIbwuA|Y0j`R|_`IU89@=Diu zhC^Y`HKLWz87tSFQDf*0e%ks0G1^?+ZfToUPysKOT-rzD2Q-1^>JB?(ee^6YuMT3G zz*K5Nw+Fw{a#z^n~Y-}hzH|Rqj^m~=M391uhS%b5Bpg+4@U6e+x4<4rt9+f^vj>{>7V-?e zv*enSbQ;Yy>E1mrE#QilIP=srb}mZBnq`ZR~@I;|9rl+TrMX!7rQP8 zt2OgyR%uV$+!Fw*Ay!uV-efw@0)YTn>AE4W;&nfJR3pa|rVV?&uI$%Kb4aP7mxO71({o7LQV45qP*}kcOP_ zvWy-u?P(5`<3Bg#yIaf78Et5!4?Qzgdgv~GRd1wya!aGW2lZx2-jlB)T0OfBqZPe# zrM)NEnbq_LcZH`#m;k^#73xo+1$4%fp6PsD1!EdR4IV}$NOhy)vVZ7`q9QRp9@di! z4Wxxd;qNb^WcppCG%K4)LI_+o$VX~eh!tvxZoaB=#W4)t@gXB3?V4+;94gT0N#)L|9jCW|Gj9CQ#sZP^NudN*+;x`_6vIoQM|GH^BgEM zY~>^hdjci_V@DylO_~iSDsZ#OObd6^&l{RZDmr9SDQAXNOr^C#t35=^?fVs$jH!O@ z*zMnRG#atP7rHzoCT;r=Cc>din4Vk}>puSXTTg(I*Eu{as1c3i72+MkK40g>3;Y;anP;ob};PHMyK70RL_VNKwj(iQ6Kv4b_jGR)gkt{!gbRlUS zWcAuMnR8;r^#^DlD|gj@lSQJh4?%TcQYyH9AbgT_jO;B_T4Es={;gTyW31xfwA zcGt5D0!pZO7^7KIh$Y^-G_hXzP@C*xXA%MXQ{^!LLa3>i8=IQ8(lPS)63PiM(%lAz zhVaYI?1Il##0&MUeG0kVzxHF3BU4P0a^77WOJg~UmcMYF+2X#5QXIu=?e&Up!M}J0 zQNvURX=6>(IgnQMOX}%^m{4+38($8JI#I>;GMv~Gb$-|eOB6D>Fh;b;@}VVxwtB7b zDOfx0-xscElkud7+(P*V&Cem<8+d$TA24IRi(H9@1cK-Jezf3TXsr(zfi0gx`O@FX zo;_+a$Bu8G6-o0E{U_ls?(R%~(MnET@8Jkdaqps^OSfai08a{b$!9V+-sDipd|k(f zHao-?nHoX`d*6%4;Kacdw$AAoq(K1Qw9Noon$3~r_EKB0vo!3%oNe5rn3$BDc8&AMhhQm<#2uKtiS z)97OoD}4Dz8gyBgzn8iqrb9mRYV`(*t#QeRkhL0YGGeG>m zU4URG;xm6<_Zb&~HX#0*#-P0>-WJVnR78Qi#^!!@TVPDD#@BYAsK|jT)~JnGpe*Yg zy0kp`jBX@lrM0AQkg%sIEsatt9BOa@A?Bnu*cOmRGFO?-k?418D7<&>{A5MroItLO zO%Mzt%QB$#{9f>Xmv?b_kFZ!>-n?FS8-iYvmVW{*VUv<3vGkaeQwY^ePKD(X zk}Fnh!htBj>BZ#kwJcUZ<3)NyP$)F2CyPG+Z+H6q6d1veeB0W`^Ntt@=ZB=fgU$=T zId@JrAYp9q1>;In`)%buVs#RjegNt1ci;#HY{23Mr}uIKGUvf85bA|9)c0E=f1Y4S z_^IzfeeQ=D7h11OXU&fxM<)*b^{Z)`!P%KV4(~@`h8dh*wX!~vYEhKw>`@HUU0~V;KGYIW3mG9gCEJyI z2YG|^gm2B}8486yV-~Rv9?b-5#Uak*PTzc$P&p=}^YkLGspoO^gNDY7uB>0G^&(^F zRF=EFbf!tO?ZxS|qdNDmMV{NdPQ3T{IT2Cu8R?g2FDg2GzG(aQ+@qWJvob`tA5Gt} zh^BGesqW0WTh-p#aG1$?vT~KyI<0RnT>D$!l&`37sJ?k~wnc(PQ$_eb%Y7vq%{@Ko zZ9Lj!`=plwhD^dM$#Bk5`va`Tol0j+ERIheZ-u&qQ$Lg< z_pdqJd7qcfOd8lJ%kE2Tzv-|dJ0m>NGw%qtNenfkeX_+ZsuotA2)t(FJ7%vj!X2a?Ym_=CxL(Oc@wG!<9dVAA3R3up)d^Y0WcZ>w4oLJ@-Ip z9twYeTRh%`e zQeuTlQ3`gXVeWTrXauzX2Q%8NarJLiYCUc@dxQ>OWf^-dk!U=6o>C@cRCabGG|R=K4y$%1qrhDJz1|54evU+Cz$7~YupvWSGcHhs$iyd z9OxV>e4y8LG2F3;lls;VJtUmq;y)KHo`hXm=Zgwfe*zC7T3~M6>y18>c3p{1{LQxZ zas%_5T(aOy%H~ndsfJVVE$!J{Gx+u>%y8VO_-dt1ia6By`i)R8{3(>4B0Nfqt@80v3nL;)R>Y**$9fP%J|64kk}CZ62D3UCSXZ)4BsM z$&iYM{2&{Jc-a#i;f}*X=0gVT(n%vz;;z2(gYk^)_dTZ-Lyqav|I68Oe*H;Cp57o^ZXlFFFvG;0t8MDBcT~2)}c&H)VF45uRl2sHYA zbN`WEnt5kQyU&`T50DsT?7BFa%`CPRLFn&NuzEoSsIjV$okA(d5WXh5kDacZ>5I1I;6hqCWI|*VmRJaqskWdx7I9?gM%;pIwpJ=&-0nwV!O&N&t;}z zjFVIaC1qvg%$1#y3qiiNS(RtbYSXVrHNI#&8zhAfVrP+|4(wFL6!3413On<{qN7Yb zO0&XZeC+2VU$p}|9^RTCZk$#l%w#7F+uxo!rZL~&oW*;hYPy8%tFXI@p=&w=b?iMf z`=@zePWfPXo`>c=Fy+#(ts$^Otiu~-&H?od^|^xI?g|)dWs3a`uyzK|^_L6r(8^H9 zCnYJlEVq^|DOHOLr&7viPN7jK3sI@zb6)4Pe0L@!=N%rf&@#S&{i0%NC4KzYukCkN z@@cMGcP`8E1guAQWDD6ws&B40^0-!$rq4hi!JU>AGI4NvK`~c{=)9S-YmQmPwvWJp z_TkQ3MVuMN76`V`)rEJO)X-JPC3F)S-<&Na@pIq$FHtCN+h}K|Q;ypI@Co$xhCkH+ zA|C@=X4+7xR6G`l<*9lJ!BqTbTp5zBNv13}8&n}Ie|{x9u9S=nf6QatOQ0SI%n)HI zG2#$Tymph;G;W8^mb6DLxb+zyX}GR9f#YT}rMI}1Hq z{AXy#ve*=&SourE5%dc@DEX%#UP<474iP}n3FT*XetR_Ck)!M7g_Ef&zT{QeK4Y8^l zc2=qmcG=C(Q!xb;?W?b;;G!X?VyY!4fz#7N7jHz>ONLsJMNscb_u0MS8wRc#;xjv6 zB871J#|$T`!YFHPAlY|kGwcwNRQb)t&rgq7gh)zB!LA9C8imSbyF1Sy&MEfcNnZ^7 z57xR^8LGG%CWan1> X`$pV!vKzWl4Z-gt{>gARE!2Q(psgHeO73^J-Cu0?=5jB1 zG>-GeFDz}nHT;S~d9Eu;?*Ertu~A~1-FjP#1$-W6h;2pF(9B!Pg^(-Ouc?xdxJM9GFs4bn77N#p8DAFxK9cc!*ttB4s7K`J0vu7|6XaZuhaYgcFk=pSk@R zlY1~0@mb_sJrqlCFUP9M$aRREli@uQ4=E(KXwbS|@xo`ubE08ReW}P!Xqy=h?4wP)f7+& zLyfUEZ=iVfIDI;3j77(DQd7a<%nuAWal%AqD5&mM0H!0=l!0(YEt`$xptRE~*2>r8 z%Y)@#z)RI1u_w zW031`)DrmnW@(b)o9Mm$UTP|-uazuGiW}?SJMs!#T?I)ZP1~t(7=Er{jAzdf=YGVy z<&w4;6s7(KhBH2Z5_)`{P!sSzyMN@cc9Lvpdszm4K0WWpzVTNl38S5xja_$)O8RG| z(%zvV&nMM$Y-$=C6JeLNK7pH^mU9_<%O_JQcfEwq<8=qCF3&@4Lx|2asO9mEC4g6? z<@RAY5|`YNqhHsHSed^NfMs0+>_z^3v7K$)PY>N$ z!AG_3?6v$Mz{U)AzP>XbEiP9IV2kfk3stQA@O;hsaha!s|=1)5AJT zeJ9PKhvu4o;Bw)}^$$hFxMiUz>Jis!A%$Z82l<6&$!cNTY}I8y;3tW809uI}rZpTw zNhokG#367WJCx;eWh!(WSE2?O>%M<@>z%%O?eVf_zI8A*x7llX)BDDvlK1#Lg&MSq zxqG^yRpSX5O@S6NU-Oj{#V7^K$-&$65^@g`yYiJgXmlZ)KrWy9ztgSVkHZ)wd>n$c zFvjhQ_9e#QL$2@SLkhxMeKgas5lu}k;!K_0j1_|aNCtT$mzkbH88|Y>*do6v$XeDH zMPoYoASnP`9IPgYhX{R1l)v0D!0COh_6H8;{x@o!&|#ow zt?COe-r|IJ>)CpBDYT%$!WOiM4l~T|?{Aj=EC@d}5}1!Q=OY|F?PS0)t5gQ<&*Ie@ zoi-R7SBQ9bgfAOt-Gno;HHpNuYsP=hZh&%;QOX)d914X0FY4MTG|JHnr2Y3kXk?+H z(}HlZ;7y|TR6LL9dv7@4b^J9i>o3MM93N!JT%BA8 zn*FvvJ?Lhy+_g8;lY0@W-hq{2ANz4!Dx!z{kh+sK}l+p?P01A0Vk%5;NUJBt(Z#D zNjOtdlh3v0jo!2wxrq(+T6;|j<)~#V6@Cra(SCghJ*r#?Y@#3*KB6~vClVdA z*uZ-*5^CSYL3IpYnd;Y?%%e~zOdUhmY{ow@EC+dq*N`J?eC?OL>M4PXUfT~Z!`FKPn2Y9_w9j(!-&Il1{@{DNODp@H~Z5 z#)}4TT4Q~^mf5-}`(F3nA`!~DS!ch^8Rh4;>jzEpgKTOBQw#fV>o1QIP_L3 zu*WZ-?`Jr0PpU36@5Ztzlyl3ph}8{-gOc}MJRXLBe5n^MTzGr*Pnk<{;$RG!Rej3X z6%hr?CDWK!tN(HuWWzRk?7rF@lUBm}dr8J^USl5g=`zN$YYvMSK4)^p_Mc>XN{gym zcT*^}loJ8_{U%1*ZTx$SZAKs3_}1h!E;Icru{~%sC1|vvX}kfqL;y0(#P76;Fq38q zC0FsXn%`d%FgJMu^N529yHjeoP)~Gtywi|**1Y`smD@AcCV##X#C#EWAUX@3yXqf>U1R0d+Kh{su7cb8~aUK?+J+pri=JDP|ch7H0CJ z731G4#>=p{G@R@=ob0Ta=tK{qVhYCv|6-YJAg~7~gD1y{mQ)uMr_I!Nr*K8f|#tSnDws za(KB0!w2CDKJFi*a$3$8)!FxH+tFI`J8cB7Z2X{Lo$TgKbcY813RNh*rqXdq_Q>!h zo8e0fH@Nr@?hhJto%recwOf*MjvnLiMmY7GSTLJR2ma#%czAn*cLLVrF|8SeV90fM zb>S1AWgHt+=4pZQcJ-gmU1T<>&Kh+)?s{B@t7=L7PdWDoRaMo-h>DRRj*bFdVNk9A9eKx0I}{ zKfT{ap?up~Gk7HJgj~sm&y8?BmoW}6UJ}K@p!7Y@&r2s>QCT_sJN7T6#$wzatxYqt zv}Cy0L|k4calfkLaJC1K8X~`Y!l9y+V3AnW0YI40TD=?Q2@h@vanIJ_;4Y7u3iF_( zu{Kpg(+?WsDCc7~`G7dXu>vuJ9-YSpbtxjngNoX2*oHY9QM552} z6=f8RYFo6KdLtk=96EG}ZjJp7XtKD?L?-odVuGc115QE+>w8r5raYSozuTB1{y6+n zu+r0d1Jp^y6epnnymtVeQd1Llx4*r0!s;83Z*%Ln2!)zoF5eu);|KDPyfJJuRt!hR z@as~(iTr0xqtAp_Iuf5hLN{}`NPNzOuXW$5{0t_SxS)`u^!l>;@)XBYawSeWe(+_% z47(Tpgx=`~_F6vV`Xc$p;_2$b@H#r(TEJ=|HY8-46T9#h7tWzR+gIj(7fZy1C@P|{ zVI~)6taiWMfmpZYkF)c~m*ToM1ada8Z1wJlS?Bp$ zj@h}o@*+;-t2%*M6ikI^G;P@W6aT+zZD&6}L3x6ngVm|HMmmp%P#RLJAR2!7TV8P1~xQbkHyh5 z=(`r}U%0`)@c#bCNV>$g6d$9K#|z-;3FL8P+3&3KfGboseP^2|!qppcRFmJr?a${( zVtZ;T4)*eEP7YQW0OOLK**H!2zPEYphGm~x*fFc201zoLw3VI7V$UlEmmP5&JpRJS zZ7=Hl%M_)`dEEum$WPn{JkQ))8IlBqMH){4NSCtDnvEuX$}+$)*44$vf`~S|vR#nt zvWtgl|I9e80z{GX-wD0FECU81;=$R>d05f!^gsBdT3%v$7~|>LYj~-vQh%arJ(rbF zjlzBa)1qG<*d#zD(32xdxTgnPMG_x_-$BBBkVr1~iB&!idrNYBlGI2~4-cSl4pw4f zVmAHjZI;@Nd0-<`@2>Dwk8<>dus7RrrFG=Og{hSslxjk^zvLKqYmGIkm7M_AOqIg#`G@*=oWkuWr+^TLI%p>Uhk)ncV5E$Q=i#nJaZHbsZZ-F(8rMA$!^R-ax*b& zDwN_IoZ~#Ci$lB0R-j0E-s_FIsCfk(+lfOOf=7sJV0=Y8$^a-o8BYP)#(xH|CKtk0 zm|O$LY;N{RE7=f|PKK~AZuU1iveuEfNdhlf-WeEbdV720_KQ;rM$@MfAU0JU(aJ_A zz}>|rOE@LQC0pluTXedHE1g-g(Zu3q`Hw5d`_|@`@v@jcpw6(I0}eU_7zb%O1g z(}19@;o$=^vj=?h=uBzKx%Kv9WHPw%Xk(VM-|5qI)-5QH40$!eb7n z=7ok;Y_TEIkyC#o(7h}JWwxIz! z4K0a6_q#{Z0N%jjV9=MCiN4Iw$DaL#I$WnoXKWl|!+!TW8)uKZg1flQE*N)$ag(l+ z&QDB!JWzanY)My|&o-Pbr?<`3qfio$;LD8tfsuTCd>reJ1hi~muB9J9YQuh;fLH3! zvS+9tnyfEU7|v$GLV$RERXUm1Ao>^2#%iG2JMOm077y7e<0{RH1qv9tUf~;3dDG$H z3%4=SGU59zZ0SM1n6kuljJ!YH7@cbu)z$C6W6szE*7wiIFIXXhO0 z%#$?+2e;j)m7G;koXZC(Rgv|B*^nEjA3)SsUS3yrcWTXaO2J$sOpMKrs(%6X zV)z{ zYVZJk?7;G7FF_#^J?#v>n~u)QAEc#KoS6Wy zknTxrtz^0A+qVHIHQQ4I2QOlH^^rs+8*hb)p(nrF+QQh79N)8oH_>b`feP#Qxd)C1 z?^nV~TkB44-^W!z;-l=Vw2N=hHQ(d@XxDg|~~!wA}k(=!5l5HWQ6T5e>v2{@anRB3SBL=Gqj1i=YM{9pOYtggMLM_f)rznn$ zF)R#kFND1dFp{NpvkIlzoF^zs#Ij$%Iwd;nRqaIs_?~Av2cV(BcL@sQi5L zgcn^nh0C003{j6`T#QNwam?j4><1K1LltCj?AS2+)&1DE$(4_$aQ8%ZbMbVj353IrW$gRHn9)Izplc> z0BA$WAdG=JVyRt-ZCZ$}j4?ouAwHt3oL?OT8wm@}VEljVi zcYSgIjerHQ%|hj1>9Z3~@!q@sc05R26~do+S6*hRm%(C8^t>}0IjCB9?(P-6yq3(~ znTz#$h}G9*dUQbNtjS+lf!r*#*EPAg-f~&%8c?AW8{ng=&PA#{N?*+&itlpMC8K$1 zw#$SAg>EBo;*PHm8ES`X=H>l@M+cSbA{PP~=P$&d)2+jG{3sNs=d*nF1x!witLBN~ z2WwizTGuqx*UvdoE*J-X#<+Uq<$c-nKC@PldIj_(L;bY2d|Wap@fb;Ra!#X;mL;}B z1x$@{X2T9Qg760i1rU+eJO^x*`1h>3^RglnH9_Mw{Gp*Ed=p0hEPyuD3aktPBcn61 zMFfm5CNJ!|Pin8RVPQ?NR@F2kWNOb>S*f;Fq@~A`@S<+7%)>gT9WmN>cA-Oa2FMlG z#jiX``m-wS89l%)vn)gcU0nf&tL6bKE?;I9%kCQTH^9&aHvIfU-+BJ+dc_NdsZp|| zK{)-s$Jheij+WIPM67AHhk&-GppklZ#qk8V7c?bEY!0Y155KXq+V`aT;9x4QyH#g# z!3nG7N)^{pd#E$5V$p*Vj1|2W;+^3r%jaY7=U_$HXD<_PlEeda%OSQx=m3*CIK2Q9 zEM$m?HsFi~tHCAhge5Qlt9ZBRh&KO5*O!w>9M}S+17SO`L`RGa+30{O62{0-FE;ho zJmpfIn!2*=t1wDPdl+okw@2Z$2QFF}03{?HBO4@S5dEm<^BHi%~o#6SKqn@ z%mi$^0-SL}GEinp-Hi&z)~ioPhkD`jjGm;CPbUoe?^K+O14acL5%XsPOpU6DRsQ5X zseoUmYtat%8(G}&%n9)K@ASdsYbOu1&`t~OzO5{yy70LmEzg~>wZ z%9;VjCVfI2E-oMQ{f4iY#NLxs8B>zQ0{v50XXh{rt9%5b_m4FSKd-L@2i`c*J`zJp-2`AOcwX7K;6H}Fk3&{Ef05?3dduP|sgPO$x zkJ6Na`mQI9T`(NJkTh~9$){l_?49Z3v(lEA^~pCrG@5B+Y$4v$UgW)`Ci(Ms4(yL`G&w3pt`_YytWNTq{&Gx2_QnCTZAj&OEF> z^@dp%G~@KriKGwtJ^kCqu72QmkG1-F1?rEQ$49%XIM1Cjb`vAv;WvE`l_!&3N0ZG1 z`>um6G5Xc8kH*vI`BdBr93yR!uw)#ZSUH)eA%PtdfT+~eCoI|6?&jvdYq-5VKWOz$ zSlrQP1(l}bCcwG#y4b4&D=b!{Xg{eQeJ9Iuo16%!(l(w4YZFFT;KRZ;tQBGFo0X-0 z8nf!VOEWQ)_;$Z(r}narV}nN)9(YaMPT^KW**Er;KW=e*&+oqLJM!aJK$EMse01N3 z*3Sc^+EH|v_;0t0@fM}$p)L>GJ-)wOMw3Tu%)(ate1dyzWzq$;v6Q>g9=nNeD zBs)x1zA`>}mo$enT7c z?5uLLGkb#EcK~a05=ZvWo7@o8zX1a@N0H~fWhY)#1>iz8+#f#Og1{^`0=ktXrsMNV z6j~;IqOGVgBr%wRC;6jKu#Zc2#Ig`E?)>qan1Ih^Jv(c&Wo=m>IYf5E3=oiS5-^LJ z!EKcfr3ORk_)GbH0h0t&Nc=Sgl`XBv%A?fXH!qQ)max0j{qFit=VhPu#i-0~?^zgG zg3TXl+1t09}CT5PRrSiH$1^D!e# z>tAPzQkoAVOhrSYhAu3gxXKK5v#Nd8MK~r&R!BBeFa9$ih+01kO6p~_3iE0n7SxgH zGenM9R+HfIAUp{Z1YAWZ*NeJNTu%iJG3^00UROG>$ZhT&W(8sAht37My22JG9aI)# zlC;kkZx0d)B(_$)#L1H&*N*^LSZJ($JqPTG zv>J4I>N{sA?mxI4Z9%eQgG)`uQ*z-00X7~l<{A$&mQ92Kl`LR?dt-=MlCtlk`(2be zRNICI2wh=4M!L@G22kGIhmJ@v7fOa=&#DN?dvsJ(a#hD~;a{Fl`VrbL0*N%fcIW)A z#?}I`L)_0Df?6~gOn}ow)Qot5JG&49;i1b=ghk|&L+E8(%}E2-qhV=@9?sYTmQq=4 z3z=f~+~3;pF|15Q7<>f%oaxV0etet0SV-iy--oJZ(qAhK_eR3Zn1&LJUN}iWv@hoB8 zK|&lDeaRi*(BVH*Q=zN{c7!eu4bNujr!N2B?}tE&L<9rld#5o#Gyin8iXK4Uu(}K} z8Th~0lH}a><9Dx@k9_uQbrT=TM`!@*0>vn_1n zLpNd}0~3p$o-gzU@I~+_*q=WAq^e_>We&ug_Uff-9`1OL&N9XsOH1qnOXzXQ)pP)& zD7*{Xmg^vZ6fspOofyH8_hPokjMF|J_(tT3TD%{Th&ko)tMJwQ#`+3~Zyq14()uFY zE)~;{*j8J8I*(|oh%|d&1x%CMFjJB%4K|NCh7OeEY8nM1T<#&glTn5%k4wfqN=-#q z5VoarEUlY``}6sK_h%1j+Ta_8EZA&jR%RyJW(j-x*5+vzca=ro5;me~)yrP*?>xwS zY&rt)RKyc};M@iW_RzO)-w>dYnu>vxyaAbchyxhf!8=4y(PYPOP*ZZChp-LY0^iE=kTvLyzcSg{TfB604Xhl&;DnKXM8=i3$$E;TWVh zcLi0#DEgRjxFJuX@Z_t5iR}oPdV3URzRR!++1^RMN0VzRFegk+g&e@ra{sMI7+19A z@fc&nPSpGAm=$OEqfI}PtBCzw)}ocQ0ZsXyT>v66hQ|Jw*RYcqA(6+n!(;h%9M-3@ z*rdv+2;X{OWfyI|K?<$tPYf8UJO1KLwh`>HrA09%#Cc-$04;9Gc$f=zJR7$Nzq-X` zTA25%z%tBGN5Dun1@(+9V1Wq+=BKIc$cM4-|7-8d!@2Cbwl7J!n-GOEBq~ZNCCZdJ znUau94TL7iJWCQPq|jg}LxhM(=1QeVGA9{InWqeydC&dR^FGgUeBbxq_xZx~{$V+H0?MuC>l(p+vl9TCSYe)epmNyVij8sNO!gwiIY-%Bs-MppqabpuI83 z3@U~l92~%I-t`3u44;4W)INXRJc~v!}-{}Xsh9Yv>HeVTEz6^whS;W zq6dshZK5ro##1x2sYyyoqQdvma z2R=kV9%l%zLZB~;keG5SRh~#ku95cb+|+Pa5t5pXJd?5vxF5u>0EOoBzF*CZ2mu6; zRJFlJnul^p0HY)$1?-lmv(VNlnk*_eOT$4M@S zN`Mg~T)q1~F==xHWE||#7OgNlTbyR_octN)!H($^YG%Wca375;L*fJj-dIalpk)_^ zpW36V2zwZ?84By+&;yQ->zS+?K>E@iCE7Zd4(Go*2KrYHUo;!IUk+4`mNutnBdMfa zO3*8kH-t*|tuzptqHPr+U0uT`b;q`&rv1bkIOEUH>FYubR3&#J^O%@am6o6rU{kVt z2#9N;F@g^-i;slW_Bo(+YKS73ZmLs3W%~W~l@DeaBd-2Y&WJQ3?uSaZ99xxLnTC@$ zFb6@jIoR5n3r1D~+M(V24h4`+#J40OwYUewFRoFD*Q4rzIVI*e7N}zd*-foCVe%6Y z0dDi=$#@GVLdEj!>sQ!wNrZo3vPxuZ8`e~Zb_6FTi9l9&mFu3p4j~6JOwL&(;@sah zLoQOeO{7!>*=wX&;6Mm$-70!yACcCc;b3;FXI1&Z$$-?1my+x8%G@M>6dBlEl}D?0 z8G!F+Me)Je^&3CXQR@hl_%e3o)#jeuKkh|INxv33k&fPlh-9jX6x4LtDb7r9_N}F( zE@;y9aqLR>-d!4H!$6mRMQI|HZdgi58?mNNRRcc^~h=4@ART8New?np1tJ?fnL0T0O zw~q0!E*LS?iU4_l;8HN4%Px218a;KPdH$k9Y)aLc=o4^0`%I&QL6}p zqyT0ZP5zOA1aQ-yxw(3mh|vq|&V*`hU9pN`+S?;AaXPDN*A3+ES8p)k0&cU9$bV2N z>O#@Xnq%3b!hthiMLQ}XBP6L8bQ@QTf5||ZAETdNJX#DJS#jw71!}YV>BjX1h)`PH zL!YEPW1D73V8lAwa(uQgsPDmr@bWjD0z8F$c=sYuZvZgO`4WtW&TAq&5-F_BNZFuy zMxQOd(sJ1%dL?bdw3VVv>yYXFWm%b2?jmUXMXDh+_JEC7R=h;5ZQ~y^(VON#xyuSn ztPRMToqS4+Sj|lu)u>w|n14Vf{k3pxD;;S9KtHjXZIV2vtv}v%gF~(LqG!mn|ajI0wP@a^9$-zY8)3Nbj+Fdzf4CMyr9j(~gLQllM*$ z!m?0YraVHxp|2?SD}RKBI=RBI$1iVmz;@%r5E4_Cnfqcoi+8ARCwQ_y9h~MXhAj}KT@_NxRBjN&V532`YdImgRU+B z?=CwS7>BkYuGCI4&%9IsN)mn<)e!Jx5#k4to*yu8XQn{_YOjI(v1K$73nBIwBob-N z{n8b-zhA|JR!oAcxzJs*V%Xf6^p#rSvMSJKWOe7zI~ zj9L!bB&_vCIGW<|ztbN^dXpmrdP6z3v2R;)0QwCmX=6TcL^?^C{BXj~qNT7=QY%Yr zCTC{dWWX;Q_6rM*e4{6Ihqk3!A&)IYK!`X8hxRriQgocANN*yO+Sw$#5ro!O_w-0K z!Rnsc;~1^#!?!!5*}9`=?qNs7nThmDqnA&p$99>K5T!G2`UXv&3|m)HoGE%9!J z3;4)tTTi|VhcD8mw-o-^f_PZiMY(@XZ3G+;0%>QMq@gYCp-(T-THV}$c_9jP7`>mF z0+}jTAR9LUJh3oxcCA5%CYS`oBVe3oq#zp(TLVyAyzt8ZzEUp?qXjsHe4bu9P@fiW z=PH5go*^t^eg%W(A%m94LeIT5H?|q))Jra&v*k1kF514;-G0E6TM0GA|h0cP@5Ja59@c~Y+fk0 zZ!wG+9+C@4Y4T~H^nX8#Jo1-_rNtU1=V51nL8^{sA#k74Qy8XlZAl zH(VT}3kKI9PyCf{01QQVCnX`-FtrEK(6WrqQ#c zkg$DeL*8d}-IWL=br|ZR7n$_g2DU zV3D)mxSpgfTzt0}e(BlWw7sV8dwikXy0Rh8yw4DY`{n48f^z-VTZ+o!)wQoa0&7Uj*ZbNgLg3^S`lw)n)U3;IwweZq$4mE?7 zK;i<3xPAIr{_ef|(^Of#FcEg8!)#*#KjwtX=Hio@pQ=U_Uv4=;Mb55&zY%_*#}Dr{pe5vK&Qaip2^eo!14B|(54CfHDUyLrr*zL zhgC?~i8KYr1%>`nE#6B=wnn9bXaY>z!)-dcqp!HfQFT-_!?O9iVaQ0euKf_Wm_6YF z>276#+Mb_yE#2D1c_nj9L2iLFc}WLAIfmx8y$G>;crpNqKNkD>P5)?jZYs|g)+0^E zBmuVj`eobSihgtZ$D1QTd6CvJAQ1*ivO-5|Epy<)?iuuRrqUO^T0-K=>}NvIp%!JG zZZb$UFfV&^a;4|Mc(Nl;U|>G=4#Q?2;Q z5(c!S;v1AI9d?uAk?qoLMbtt&?AMyvz>{6wxti6t2bvlW5^^f=ifDwVMzkjcM+qQB z_uiwfT#pMEkl$%;kc_y94zbCkzQi$iAQw9SSEQ+P)G*NR*T}S<)|Syx9IMX?ah6yx zUBr)4QHiGWjC;VQi=xR-arm&MrzcW=#HP7RszS}d0x{8CuzZ4+ z*g9D#d%ryDNzXeglc@sx8BT-Mo?9%QHC$QBj!deg)d3}n%Zs-m&e>vX7_DjHA0N+vkjQ=iH6A zAT)&3yo9gb*r!7CGOQK$>sI8jwd9O{`P@O>qsFKP5>VB9x))l8WU^CIsQ$GxF0yG; zUZ)zQ-S3=}TC|%Os!<(WTj0`upWnG}ZO(GMLvlxNN#C-eSulr!3cczT(1ois=%WOb zDv^?o7)*N7qagb$asaK6D%2*S2K$n_PwHeS9#dUit9yt_>mRx;B2~B1EiMU8JseK; zF}&^H=LiKHVtac*A|>hcTzcwYQcoeea-zN02fWI$Hk#4aR&8HUdzzb@JJg&rdiGbA zz>I8O9v6haReS#PXXn6Nh(u`B0L{6fiuXe?mCQPwfFO$hCHGm?UEl?%AH9|!`)0Oi za{&0j5$^r_^}9H%NTrbH#Zt=jK$Ry+R|3`vQk%*lM7TI;`g9{YYb>HS2%E!yy}LMP zt<9W;Rl!|<{LZ5waUaY|0u4xs@HaO=QdqscYKX_kuIg4#Rc+!B16&7k^_=MWg|sut zzbBVeJd7U=8BuZ7-Kv^anjxTy8XX?&|GyK1#M;L_M|)p-s_9Dqs92pLFf(8-WFmvs zfLEeb2^f@b0IAsN-*$uqq)-KZWt;3S{*{^&BD3K4dVg2(o3+8m$T z%zut7DQ&hE6Ws*&?-~ZPo*PtkYc&&|1zf=u^R^n8Ucf0-=rPGYYfTa>&NTueo+w-J zFKIAvuhn-CwJ!}92pNecSapmbARqVAen&|571~2mkY>EXe&(=(>dJC7Ue^pU z6H|jk+0q7T03c`X+v&*e4bh>nb^{O^L;t^@&V~2l@g95TZ*o|7=9a_MVU}rL6yU&Z z2f2%R&R%yWOl#C`no#H=hdxZeT|SI=W&>~P8N%_?($FAOcBrNb*7ViZavUBJpxtza zuRc0$wP4!QuzpSlB>SLMs;dKvoNUO4y>f|myeRg9D}g6^=*rx~B$9d$=6Ko>Of!c* z#U*VXo;x$p+!mKKkaubBl*K?^@5KfNMWeSK#U62}pV%dqsaI`z&obXoiGht}RQtR#GmBZcd3ZsEl;>FwKSO?L*~hUlNz+s95j&%8KYhF%ityalil58e7>^%j^lYxwHYJ>xk+IFxgJ8Cf zJoxv`0RaK16x7ftpA%Tw#VoqyceUi+L$$RY3wfx?VooROST-9vcCxcyWj^22^`V!| zjj_$u1%9?0gETdA6~pgMEiEk-;`MN9r!?a>-7+>dF7zhfh3viT-z+4wr)Oqt@%9Vn z3=BHEgoK1XxTsMFowx=UQ4aMgJ$2lTU-x=lO1sW2dH&lA+$be`A$5hEjt=@|0joC9 zPp;3^UCe#h)D#`MpEa+f*m$rBzZi2zM$)f6Vrn9Dx+bxAH$8Rb0PQP|#>ORHg?_1) zKlc~$Ev9A!;2Py6pZfV;iC^W^-qR-;i~2etMGvAO1IHX|>+5ANzUR9ec=Yc66ob6o zH{Xwxw9y^&TiHtI)g*S}jbGTwz=`9&`jwt+^6=+iPkq+Hx<1WIN>0AY#Oq;ShtQ0U#&r8GL1}q4h3*&V?(Qy?=eYTyYlKNb5LAI{K4-Vky<|2E{|D1`cyn!2 zll#TJ#vvaPnOOZRV^#8i(@j2>XhGgWdia6(=Vu#4`HBTS_U$cjcugF^2hqKv=ez-s}~^?AvOiHZ67 z)4|K=-8SD$OiosdKeVTN3AN-pZRL=x>}g@4;Tv08-4zuTrMR(3YB8m7m-dms zTdK8d`RvX$3%{h_Cksq*-|A(pd7Ufy1Z2k_V9@L{)V}Xz(85lh`-&EY3vTHtovx9l zmT6#~f*B0;QaD~Feq!ODzRpFB+@jqUkIBtC1A#~rI}@;VoBMx0;->`3P7Y?^SH3Qh@er1f>ZZ4R_{~sTZY*54gNnan8m}v5t=7sQ!unKaL>H!aoT-4N%a$@- z1?nL2ZPqP4pqKV3(L;H2?Uye|ezmP$L9wl)y@H~zsfzv@d2?G^Enit~rg#Bh#?%pj{AmQeutPr3eX!{Rz)_pQVCAZt#)vw0weC^iAw%YMh7j~(us8n7r}r34St<~CkKgPudT*RYfB zK})X~o!42*bKEZ<{Pg+9zs3ecFk-gaus|aekG^JQg?lK_rQB}Ufx8q4T9A-?p!{&>P&rm;(xzle0)4#F=bj) z6%u=jda#Zrc><>HVr@GfAMWgYFDF7ByhG-GZIrvix>z@V?!Qx@pri9nVWofY{+|z4 zQG)7Z5X%?yMs)dQj;x^WLQ8s`l^Fi$hNGE5lL+m@JjrSnf4jYQ4(&1Qf9GfUuV0)@ zstF3VwkwYQ-F*$8t8aDr*=cKY>=9)z_`70foqoT)el@Q8;d?_Cs#An4%-Yo=pX?OZ zM}AV`rw%64Ua;=T+V_cJVQ0taCU_o@)Uz-dQXn7 zl23f{#27j{!@Mj^*x(|niI~>z7H(;Rg5Uo1a=VA}3TpDnzHJYqcUpW((oGJO_~Dl~ zP&l;-t4``U5XR~N>vXiZwMn5NJ>~G^(Z&{TYTsElc`whNC)r`!jE@={yO)dA*VNWt zVFv8v*koV7;TD)$-7Z4zCeAZcU#{%29crSZ-YD}e97j=zjL&xS(%a|K!gzO{`gr^* zcbH}ZyYP|VqB_cJe_41(9zErEL!NPPi(U#NpE}sQ@)}*Oy9(GTj_c3Qmpd+|nAcum zZf)_Ln_-q8cstzKU0~k#HOsm4AF7jyCXjlJE%GhM!<7H>yRjWiHwuh~jt-Wxp$D?E zvj^;+(+;%AKA!CQ>S|W`PVm?!ROgtiHVD^DfX~3{uUNR2?<7$1v92;lezTN>gc4iv z@l~5v@)ge@kW#+IJ)URMxk(A!9Xyi2c zBl)dX;PUfRSAx49mTOcehz~q&+D2df?OVjaYK|Auf1Zb>41as8f0Fj&x!E;#N|UuG z6)VBJ`|J@N9UVi%Mu+UNLY0=TftOh1v)wh1C7VHY@frtw`pJ^^n2K|l0&y|18$8mv ziHXcIZ@1U%5)-SftJ_P@t8#z$xy_q5uaR+cA`|fV@aeL!tyx)F6X$(|lV#ejmwp>? z;Cvbu7Df(~AM#Em5;eQT#ZmmwKhCFf;$eEa%^N?KiGJ@(==5-xL%QYWQvDQ8#KLtZiZv zrM}U&Kse((p1*3b)^E3F}yLXM}^PY@#G$57cR7F%%ZLQe3uV@^Y zHEL*R*aO>=^oeVE0sw2@YPQ#$ zI>?-#of?qLUI6kD&B=@O!bv$2&Go2Y#cg@R!r?wjRyyYNmSOr$~%N{gm=)tcRQ zw((U+hhK(5+D;TwSc=iz-@!~W@Be*GRTuQ*p*@}S)DmJR{nXOXD3qkUz7Rb;Js~@{ ziKZjq-Ruh!SjovW(eG&cc`?Pdk(@^%>h#mp0$IEjQGXkxrSI0FGub1izgm5hby4KN z3TmAu(V(uPxtl%G3NF^+%e0d>D*fb6!6?xU7VgwOI&!-9PK!G&a$^qV4>4?TWrXO)yF7`Z==73Y{wF%wglo#mM_M_YaqDWi~0?m$dm&d=a$qL>s^E#zuA=F0A<&{fL}lfFk_%7r=?Xva;x!r zsP>nc?2P4KqL*^Srry|5No!~{&C`8+@H-1bknHUE$sp;~+S}d62h%)fdMec>P`dxr zZDPpJ8&;M3?`x*lqkeuplh)VYA1HWd$H{j!k9GK$!1^kX?0>=UA{37HfcW$JB_zd1 zg~wSS=0Qx%4-l=M8aYH>T)f$dKc@9*@d`;KTf}ax{?$c%Ty$DU?>x8oFWa7K@zvm{wA6 z5$!SA<>x&)If)!dQ5PXprH_$j?~oMN-gHuctSGlRG`IcU8J9VXPy{Er4b#*W5x3)L zzRhxL#G=ftR##uCh`-ym%*fD?RI{syn4{6nK>o0%;wxwPcaxKdDIwKZ$=r+;kDXOs}<7IgT*Wi=)Y8N>gkTjE*NXZZ_+WXpD|F}FJ@C$ zlc)+?1l|}OLW2aqJUw3Q2->;Mcq7mwO!enkE6PP1wgY}3><9rSrPC9`>>?&y+E3?Z zrz#@$>~smae?Hf$`jG|;1MJr!!tdbc-QM1Q&JadNlZ|a&DhGYz6G&K;33!TSTV*;lRNMptQMJO+BOW^ARK z9m~wlmW5og4D1K26STKG(T`IPg$vj;$|Aoqt2HHu-t#LkmY0_+DM{uq{y=G7P*hxI z=15X_=e zOXMuEFu+roB@G|6KLd^Em@}V)j)KvTt%!{vvkA|$1*C!++|8k1!Q2qYP&83)9kYp3 z)`R4>aTVOgf{VDY&LMAi7TqB*JTx8X@9gvwK`tKC z3YrrCC^P7ZaAOC9kwfhj(Y)?#t@v{Ej+4qG0@=+jJu3K%Hc*tTDZ_TC#jNMgcgM7X zk-;x24nJ6Rh$0)ei`L$*I1#t+ODk`Ua8}4OmhiZqeN%v?)r#C}Khjyr!T{ETUfU2< zUgzT{Az_ox=dWMCHZ#MF)+S6w+_R3n3^s^ zX?L_=vuF_n$X!zu8df`2S&40W63vP*|NKixGmOCwoYNGd89wUecYDwGo&+q8XXwjfB0|0_xJXs z5LyQ)BDdjkNHhz>=;&yrVLNH1KH)VD9)&JVCLNF728-w$QE`tRwIlg?U?%U`Guwo` z{E6X?xgYFBes_NEjGj;*c{RrT`doI?bDOqze%`=zp?Hlwp5hc8!6NOqHX;W94+-7^cQg$C|TcS-+HvB zLx8q~WxY35c>HB1cUx7(5gLl?CZ&X50j{tT8_@}si(BsBC)3Gg^M+-r_nDTWoM-b+ zQ!rRns{X80;k_Xv=lWT0@wsfGE7cOJ8=EhJEu?qE%ihYW>vsunQT5rPEeqUE1zfup z+cKnV@!kZENI^+KX<3=$n%3B$fYE^S{60^s?`Ci5v<*>Q&tm+!gZ_}7-fC$D#)sHK zE+HN=>nfQ%MhtzJ<=5Z*GNU54g=s&)9X+1lPSqH#YgcBa*SQzUhkP&_5pb6gdB~d< z?2+mS6}WZl*1Xd~xHvj37&~;fb9hx%^y0V*+6|&BtZ{>s6vu+JV7~>1?R_Jj3N@}u zs(9(ZvOe0CW@FhOD_^D52Y(e+FOWwYhx^+d*D|G-d8hA4^^8 z6FAP@eKzFv#v_ZwI`qSj(GVNIv8I#O1*3W+wF}{; zR_e3*Fcao6BuT?e!Cs0?y-GCxNW2D4mCA4xU*Z;LqwXS{^V zRvl7v{_d2NSnk#AkC=xubt#;Z4!waLZj;|c>uYKhO*NS1k6^c{si`T-DJT?Uf}wDm znz-Hj)EU3O=MTCr^E(T>v{NhfiqrYKhDVPQ(RMpy_l8BK7aTDxw|4E`z3phGU~Vm| zrUc)ldMhv_m|ZN|2lezEVCX4{klbwl!hlW6hV7);j&;$DgQ6UuTGZh2{+XS@F2nlu zeW?Yr;vXC+%Ib&o_1S4-CKL!x8s*Pdz}TGm((P*w{9x zo0;)w7)AiSzofRK>s(-AfCVbv!1Z_I{Akc@XHX3Pk1KwC^qtg()G_xil*Fk`GOEjtVL<;gA_ZyD|}opX8Z^G~J7qZG??=WZ|# zF1yIQ!2LI=c8K$y%gyoOM{$>VE}R zxQeIl^2>Fa^wX(vhaQ{G4uxZ{n9a%34*-Sz|KFLT`6!)`meeEZ>+99JdV9}89rgEb z+kA1^29Kjhj{@2J3%(gXKdUOR690Yx04EIGE-UL?bN-%|8^P&_$DpLo(a!Gn?b|=| z*hR73_3%~ojl)fhoQ*W_M;{TT!nMcO;gs)(8VMWn9RKrxjlxhH+S$l~u zE+HWSQi+Lxl4&V;$&Bbt6_6=J4&B5TD3k%ag((V^X1l9s{yD89BLByy0Cdp*&+AFVi-aT98&e!$C-&GsFU zj>LfHovS{&$o2XtW5)Za6@TL7*7h$PPjT)|F9Dr{qf0$r%A)*U*6G?LX8CjH`Ur@P z5t@An0RxW{rCJU{4l(_g!n^IWr1J%Gja7oZKyb>|8l<8sOYnOv`D%htMbUYnV~Qi8T|&aiw+s%Tqpf z^X)Ywg-@Wf+)EvU_Y1h3Nily~awKS7PjA<{`V%Y|d{YMK?O^E^rKF_5h-%a5aEJmm z8uRPhLORb27M_5ydX?MZ$lgd3sO@c~$M$0cU;6ikdA(i7nEaGpu(mpu zK?I!!=CYG3mOjDW^V#k^^t12$KtcRib4vKD;0(~T+3hW;PUC0@`;R%KOJ{VHp^vs5 zD4O$Nd^i^1cW$&f1MYy)?N`B7uDajxJYHZ02~jSmp==SzW!iFMpbKT1!FvNp#MVtYVDPOM>V?u83ULUeFv^z~bKlKV>jn%?}+qR`XehlcV{GQku zGGaiWbA*b`rR+b36#U*5L$XaxPTt~kP+L2_sV_7%l+Oo(|MzZ>a&sq>O=r3>TQJH{ zV~6*jjh>tCAg~CI7mwCUix=VLr+Im^~oy)=obFIaf6`PAAcMiHs!Zm?5 zlb!8Q-4r>JmFE6ru2?0ItD&Z*rm8BVsjndWI>(On?B)l99kN605a1K@Ym_Eu z&#WZ7AFS7KSTv($q#^Zoh+}_@mYp*NPaItC{3c^9nF%w-@4*Tyx@Hpoirr0V?qxi9 z#|3VmG$JH^<1?$XXY(=pE-o(eB!~h?s=vGY-tKcp5p9O-ckUNh3I4ebdB&ERen;0J zJzr+1jR7baxM_A!52lk<;V#yhVXt^jN_z`uBwT*QKk$89dRx52GWCJ_Gv&xD1Jc^q zl!ao=I1fqjWf{QNgUTxdO2>)o*R^26AKgbrAy&V#QOD=;Fug>(fx zL}70v4~#W{`8FSSl(-pL%}=?3nbu<0FAtVuICY9rCA1}(fjecKX;}%y41sW-{#`;Q zxOc|A=v(Nk;30TSvcNdNyE)L^ecIAe0$>`64#1r4`_GLX#F_b>L^&xhj=}${=&;wa zd>GCCEn_d~nR=7Pp`Q&iEw!Q49kOKs_%&(_L3_8qu%Y~<33eU|pv|@Pwh%&f?;Q~s zWegZ@!jYtgX_WkRTSuM|9-`#dBk3pJE)~gtTAimUJ2L_T?yJl^kmb8OE!tC5C_zD- zZQGeozPsLlE$V1*t*>7X{3AQr6=0!jNg$8(UiJdI`A~X_m6eq{Y$NvI<_C6n`GyM%Palg@LlDqs;o?JDnLwA%cW?;>{Z$6 zvz zYm|KhIFXRP2K~!m1iD`y6i0ODnnbnf*L1f zGmHdPg>l*4oeRWB=ka02?=XNd&#nrLaN+@8xD~ElNRdE<&+%ek2&lNvV3nFklgCsa zNPlMtfy3v4YaMi6(j*cf&-lGMde&}0B-_-rFAFD}QP$~De0uC4nUt2CUtxv-2-2_* z2^jLiiHBN5IE}|6S@@N|;g$uS(M~`7w?!@Xk|SY_*?RaLE^|(OS@m_P#`jxJQC{Z| z0eU$=xO9l|uE40Iqy*0;+~}feq2vN;mP{O6R||^{tXVx0g9>t~i6 zwT>i0j@M-uW`QgTX+pRUo{!!bMDu-&*z*j}dn)7$bts zPB;EhNix;)d(XIIr Vm~W9AGKt4fs!E!Qsq)9X{|kpNaOD61 literal 0 HcmV?d00001 diff --git a/09-modelos-jerarquicos.html b/09-modelos-jerarquicos.html index 894de14..3fc5b40 100644 --- a/09-modelos-jerarquicos.html +++ b/09-modelos-jerarquicos.html @@ -84,6 +84,7 @@ + @@ -251,6 +252,12 @@ 9  Modelos jerárquicos

+ +
@@ -387,7 +394,7 @@

-Nota +Modelos jerárquicos y estimación
-

#Modelos jerárquicos y estimación Los modelos jerárquicos nos permiten ajustar modelos con agregación parcial: es decir, estimamos parámetros a nivel de grupo con mejor precisión que si ajustamos modelos individuales (varianza muy alta) o agregamos los datos e ignoramos el grupo (sesgo alto).

+

Los modelos jerárquicos nos permiten ajustar modelos con agregación parcial: es decir, estimamos parámetros a nivel de grupo con mejor precisión que si ajustamos modelos individuales (varianza muy alta) o agregamos los datos e ignoramos el grupo (sesgo alto).

La regularización que ocurre en estos modelos está relacionada a la inicial que estimamos sobre parámetros indiviiduales: cuando hay muchos datos en un grupo, la inicial es menos importante, y cuando hay más datos en un grupo, la inicial es menos importante. El grado de regularización es estimado de la evidencia de variación entre los grupos.

@@ -1610,7 +1617,7 @@

ajuste_1_bangladesh$cmdstan_diagnose()
-
Processing csv files: /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-1-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-2-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-3-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-4-41c9f4.csv
+
Processing csv files: /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-1-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-2-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-3-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-4-41cc84.csv
 
 Checking sampler transitions treedepth.
 Treedepth satisfactory for all transitions.
@@ -2510,7 +2517,7 @@ 

Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

-
Chain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpeQ3eCr/model-2a0873e2c776.stan', line 26, column 2 to column 38)
+
Chain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmpu7yxKO/model-2c984f6bb0d9.stan', line 26, column 2 to column 38)
Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
@@ -2525,7 +2532,7 @@

Chain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) Chain 1 Iteration: 2000 / 2000 [100%] (Sampling) -Chain 1 finished in 4.1 seconds. +Chain 1 finished in 4.0 seconds. Chain 2 Iteration: 1 / 2000 [ 0%] (Warmup) Chain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) @@ -2537,7 +2544,7 @@

Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:

-
Chain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpeQ3eCr/model-2a0873e2c776.stan', line 25, column 2 to column 41)
+
Chain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmpu7yxKO/model-2c984f6bb0d9.stan', line 25, column 2 to column 41)
Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
@@ -2760,7 +2767,7 @@

@@ -3252,25 +3259,25 @@

@@ -3827,6 +3834,9 @@

+ + 10  Otros métodos para inferencia causal +

diff --git a/09-modelos-jerarquicos_files/figure-html/unnamed-chunk-6-1.png b/09-modelos-jerarquicos_files/figure-html/unnamed-chunk-6-1.png index 12a11a84d56fa064c7eab7b7ecf32a489e5dccf3..f079734384d554a2c9ff699c701a5172b77b644d 100644 GIT binary patch literal 74193 zcmce;2{@Gf+de*}qQz1P5hA24WtX)_Qe;Ur_NDB?*q5w%vP+7PJ%o&qeK$%-_Qcr6 znsw~58~)d*p6~K|zwht;{@(Zf-^cMB&m6jE=AO@ef3EAi&hxykz}w0<$dAw;K_C$1 z@;7DgAP@(yA`m3iWc%SSZU&LZSx|G4K8H-odV zJTu`jxocXY9#($Ku9WTi9i6~P$9$t3FO15Oqa~OAq`Ur9*jM)xGB~{KLfgnUavf4f zi(=bdUyHL7)K`?Z>l&^Us-AsDHF4Iew@kD!ye=E}*^;$1jZHzA=S3NhId7@@oFlLJ zF6~Jx&9L5hc4t$k$@vLio))RC?S$y~M+qCv$ghsNaGeOm3f3_f6v!dMDumhXFTuH(?^hol}kyweY2y$ zQdnG4GF~Bd21Whe7XB{nvM>~DU8TuMEv$dcjH?jacmJ{rKC5{3#}5Z5r$~iVO6l!| zk=o#(WQ{@P*DOi5CnL2{Q}gp{8}6xh%pX14_?mjF!6;8_s3UQw0E^F3tSo7I&HvwHdm44dSd$mVMN*dpla>R!8ctz+-t;A(fQjIcUzSR(Fq zaj`SJvn)IDiaiHSF!JK5(0co=+2YWrPtS-sOooUIyiR}IG24@G3fER^u=p+GZnUCY z*qeB9XC}CSp$|`P-MUq4&^~u)e~4{4&TVz(uz!uxg+m1qy?855YB86E*Hk0$Sg2>~ zv^(PF*Suy7nHlKlN(ifcUYi|>T74ST+=;DgxuG74VQ)%HOP42FqZHWX!|Lkm*X9Q? zrmYD^{G|m2Y(DEzUK>%47$yq;`KqlsUteEKVGFAoX}g<4!-#gXdt`iYlO<1OaDIU` z8ydRr?CgA&N<&YtsL;DQtwbjqu6Md@XSL6oAU zb#+h0|A3_*58h{0+vHkqJt!p~#;aH1vaw`rsE~0_%yIf#<=TL_sAzX*XKfa%nTnyI zA#W5{wBk;^*S5bcN)fvf9eo-z=+($mJkwv=adSvWNqYyVV)Z%sxVU z&9#{!g!k2}WDkDOBV*Fw?oFpZwhwvs%vB-*eizcs@$TKb=T#D(){i;~9qWF4oAVnE zmt`Kq-57i6P{Anyyp^?e4wXSCP9-Ky7vrfL#x@#vpv}+K)zyb8SHrS1B5Qehd897L zL!jJwp5nlM__TgDgMBU4HT!sV%N#bA#tPGW%FD}rsmAPjp2_V~GVI^n8TMz+j?udq zK}R+$3U7d;4r3vK|7^tfI_sORwIow0pRLt=eCx#ZN^Y|EsyA-j$hgO^9GZ16XX)FYrd;i~3N@E)tE6jS`43Osylq)pPLB239IkWgV#pdt zf}~sIXb)oOY_wt;1|v-$k|6C>CDuOc#6a7++(s&Ti|s_|N|&}TRTQtTRx#|nt6pBa z{rzWJv-6J~mN-*4y67UoG|JDE*h))wprnpY*>t9Lwy*e7v|`oTfLo7c*Tiy2Xy|-@ z>GCu2xtr-77CELQh=TOBL9gBJTtkROaHGndlp@Cl1_lUQYtBwiK`~es606!VyV-$C z;?50YtK8k$3Y0a#8Emc2b~xg;Z;iiy#I|7b3gQEcPv7i7u3>$Z$JQJ?`^AHv;?at| zINtlC4!Tin#LzQaJSd#asft{IoyHVu>fqqenjkq}vHT2YbpY`yOp&8CQ5s`CScQWp zVxY3`l}5%r6I0WWcLM|C`%I2eQVu%xS;fc4qtUQ1J8(DfG_c#XRa9EHw^M+7q2pJ7Wijm*<)GJd=w6LocCCb8u(h!8p2`4)n)~Q`6vB#$uk%bdOIL;czAU-@ zp-vMku3KAMNTjZgj?PN^*RNk&;>ANu+euoG+%%F*t-TYSr>~{icCsU?|H$jHTzRx| zXjJ}w+*?_3{LIX@um1W$%pj(s!hO6cx|cF&Zf54GEbExvqgh@tt)R8)6kI88?i@Tg zlCBQ3R)%%)HD{XqI#N5#a|coaL%zjVN+N8Y&&|yxBrt{6=RYiaQJv$FOVP&Bk6Oby z56-S_<>;2Lc4=F8dNg-*cfVqjw-{syRXgW>qnwK-IFGwrC;KK_-t;*`?(a!aHf3Du z*<>uq?UU$~dk`*?$Ah&Ih*=K$kOBKvNr;x3SNN!p_|^>Dl}boUTdUVR?u9tC-}|Zr zQ(|14-~d6d@AKyXs*xH>X-kie1^wr6^;2aii7TV=g8)X7FQ7DAAG@!~iVc}c&@ z(sb*wQlk++BqB)43&S;aTw`KlVyiPf0>Z*+=JYB~2N9%v$~WhT;mO*E%EQCMdC;Sn z%D}|L&pyITyDpZ()WqaXtcGUy{2J;0eY)5y&G#key!}ZORaE?IhHXUMXS(^2NMlV{ z)t7AY9R&iWE$=Gr>1^WQ#TjuYOBdo%qQSjM@a(cd*d$vDZ|!W&&-WG2!_|;dGEvLW z-7qoC?QUv%ipwJDIxm0cEESc^c7H3OzwF@B#x_0&qeti{xhx#suwZZy{{o`c#fUF` z)|g8Bi5AG0b91O1Y;3cMKy(u+v-|DQ53e3S`EFM#GU#p(`~At2CsK)*q8g3)qo=0K z^PCYjaly2gO!%WA7YorHQwV!`lPz1PlwU-|)Vcg|EPqQ#^d)Pyg$mLyG_ctY>0(Xy zj#(608zkwenVx(i4obu7xn%{`J}$cBRtb;f_x669=Q2qPU$}B!UD};1CnluwEDOqq zLrgAvK<&)q15A4_NY8qc5?@sByE(Lv_`(Kp;(z*-YOk+?%|;E7J0pt@AljZgh*{-* zUs|%erM(|v_PH}ty_wdjIGd45<`_Bg=;XbdaWAaFh?9EBwKDA@L3;N_oEW2U5ILQbad2Y7D;Sv%K2pWQAkN zePtYj*~1&~*c=h94Xa|@xD$3pj#u}@?y}brmQRXPdBZ9#^`vYay@x{ z&5Kqh;Cv#r<57_aG&+yl87}4Yw}4pXbT?O538v86q+6+BjbnN2DBh@GSyr0*Q!?C_ zF2VCFANG)zi~0zIMvZmpSmf2Sx67aM>8-7;<)CW3cIRa}K2<+nZ^T#%X3IatM#`sm zK=PUU(&iAMkb0Z*RiN8!Z=pi!*V|)KiPjJ|9gh$&yXUKRJy?9!vj$H{?=F*fV&IKx zbpP)xaAE+vX%$(eAHp?HAHdQ7iC}`v)ZRx7D zy)1o{<3O@-L!_iU z&oc3_LdC|BLQ44g`C?D~HyYeu^7=bE?iL$et1lwQ;c$-PHnxi+tz8S4?OVav1-num zPU?3m0!EsVZ00U5-J1lAr7(Wc<=xRw*8AP?)UG%M(s~jP8WGzO-W9^ zvbKih4R0KSDB0cJJuSOgi1kSh&@I<0?iJ9}t{b!4aF@bUs+z|Dl5YB>lzOMfvMA|G zrJgmxN;rC3lXR!;8jbT1+=UAf3XF`5DJdx?DldgqE=EjGPov$E?{yT&opj+%`oC@` zo9b&by!ut!gn6%B*uGN^WqTQ4YN48BYi(X1`R?Au${$~EojiH6$I=NhuRjH&>%s?8 ztkl+<(purE^~F)Vvb61ptUbxzhKwT7h;_BGxg4$NxjyVKO_)-V zUMp?QYVwSVj7;#{oPvj!MHZ6gx4i>!=t&ic+$AODW}ZXDz5m#_ck{%iBFA!Jj)zi5 zf!kc^g!Rt2_0DF_?&esO{?6>+jup$N#!DDt-g?+zn&{!=(JfeWbW*CCl1< zlmT+cL`%HeurIBeT6ezz@pBOxX;~-NnYV{X^SA*r@8;Gs9rdq~A&Y8U>1p*`RrefI zchL13i%@@RFc0_@pgf6pb-0R@d4-~#kD^`q)yVgTaG8LV8==`1RUT$$X1hCtvTPMa#e!tIy-QJhh(Dl* z?1TgewIZ?uU?bJX5b5gkt|-b&vaB$R`#5C8$2nqJ)N_I=3`H6J<8H0#Vkcd zM#gf)SB5Jn>mF|uEe%bVGS;zDhxgK@OR@3A3=h3h?;>#`F5~BT)Fp1(Lu!7_cafcn{dY3heA*mwMum0kmrHe8N?6BDbbMu^sEGBM zLS$=I!y{`kr49$(VyS{`yi;=?m4P7+$8jOZzz%j=re3kJTLYqN#ZC>= zE|qBV4-6~cwTm?9a(EzgQ(w=OD%dEg3pJ=RQR-;g4j8cOIqyT2eDC6gt`@1$!U$Vm zstxyn$>w)#jdm*-Av*E%}57rY@WUcziI4Z?G#b}?dbJ!FtrgoRAiQFiq7l%n0$ z)uT%IRs}1&6*k;G$IdNg>hP*3-PX|3;+G7TzPrWsWGrtnA5c>1;umaQ=GIM)@S;yb zPPLY~-Vq=2N=kLIlf*(iCZSrJK7J~5UEuUN?@JL1MNL(@jXM2r%HKcM&5vswqt^|N zsTEz&ibbQz+2hdY=`uaT2Rl=VJMd_&c`b$O!}=~Z3A8r()znEh-RP-sq~y{*8{W`; z0xRcarD@_CW{}HC-?J;AV8VYo{KmBtfuGP9_UT6XvQ3Uuj-(J9_Y(x4xcUi^oeR)n4}slrN;nTRH-U1-3TmBwgxywgqCRxGXXpSwojW_GM#o$ zE$>_3ot%7Y2G7@1!)ctz#R5gC#L)WDcC!MfIqVUrlHv5OdL_0KwFb7cB#hke-@m^s zD0r{98!CK*Tn*f^1X3zdh3t5U96qi(I#ytZ`PiW+vD&&K)sQ-I+uIeedS}iQh-PO) zEbfogOo)%4ou8-lm7%HUA>z)pA3whFoDQzt_QY(&RO;mn&Rctu4oElG-o^Bw_$-R`#rv5k-3v^il*f*Jn~es*-qfTxi%(MHSD>Jz zglviBjcy#Hp``_kp1Y}7!ghM40F`@LPa6n>4fm=-=g^{Dz4uv&*wk4xzEnuv*w_F7S4MkA2-^zR=IjJj4!p!zTjPz3=|iNJ zKA(fyNn1OuxLEz2v!v6-h!ZmRLU~1s|B5x(&!>*~LfV#AVLOqy`7J%cW3|UI-ChCWoft)<<`0IICTMb5ZX zXXlH0RWj$7^U@m)(a}W$r=eqF+8GzYm~U@EXm{IQtRHm6 zXLY2j+(>B$zCknchMXJ|WTXgva}?j+*K>DNnGVs?(q>L{c&)iFcs-QpMZua1?d61BH=5o`^cZBDhPoVXu8aAgb_kl6QGcKCw)mFbyV&V?wL??q%lg}OcxtHHm)}CgQ6nvVnh&6V}F2#SD*F1@-CY` z@r5$O$o3++a$5oEk>>GA*PV1n2n4Q;{=$QSLS-m*e2(txvKv+e-Xo)h#xsohO`mXA zNtO2x%9Lf(9)TU7Du>b7;*!jpIVnT-LOH#&j!R!2iIfjJ;``C$Vh=*8!-uND=R!BSYexHZRVB{Pk3;O+VLyxNa0 zR;Q6ju85$OBu8D5D~+)2ld6*YKdGgq zMY+**@ULK&M@*c*BN_RjCrP(IkCfCJs78(@BqWrvr>CcfM0Bwg_suSE#0+|isKEMD zAMp?o=4?|D~0IyEy>AVrL0#*IPsqrm?6ITD# zzH?r*Nw+zTX2VP?iWD>M#Uv)e#vlUyvk?kV5N)8?P$GtB49wm>>L>Yckn@kj2S|2P zmVtup>*^mFsS8-8KI~5U`32Aw5@KVQH{6qMzl{mXVQsYIkB0lYvPBR=i#=L;Lp3tl zp2BtM2{S!?FUAX#jR%BJe(L8BQs=E?L$Wi;Ih-OfEw}{AbX_#>SqM zp;NETF;WbyHTdhRw9k7dz9Jqr_mDy-u`abwvhf_5oq|eaFB-=rm{dXxvSpHPk+JwBbF%;3dGTrH zW!c)yT3E+&6HT(*+&NS@^>w~0jWKDbxw7OV6pRgzcI5fKMx(hKyDr%iwQ zr6tnw&Q;^w!%sD5zFUhmWUZzt_@2ERl9F}X8nclDTA0pL|7S;G12WN&| zW=6(SA?j6Owu+Toa=wub6U#tw(}#4m5VRirV@wCic%(!o0Az`zq@=RiY~6C2;M(bg zi412N9si(lJ{{ab(sknEEgW_*Pvn4FSQq(CB;HMSXqk-{6@JOQyc z*|@ii)&DNUO9}|w-Ew^!@ieTariMTu6y5^bq_(z}5z1Amlf3eBl39C?BkWM%aAt8S zS!w247bEyjiU3Z{*IX9bB6!~Anh4pkzkmOJbuW1wR1lE7Jv}`g917+R-cX8CNG&TX zQ>$us*9A~kVgpJnca^uR=P@ z=FpDG(;BS?qdQnf`7lUZwXRWC>31%$$gZ3%XxJ-li=K|whvtYAJ_VknDL(M_!=foM z4omNhO7C0Ja%&|k_;^Kf!9d#)WJqeXu zePydsKK!5K+EX#yhwhV;dxwj)2LI%qHH9rLdNHqmV|$^WTyg^1SAHER@=Gk<~l?FG2t?KPDe z_0ZjQ0@m))M7$#xNST0vZ{`OTlBIL*t4^A%-iNq~7v1?q^GY50cUax?m2xeC4!Sw_ zE;gf^-zoqU-kcb}2qcA8Rs`CXT^{g|uB|U)u+}TR!yz=n_p*o_#kY)#J5wd9dO4bT zr;etVGTh(t?{bXSM4`rri1F>6jPAUqkbsq90?m61^5RO89C4G=Ru%;eBFpCnEC(_t zytImeHz;;DTaMRA!8;Z1^d3aJee0S}hU%?ufUi-ppWI;xfZrRu>t3z@P|a5k`8O=w zjLb%(+2nm?l1^t?JWey02{7U}Csgb3Mp*@NHRhqwN;;>T?o!t(_K%Gjx8Gb#LZhiz zqZP|=g=NQ8I68jv5U3kw1c z21tz*H%nL20a>UhV@xaq)%cx+K;q$z$`>tIOwnM*YS_>8CZ7zH#Tjh4>-E!VH(ypT z$?qxi@GQ*K7xGw;lMIaHp@DkyEm|w%-aE=Hd|87gZ&V}siepgnx1Hn69zRrBKIOzo z?*hX_HMl(v!oh4I{iz~@VOSCxbz%u1F7~c!K_}8!GZJ4XB-iQZq!`s3@@JNo*GE4FZ@ z@izkA`f&d;^%2c8#eWgE-+%ll$o(4g-KpF|N`F~=VI0_bxJUDK941f>8s=(%usS$j zEb1T}yW%1Nn%y4nP-Ln3i?wZyQ%?7#Dx^%$Hahkvl!Jd4IDxsFlQO#{E(S~Z$$$?O z&p=u3XPG~Prn9GKRnn){(Zv$noYP!2)Dm|uMvPBPfG!kI=%l%sdIyBqDu%$mW;%a5 z`iD%1B_2nLdTy6c8MKa!?84J90)B$^!TQj?URK!4)jci&jC-fR!8 zS`4w4SnIbZN|jqcKe)o~<>27R>zRQxMZqZcW9SKGwugtA{jX3=ex7|ndi?_>F#2W8 zJUl#-gdZKSx-tP!ZvftfqoJYUe1Z!r-Lay#KRJU)+dB3izB0prJmO+v$~3+IZ=|f2 z`me}R;I{vt;qR`AF)`jk;61e8`+TB1|A{~{7CAY&1lMV}e=D2#oJ+jCMSl^gYX^3g z#v1MI?V;qNJ|Z7hfQk-3uX2Rt8Ixq$(&j4UV~~>ZWm0^6?SB!ZK#2@)#1B52@{7fJ zdH%(@DvA69=el-a;OT$Nur|o6Bw?a|;#1H6gi;j|6c?gHI-=2Aa(B66Gb?m>kFs2h zP&i4Cb?FBOMf-yl7PjlEGeO!=F_rMY0>l(uQpd&Qpev#Y30NjThj(JpMYy8^t;T&O ze0jiusEnXIpv<3*F=mmqFBktuSejaTG=J*o4J1-CGE09PjXnZQ@1Mz>H2$!$(P(<| z_hIdlz1`k}Gc+GB{+k49%+@(!58~E84O_o;B4nURA&*;qSNln>{ns|$FKRc3LYULQ zkI?yJ4{6SryXHoKN*OI++NBKp)K`WGn38%jKD>SS7t~C#D=!O$KzXY_w(@D)eu$AV zO#gs1v4>(;^b5^~y9=9YmCBAD?G|c;XxLu(R`V%IPGJVR_x8sOG&&nkjPWR3%@>-_ zM*Kye3Sa1IM@A=reiJ0Oy8ARNTCwhX`*T^=+=mKRvFt2@N)}TF4=ReDqR~z~Rsy!S zQtw=w3Q6W{*1b~P&8rX_ip_eioNg6pVe(X%LRqLFIPcVn_4}7!DW`|DTd*6xK(?le z6n85O+pL3Lt1nLIRM(%y;~AKltsS1B#!Zoq&J12)WeI9VqR!l%uTo7ihMEwxH@TGN zFN7v-Ev;!hKA%{GbJ7HZovK(go66w9g9m12Z&5(%XV)6!mQ6fDyGtcf0a@22>1}xD zWbw<3#JdkAH*b`MjZND~Nm+LNsI9iiBPXXKkZt}k>KSpCUEmmDCJu#RKMwjK6 zjbk!NZCEU}{~`WgLq@Ik8=c^4B0Y3ydbMfF!4;s|_R4L!hT-Aiot>RtcKg!)k&%&S zjN)pEhojh161w*C$6oL&UY%=K>ktGoIXaLC7<=Ar#1K5a?A2S+awdLiRdDg3RWz9C4baTJ7 zgv9nrju#QD!iiNbiw2@+q?~5DuTe@GRa8`7uSE#9FOJq@<2^?{9S#N!8i6P{50Up$ z<&QfdDmB9k=Rzg!6o-xf;vDF;hkv1|B8l_yM2hihd1;U2?LYfoBVPB2{^nF{4iN=) zo)07nxd-3VrvRw_XMw%Mr>gMZMOOu`X~K8C>_w_q0Vjy%_xFE^9q<-WO}&$A9L;c? zr+XEf_aCDw;R=l=ACroK-lS${gOKdL&P|a89t)ZOWl)thD<_=arr6@vaUqEH{|8zz zx4rg`^CNyeZ8>D8LaG5VJ}b3=R)~6=1DG#{*;arBG^zgzotS@dTN5b-T-vaWhGq8B z9-FvqWpVRgvx&mC#+R)hJouoflfor}$^5?P;zI?rBYp*y_Q=u7Bq{p82bFSia!Nb9 z*c1dbSoJ_$h=SZD; z3e{t-M$^Rdb=Kp-qYr;d-SLTu)|`uAfI}7c{pnjeO!ZgX7`7?t+{&~_y^{gCWiaH^ ztjW`B$H;|3-TpgXk#5#`Z?BE9C=6lNI%li>-{1{%ub)`oqYHC^6i-j|bair4BWv&I z5D?lsu3XvpbW-KOlMiyg@KiKUM77sSramJBgZ2vK&di;y9@9iXo02v|)lpSHQg5<> z&t?tOyg2ZT`O@mS{AjFU{q@8K$PtjAeC zeg6FUu8JfO*?L}t6{zX`erwZE0XF8vDRQ_GDPXS<1Mo^x%MjgMW5x^MaRr$l>*!%% zko>!_HRobm0D7$~8`O;~r`&%*`W2j-^A`Ev<@~njHm;sM>%&QXg#46t28h$#-0$ME z@vfyhdU|>TpPC4?a>#h}bXEJeFXIPC@x)33m#s-7BUoH6Ag@Xtp8w7~28stTZpM^f zj;*q}hm0`p*))bik1F{#CzN2elXj)=(CBsq*J)fz2&2o2xs-_EOx!Ex=8!O7nGg7t zE?!N>9Q8sLmy`teeA-)%SHR!_!WO*M!))0$gt^weIVMeW`5a30z`xR?|L17F-u`XE z`4sdAyPox)uTus6PruAgONBMO;js3u)SG@AD4wM?dAUwKBp+8mFDV zKogw&f*_q@#1YQ-NRaKt&37>;+8pJ{lsaOnG(6Xwy_|7VtrE+M_9UHMEu)THZ_y92 z123XWV2daHkW+oB_AbuiiUVzGb3I-SG#C)j1>_h=)9HJ!_dsG#ms-gHU!rVE`?TXc z_;U2uKhgpP0H*W}+`Q*n0~nxWVE=)7eaw#Q^sOS-FF2#zh>ybyVAIDqZD!_F^$`EWNvjSQy2q_G}qFw>4MzLWfj`U5Oa?Vln(RDc=k^5xsbrpoCZfJw%4{QtEo ztx=@Gee~PTsAEShv2^{9(HlmHYr^jur0O(aVp>~6pFJyb^>Tzw)!EruxD+yu|N2{! z)*fbY0)gM3l3A~uFbFk@A^Q_PqniRS)^j3SCYo?egTqp)BPm)FIz z%TLeFp2F)EL3@D@Rp*noJx0v^%^7LW{`LA|!DjYP;EiS;c(ot#-fy(E8gxidvAwp_ zy*ASeDF^vc+<|f_b%mxxU;85X3$rf@U%7HYO^3uV@0XTs=e~cir)Tf6hy@Zue7+)o zIt8om1qK@DdA-rr^0~5GWVX}aG9p@^G?+linXuwY6sWC#ODbWbCtc*jq?V&w$ylmZ z3v*7NZ}0`#a;gvXCX1X(nq!B&2v{%NE8zP6UblYvPrCJ!enp!6TEKgu%+gSaKG@zk z@3nNkj+!C%0I{%tU#C_=x`Xwc#Rk=m3=(jI9vhAN6o;Nbk_ZkCF3To;@&Od>rjm5r zLN_4Lo%K=c%9XCEj`WoFNic|VH$q1Pq@;x}N0feRRN5@wP7XhyiKCVyjVPIsUqwo)96klz-MtOSP#kznFakPJiKAarm zeiW|K<}G9thPjI67UDXha&1JnKc5Q~%>235T{hd2KO1q}sV(CL_Fmp6pIdsu^A|e( z*X=l9M$@{5U4bw@&B;KKgx@r&s(R2_62_*<+?!qU@!54A#T*~GqYP*@GS!TGmeCg; zpdM)D?<-RIEqS*vy8MEpRz0h;S~XVl)%a(ca((o(bC{vVWW4hvNL z;CAz%j`JoK9?2K|7gg$A}MM0u7INyhe~Y4!p;1tVtaTrTdC;gan~E<4h-mF z2CZ!;_xw0w;^JAMpmJFDprl6W z#k_j;*(AT*X%-ra+MZBKnGqUm_93(xrl8up9D2Z$@jsWRor)=lv1CD2c0cCX-v~JU z&970cFFyD8_Y1U2*n^=R0OoM}4d%jfN8;(d)KO|lsW*qz0a&iJBuFxl9Y_GBY}9@0 zC$3y^!>qXxU60n=b=Jp@9qY!`bxv|D9KSb8qtxY&SPwA7l2xnK-knqz|4UuYiTrzY zc~yvf@4DKr@5l6}-iq>}B4!F9+$#fjVmBh0h~}rcIQbhN~9oo=>@(7e~0=ySv&X;AG(4M zk;(u^h>%IL0TN|T&&}0PgZ3uhR54dpEGtkzPyb#pxqz_x*F7+B!#`%SQ2XD-H~! z4{+Dwx_q*UH7*#8f%116BJo=HA6YVH`2?Etd=w>c@~ZQ z_SGLX$eZTRsE1Y$%y2oD+Y+nUFC&Hhl=_b7zMCU^G=Ct0PAY`sb`u#=xT_crI3`|z#$BP+N&AXPA&(&9*L ztsh-96MRVc@E$6($m6jy&l!-sQAd4cKpBbn!d|`wui3#9>z%M-R3p$Eq$}iMXLpC}LE|Zhy*E9t z&T+!(Iv-|Hju$IjN}}(vgbFubF9(3wd|{3`@tnt@ybYVhWCa-M%@k?ZUBcRY=|ln% z6OGwLG>&1`gE6AcbN$51;F9NJ@Hqa_N~b!wyrM-Sp;c2ptVv3mJCU|d!2B9ZZmEAc z9j0nyB2p+g8xJ;*U0#uM1uM&3mhr~RTuEu>m>;(=MoWQzfTRGeVafzkjtsPh9u0JR zsJwDlG+YMtN$r!>{a}>SWau~U*!fTQkYL1@beMeJ5TlYHp*hNabT{J>0KZvP5GmeZ*h%)54wyp+47)fWV5u(GPrv9 zN^M}Pe*7pyu$VnSDVHxOINuxsZoZB4G9n@cJo!2oBj_hT#iZW> ztIMhI`8fD|f7h}s9Z4tkIj^xw05b^C6?@YSpDS_Z`Z-3yS zW7w3pld+ZjfzQIh;hWJpW6dh3*_h}s5yqTB_q&s23tP1~=hzHW5~A^&H%eSg>>YFd zQxX-9(M@-$<(xwrIy!H@mmh?qeWJssWU-G_)1>nqTm zbMm}$oRo)Hc!N*Puwnf($scXkO!SxcDwnJIFMjuuLwDxhQ~ST(v{Y^7Oj48wX15zb z$=$dkulErx6dNC*@BATNYrh~4?kqGkqVg70JeR_uF8keQ4yJg*cI$3M!$(?Pof6lT zhqwAj1l6xGiXL`9dLc+=e<;t>PKK6b^O%i~;I;QNJZiY&mk%X))%!H_cf;KuOML#B zH2w$up4GLv=(iUD7UF-XiHrDSAFq%fJN7g*6dIBMakfr?!y1~(!JnsX2ae@-GePPj z&==Ee0-nda8827J4+(RC)p6uxBAD#K#?~2_xbq_&T4h3r)sZ$dv94s1&=&eg=u#91d)zK4 zq&`#;3V=3XJKp9LgdRaYzT7<07i?3XUz`I)^`s1E5WwO?dk4q)^U(8XqK)6z0Vhg< zS>D+}(4FsPHa^RY^8F(aeM3BrYZ&(5=L^qVJ5;p)HKXNytQdVr8P4csq=9Y9?2pye zx!yu3grG_AlR>UR>d2xC3PV_Z@!|yx6sTORW9a;53@xkh#n3~Ut{nfxh(C;N78+`y z{RMu3j+WL%n&8zIvfEhbqJQ#XsCR02>C$czV12}9_^ z@Lal-vk86vju^ZAU+Y3{dGM+@tV{2#6BLW*&rtMr_J(qwa4Co<+G<`UBxEy9-=#LT zv$M0Yd0$>GPDMsnlhioYTWX)4jkm@Sifr4TW#d6J9=0KNIl|S#YvGoIx1($m1GpP4 zaw7GeDRWX%M&YW1lH(-Zy21|aXLu0j2K=6I^xJRURF9nu?N(3@T!>!p4PAV0F5f7< z8+hw1!ljc-bjYpF6D@&}k&$Z3-vpaWOq;`y#Q1)(#<<$ z!L<^am%utWkJ+ti$e9_agbP+wQp(!8O!k@)dVtpnJ9ed({MJ3yeu(bc@6)(RHAKPT zp|-l7z0>Pkl{ojJlLlIo(upHcN+>!Ha%v!X28NGJ_%%*uOFq zV8rK2Y9^KmARh5O`XNSlYyd3iP{M<^(b}=^F}Z-UM2y!<)f9LJ&V^?>r)ckM<7k@K zQc)rvr+2frx^)E^4@>m6{2x8xo&MdY(?^194LGUkPoJKeo$Yj#3~$h>bd69wX~jz) zf&xeSmk2I!EH1gHF0-=nlzIN|#O=o?xvQlSufjUX`?Z|~CM>W~9|4UH#PpI9(JNOpJ^qZhEdVWGuT}i6NL}Si zU`ocg*?ZN%1`SUhD7_oY6H1=O(Cdc5c%e|w;-w3&jP{Qffj`%(Z_maJ9roT=@4L9H z!>L@%N_pPo``$-2boOn-VxMx#ivRNflU4Ix2f2Kh4;3gLRAl#ZhWT70;i@4v0~WXx z+q~&s1>REVtsbzgXPk0~S$mgEE+1x8!HXxlz?ue`N?{s-E*1iWcCYaL<)`0jU6#xw zm_+o>gILv0Sbhw6?F}7O~);wk=GNUDa5SG37(i7=u1_WeJiY>qGFpk8X@9Z$z@rezfEjF&ng~> zQBId$A0k;E?9Dawr%K*byZ$=fIKKxJ0p$D<8X0(0kVKi{oNyTnqDUa$l{h7Vfw=Gj z3uc#~iwc9$M|Kj=CYnAVrgXRnKcxc0I?+`~*?HNo35@ASwT=qDfjtrS28!%f_i=$t zsUTTaXyC_Cjld;nJ#sV#lMdSnFlty7lU4umw5oSvIgs3n?5enSsjGDr-F@1hw|cgA z)`|Iwooq*e*Up5Op5u0Fi9q`1#|9v6B?eJQa=G1)wRL9K(CG2y4dh82su;3?V6#ir zwbVPB8&iAj6y%u>5Vvv5_h~B_0pizP=yU`ER}_?d zjd@snh%9TS@)Zhl^201>mEkIYRf6;(aw+OLdb-hlPeVcuvxquA5vB&7VsRZE2wq8O ze+L{}camA{^y$;b@s%%65ie>Eh6CVNXpZy#&RDjU?KiU zx1n}DaB`qdltU9bAZ5OG7-Il_LL(ztWal)?EYxbC&A7UPuiCO=EjcB{5F$I6$YatL zD^QmEJTYK=rn7!fSkCkKf*h^KWLpyW?-gxJb>K;cYYs|o6R2rd%pR~jXv6vIHj2a8 z66ifYLji4wibNX-cnI0$fv9bY7T}t1x?(@x1oIKV^an?9ZSvr}elgw9?Yb6yj__eg zZJQuUsr72O$lgNygy-A@G+j{FPF5RhdP3>|#E2t5APno;tcI8{!1f-$In)llL;ten z{QY!vcB#(XuIc>1=;+(I@Q*C|9=@>ZgYGmquHU*CWH(g3j}(32Hv6we)3j}3n)*z%~`) z;Sp2U))95Y?V}2~LeIro+D!G+uTISU>J&n}C87HXE)j@t`;ProH4%tu#G#*jDgxn% zAaU8loQTI_kN5qY7KFIU2$%HpudgZYBlfx~5Qy8Pmmlvn|04dqj~#L>-*2z!=2mVV zb3M4HC<~2loj7?t_nk}qv-X~RSy{}o__wy|WpcGjyV1xNK_y-6lMkG@t5V0dr?lyV#ykn8>`_;MVJRt3(%(FwOEX{MEzj2J_5Y>B2T zDc!#%j)k>s+wP&|_t3`HBC8I;D^Znswn!wjIK)|9KX}@2c+n*;6mO7-{CY_&vDIIO zB_Rxrwi6!e;N7ywd0}<;@=b8r#&vR?+O(*Diw4vHW}6yYm~eCKi2$!DN&r%E96{Bb zu+m0Vxhr*CRhyx(co}P2);5_F9|#t|vs5-!d>1lW71BG%-D^ZXBC61vo0|av=@0mi zU8AnGJ9$erfN(KP{>#Lpst1~pXUSU57ie$A%NoU`EnCq9Tl6{cT*`Yu7n7Eyk^858 z5ws+(uELO`IBtARq7dU#&9>}D^DmvFyL6U+) zbOQRHPs@k7IE|$1tu7wA63>AgJEnDF$2iADC(@*4jS;n?iJEmjv3999kNdi6Ol<5G z(kn4(P@RLXE?FSasi#se&+3HF62tV=YmC#=2Xud){brY#YOVz|T$#g#2}_6)D)C~q z_H9`OJ7Tc}tD1zy&Us#i*){B`Q0*-bwY?z%bk*3P)z#JHbF3YLaCRZEQ8uDFYVUVf zFq7>!0t56sqj&0ehc^7U8~;2Dy&-uck-V|Z6ciLig@soJ?ZCa>8Y|MeQ3BKlG}JDR z)WRc_4E>ORU1)f^1_uXmINj-{oYL`_lJc1&p+t-}XTz%&_qFq-=N`SC() z`bQiJljsmHCiXTx{aZ;~o4z>oVF-9%eGP`n;gU4-v^y6PNwYOQ|CPw`?ZdShE1>z$@O z3~f^MT$MNe>25$EL{qv*7hpl_fU*8OuxJB|4{#0UQ|+#K?XCeRaP6}y4xwdWVyc4C zJv|nE(2JY|)eNH;jBBcVv^=iCt(N-JT8}_H%b2<~$u92-{&U5Sit!i=Pq>UdbAJak zW{q9)iVh%75Fjda72jb$z`o-xpUDF^>Ilfb?lZadk=&YgpvA%1A(glXf4j)EG*Y6q zDlE+$G__b^tB01BY^FTFQlc3=1aa2CeUMDl2NH?o0S4`f9t zRcfMu22Rq4)IVp=A#Cm_Q4T@w4wxkV$fGDJeT*kzJzciIZ4Je$RgA)Y!uLV(-QCk; z-shyQt}gV`lL4!h0T<%;Ku}1C2N3xEvet=ntWJg!$6;5VXoqL!Xi)BjnT{aZzkQGN zr#Ya(;_Ws8i7Lqg(=^ixi1Wnp@_r9i;W2oEIyv_k3It;4O^g(YbSl`df&GsRKviv+ z2(!mFpJ@L+QF9|jmG#S*-9MhIe-+sY29`}|J1aHTOoaY3=zO;m*2Oxq0^@sdtY-M~ zmYPtI67(b!C*wRSGuE7P*o4sr61UWMMi=RC+~`sDht6f+OK+|EWCbN8bWA3DVALD! zfe*v4q3AOdY^g7_iWNA05&9<+N;2*R)!q4%bc^T5+L~MC^_Ul7k+^V0-qW$W8+q!q z6M5=!#+ndn z05*9A>@4q*PIoWekP=Av_M*JDYweN7?Sh6)Q{S2qJIx}4{V;fHVZr7y-8OVA+trYZ zJoTauuKhaY0L9Gu5qxW1YpQxtw`|gFvz|QT@N~dv+;qo;1qGWb%!;7XCF3UB$GO?W z!mDSicTR@LJ*oW@CZQaEF*twe{2aGg3`e6K>x%`KxT-^JvCV!mEEA*Sc2{(Dw!sCzjD@8UoAZkKOq^vZ~*=zZ?^dsvH5E23SX>1p7|f z8NUc8&bK*o=m`Z3n!yPwC6qvlm7pv%djyntxDOC^bjN7UtTI}wpL=oh^^9Ud*aJEk zV{Wm_V;?5rUEzT6^#- zb{wVvXu6-do~0stSzHFm2W&Qq9PpgQOFuBzR1-bJBwZuMxT>=n=A`=210gLcx*k98 z4#mowtgKn0;Qu}B7Dv>B`f8Yo^ufW&_A`|6nZMfj5!LcS1gdf!-ZkRzK}h7_upmHm zPCHY1QWcW*@!3HP=Dw@5v&iv6u=A$;Gz=gfhd*>h>=Jz$5XJCaSzC1?ReUv)*6O;B zr;g8pQ(;7@0;b*pN#u#yEyHJL%Khv+1zoW72ZGq<$d*jbAgs}Gzg8_vtI%%j3)pzU zk?_8p>>d(V=9rm{hk;bH>*NCwKizc15ZPNvIw05#Qvpu46B}!dy`eX^p4lso;MI|) z1YHuX&F zDSYHFgpZ)}|L-FFtFu+4o)qt`#G#*ul9HB3PBvPR1Dfhj@}fEaU}X(slfOjsvfWXa z$_JWpl>0R=AA1r2RV~S>yp_u8*8LZ zk;q4C92V0@O_&-cuF1;2Y%nUAwmjY;NM3VUDW6^-@e1#8`LIv)`~5ke_5I#{zw37XIfUzaUDxaJd_3-t z`(P}H{>e`7`vv8=(d^u|n`mxv$=)p)H8J|pR`z=XPf8-3nt~0f6+BFEG1+;V*n8Vl z^t+}UC5D+!=JuZmFbHECN%ix+o~vUyo9JWH$ay!tzUp>{xwC=6+aMXnUAwm4E`oJw z2kgDRW;6N}dk4e7<}p(~hqr4%^hDmMGI%xtYK(u=m{3@jEZL@i^F?4nNYHM&WePqP_g=- zkQcM@D?O7}cYWatzjut4h(nNJSS*XIgf$EU5)$TZARve+Q&)E5mS!H5dVT(bZtJ%r zsKY8MkXA3P5y@@`v+SkXMBSojbeqmQiadP7>X~ojjuJAN>j#d*xaU&2!j3yXIlY<3 zD&?qT4sUz!t9jrvlXIR=lCpP*E#GX{Jx>zRp2V}|9EgbIe0nHaW5ckjaz#JN=+x~m<3mI3^8Gtn*vU_4&bSVM zePM2HzH9M}(me=pZSCw}!w1QTu<7UK%jMjGy2@`>#Hu8PJ0^wP3ArVeOz8L{G}RLo zdVo*~r@(=MJu%YE)_{f3Oxrm)ShnUu3>>r~*(53CpX7J1?zt=lV-@t;LfWJv?rt#f z3gJ>$9#z`Cjc#%Aul^aDBoeQ>hKFjsU<)xHLr5VJ;(z4>cfky}^a>n<~Oa6V01lh0Q)OisYruUc|$5FF40 ze0(2ZKnAW5EMI;cW%}{KF=e^2-sig9ShFtMB7pezv3W-!y!7yJ%4>C$aQy+XY@8yj z?wq?yd=gxG8JI2fl`mKCV8e~qPnU=1&YcU%!4rrHMJi982bXl`b9+h_<@js(I`~k}ZRD_j}&*j3F5QP;-}5@x0hY z$LOKAt){ThovU1i^N=+3lWS|6%rtikZ0V90uHE@FUC^xQvry&p^vdmUj9K{3#;l@Z zr`@L>%4$A5`r*SW;;h=MoteXNcH*a+!7{aX_~Qg=*Nqab2DPeI z&F9Y|t}V_ilo0Ra2gp6axu0$vgm*NjVk%x3W$W3;_8k7~}RJh&5kNxFM_uG~v}b69LyYQzZ^3C6hSH-Aj=ss|67 zm5r%;FpzyIOu`zdtBk)}RSXB#*HJ9;Pn2Juf6@M8#4(57OL~=|@%X(hMIY?0j(7B$ z2r8TjczjVv<9oYyaXbNJy&vQ>KCE;Pj%2PrLYq^$fFi_{a;aHN7>f?9c~o<;Mn_hq z4&GBIST=ntT=?!NQK!lMHF?(_*?=WzoUAmR3tYd6x4Re^430;NrmTx*7d!ba`RWCg zp2ocB9q2CUJp9WHV8bOlM?wuP19Y`D`2kzoPbRc#(G_McJrtu{G5h3BeK7^w)!0pB zxdC4vzSMvRoi&TWDO*#+?{o#-5+5Dcm-Y8!LkR?fPrOXZdHWQtS8|uXq58Hpec^*< zBAn%yB^VtRG9M3Qb6OLvLT%8lRWeGBov9aY&c|gm9KbXqLr$U|{Nxfn4%l7#(^v9( zl6eR$NQ;NvJ7(e`)=w&RK{7_-YgQnjD8U?QoK1yg>qaGPz?MEEG{3Y3pCevXQd{1dH#&?$*35l+Pip z2H?a@uyX-BywvmG2>;bubzmbM) zrozqFN4?re<+Ofr0Tf-Xdoo`6`iFf$geR4Z)3^9I9hb3UHLfXm4ct}GN;j#)ei8s4 zgl%suL{6*Np&n)@5$Jr^^tHd9+ea-&&lY1au3aP-eRStLo!jPgxM)C!f@CGb986G! za1jL;x$anna2!QZxc{$WRfqEwpSF6q+dVNvP2O(&?)MSOZ=*-T>)l!6yHoYK#w2ha zkO~Y0La`D^R!ixGK{2=ECp{aR2^i1h0zbsMaq|0jjEzaU1q*4>Kh0iuwTb-(yJDl( zjlxs@en&0b{&B^Uxef%viI^ZnEC1^CBb276f8qIB8~*R$_`jk2PvfQw>vuI};B5xF zP@_+@&QO<$b;Nj6vJf5dcm2aVwCmR%eg_}_w~=d$_&o8U*>t_#>LM)iy%G}=0OiBDCCC_PO#b;^e-}w9mm)Cwi?PlR?+ z`m@MBtFfXSNCUyL$XZ=LXS`fl#SZi2Mg9!#nZVbnTqy4G7sIPvwJfLXfYR3-iF_0ktH@6 za}6Bt1}1|GvI$g0&3T9zelV+OsdvM?4?8&DW4rDqa(E{Vq^Lc+2tm=wA00k1U#I89 z+{9s2!04wK@pa>x1~+E^6Ill|u?NKx;si?q|HO{3*-_;^Fv2}=wqw^GVrdD}uc}fN z6fxc4OJT&hQeLrXbR;Tu9G;0^j~J$@%P0X;y(c*RtDZmN*ko*@s!m`uZ?{8Ll9=#b z$~d{cJT!uJvi=Cmn+1#$KYO0@5IC}ma7g)*3Z&2KqHF+W*qWaP_MQ*F&c5*Cb5G{M zfMDzV!u2dwaX?1%z1Ix|F&va_&!m;8);w&^dUD}sO8tOc{skk=w?SD+&rFy*?`VFz zCL5fIb@JDW#t5g7tIyPA&V~34GzWdiFwaSU_qM)SC4$2n7x1m&&RcF(tmbd`2IqZW z_v$Pxmr|=5UtQnyUHu860xW()Ii0lc7OP&(C&Ng3H;;)C$2-&YXQn7r%&h=l?5Gba zxhcid#KBq_YGWAuS=Z0-5w^C=*oKETlWO@@n)0Cl0fyBx8n!^76~wLrwj--w(p!*_ zn5<#cUs;p=uQp~6qN0v0j+gUFO+knuG5#(_#)r)<;TJ>>fa>`1(lB9D5DkLMESdho z42(b3k}QDZtxRS3-VX~{a8VY(G-Z}!p(LPi+pnj=r0A^-hbcwS?>0GBlII~>ctwdZ z0x^%}e1U-|KR>@5kT)F32s)h+9f0dw5fU@BaM7a|IzGZcor zSm~N(3;YYb9Tpbm`Si(?9yoYzml+FE)!9K$pYS(?YTk7uL3X&<6iV_cOzg}tP-(d=W;A(T#HCOAy!nBEnunst7UH_Qrn|0N zfH!*szftyFH57_o7x5g|);3a2T`K-vZR0;z7fxVG;G#$=Z(-LzQxze0#&>B~aHv-I z{E@7ZH6#x{_P!yJTtc}gCTcF;^F(zJ_I|ZW^*kY|CLz&!f$!_AAlkJ+v?<~fG<^TL zx5megCdS(K-Yz?=Zcoo#Pc_~Ig-rDUTQM}(YY$tA0_Gm1^PRx1uvgyWeJYm^yT!hs zn3Q|%uU$8zxzz#m`MAQ6*Z2v60ICPGZaBhiIcx%U8kbMRTLF>CQ?%Uim%iNFIorG-P zi{0*`bYL=9r%@0riKs#=hjZ5U0AegQ$EGcq&1+pT^ihESKDHtvPCq~)0CEbTt70&T1HGn0#ey5i- z!(CJLbCS`0UPwH7clUs`{#HrF;UJt=B?<4-oTUVp(5XFvWgzqgOp)$mj;@}=jB%B9 zXJN?MyjOhgmS$$~Bn$LoPTM=tTbXz)#S2##Wu&_wYdU5`eOFUcJ8~I-t z2&nT#YBLD9EzB=%=kDJ*_^jIp#BFP4<}cZH1I{2o4xihIO3-^p!_Ak$56v+%sGZmV zfda{F0t=v(qIZA7B8RZe%ON;xgVm^cU^?VEe!EU_{6_1lQoQtc_Oaq{!6nv%=|CS?tVwrjNdRu@0%Tt%wJw!sy#T} zJOOJP1VAJMaEHBmSZw;smuAgbDOY~=l?;NkRfXG?mRr?%L;->5OSGy&LS_vwI!dJ$ ztY2%k?OXB3B>*7Xb*?b;5_I{}(BKHOE}F<+Tie357qd%$5ZOB&VTEfA??(J$qTFx# z*1w!am1Q{Z(iIrHmlAt5m(9F1q$E}}%Y2m6)QEQZwxQK_vmI&3hm}R;C(?*(4%_ce zERp>I(1XSDAhu)tsH{TZ)7#-cHpJ?Bu#A2zoWFf;FR!bcM2S%@OxhGuZmv`@A6Z}uGW~1L1;#r=(8x?pql*_6YVkK=rfb$5W2=oO z1nlc=8$=m2f(=phwycZv!(0J;zE+4>HU@`Mx3?WM>>(hATknn1ykl4>y}U=}Xtw(P z=h!l%-)-Y6m2b&DRoj5SE)gx3Od-S=Gy)!<<~VCB6}n5Gps`KTOzK3% zhhn>7x#jJ|<%Cz9yS>4Fk0?9+F+MjyL|-^K@9P$L)Eh>o*{qG>IKcD;OF!z6gb$u$ z=VjG|?9}5*qC1|kRKI5!N#>Mv@9P&w^{4rl{_|XX0ndS>sPuaErFEC1i!bLq-coAX zz4Yn-zh`pwzBBD6=nipFS4`gfF<$)+l)1|9fb-_YLd!B}AB4|_rTA;clI~9Y-3E)2334rUC-ndtZ4{rI9d{#gJIvD`(5Ems$ZPi$VH*x zdIye0tT906lz;90*efGR@x`Cme5P2m99T;1ahpnu#%W+fwEdVEvdtO=m_K6uhS}_O z{c;2QexaL7L}_2p7Xa4X{lSKy9KrJ}IMXFfRS0)GLB$w6VYdlcBYsl)ANYS$F`9x5 zUi@RzDpy`5cod+SXnE?I!%urEwYQcT1b`o)R)Xbu46Cq0cq(c1Ly5lk1`2sBvh#v{ zueX260E6{RW0u5WuZ!>m?a1nSsNFB>Y3Xxz&-eH9Q8AqO0R?;i^8iJ{&d zv#{V=B{tF3C&-zlJy_2e1)-sx!O*3{Q{wKOQb!X-F1zj0R zuO}RqxivGkApquNTrCXu+XtRC?Ud@NQa6KP$J@IURHF8SYJ7BN7cX*{j=euE^l};6 z-4$Q82>5xWL!~SJA9SejNbL;(nM|e5dvTki(K}!!A!P>85Kla8jQW$)2c|24*D4e# zpCc*>IG`6NVcIxvLnBiI5821+=;qel2qd2ij=y-Zh!1v5j?FRhwf9)|()-dJbX2uY zNC4?N#{5+AUV>4f)nB=^j+F6Jf6?4qZS{F0oF-!OKx#y5<$vPrd{!AI$GC`vuaEpv z7YQmKi>yxael%zd^{LNXB&)YOSXuqK%dYb+y-QTvv!b7qjzOqkC46^406-D=vi_;3 zizMji-cvzlB)ZCzn3(c$*W~409sj=5BC7+grsA&iqH}2wVnm)&lx(Potq9+r{8)cG zR54gwmDPd@b^Y}N&Z{J6gkJtv>Ozw1xiOm!2Cl>LEDJSMQ}(})7wT=senkphoft3w4$+N;flnze?Vy=V(8V6z4Woci~p2O zhw$ZE^(?DDDBx%DIVI(W4g$p<(B*g-fN@Bya8?e0QwejVE<7R53$uNM6Ocl_LrBY) zmd~F{$h1MVqo@IGc(XTlc-w1c#9aRVQzySJ!?b&3KLTk;%Ifs?`Zu5!sTfHpH31K-=vb_+|4}wvVEwx%v zny|x#3WN|}j$9paPEkW|3iPcpW0y~{i1`Fr9lD=RAra|;CC zO%FBIgZJLhkmdUG2ZDUk26v78?d-w%A*iYY{+_Ci`b)KC;)QzruXm>EzW6e=nnO1| zx@H3jN!qz-@|2aPHf!5I)2g%9FY~T>s4Ncl=w)ZYw#hb&?R5Pww>6RnWbMmc^rtlu zF-R8Nv2Ikwpvj&m1T0AV#8om!2eNrK9FdH6h?VTxQnWk9Kw$5N>qQT#Wvp4@F9akk zU<*_L1Q*TItf@ERdD4J1$U1qgVW!7QLPEeEKxj`9Uj)G}!h&2nmCH1&*Xnc;A6L14 zquNUrQ>U3eI1~A7ov|%R1nZcfULVjRrBMoC`Fv5-Yf>HZ?2at16m8jc|B+uY)8tYw zma$-3P>>}0A8^=~=f0xiWUA>Ua|7@7LjzC69b}B-l~7etsTES9GUh3v?+*AZUpeGd z&3b(|EONS5bkcpp(hI|2D3IOV2#I&u^x(9(32p~l@;5FZts4TPS z`->me?aTy2t)NZ!)MSF5ixb%0{~LH!+pI87P=|G;eYMJ3m7N4*@{2Ej7KboC*431jo!L=ei}I6vLnY~C^8f!F^zbc~=stp8}{ zlSNriaJnL_Pafnen_2`hWNXwlrsROXu+na28*H$Mm0;tsj_5SaoheVp_JzjwzdvBy zw@F&bR`MnO2q#ZamV?S(u8lsiJOiI*1S5iM4GpWpE~q^JxsXl&H_C%)8fo<1B9-T3 z3)!g+#SXv74g+jyq$HvpG;&0#x*rIW!{wRvLvSr=q8N{>@OyD_C<~jUN5b3$-Nx^##-*0)h zSl^<4SzSxQBTZMRsE1J;a*Ggc`$p)-TRwfV1re1n1c0YC%rgtXk#0^Rym1R}tsT*I z7u(Xml@;j!2SgsiTkgbCp4?MY zxbSwzJSG~l;QvA2u#n6X6}SB2kI z)In!9#Y`^F$Wzf0PN|#fY(LrNbrDuD_XL~JXMt`LTEz7i8vwW13JG_qrf{#&aBVVn zgxd9L{+C##wpJ+FeY-1Zc7(&!>;dYcBRLOH~=> z3boB-IliL-7+mM}9-LWphNJ32NiC3s@*I%1`E)eVYYE-0hg&ExuixkW0J7|i7 zB=S_>#O(F{XATkL2S@({c~+j5pwqB2H)SC7Yl)TA^GU*Xy2W;oj^gToW}86LD~~?T zed#d^_`^Rm=#$kpik+FDTJ?_yKiN+KYO0Eg@ys9c zEO+jFsCGL=@UXjV?h6xpW_dQ?YZ2s?Q#Y~uF%Z}R&s{Qpj- zHC~dkBY%u~%eu{EbL$qT7i0Gv_xw7byO=$;-mQ=+B>LakwUJVeOBm(ewB!f`pKm@N6CAZEAD%A)X=mi;FKC~G9W|9Uhk9^YqZz_yFZceYG8?FaZd-L* zL?O^d1#t;7;HnKyUJ(mSd%1AM?D)ZL8`iwn)CL&zh(nGo5XNOy(Jx+daWastFPT~& z`)lt%OtO%aGt7LK)I}gP7uAi1S4V4ZwWEC&PpCYNym3faMYL4gN-ZHNTwDEcbKqSD zu_Mx$nX7Jc9{&$y+nm$v%cVD~J;-I9D>mg!i!-I0*?81mocBn+A6pis_My31%S5zK z+pbOp0OuEkAS5Jo)k|PS4m}98(RdbBE#H=by~11Z-K4pCbb#*GZf92v{YZFDDHn-Z z)+MMsaJg#miwgjGsst=#u;rVq&O(2s_ezqnlooPYR+(}4p> ziTCuhjr3k?*nHJ9Qjac4;w?{*+^fmc5z0(dsuZbQ6B5Rb_SI|Qwaj^?mdx36*T}?$ zw8pmBv5!w8E=jB=?!=lJrNi5xsoizAoYA}MJu`b?83?Z5k0pCwATRFdzd&;7@3E}x^&Zc>8HdKOjYFkd(eixOU&YsACp{+VP*l?q{!N!9D z?0eLvE9CRt>?7l%HofvS!O@fTv6pB*cla&dmk;c%PFB9M{fFs#LxCMiRIIX>MS1WP z6}6&{JJEg+@{J?qeO^FQ+$J*k{JEi#B*uytw;TGib-Kt?IK2uNKXdegQRXMLFf$WP zSg(72B_toSnmWmZY&#l%^yKqsPV~ACV2zy!pd!27^ySN4CaI)L8YfR8`e>-_)GXDH z{#@iBMckm7`WSy%*Eg_w`+#MPQfE{0<*^`%40G`|&a@9zyu5YQ%)}5Kv9%dOpT?`K z64V@ejppHMy2F#ojf%#0rZ%d*vS3sP0v>~Bfs`Nu9^szeJGT6>CP`DlEyKIe$$Rll6V(d({DA)bu3rQU_tpFC zFSNpT3nQvGBUx65$IgA!6w5!{{zmB<={yoK7QZVlLf`He$9HOGrT4Em@+#y5U^6>= z`|$#^)xY(Z>KxNs=5-e*b<=9*n1GZK^BgfZX*uHvLP2m(4<=%-699KL({X)}8XJY3By!-QeAweTrU(r#w7!}}Al z1tA`r?#(gI=>GhsifC7?oIsqRm9a)5J?FV+YA-JWkUkTP_4Hi%#+4^$rMJ(4M5^V` z)dPkezeXdzpgBgzscqu-Kf>hNRJ*<a;a12X)enwiI~>J2O_B#n{GNx6@9xmtOt{?ypL{oZHtP zCc?moMaM2lmxgPe%iklhxpR~}B?n2njc&cw(IfJ|f9CB&(s_8qd2&#Cz0Alsuzlq- zd!ENypTv@mP}`l5#v5j}n=qEcqpCzVv7u!KkU@vZJ=yf0OYOyjyu5?pkFUB0a^R^rKgNRz9NwJN>)J~L zTelZ?jrqBLe*|O$4p1p_t12{Vw&>=&%!17oH$My}E!16m>ek%fTD30slRe{uW228P zpdd}rmtpqbaO(&Lz92b0@@9U#y9k%2sS4Ok!_|=MWE0xazUq$+Z$REmxmd#th*O)Y z7(EN|Y;tmPU?Y*M1}}l*$JbMU-NzxvMFaZ;2p-|0@^#NcBkR~{X-2<3M5nzd?fRgg zNYc|@F={0`sI!aI$V)KKxTb3Lr&U#-%q=W*a_pb)-VkgUp8%;p_!Xw61IwlkEr|=a zVwy=M{4NSzK~yDSPwngLOLp^y*!f~_Y9AVI*n9!R4Pueqb`w4fI`)l*s8RHcj0oG3 z{`BF)2e=b8O%aC75aO1nx=6Nx^W6%)h*4!29LVZ2%riq)pWh_Wul*n`O_0V%OjpHS z9nbOv%MocpFo|`{YX)ptBv7=(reABH%m_o%H4C1 z8A-Y{G&QeEw&9dfZ{i=ujE6xEenV2kumjGrA{U$vxXJ+%(G?yw@01_0b}ev2#Y#wE zJb2|hC^il+VoB0ohjuXfvD0lyNbs%^|3p#sohLnV{Zk6op=-2*Mok&q<(E0AypKJ? z#2vmJ%gB2-TO0*vJIQ2}*d%v8%FLXG{eIx_{=rmv+dof-<03bIt4lTg@Sr#VR-DU<>Hhj zjE0RYiAQn_2kc;UQ}m0EOOE>!;Fk{XT`Ce@`}4d@AP2B5Kp;&Stg;6XDE0OjNZSwE zePTFt!1@M;Y->wJo^s>M+t5~d;MoB9PDM$GiHbHfHxC}WN-9?r+R=4f1AbO$0vX6| z!)*`?pZ@+b1A(ME#`DJ_`n8quj);q%L7-C_q8lM($MwU;7s3$#6OZwk+qMDx6@(LH zWv-$1et##C=q3!ygNtsHD@HhCl3pY-wTWa{1Q6aPvSKW<`(wS|UKjIg`6>=U0XUL= z(RK!zq)b@XprQm8TrQ?oecLq#Yu^oTK70UaX@AuD_32(xd3*fd8HQ-XoC&$VR~^1> zI(?vOi}8}==_T&&@>C%OAE4G3U%q-Z3mfLrU2m4&4w@W(l5}@LJB3=8f#;c@leE#- z;BjDK5<3+9Q4;5NvZsY43lDEI{`j1kU%UVT3odxRZND;Ziu!to?_ZUs#tU)I&Uexl zG`!F|I@@u+>ViTEYlv2WJRAH_ZUE!nu;xosQwVO4E0f=B4;-BRSqM@uEc~t?lD>8b zf`!g~!cP?<`nfl(a<*)S7Q!d|=EJ*IMxr|l)7br>R8Ot< zgFrfT&cgPSYXhtMkmnrT?6&w5OIn9!>r$|9>yV3NBz=Fvtchlgo~`Y7sHpXCk2Mr= zgKv%UIVpD zv-1LjkMZ80FzE&n+M^ULy+fAeWHFK9npVqpoNaa!8&#r z@B0yHFzV=;^0wDt5$DGs#=PMTj;hGSv0Dkvf}@MG(TlRux(nkWZX?sKme~TR)RVg$ zn#af&N6Crs4IE2H{v?>~ZQbkhUTEi?=8%>~Wdfk@p|@r0R%$9>xH_;$a6UqL=y`|i z$O#ta4d5mhu}hA5UDrqNw!hVJ4@KU>j{(pmOtvX{RJ&j0hnG?O6&z9WBLZ$~Nh~^= zR~s*ey2Q^TLe|)rolHsW0iN2R(>mhGR1|+k5~dE_d85HFJ^S0;($DhFXSO-!wQ?q9 z=|k2ym_O~+uvH=~R!m9NopS7PrXF3RY(qGOLal+DMsSZ~3#oUPSz)6>P+);%3LWtr zEf@4j(mmL5ml^c+v5#C!+nb#ve!6b6)+^(7v1p-p-W@473%j7}28$XG_=<(y7lg3q z4`%z%@COIDjOf9zuuZ4l@M>lK={d^G{8T}r|DdR-=vb;yEbeG;&Lo6d4SJE2q5PWsM7 zMMR;m)jqKZFDNKQBR!J}7Jdj6ys2^M;vpH0@5jz!nDcE5wfX+F z1|!V!6tmOg;Ux_YsxYlB4?d4R-hb$4XW1w$2fbn-jTrOybCE^^S+Bl2>CzYMh8nl- zArbaWBRx($TXs9x1VO<8hdJ0Wq~Z3IQBqrN(KLma#W6~b^`35%s%|P()9^I<3Galn z!97^I@Gy`i>*ReI__;{FiNkvwr2oan=%4CK`eMQ%j-XFnPSldZZD<|+Z4kjcXlazF zR--&_!^#Zz92iwqZ;!ps7(!tl$R3`ayDAx7KM-W-WMwr9DeLQ=khBc_;!O*0M1A?h z@!{B!qs1Lk-l4~wM&nls;pQB!ek~)yUEGH@Q_6}f1KD_z&(?;9dck8@4AU?l!=EDcvnxJWdK@ATPa`FO%kvndj ze-`w~eREG+NIsTfm_$Q=7Cd~|5pa@6Pcar%rW;qL)J=*U%Pth8N`VV?Aw-An_~+_R zv{N^2PW|J&azSR# zzioD6Vq*J_lYl;&!8^lu-}|jyZq2Rq5(-J8Jc+{<9)x3Xs%Xx0c2HC#cfRsE6`wS2 zO?xzTZXKI-?>lO*3@#-167;)Fl&D~*hmTo7p0ePYxwecrvFJVjw@2#7j_{_7rLcjF_CSO{EaEpxUSxC%aW5dE5F<* zu9%dqo@)&ZkNN!tPnD+V#2>)l9qN}oz=*mmkd-*Rnxv?e_D&o%1|Heb+wR%19^8`3{KG1v9XX!34%zo4>W^_>~l zh3jLFTz_2djhL{Vwk1YW7m4SY?r!kJ^7;y4JQtHabcj?peqj&F1KjOtpnG67KCXvq zDlH@^m{zrHbW1|Qq=;{$_4fLTcB-ey@eq~^2WnS-7Qc8}_%g9d1-7#Qz35_(?t-DN zZd(FB7M#R=dPJIVc{I*0N&R+|^xSJY{$l~s0cU%JSH1AP6b91$J|CmOf`!#>8(svJ ztGpI7&1}*RqR}yHy-7nRa^a4wzOOfbMr*I{UHXU~`<&t%2=h&k<(OR8_SW}}kiwYy z`zxDg2y0q`bA&F-1s|zJgsXNDa-0Bn==y%v!ArKHf0kxOWIEY_BwB(yqsPn~%0G;NtPJS)Ac3MpYE(w1%-VyIT+SKs!7rn1t%Nnvrm`nsFaVpsZ* z(`=bSjrgM>w4*5OhOkKj62qyHx>XZ6i9eDbEwM}q3=9OWj|VF$;_rwEjQt3goa{3Z zg*trPY|~uJ$Ya1>%-@DsjZOQ(V3bwHi5w{F#eu8VH3sQ|w}oeF@%%i(-s~ku5cSDb zu9;zGjh9(jRpl+=dL-bnFx4o&1bd~P3zS~cY=IO9pNmQMqqsUA$l}5_F1IGL z#U2qS7MaelY#{41yo28zW(G$s2Y$Wsyny&NqDa^{Z~J1)FFe|q$N zpIhcA5wDT~3-^iHT-27>O93okUWiLAf;0r~$Ly>w9L3etwiSrzKXR04g@ccJA;2p< zFCY&XU|i&v(n2xJKDqUs*Y)tNRpxE^3wM9W@#%<{4A}$u?^9IT;o*ORMS2`I;=Nx_jTTB{7P|w*QAtA(@7<&kn*~wCQ~upbZvkoYgPr*%55!rdYDvE zny{iE>SZ1Y@6@(ehVFUR)FVd2!py|ES$qmvw5P<2F-1g6T1UV7R3BEzwT_ zZiJ}k2Q2bR_uz_*z84fTcq)OOJc9j%#_ZsB=c1Kg5ur4)b{?)73!_Ek6An@qU^81= zk0Fy2V{$L?5@6f(icUmI$_=|=FRzWv;6Bak%`BTMsxKIA`2Cw0&eUgqz;56;)74LW zcL=x6{LpKoEniG8O~Hs!HWS4Cr!HqStguU`8S#$uR$v2J3%oYO)~TUb~*l{BEwcvl2`eZPRf$1h({ zhm;ls%J8YjRsS$#kNxUp3yUOry_HvdDq&!itBXs7r{vFm#gO@#d03PbyRpWgKrV54 zLfYC|>*|F0_zLO3T1+_ho9+EA+Z{p1aC*d<&l(LT0CT6*9rhUDINNJ53dqte-ds!^ z`rDtm-9YRxH6|yB(NX#(4CxmNa1=n0#9tm4bJ@}$`7>_`g|;1f@*3#7jj z`7-l?T0F<4IitzjzI>6B1|yDMuY9j}s)=4T-5Dy@Ai1Enm~*w=1>4ZOcTb0qXCU81 z8baGZSs$m`{+H!F-w*B%i>=$24AW)bhxE4Ev}M@gQt+3op)I$(CL32ffA_w?Srx-O z8!d9~oyy!!;SV1QyAht(=9x(A5*BN|lcHfRKv9;;)#^H^44lT{LXa`tF`27a@7y|a z*uZ#`{bYo$QkbVF2l8`2J3Pi;&^qcowhQ{VvnqC?>4Xo-7{yyz@0e{&k9L)kr?ANO z6cJQP&@!^r7(>f@Bp7|1c1yiS^JTE>`pNRLv*wxSa|tUuOh?gQgcM%q&Oh+vRd=DX z_&%0hDKxwPag0petfM)v~V>x_7I;LBu;dWFm4$pS0Q~fBf}S zXIraEwVdc717&^j5<023Rj5$vA}|I~IKyK3q|)6%2$Yx03#v64Im&x=3U_*>EVQs@ z4P`8;xvxkz*X=G(?cp#KZ}sx(7T)qGCVn+Ox$XWrmD{e^q$L<)vM1X9TmTz93;+gr~YooLD}b187FiU zYWEElt~I8}{nMhks6{`FCq_=wEYh#O?p=790YlZvHy4CP{^T_2*m`D3KPKjiPxrhF zj(cL!NA#gHis)%T4%L;?y6b0LY}!BN!A(ncJ0w}L<|J<(aKH?U77f?hhL3A2)VO*_ zsb~J-7?A8!^gyH($P9fGJX~DwQgg?zk&)exj2!y*Ep-drMR3q`3SKC{`HM0unV5FU zOPZMw(C|O(;YmM+9GKab6c${v@X%1}oE8wvE{pPB;9~TvHwa{BV}qm;K9)sJhU%Y% zxaqcN9K*O?rYpOCU}6@cH);9~B%$AUeV&7gQe#+I4d-0x4-I(U%(_ToN;3Y#^ueVs zpFW)hzxvFXz@qqBZYj>{7vg_9Af)x@!H@JnzhH!09winkA0_41I_~eQj>-wDw*Q4{2KEh%t5c=%vCaiU!R%iB2 z>nJt#yA6vm%0;%%i}-NLC>a?UfuzmdmzZ&qh4R{=!pp;YbR`W9YBFc;t>b9N_If+m z!EjFU@RXb_Q(OS1;Z#=7Md^igS&-`L8TR5b-@L!d$n+{nM!&@tz(cU?=c37heI7dg zJOK~gX_(`4%}V&6*rqf#nEJOL8K{5PGcjARI9H&nrj`Xabtd?js3bacIz(-cJm{R! zJ<);L?%T*n^1oEKMbvsRVc~Q)087I;$rZdg7<$;44_y86eY|fC%mw}Zp%rrgN!;Y- zui_k!;tZWPt+Xxr==-XLMN`bhE!9Ek8@B@KV=pq%bemhgl{<3lBZyEZJ zpIb5h;Nv3w{ki2;(>iyU-;KB}&dnE)GfB=Dt|ljJ2;kf3Rjdy?z7ImrsSMx0I8d;V z=;*>i`3hHb7um|%%IerponLwycV?>5mHNDuWbH3onbn6#SJrzUNKXG+R0@&&^-mwT z>h8(pzaJYvaAlTm`lH*|>{AvFuTJOe@c2VEpojk49$t$6>?%4NQDG@&;j(f%8&}os z{^!xOacXnnJHwaNBi47Hq-n9&p623iQ=1-6=#Wg7{ie~=Bb_bYgx_*MWQ1XiRrRG{ zab}BQ*!<=Tbn7(RhAG?ZoyW+U`L^_(36E7z%w=iyYV_WJL^k04?Xerot#6zjzpLW9 zThFSU=euh%2!&R_GSZ=aslw*2w){T!rIK!B*FKH2kxUGY#kd-~No1uDpS5V3P`>J? z9%SEsb5(u<-35q40?Wqr{wQj{{YQ`-@TF_iocpLY1+ZKS>ori;_-2TB!k))(?f-W4 zfKqd!)kRV<$d;-2#@8`5+dbF^Smtm>-sR$!N*`V-pS5-^#1j`RF-b3zzE|BB$+Qbr zBC8)8!g-ciue=Mbc4KI6BCW()n$!14AS0h}vb%cRTXAy)ujPydZroHZ@rW=#b?+F_ zh!DR3;aMXbdl1?X2ad{R#^C+oW+J9e>oQJrYyp zX=)iP6T!aC%WLV#C77ddK;hnVkkPNFEH=Qgpp7?G5EU3Uakq{fDc?H!Ba#5*aX3Su z(>DP_|AU*=S1++E!K61axh!f2L#-=$*fLf1si>s0wPEGY=zEOY*{C(6__m0oKh*0) z*KDw4Iz{iBbYS|q$?@A`U-*$vZtpN9um#?Np52jQVF_PN0_z8;%_6o+>F{1X{FYV) zgGnBhOj+N=!_)6B=bPk6GgE9>Gk>mlmsD|KU)}Z5osP@*mis#QRll5&NguecY^^Vn zaQw1TrYG6--~3bG@7Ra~6e4z}U4Bye@CpoYyFwUDKvkf!_zimNuR}xJ3)uJoU!fsRs<%}aAFo=#Ch#1UVVzsH%WUd9N+h5G#1`S_KTNm}nk_wG z;{@0UhiTAXZ7TmJ(2f?nm=+z)%m(F1bKTvLEr6C*ZlP>sns#x{|2Sjl{re42ePD;u z1{0No2Y(VSeOM7dF$g2Q{hV8WRU!Gj#dQlI1@k?GDhITYTr~KGZyZV6kOThmI&8jr z!P-K{kCp0iKSoTOyJP;n;f?uKBiZYmNf$9BoKjQ-m=AbVf3MDw+LthkKg|ITrL#s# zz>Jw=V1CV8ur)t1(e(UzcYZiqo>ls*_04m~WDeLO6O>~#uE3Lbp=X6Re&COY3 zKoL@Exa=MCOrt@tgh~c>?>+SebwaZP{mSuF+|J!mtA!K@f2K%zjS4KswRz%3NNa?i zpL0^EeQCCZaP2vv13{uEKU;k^N+Uta4tc#Z-kYcjRv;+niXPt;E~XD{80r|Kue z7%WQEo{NNfLcwb(We)?j+`SqCX!P={`0gBexI0yFZO)adWRCev9klE(^7lL$$Zn_q z;xjU;#REEEQ9P_5gna#WpX#(Mj4#{o!_>+7^X3Z}FLcY#^GoS%FfX-nP@d~w6%cZLLcn1nqlYF4tQKD-5)lYREb%X42!LFTX zy`7#oJf$AX(5|5}?4laQ=LC>f8{lYIP4a}yje#sk@Mz=XqOxJsn}k#vW|Z-zHhH`c zLhxV@jU#C(!8sj z(G_|BgiaCPzOVzMt8@&E$CGqkgl*;FY_}PZRKCOCmv}M1+NoGA@RRTkQO~DrZCtO@ zqH|Z%T6VbPBL{<HvZN!IMdH{5*{c|ue2Pso*jY?^?6mMK)-RrGg=H{0Max^uA$aql7rN|uQo6B%mlO>6kP!B2Ux8z!|ADy=GHE}Q>;&>d#&0i zEr12=E78y;M*|5)_`TUI7&QDR*onQJow^6ICCbWV$3pqt4qpIpR{ibS83g|sAZlCw z;;WO-YeuFuT^+bEtPP>PY_^z&gAPMgIUQ&f!j0WtUS20yKDM?FTj9ejtgw0AjbMMQ zOvhC}zDDQtM25{axE8$(gP#@pLa9*IoR84OjVQ_jKexKc={;y*!JWVNCk&OWO(=hsC{{q zJhCogbxquK$-5Ba(lb4$x^U&?mn}u$DKI+$CX-QZhr1HaiA%&e;VdD|A{#KXKV_lR z)OoMBfS_P)ON;qmaEcA&XIQxG3yb+QcXUu1#>3=fWJ&W26EQzvt~Bqq$A80f`xOoeOv&&3st8IPk;oGJncsW);@Ri%mp`4*KNe z`Caw%^AZ%01h|guD7Zl^KUAoY(} zf?qT>odeP6tyD9jUg6S*{RIxRDyHvo3Ez&AA3V!Jg^)BwYNl>By5DWI?P?q zrNO+Xf4@Zjoe$j|a$2y51)X#R;EJfEWYnoR;8rPcSR&j8yS3MX^6z(Wsv)gf(isM@ zh;=!^f=GpH#ByzZ*T~;aMgL7Rz@YBU))R}3lAV?>weVpeTJE7uzYe=&MT_fJI)L`B z|3#zyw|{!^as4}Cc-Y%%^D=em{D4PN*$@w{$^Iff7THv-B9m@boB=y7kj3>Lf6V5z z<3iPl2{UDdX_(OyAL2XOJU$cdE@d%INdr+&dUg)9Y6~~_VLDIDjX2?8EMCO7W@0>Y zPky(zee6s|4oa@xmZI|mP1>DJ7QC(32=i2vS|QV*khkLenq$W}WR++6Tu;B%6!oKO z3@skZew>(@@+hD3PW`Fg=M!WROjKj6J`U}^k~%p%y7G?7_#{jenLFzwjPNIZB#Ss* zs7ieS$Q`^9B)JUe=J_5g@9musd!a7_*d>5Pp%#th$vk-^K}OtbI92;nqX%Jtsr+Y; zK0LjxEWEleK4AEf%zuR@%2FA;q`8`24xw8EgJZ&pmWBqwp*Z6C#Kk!SLaK|4 z0>G?uZOF2 zJoH#7H~Qy7(@d>xj%ndK0Xqyl;q{z}`R10JfyD#x52{V-RjTG8CsWZVA z$<^5Ay86GKR{wSr{kMayf9vW+C?0+gZvFFPrO*cCj_Xp(h#`R*bfN>1t?*FCe=wU% z3Q8tV-~X#se$tT^UisVM;;R)X$?q}wuVC2*9%>sgie*B|4b)G1sX4=HeIzqXzj z0f@w0IevH;?cA~BlDRqPX%`7vBD^;wKrph%oC9?Nuut8FU*$+Sk9L&Fb*AI{_m^!W z;E9E>T&lbO-=o8SZ;@RW=AD@785p=`Bi!CB)=mAr73bBzawW`jW@xy4OcB^p0>$q_ ze(cJopF!Q1#h5jmuI8tw2YJH8LHJED!rJQIMDfRRKq|ejVBvXenXV!do!^b{GMVuz z)S^GNV-KX608J>Qy#LIJzfInM2YpTH)=@mEy_8(9DXFZYQgXjN<7B_BI0XQQD9!1m zI{=LKz@kdJ#5%U^5YluGmGay=a&5oNNe{iVpXzsbfDf^f zuhH1txlVNYNPmYPs%LT?v^blS9_G!Efj z@_Db7n3#RPzRAbUS@j@i2Z_I|*AU%>`EBCSA^b*-bP2D86#R38L{_)fpaPfA>dG_? z%RO-<1$}pUGDnV%Y{0i!E7coZ<-w2c4LP#21=RE1@s1_Sb*ClJ3SArFoT#pUhkG%N ze-6|z(5dJ3zJerJT6cYxOm}k9SU6 zW!{hVdHRt?v#-lecpL!5?TLU(_KjOWcef|moecZFi0=(}D@3O?dDg^OM!vV_PqSX<-`r~CnLU9}UKj5;3rJo7x zKt;-Js?m6t&h{C##tm!dVR#G*=_L3}2N!0#pe?Y^X-PwO6opY zG*6rvZ_RJ6itPOj#MTgQ$Zr#l~JFU4Ja5#CLc?ig~SP0%S6^>kpnR-~Tx~$NQB@R<&tB z_Bkgpe?WyEdjE&Lw+^dn-`a+kT^J}J7HkngK|&-13Acht7=*NhbcuAUTT(zkL|Rcn z77YT@C@KvqB_J(QQZDIw?+NZW=h@GR_x=9-)^)DyoTCV=x#k?dG4654+OOTmPCJy+ z4ptZ#<#aCxRI8S|LV&7hsy14`o{h`HS~H{5`-1<|?;3z$GtC$drXKO?vOKF`s&(3N zKYdbog>uiHqhbd-&(jST#_^gcalTK?HF?LJa<{y0sv|>$t8U_?zm%84GZ2W4tEyivj2SasH)SL((uedf6bV`}uvQQvr_;^crdbL=|FN3(vFU+$Dc z1Y4h|=b8^)DZQs;t{y;!|^zs^NHWJ?p=QWxYJ(AlF^0 zaJU}-Pq=J|wZiD;Rln01nx|^-rq~Fp1xQtC^8jW6m3vc9ATktQT;GUEmj5evkLyt0b;ehrZ!?#mhr%$A2JH_DF1MR!kMR+gq z*G5wAG?e`8(Ehse_)8O6XbST%&XLo?FJk*AJluQ1s+?IP{Db&MJ1YYtl*YcLRSV^^ zB=7B5|92Y|;z0-A`5Ee-w0<#>(Kp*bKzq9&N7D^40GNz@7DV1J{*wb`qkR4~*+0hC z9lM^o6acV21DItNE{C8OxF4XW@_~xN+Z&PvkmitvlJN2OUaZ*Y`Er6gF$CaZiWQCp zv%@gU(ALz{1Vs~}n9f)&!fe<&pAx>*Vmebo+v0iuXft<_T>$GC8W?0>s>r(0bL!M7 zNG2e@DdT!NvD8~Sk8XFqjwstChi-NRS9NNTE@Y1UP(Tczo6kcqn8sw$p${HCocqThhTi1Qvjdgc2R z7<;|F2No1YlU-eFT9*ptMqT2dna8L4BLJ)dIA|b197u8R@G#*SO?cvIeu4oVwWWo{ z{aL{UZ36@HpO~?6*m5U5;#JZ$`XVz^Mw)m<;5WnqE^_8`kIfa%pnXw+zJC813QIYp zP{#=!_eG&_tE{kjYPV?p^fJScXf1mi5UC`-m!(RI-#z^5?M~NU#rrIpV9o0*D;IcJ zKERl(asf>Cc% zcU{HXnoK$G2KZ|%=GxBFT_h&g$@gfV!kzbE4-Icz>Zeq#8SEiZMq$g*#gD0dYrqN}J&4ME|!yhg3i>zib2U9(!{`e>_vAS3K%Wb%rY_}cxC zAZuai$HbSBht-a`PB5o8H8a`rNyWXuX?8MsJF=%zTJnYcINWmH@~Vml!quHIDb5e{ zJ#6BBE7oh>t5Ew|;KVX#5CdDyiZ;Sf*{01N!dHTmfGu%@cn) zoW*W=o%^j{C3nB>7=acu|2ri}%??<*aZ7gk>~z|*4G-~cG8Ec5a92U1#^4LBr=T;B zk&_cx0LLP+?MH|e?4m)7_V zycNK~S_-edW_JAB9<@!;t$3i5t&#sHwraEH=Nc|JIJj?UC?hPXiE}X{wLA-D-}L=^jK9?_HeKFec|W;!s?!Ac=I}ZFws9t^>bw0T||YosuGc z2+1Y;j&kqMK42$lssAo?E;>&KyF|M6ll?qWmm9{uA0B$Pfas~uL*|e9G_%$P@=)F8 zdT>~0*q>u`sjF_Dc)Io#Fh}|9D^QTObf>=bbK}ZlY33{$x74~@_r#%q^HS$H)ce@@F{IbbksZBeCQ(2DPsNAhw zH%(NcObprpV}lO0-fTFl;QZ{ej@WF+=JJKdp@&GaaL`uv!Pj$G5tZR;n= zns?#bCdpFnc8BUVqpK|2TL;lK^6{4*gkCt$?c4e5 z51T{TFy%K)AG}5W@OopBnNz?Hty^w6JO37HwftnV@U42@sIHpPdG@-lyvy)AfSTp0 zM|OCDGrdJ!FMSw;e>xnPC{Z;V#n^o>nGU|(6VJMyngO));eFz zx6|9dO?_^R{IHuvmMsW~$=^b%jxwGgd(oDb_jGo~@aL*=Q4LP zQqK$y-jUfnILoqxrdnCD1OR$7HZ`?AnnW;sSKa=#{0xZBwyCkqt-})yH*z>SJ|P9* zL3IzfU0`nE5`ak3FaTwql_)GN`1Gm%t`F`NYIuLxXK(=@v~di&ao0I9}O-uUUM7(7-;j_`gQ3Uw>wQ ze%a3DOHbHy!%03cd)<~hS$al=9lfpzFT-$Yh>(a34C@xlAPU!J;^`x~_&(;bUf*6@ zSG;5Wq+CUHHPR-HG&OIz!$T8bC|)BYBYyi%qvjY%zA1RnHrM+kL0sGdjWdmk4I3Uz zS*iwB{Fmsa3x!FY|DJeYm}f=u)>tuHNVVjyP)n;a%wak7ISbN1?2;ftw6d_+auK^C zDA#+fa-jAT6cA7tpj{dZTzvPb+~k5t_8?)-yzo7z8z=7S)vH0~MSSl3r0>E@D?~R6XW6DCS0(4v0Ys~fS;eta=;YtRP=q1^X^A3TsU*w^}1`m z0+9CrGc{>;o5V$Vj&D1_TzYybmMvaKHSR~>H4yN`1M9WnG=|%(d^BbbtDq1ashzhI z2be%TWMKk8s<{#7Zi~}cLz>;L(mEByE+K$ zcTQ-mux>YO<;^cbun?J?k?6-KCx_(>Z)Ha=0^fzkKiQ2eE{Bqdys2pY^_&k*L)74_ zTU528;q%@G+?%+6F|muLgA1^@C`nBmNEdRqG@NREPQjSw(2Lb_Rlz2t!`1Lkt-Z8* z3Gg&3&eQq5ixfpfjrfax2Z;yW*vbV)QkIJbOR61gAOJk zOvp>R?R_y~`=j7tM;nx^1BW{2RM+|8uToVRX0QHsx!;<)B8Jv2C%0Y8_e05A>K4a| zmWApbF|K^kIL*5WSu50U9P1!Bv76%R9=@euMFLLN!4o!XI9p#&IUEkHRMX#T+ITZ( zeqw>81}4h`!_SknMJjWs%Db)*5(s)N>{Se`n17-Bj5y&r(W~iDq`uGsu)y$ zZAwZdU!dP1H}O;}Y@f{3l%{nQT}KHbfY0)LS==x@!Cw^i1$8~?A`johT09egX<4;8 zR{ejdq9x~p zIH%bAu0mUkvUz4-E)<*G^cW~ll&h{Ez_fQoeS?A=AClCII>ruZZ{(GN7PP;=ALeG} zNBIi6b-Q<1t@#cfZ+yXNrQ1uAiN+(4On}zz)wcPqOfJ|72-EuR2fGo_=#!F?UVOaA zoFBGCo(m2M`93qp?ku8Y{BuVIr->-`5vPK-fiX|sDp$rN5e6c&ayFFsm_P{o7oF(H z&a6v|jb}!o*mWoJPs!Zz1MLc(3K!9Io)<;FfVj48;?Bh~LVC3GLSay+z%={-{z7Se zwdB=CDlBGLKY0l@Als zP5Ptp517Bxyay}ts`MU*Jq)`oQkby+x!EXJIo%UV+UUq=(&$JwdQU-tOKJT&w`z# zRkQuLPY4?oblxcUe<3BvEgi`uQq{>n`MV=qjxF6v{~wSL{|mn2pI_<{Q_r64HwSJV zC(ZhFwGA%oKVwPL`HIl8kJYa%w8AHk7~F)bBZL+cF&1^WgSHEqeJX@00-^d;=bj`~ zIxr6=XN!`?$@f9V-@|2KU6;}a7Q^G(mq!-QCpMPcKL z=K@R|4%jrq7ENian#h1R;vXmpSuQJ?yka{Q{u&J_SYCXl*`84<`3|-Y4!IW&-2Y9( z^U}!!?T<&f-%UE7@wY%2o>6OVusa&^=D{I&N`Cvc8y1+bu#jq?ZubPwAA|G$vlw{f z>d+}+u54{>CG4DABZH^O`1q!c8#`!dYmdC5LsW*rOMjB# zzE8QUib(yH*vWx-)McJURdhiv9bsswCb$70dp3Qrz2{+6E!}#X=f~hYl_WohIqueq`dJa$b$piaHVfxX;iyMi|=j<_WF>YKw!Y|)hZ{`xcMEuJx18cJ!5yFI`dc@ zCn~whSJa03_-yhmE*gHuD;3~wp$dbWz-w6a3er=3Prh>KlsFO11iK%bD~~V0sQ*Kf zuF3E}?{oL?yjNRia`A$elarI}Lk;@<8lv-i}sfNqIcKbr0`{dMcU?v?U#|Q3-Cf>`~_I`Rj6&U7UlSHzVPPX0Px~!HK zL1K}6^UUeO%e(bra~FTmdK*2`qEk{IDv9d+Ua=z9a&rh3k??qcM)NKbd3;5u*FM=- zn*jfs`FVmt3=3#SSfZpJ%6#zxHxPUVu_wlgn1TP;G3D=WAXR`6&FuZ3 zUVBk;aZ{N#rtaUewj>qY*5cw~FB!pQ&joH(DsxjkO2j$}%QOZVRQgi;}urMuwHO zH35&~kWE*#cS&6tIc4z>^Wl!%h^3>#2FWqYv=iT+Yznf?H^Z z7H&SL(w2CBsBP>pabLp;}z&C|CQ`4d2euqt5Q5&{`(~yocsl=lXR& zu@IU^t!u5?1IH<(v34RA9oY=d&IKCuAb@`4<$#kn6&0_5z&7egxBG=O&sZ)Lo>Xmy zgBLe_Sa7hSqW6(^%xBBAdBDzFE!JEd`MrM(H@Cg@(B~=agzGc|mzDJm4(5T=!z%@e zu#M+PjUNl%P^Vlsr!*W1gX;fI!XJX%5xL2v>+W0*X(O>Z>@mp&ivNGSjdr)vd z!`%EkE=B;eenX-dNHCMYC6YdFOb@s!vHK|6+r*uh~IaDBI!VFT~rIp;eEJ&SN9=L}3thI)Gu5oBUw z(p~U9xUH!8kc3YyI#?$ ztsee3=j3cDzvb%Sn`0xEP8&!D@C5et_Rhl<#J&r>rE;CL+_RKWjl&YLYj83-jg5_A zuM3@4KZP444-R`~oe$sDRzFIlcYU>sQpV^%DzpC1a%x-Q2-yE?EX>cb7fn84EDKw; z=J{SI3?mg%&DZr7J~mm$Z~BVcMX2`U$E{SWVZmD3gAwJ0g)|DD9V8k33h=l{7>~C0 zX=7tV(16`NBJ%F_ihGYX?Qng?zO6MQXkch4`k56Ft7v_b%p8QwG2h)BWm8Q@eC&w> z)3{LyHJE-)w0|;@?LggnVx{Gor9$-h$|0+Aj!eRQcFGMqQ@=Cfa&;*4uW6o%K5}sr zs)I72si{nTFyG)fTc8qlWUFuEH5+J-5egRtDm_jZ6;DGuA=>({Txu< z4Pjfsbbs6qEi6&Q-_Umztjx#l3yJo^$;{?FoRkp}45|%8?;T=HIsVfpzLL07G4D@?ccx{_ zvZeQ*J3@TKh@Q%13G+cncX-qRG&BCp zhu^hgBJRAc+y*ZxFl0T%H|;(ObwaehFjeKQ{;;bX7VtK~`yL-`CcKZ5E+7SY6+^Us zQ)8O0oLs`7JSqO%(xnZx5SjzYV-S1~Gcz+t1;yVa-NOb#^`+Tkde?*JDj(zezTGhS zy-S5Z)Dhk#1hW@LuLW(`Vj<#nX1KsNe?@;I;pPBmskp>!GR{4mv7wd769K4zfa)G7@PQEkAG$KtZsL;7^zpSa!?!!L||7GxC&=|yDdl+>95dWt5%`VfeBtC8G+0O*$HPOhc$@(FjLGNwzEQIo)G50&8+5j7Z z1>=IKiPk6OK_2cH>4z}*zP|zu+1sGc&CRnV9YvZ*11XOP>7@6s+B`?vYr}zM5 z1qoz-(|#-5rIVX)c9T;T>1}Clus8}v;*;Snq+6S3<*FqWfp`si;8$9sW)&cV?KZ!G zr9kW5pzxH;%PS6#^bcbV8@|@@Rt`@b6PrrXtAN!q2)1UWAi3xf@Ta&C3z)$snR-PZ zc{>xFogzN=jm1M1MD{^SXy}3*irm?jGvX4RnGb(SS7pXe)E(&S%aQ zlzex#tSx1xT|WRe4?rpl)gb2Bh+=T2p%28P!SeDG`X+Q&XTH4I2Hwl3BRV_YIXl*D zyse|Nl2X6$FtEA@l9UUD4PNksFZV3rzKbt@4!QD{wQD)xDBCyHACL(>Niz!G)ZDz!SW8y&>YvaQ8o$2vT#69pAaeCRV(ink-V_g*N5}Lb z<(qut0XKS}@Pf9zOUqLBWv&{ta9TVqasJ(ZQAswAY{?;FPQccq-?8H? zO8{cn=)78B{s(HuevRLE0PY1X21^TohBDpAPk-p6@7i&-6XrUES9?L12JBKWQ^G&d z3H{YD;3&ec?=3;lg!R~HLk291QWjruk-!%E1&96Nq(3y_KCuJJy{PTjgksD<;@Ee> zps0O~m<=e>`4}j-ez<|{0nDnl?<2(G|AJ}FrT*xz-*!H^=dm@q5K?tdv6sbPI4{h1Ph?tKTB4!leg|*Fzfh;MIomDg7EFg*i@Kf<6)iZA zvkfL%rTcH>U(HUx=I$#R1}(jgAkzMo)A#P(JE6Jt2%$C zJ2K-T^VhSxPTqWQ?CkozDz^*H!I529{~$8Ub;Re}RdTpP#eWq(EGcm>0V zCH{~=-Pp-*CXkR7nGmY`gG_K+&Y0g#PrrqFz-pp2o&!qBG`~N-mUgnJ3B-CxfjF5W zr)y*4Ilyiaj}~LhfAZv{IHG%um=~Alg;JJ|tDM$L)ev!W2pL9TfhyL}x?$H{(;={? zh7-f(kEfqp94OG)*QgCAi|H@3G&hf5wXmq277|j%(<<%nQIe9SA}KD8HhJvSyiyLj zKAEyTyLM5Ys!(75v_tryK)AHmnJg8nhcT9ievFMt*^0lF9M|Bl$o-t9rB$!N&&~Zv zE+fe1zTXM)DwLr?kjKaBc5D8B*WYGZj^<)d!0yjPI!+xd%fR4{_QoJ z?Jgy{W##K?4=~9ef?J~TjPc_O?|C_bCFKL1rH;niUjsx{ z&*dThx`R5XQfJO-p~5Rs9s<#B^CA56SXs86-cYCjQdrCgI+zJ?o=g(mvi7$kjpk*u z2eMBm(0IX~Gdj{F!Z=!AhbI^SqMUvGZ_)a|=Q~ssPZA^*+vY0nT{IFX`=XIa<~-~x z&25A%nXWPUC5H#{N|kq;ql{jr90}D+aR(ANq;`jg!C(4VxHP*b zPd8%%2Y$CSKciH9avq!EnFknSeB7#8u#mSBu)Q9yf$En`fqbjJ-rjq`QrwR7C;iUT=YpM;uxU*P2U-mV4e!Z8g@M)3smzT$T-zh-%Bs!)m|w zoK}IDXXWxC1<;LPsd@G?oQ}>g`=4RP8@_Ph=r>h3u{M#Q!D;MK$yt`AL{K_yC)!L@ z8;%4^9-_P9Jcm#4Y?{LLRebj+_R2Nf9Z(9%B`JuJ=1vCAh30d?1|Hk?Ihva|Z4L!}|E>C=yA zx34iRrQfrM)=%)p*NRg-i=Fak*@n$2@FH%5buYM$oN%axe?KF?-F6s?F;F+6eYsB{ zI@|puyyzZ)jTA03Nz1D555}8n;w#BK%DyG31S~>J7W#8^i>NXvB z{;Y78q=nZTxZF#KoG+o}?2Ux6;vq#IA)#!IqSXVJSB6C6w1>ia1Lw=Dohw??r4~gq zE}{JsM@FLc8IGDA7hkNVEJuf4b|GPC*}w$hbc+Zhv?6WUmWEheV;-_pg|Y7|vRoX? z!g=F>#gU*rWIAuT7-D#@d$-hIhlxp>?@4Qy<`6y7%B6J# zFKPLbx4}-*vL!;!#z#&CYx39KFYk5`6%!UV3PnO#BVa~re`A%JCUJ3Qe614fiuda-p#+ zyk^nViZtYH=G! zI1EER`ApTn;^X1D)I+h12ioa=hCj4UcU-z|!9n%LTg?;|PJ13*!5umh00GGFgo?O# z=X?BKFJzu&ONhVWzI!(fJ+3tTDrQ>pO%n7&5(n_ene!MPPb6Pk+pgG7LTe`waE;(BGF^X=l(yR|Un$m)QuLD8~}s0R{>RK{JMJ!lWS^rlKJn&R-_B;y zC9Mum<9Aw}k`V@~VDW$DLW!;`Jw;v)zx=ACKyezl1XJ9m2SykJ$``pQD zMeoZmD1rmMCZy|Eo(Lt)80oc7+0C|vGxoJsDN2`xyRQuIsnGrR50DFK@$qw6eVjzd zSV+fL=sivHvxn@7A2AUcMXq>qWo-KpJmuK?*lp8{I>_D&qs5G3qcCUy9y~NSSgDhS zhD>xIJ`K(Y{e5jb{oFeitKyK}Q_?&{*1=@5noY>e(Y0SPUMkKimxm*7IwMn{AztwYk$wO^F|EJivRUZj zn`7X=C?5hK${rgFyztY)k692sY&iE+8T>F6XTonVA@7q^F1c z9F|qv9#7I_C*pw9=4nJk+TJ*TckU(dZ)Ry*Ee5z8`;`af-L0*yWdEfS8f~|^oltjI zcKQ66qQDRYebHR0)n)9TPKzV?QS@3)`dhm?+n*;(Eq&z8q>5~35K~0Kx=eyU2ng&z z0^u}lQ75MmZt?N#wo>qi#NTAIJMkEvcXoFE<9DU39DyPLFGyw)KnE%$?s%9^Dk5zX zF5c_d@tkk->kAr%^}aYWYGmNgE}Bn<1kK`g979Q0QkdwezM5x&@BalRg-%#y$Q&Dd zLF6YhY0|s8gUNPq0X{eq;x)VjGH#_T*h|*4_Qc@Q0pzT2_|OP#r-i?yxKCxbCc-b; z+L8pmH#7m5wY@a->C;2jZcq23s`j&4*jbC0b*B~yCuluRO5)nGw$^}Ar>LSl{20H^ z9vw`9N_<&-CV{?HSX6+Tz$y`Q>0mQ2!H<)Zw9QToMHPQoeBhj$`<0d_InB27>6&}8 zhCp9<#M*6F61T5BJMn_z;|upjSKZwvUxo%+Cry#H4|yjdZh{RDC{x*hl0Dr^U{07% zH!K^su{}G{K3&Ls@pq&QaWIj|J6$_+4=WE2CgO{46}DgXb$7=aZX!-!Bx&fe70>CQ zbNi_UKUzOyls~d^BuK@)v{5$_#@a`&x7mZ6fV~R#d+L}liW%&UV1U516`n19FZfEO zbW~*{Uw#?lZq!D_#Ri}zlW==RutBrQSq07@a34_qz`;w1cSpB65Cm7Y8#)7U$Yj;+ z-Kp9@D}iy@si0X#qvZdpao(mb5qySuH^X(f=?za*=k^+a7lyo9r!3;6#3rYk)uU>4 z5jO%nE}5vStII8OfN7FjQO1hNix$302kE?AH6+DagqtO6z}>+9nLHl9PO4_ssh}t; z)pgNLDI;8i|A6OKueUxwwzRF2U;AamqF=mBoJr#tJG`gLyP-`qnt1$`9Fo*ry!kgU zYedtm$@4t}A+XHGy-VknrDB2>o@Tvt*&YT4eyJMUD*Q33wxCXMl4_Sjeqv$LKs^`S zlR6%%9HK*FnXYaOg*sJ!{hbrIaN+C;qXkql^Qg{xIVDdJ7=)EoO=e6$C!%s zt}a>&r#DbC9si}>36~pNfe2npwm?sDCX6uM<{R$ZDr%)&yOO-I9gVQ#;@R*_A0m0{ zg~57DtdL<5IMLvYSY(>@Sq?D@%Jv55J`7P#tBqqRHjydj_-615o)Q}s7>~+DIgrps%45LOsN|_kR zjQH*Gts~9L4#HkN?7PEj*zyelz_N!w7QS0Hz639V>W{5)@b^jU-+wu&eXB-rASaIW z3-*NFs1oe?r1P<*#j!?8ppNbL^LVoQXK%g!Kj^Lht~D6GX?m1^v#a52-wf$HLX_Y? zr@gD;1wS=4d{QNHD%g)u74=ZyVHm7!PJ>q29fELVkeGi!)c2*tXnky9tXvzhtqCxv zmGB#F?fng|b+~zM{TiwvUh@J1M|6(yC*_(Yo`&qh6r-8aOFSUvQe+1U8i@~p(@%K4 z)r^%*wR>WG&hX3ih_q<^3~$9E%#jGG^OC6HZ8=oSrXbD}e3wt}Woby7c~)3?x6+>G zfPIivqJM4HuD9>VJ#rt_8VzfPR=%Yf0JqvHhdt~xOiWDvl{#ZTyG0eWsX^rt6^hcX ziqse7(#a_x*SncAQPK^=svBr0FUOitQy-?<*A+h&AAyKqfEP*15NZwB{j%kGSjEnJ zaR#V3ickwe7K0MgtsSk;=83Yu&(Hmd5mCv-nf6)*E1&?P$L8G`ewO9*UKqr#zoX5g z-yCCTqOJWVz#M6xSt=QWRB0WMlS!AQS1}5zM=4&n=Lx3rwJzC*s}7OujTUxFy5ce= z+S6eg^Z+d8z)A0hEtpJ*oskg&rQUX34=R_FlWQ15(GBIHr)r8Y3h{>ksCj8n(GStt z_|$}sjR_&blqnQo_#>Hr0Dl7|HNYGOv0qAd?%WA3Wa^&aggdd6?$|&c2H$3R{FqpB zQ(ay6d{ZWQs!5=g9gZNjI>WMa)eU?x`XK=wiC-maBx7o%%S3=r$}Q8yDsJWSKWdCQ zdf}_wy~$&X#{^2BRh|;qYeI+u^XA&;`$p*Pg_fq`)j`z$DabERDRcDu9Skx4)G5 zHtv=7c$ww>8-uIA7=ZpK)8xP;Zv@&lz`T zpWzoGBMHIaCJ6OG_DYR92r0;_L)QitDVBV?;g&#sZC1_3NJ@I}v+)dh_wo)dB9RmXnwQX}TYxACmurCA zL}ZWik0*@ApI=@_kNvZU{ml1@@JpihQx(G`{c$mzrz(G zE(9||!1vh4o@!9N_Aw!WDl)aDNi$E0@_T)6U17tz)cm$ME;hdlf1taSTMB#31*wCb z9RCOK>-~ez{Pge5YctGc+~Mf8>;G?Ems(edN5Z9*(;Bqv>%My!_N7blEAsBd`m689 zAXX_zyz9$Q{)m!{&mIn#>+i6|y!cmb>4eJ{^Q<$>olaR(4z1jG(Yywg(^5-ZjGsBp z7H42UL(NWy-DSoc{6_Uc9!Rppl@+k;uFp#ab(ScQ9V6}_bs(4MtAqj`VSJ<$<+Ogl zO}$SwH#e(tHgHqb@P^+6Z!Q}&6xvA#vSTu?Y%$dAYG%%`ezKqbwy5)(O_9iL~B zzYdI#uGq`qn_2xWoV+lV{go$JlA9h#BxjH^kfJ-c0?ggqAh@@P09S|#1dQ+b@nxbC)Co~YI1DN!)QT3=-#Iiyk^JWHE^OO<4Ie0>LLx!*ZF&3sln5cdFv1( zTxe`AnWS9dm8uC?b(2iSp^;d0R6R;6e!)nF6nJjGYQsR*5dS;&-dT5`mT+Arjtdw! z0h_^v^$^E1THXy`Dz`i=Pi1!%x}DfN6J{vzivmti2hrjA=7a&e#pUNv(gFZCyt{?4 zJ1`)68Y}TeD9ZS>&cN4$Jw4G0_fxJ^WL$z?-aHE*0i9^%c+@SS`f2nX7+zI?^f0s2g^iOVzNE@rv!Ib*B;Hn~9VAO}+ zHy-o*QlzEj(#7>%s|%GC#-rQ(4+{ygF#(kg_Wr#*;Q0L)0BkMQve`ddNY;wKwvcB0 zzt8JBYukfRth7u0al<2j?MfumdtQiZEnPKK%wDb9#yFDr6KVKdOSL&=o8P|#Q+2qO znz2NESN0JmbNKROL*fX;yfn*J5c&B&LZBA6NLg{=#r{?a0?p;cmQvN0j_kax1my~yE`mX zqEx>I?r`m(Os&83T9QX_{aek8;?PcG@X6AXlM^`z-CYeY+=i;sQrds?FpI3;T+aH=Vul;DX*m7b!2F z>=uRH=s0uK60$6W_IQXly$kX?tr@QQ+{Anf)K2$J%v{si zMy~FOi~8J@QqP1&HXtgGO@XYaT9={6+AVKy`F0B87|YDcx6_Js)IFts0OCc!f33U9 zW8W=QmSu%^P4t4sqSWmCjm@fADx(%#ZXh)C*j)uamxdV!5jE>LuZm<9{a(Si>z-Dk zx_eqS{<6tXw#PDZ<3?e1--R5?zLsXe^0Qgn{2o!l*0nF=4XuWiu3HO{`jL~%ih1_< zM(V;$rq{bjdKakLNu(D%*h_5eJEK7it?%O}cM2}fygNyY&*g>fllRt=WKRKKJ>C*K zev;`ouQ5qoDh2D{#5t`_Hoxnk&A-$athCat+ynVABim7Hq1lksU)**XV z&k&m;g2(U-LU9;E=fjKMSMV!+PbrCa_fX+VT(Xmft|YaFFnhU4KhkMZm!Ay=K<5q}|~{^>Y;Lpny(0cLyp!E{V64qxT^Sq`dy80n#C7uxkSD#Tx*rdoX?>oag`f-^$2+A-l)O>4v;wLVOB5>RQ$eP;w*GhvBJU?TyD zSsDnSTwb~SCLoi6fnKAHn>GoZWnn7*YJM1YbHl?8s#8kG+~l6iBOA*|+tAR+s3O4p zTD?*#OE(@rYJ@axqP+0A18cwIzg&oO968tR82Tq(n*O{e)1Lo7WEKpEDE4ng=vJ7w z(Lk`m=?9jok5f-P{-tXJJ!|}Z{5g!{r9T$HjC9itt4Pajon?c~Vh5R+1{#tU3Kr&v znapwPR5CZq?<%xZoiMQc^7L~`%Hf_CWpP+wgO*a`P!9-OHvkk2u zIMUKF31>}s2BN0l><0$&uLuVK(2TE1Fz?=^Twq~k6_Oag-8k+7$Nvj%S`f-MG2)RF zCCR*XlkZDNWze$l+8d*6{w-{}iTXLj{!1AF{{*2vX#<3MFn_k2i}9_qpaNytXWmLl zmVh(NWP|Du(7D0x3u8AtBUcB2fbziN#Krr_8lgm?Q}s1(oEyZ{NY zuI^gS=CQBO+meW5jx(SXv4Z$&^DL+muy#LaZDaF^SE@&F&Fxn}9iMLIR%g`Tlnvs5 zp)vt!FE2<`F8J-lUbkW!v~4Xe<1q{F{@x}59i!-fDi}m6D-b2~Wg>4cVKz96b0_=0lG@v0#37 z>1>0gO#jfm%6xBy_fynC)jd!uEN)|QntiMVMvQ2Xt?Poy!R6m%uK*l|-(~Zi6XSw8 zqQ5A_eVzNYVGK!|UT;5(sYBX#^6~p0%3pMVVWAC<*sb_4X$IBrFBYgTE)k;+beMgb zi$b^mskX!HW%fV-LEE+VKSCMvt957tHWYZb&5wp^^&XvPWP`RQE%Qsc)t!MC??5Y)q>IMM|oM#Y6{Dm=F~J1}z~jT-HFEBoZh|+esB)@yDFn92 zij3d9OD_b`IapkCzHGncaa!-_PdqdfJ|?;D4%0P}(DxDX1Vn})0rrPIR>Q5~ zl{&hmwkJ~NG?qV5hRA=Cn;ur#diqpt@5GZ{$Gp4-Yf=L zy2$^rXC-VB@Y16n8@E_zl3=}UnXnH-F&pt`FI|5chUmeg&y=~Ib~x1De&LL`_&m}t zv$=wQSOt+t-tNlJ@z2Fqj-)+D)uBuQP;b^I;7ib^*k||#jN-5fkzfuy2lb!Ac(3#G zKiLjEX}`h;wVTb8sVncpI_SUgRjY3E7r964gT@e$U41XTdJnmYlZgp=Q@!zYt{UJ* zEiUl)`x;4)6B56cIthWW!@NMM@`cd%bd(I7nuGa5O&lRe4PVy7?K(*F!0e zj0Bq}OEU%aK_oaWj4EyMjKD6=RpY3`Hsu@nRyE>#!v7Z})>OEGSE^wQ$D&{`-!BSv zJh)ILJroHhKj7zOrIIzWH2WERk&k9=Wt7n<4@~=SaaZHuzvKQ_HG~@t{`xz@#B2qk0G!PTB*L#z>7kH%gwnyT(U->0 zFtU-!sI@~$j=H6O($9=ra~r3h5u2UAY0A$8rTzit7 z;J(Oi7*c37(3L3*G>}(F=V&^cRi~zUeV)bc%EXT8S$GvNspC-NqM`O9T;mW3vxQ(vd~^wS5Nc+VdE+THZl%DfAiSq=&+3u7O zkWHR7$z}TOjw>V*xBc4o7$OSy4-{5uz;5Oz221!g5yS;7IPEJA7u)3ddV3B$Adw#3 zOt$!S<8{~Ve7};!>QI)&wcmQu1`I!lgtYJDv-2QNG&VQezok{M$+RZ*ZyyjQReF!C zaAA#q6%%)1l9ige5#X|Fuxx^SRi3&~27Qyb_H@nHpDYCXWSIm{ zQw{^Y3bk!ldLHwApnSO1JMI$dqnX~ga?L(`OM;)pyfrvgWT&?$YF5nxBK{O3!y=is zti9{wqojV?`ie6}!1>4%M`MlCLMp@A1DwqZpykGm4IPzxe8fi0L@1oj59}LmnSm?4 z0|PK8Khl^fFCTYf_vP$7g%%@i;`JsV>T>LTjKqvTMeRn_&E zoCWV!t12fG$b$hqnclsSDy9A)X~4H;PppEZwCP`ZVO1uVNVX+rEoWFo_PEoh;hUHp z{()9|TJ0k-J2GARlOh?h{?rD+?LGrVr{HO_^E%)oq=43*m5!hU+z-JJg3NXR^ z1L&DsJzlDth(-!fJps40+gw8YBF(_OUl}=Mr^Fl2JN~6#{H7D?@+6-A6E<6-P{3wC z;aP&t!xFti`0RN^h0e?!;mTIRdJsikJ<%PO0(!hn#2zWjRpViF-_y^SQpn3E5ws0} zV$DeJ!nAs-bAdbjIzmnfBg>-TZcPU-1h&#z;zO;I|u%P4==kERr^1KwgofC zrkodK#PcWLa;Yth`c^;v{GT+(UmjW>RhQXKo&MUv(PDPEfJ;VXKND8O*C(TCexkUF zlnv4u$Dk}b@%Y}LivFq*IjPu{BbU(-fD0{gG1@3I!@|;1Y9RbE-}Y@biI&RC(x*0wwMu+8h|sI z5IA7rpabS=o^|KMD~(~S-0D`3ppO^rY1&v)2dQghbj_$- zXB0L76J8)@Xk3PQN`Iov>e~Qs&Q|>-Ch|C)z63z%VIY|d8uODUMROY-VD<$i+uK(f zcu*MGz@u~AOl2W{;I|sn5)dsG`L#C5GN=_Kmj|awVshwq-Hn4&Psn&0SC zGB)+ce?bT$Qp~A}USjSf&%K;Pn+hEQTg<`0bC_sqcw;tyRm_mYw%E@|{u{`o&2FD) zy(DB9GzEl&`s+@9+cd+mI!)^0{l038hgGFFcw#{GjU05dig)`YH*+sH#O#XouJaE{ z>J+^2%opu5!3f_&$yyLsA9#F}@45LHHr|gfB+orks8rnib_WAPhEy!sAl-KZ?0~IE zK{e7dsuLyMI!Av|D7SMD4`3Z>crdo*m}-M^&t9wg+n?imsIm}%fyB0%9g}@Bt(H** z1#MPeGQS$u@QT>FtI|@&*0IhGouOK(^YgO;XJpG-^khNh=?t1ZPe1Q-R6VgOJF$6l zdqo4MIaufZmGeVq)N?;|_?d{j0q{7%=pu*rN$$KcpKvju3(kSq1Y&iLu(OyLT}*e` ziCmz|!Gllq+vQ&0FVBM1%;{fXzmBzpg;hoOn=*cepx`lyffj3LdGKbz9i2PS#MU%7 zeXdJ(3gPwFj}{XA_4=N3Vc(9QtetcJZu`NK+Rtaxb-EN;Yw?Er3L>B5*cABOIq+ld z9;q^WNJ(-UV;}gy%Kv>THF3s4w6FJJhl>M^O^zyi=HAsQuu&8QG4x!%)xt<)1njj7KtFhl&JHtcSX z?B6V~y2EWcJ@9|mL^#h+1xO3^eF=~mw>z!E!_PksE6@n2zY{334Um=(!vj%^apoaw zoUtj?k_!#abK5DFH|(Jo1wtJj*=EF2(ICYYc+R*nwfoivPP2tqGih$hy_=JAa%Q4K zO}^W45l<3nau0(hnkGC`EB@!M`hRjp@=sOS<1r3A2kIu)bx9L%_lHEoLAWybNQ`B^ z|LKb~Mcklv<+f69{z9>plf&;qyjQFga0vJo6aSlP^X6jB6s!lwd~B|2YeURi@p0mA z{bN)m=@>X*oIEmfF4ja75s1!yA4a{JZS zsqcJ$u*5UpFK$o%6_flpMc5~aI+mP`7(8$ujQDe~aZ9Tb8o>44v~s!Hu!48qkB{fE zo&TJyQ3PRROhJ>Rce3-sd`yI$0XU=ZSVlq+1ds}8gXJc7-||Kgc`CorjLz{!KK>b z+PL3{Y|a43(6`2!Eg8VPh8>6PYl?kz41OaLM3I^83nN?eZz;uq0aY6uMcc{(*~KQZ zs->2Gz7T$X=GD!neg;ZPkKJnWV)Vj8GEPj;*-Z``F8x{N)rqfkcGdCf1y11X@lJP2bZi{R|E*?ICd z<7_)9!g(+)k@!Mzh2dYza*1Cm&^Y~sRA0wOvPiB3xsgdEY)C|vz4nDfcINw{7=1s3 zj5C`}D~F^=!`}a%fqSpv*wM>e`IDU?e1?Rf0o1eb@r=Jcjd1!&!bo{n0+6XWf zlcwXL)Bo`|r_k7$!f?dh-Eu>*HUW4$Z5}VRtgKy2=co zL-MJWGTbu%PiI#i)#R1MGdPO23gtM;9H`QP0a_iU2SEf188rfxvRF`$7>I)lgjGQT zl_k_;B?t_|02YEah!~1MC=ivfTInJ%C^ijfSRxf!Lu8fWH}qNq^#0#~m%R1ScpIZN;9cN!@3uW*7R;T6V3RY%&98ho zN@~E5(zle4d(a=hqaFN&nK16f;9acXsUHWgHSlYAF?gt>&~45ldCmm_UnOFw4z{tz zR(iK28V}rKcDWGc*RA1FAZU8g)_{Bwo%P`8YAf5&+!F2QD97i}zIYp}Fy4Km1Ro>( zx2NLLe8u~GuJ0T>8L5L#=gSG-M^!!%p-nERpAn=y_;PP^5Hvsc?N zax;r#Lj1Nrv(<6x{mxV(lpGoV^W0~h4z?AA3ZswLM_^+}L#kQ9*R(t1i1j;QuZ6VD z{tHy8yEs^95qjpo5R|y(ZEJ*{9vg$JT?$jYg2_;Pyu4Qz8NL<6J6|Hxn=iezwBAm? z>Y2-bOsl$Wearw`i-adTv;+v2dExn(z9Y*mdatOutCYDEt7vAj)vuU)oy%W0g4jkL z$tREOBL9)icqg~7fYNV_-6!BQpf{4u7lRMRg zvhoqmIXD#t$P0}TC17l{)Ifx=;O=_JTpOav2gxTNU)pq_`xFwGo=1>T z@lZN0mla%Y^Tg*G9oTfg1*M)$iS{5MR znFeaNq5sJ}&O8$%BL|Q?_wVm^g{>3H1lN#EkNKBXfxrr%(v5=Jz*7?LWdpr+4l}UH z^L4{9TUq(a zslrK;SLo?&I5!PX^C9$O>&Zz4rTYTDz44+55}`g`PBAEMH#Rnw`tIJ7bEE%MC=O)Y z`c*J1bTT&Ap?FhCCYF2wIU=DgbBM>6m;oI>Xq&9bg4M$v=`_TL=49$|8Er7f$5RA0 z0S~W-Uk3uWQgR{c97j1*LIv7+XGbgqiAIpLIv;741Gc#eL6sn>G=G0p5h-taC?wHm0m+$FLP21W?MGT$Vnp*uwxaZ`+KEP8r59d zZP=zRlrdB&Wq1`UiPspu;)JYO1Nx$(y;<2VofrTmhya^bF4H`ssvl*;f#ItN_T!BV zMK)EDjVyOquAYz+dGe%(OH4iw7f~qRuh0r<8)V&07~0ZhN~FZrPnb$${4NVvk6|7=z{061;ui8Zkh;+7ItJB2t^O^hg+Po zk>(2ofkmk&ps))K6$A?kyJ-lJb| z^$GESKzvBWTjsjk59J*$4@1%RJw;KXh~A`{?U@_zu`^eJ)|CqMzbj3E?ieH+W2W8f z1Y|l;c68=Nq8BEStfeG>qg~udcM-Z!^UFb(Z@WdJYVl0FRWlt8d$M+kv<0Hi820G{ z+ladjMO9N z)zQGSgQ+qq0-%SHJ8vaYcz~V>8-xT~;x!P&OWa2zc#_0iKx8~xV~h2H!Am~>T$eqm zi*Do_S*ty_4M5tUV7(`}?imGJ!@1S)`qfAnDhV=(^3ZwHC?G#DRoQ%|pZ@tpB1ub1 z>82{OQ%TbkCM^qk3B!)E12xAoI8PCVmYB@n{A!k*-M}ySBNv$|BBGH%V-Jixc^$x& zhs1j)udQyml_`5Rh`rSbtZv+Qbjgx1|CC;ReBc(O@K!@58`j7WdFqjAR5C`4WG}g> z!N(VcYUR^~(Y2fD^N}P9w1%MnH`;0r&nQU|I)er(l8pT?}-xjazTjJIpO_Xo;1OZL#O`<;;Ce_ literal 73411 zcmce;2UJt*x&?~jwhMxaD9w#1h%}WdB^Fdf0Ywn$g3^2MiEO2dY(zks2y8$?i8Sd1 zMMQ{zNC`dk03o!{L&*Dr+kMY{_nte(z2l9y#yCfGhh(jl|DWId<~QdGxubsLz~19~ znV6Uk+*DE4WMca55)%`1&F<~+FFrezU%(%G9948(n3#Bi82{TAF*a|;#B_q`rt)Pi z&&26|8%G18Ul*OwP2KLZjl<)~1GZGpLuUehKht0$a#mcS({=i0U*viB*H(w>kdao0 zBTi~`sJ`ex-I#yg`{Ja&!(TbHAP}Uiwly7eh_mCPLhe~ZLwE;|JF}TcX;+F zZ2e^SWCt(fhbPjPwzD#RxWskBe;4D2w+H^LVP^dBeW%LcHpUN@%mQQc!F4XoFA-y4mp&i zg-#)Fn+jv$mdW>2K+aaJTomzLUz`j(DlT0hcPXi(-QQ*B|8Hmh&kd+Hmtk^5V=xZ3 zwj%5yJDz^LlJaN6 zii#f}zBdpP7Z*=Ppp>Fja}Te6vrsy;dxvz^P;SXUqj_Pt!({!@JqkUwn>4Bix#tvr zhE)u1%u@1rSl#vO*T2-)H#j;Tx^sB!YvjqNPoMIqTE*i@WD?^@c>TK6c}%rXf0ymu z^Kpx7=vgaSk)1`a)IRj;+n0^i_%riH)Jr^9P5;r|T?S`2G&GbwymXd}mv^(n zn5KR0uJT`6!U0!OUc7kW@9$q|(eg&or_hBt`pz694aqs_`8?D?|uCEQ8UYRVYIRJlcHu1c2OjTH z&*QN%g4j%}2>&f{@6M-;e@+!@{Pyh|brx$Z7JKB{F)prNEQ$`N3-3NWoEp5*PoVV& z8fyr!uk^XJ^z|8t#k!OX@yQF!Su!^~)>MXXxx!gkv#ls3BxG}Qv$?rhMWCRvvafyT z_TJ$oZ;zQiE8Wgs2dtfODE!dguEih8dHncsZtleRcx!jAZJF0^+#t(et~8oueEoF| z?iCIMrE7QLLOte(ulcB!87O%zjQXwg;|T;pYwO2ceoM8qv@|1(OtdPk4MB_Yv;S6* zv+tg-)t9}s z5({e^jhUCI$B!MGr_x+pTx^!7P74ZZB+8ycAP6~u+w>2H)m@aAKTvx|+l^ZHBxd+= z1$ktLim zgdAjJ_bdu1D=U+_2e*@4LYP^h#>U2a1@rVI`5n2Lr4?FdT3cIdXlNK?W>(mZixqcC zKgCqUrqaTAoa=`f<#1ar?V2Zvd^lK#{DaC->vFBuyfYiP85`?kL&&*cE@+~FEc; z$h{>k1tLW8xZ35&nzW|p5fNd*EyRkk82x2(uSbjGN+oT%7x1^6y!}ISfylMHF|n}( zB-M@@%5I3)NLC`RP;XqnzC7Jc2{YbE?Y7&&B>Pe|eE>zL`B9h2164k7W0sZMBr`KI zrgN&xnwS$|8gA)f!M_$MW1_mlWHa8#t7Iz_CbMktCL)jRI?n?7-lE?Qb=oy|kI59cd z>gH!+V$yUYEG$gkW2Pwi8fy_oGi!8(ibr6YdC!xx#kMio3B=-Z6)*$lh&|5_MO&H; zIj-VSH2l?+?+XhHKC@LNYfn>aha4Ro9MUy)v0*O)hZW~6-IS7N0d8+Z@EW3eU;7ay zb``eHoR52MyJ%@D?`Gk^%G9F*SFXSdU%O34@1BkIqa-HLPee+;ON(O4or%Wivkp~D z_dD{ax1ifrI2zy} zh?Vby@fqU0C#;4G7cW|K?$mJq?TNH$@}GTWE}2OK!78v#6j%CA@*fp57&JJg7emXa z1q2h4d0*}*bU0L*KgP@{{-a+XbA+@byoWM>q>8``9{CJXIT}6W_~7p0T8RO;jwKHk zW;-Gj5P7Jt-xg5Fdjmd^FxcvaOg|G_>4dSmy)!5MZ*WPdQ2;~+%3O$FzcRj<69>PJ zId|JGr$s3BjDCC#8=FXRs9qa~9Z#iFpMHF(l-y#@sCB1&c0KvvGSgRPEA7*3S8^@w zE^L>W7{+3~aG`D5eVfeVWG)w@0rf#IR;_z~)}$#uh>_YlI;I1e!ZpQWHIgoNOy6f( zTI{jGbmVh>*OVsMALZcil$7aF$$#KG7Oj&Qi(2XTAV6XGQoJi+koW&Wz5XFE|5paL zirQc6_`uoRJR?PP8&f+hFIkZ?D1P5#n3$}c*A~o(0e;~&yObY4+&U=dGpsT+vmS_W z?B2nxy-wInNK`n(zYy;5^#xC_l~KATTjWED(j?Un93Ea?a*-;Y3ifG1i<50q9k;g=9sqreyKQguMPfg$VCT-A zi8Db-if2*O5`KRAB;saqqfBfI@yNBw>FGZ8Q~Gy=4v!OwH*VahGQ!|ejvhT)QBlz! zQBhQ+B^>Q;JNpFJ`K_r*TQO9Cab>^z6Y?M3h-TK%$=h&t;W^elK3@JC3$bbjkfh4U z0foZioJ4W)$;l3lB3yy3ZEYi))hbz9n%Yvl5jvu}ZTWWku$eko44RXuV;q|nsPP33 zBSvvfrCJ4|(V?mP4;(1N(t-MJAhA>`s?5ON$|`I9%XcOUh2rPur+sMk_UXca9mt0d z-@+}WoL}=DAW{Gl^VI$__ED2mb0=H(nYVb7k7Mv$`*-#ul+8G=Urcgmmq}75I+w)@ zv+mg5fhx>u7nh$CN4Ac!B+mCp!Nwk$fByWrtm0ig1h8{J!>JI>S_x~l!Lnz6cNE`u zS`3OCRjw}J#FH<&2}d<7E-u27-^J_skiJQ?35~{$9X0Ya@%2@R#gTi8N#9ehvMQ|( zt}~Y`iSA@{Mo;AR6#eN`ES>6rqV_I7EncTm?`5?Y+u%3n`RMcej8{L+kJRggii(LT zt&K+AyLXSDJ)&Ol=W+Tpug`RTM@dR&3FlUum1i}1Yof4w+M}AnQ!6n8I7pvIY}TXb zvvgW|tkL>Y#40nJ*JOGu11qCnYA7zX!{N`o>kVpiZPstrr$vc6Juxvc*_N5?GgH=a z{oECCp|A9=o|Dj#|UjW3nIZW?V!~ zQ%d?FPiiC@JI{s9A0MXxacMw%Y)_JPx}yAoSFwD3eHj`E8g)fKMoLL(AlQ`YNyG)J zC#eOwe1Y16LD5Lu{=YFXg?IkgQ<+Dqs;VLpMoqBHoz>@zl$((_v5gPH^x97n*sPMlO&Ah$K+3L1l>v->$;2c-{ z>({HT5l8`k`hxN1Eg#jCI|n0|T7n{!`S~?PIJoZG7CV&P&1Gm^l?~T{s+{Q5FzxLUlFtU@y@U4hc5X zWyvlU_iq?;UOsY8X1IxXlAj-5*s#>?Av+r$-21A-PWOJHxvsKm`b!Eq(@0WHzwEe; zOQ1=6JN{T;ij`i!{M^MKZhkhReW!i=kM0dnO&@liP)$!oqZR)s%`y-R3$t;T@;P!g zw7@IhS4kY2!izbbV!A?yeXE73{>ysJW6m}`2eC#i&b1u-Mv86r1N-lweTSDlx4|4H zO38BvJRNgZQD&UL)Xek+qlz!Q>y))hDux-OC7fZ^bMouyX}gLH!&mOAgJ+`~Z;4ke zVmI;h^J)|i)QZP!=?IHYd4?4~J4+D$)$GK?pQJ|`{b9NHML1d#$eYL-^x zyvXK{apUFYVqyCN4QC6x3D;^hhY)u|Hist!EG|E+^0d^*M1gDId$@|0S ztHsgGMJcBP?eF)Q=9doruI_O~M>LJ(ox7(Jjdq)@AvG&4j#nFq;a`=iwdWYeL@{$L zn-BUDJ;!$E)MEZ>o0Pg|8j~K(8QA*0?i1igtwelrQPSsJEn%rKWO<%^w`_&#DS7`E zB4sV2O-wZ`0w4bU^P^MRxV~?DHef{-65sgPJ2{;@yw`8?mT@_Kld7W>dOa=fwmEHk zflOqy%jA;i2R;7C)jpz9335FfQ{B_wuP7}&?kR@KYSg(XPo_saf35-xCT0tqD~(cY zfSPP<_@0k*r9bQ%9yayxD4{yV#>7DPy}s*W=|g*adw@af{IfcFw>30$6k7`UIroPG z@!P*+dqQ+VTt1yI{CZk%uR%%8P$j;9dO8Pq;_R#kqY?s~LM6<~%6jwW%>$8f=RO9H zv{vB7=sA0PUp%~54kLGPH?)=O9)nBwwz?apOKW*YFo(JM}3*Rbfe2K z7>dPcPrRWW5?PJGV60mb8y<@pl)hhEx|7{~Dkw0}+uK`OJg$WZr~o2DOtHnMBXxP1 zPGJE6zCg=9K6Iq@r-hsUjnuKY4%hDza0)%Ln3ZGzeZQH_nqwHldt$LrJD|}(Ph+Gn zT}+ypn0W8;TE>L)3$$m}$2EIT__vHXw^E;-` zoRydPg~thi$H~dbbPxIrK~z-qR8#|SMo&Vu9|`B`=GJgsC#6frH<#Nm&*9t_9`v>U zz(k(q2%`@nHiDpS(m<`ZF>p1oyCPU1>L!~PP%`}OuiAs@+QhJsPV>t#`)Yp%wwuO>(U8F;B!)`KjD4r*NX8*hawrUJAR<6 zj)hmD6dE_zi?qcyjoy}bIap8v7e~)7)BqYKKpb{GSMC(TvZa!}biTampIVP95uYfU??RLCVUHot*As zsunu-*B*=<8yh2Q6^xa_;towM<<@JHRBMZ8$4fjHwcX#FiAG12cH7=p7Qs0`$ORla zk3h^)>^j4DXl6YN4t}MYoi zCeU?z1O6~@$UL+xl&G3M{l@o@dlHPz8Z z)7DOE?<=e1KEf7hE3NPBw|orKZxW#k9qLSkZhS_xYC779%+XmCc4a%^5^n_D_x&s^ zo$GbN#(TQgDi)WQRsX@1e1gUB2}K{v0l%E;)lc{xLGRr zJb?C{;aLUv18Jn=ja*bi@YnI6dpd=?J}UDAuPpRx@KwUTfB&68zz!+B10vpMYEtRm zw7BRh!8uJP1Kl^_oOJEE*~hr^yAtm2+p!&(_PXlxp0$e4BlD#dHb1GKm%ICil9G}P zzbEA?nQhQ*02)zDm)Sbv z#~&+LI_&^<>Dz@Cpr1J#x?-`$o)tNNC`@b{Cmo1DXC}k6TS@Ec=!0`KiK%lij4`3 zx;EW_YaS!~2T816F2*b^FE@Yt=1WN+D1epVE5XXulMosx%L=fCPeVfoOcxlySe`9 z(-pN}L@Qfx?x?s?VqDywolo;0*q%CKd{w(cOSq$>8vSG|M{I4Ct5pVKeF!M zKTW_A3Uc5k#fNSUAqF$BCX{oyl+Jv)K zqWt23iZlL%L_eCZjt)KoxtJz1;Q7ejKCh(2!`61%e;02lv~4<}P2au+2m5JnSTDbt zoSgjUqY?!D`L+%a4f7vNPj!I&Xr$;g{P`-Y;$i}JEx|qiO3Dd-lE%mlem1r<9AQ#N z^hJ|fP^&{hq|Ag2U|Y~^*(9YkVc9WS)5L{z%`;WYjXG^^hIuUo2@DW}?v$&aqg6Iq zwN7IH$_N^bCarTw2a>b3gw=<~o#oi_MQ|p?@fjgsL85Lc(Ulq2$gH@=(A-5Ul&Fke zOj6BezN3FPG`lk1cU49>15M)1(>1g7G}|P7(%e+=OSz)A@iADd`0_lwd%G(1Vy zx{I;r!t+QOR^@y>1tI`dpG9MF%`y&73VS_9DQrN3$DGF^n#4kjHarbiO8G$+?Bgrc z(gs?kJ<^i~7uRf4?Zv*TA^?@qcWk0H4L0c=p^d>^h}CTDdNwf`wYdxmI{8EI=sFWO zFh}32w6v?r_df^*)!i=?AziPy6JyqGlYTk@Wp=9Wyqe3tXkZ`-(YF3Pt&(ahyT;Ay z>^f6F$c2y;+>GxP);4vRT$su`b6FqdCiAJYyn?*TjklyTypoN_lP4~t`;}Ss4}VY@ ztPT2?!p}A(m{QuxaafTs_KQ#d;gD#Q_7oH=E9ONSiH>jg*w@`(Ch7p4jO& zD06i?eG+H^=zI;2oyW>oU?3n4Y;e+by-9|!F~o{mT^)%CQ;|I0^!R+brd1Q395r<| zvyX>EU-Wo5a`;g40|X6*Vd2XB+78Xem`0sEL^h_RM8_KATkNZZ5mL3VAi4{8Z>N5G z2B?d{lbk1DwE&K;jEIQ>c}{24IT<)4B<>Wy_B+_PmiLk{do&Ve6PHfB*DX{2w26}C zW?^Ls{R+LNjL7P6nE1v0D0s{mMB6PTQ`US_?!4RN@uY!FV4C06-%nOAJ%UE7YiK|PYU1PW-3<-V>P0t~e27Swgn^5H}eXz+Vg4SW&h_+o!y)IV3+n9|S=Rokjp@n%{Zo({I!kW&Yp!*L;y`=X@F)mHw>#8zUyo zRR$eCE9JmFowgAyFE5`);1A!*Y~wF*KGRnqE-`9eNtU^NXR`p;&!oxi?`wylyfF#uULVSFoOjH%1vMFVFPb z&>2h;yRm=+f(SJ4tj9@^`|o9{|F+$qI#Yqk*g8e~ijTQ*1F56nO zNA;s*fuoVmWgE0v6dm|u*!46lMIQS|L&0-y5OnyqNnno%JA~+4%`9J%KH-NX`CjsR zd*jo-U*$#34z<%r8A&ZcRcHy*#*8<|WUA-GVRXn61ngY|2Q5v6!a}g0Mg_*#HRApnV+etjvCBX*p2=Tr*6(dKJbRjF&{JaD%|hm@3d-tmuXP#QS*YFBx@G zO{t2MS20sg%0ovBY|+h9qrXeaja~xt*6_Nf{<3@$jIZC;%^y4jlWW<;U$bn-tzmIZ zeSlw9yF(Ry^C&37-4@Ayln$MQUV$39=6^ryp7D1$fh+jgomB}JWrykrUuI*wnXb9M zER1(Ey!+}(%AJVLjv9&mY`O*pT8Hb#zW;;fl2wPse|Z7WByS#>!1ycjAqluK<S0nZ#!VLjx31Pj+EieqCHyIqhuV^Scb` zXx01o027KYNaZu{^?VLDKR&;VkT$`Wm6n#8d()S^V~&4#z=<(TBb8gl&jfuCxz#2q z=mZ~0Y0^I~u~)`)NW!RsLq}ON>lO7;3>po4#oE9}OIy3ct4Uz)z+ViwvOu9wRl*x) z+LwVj!dC0eR!DB?4evwtT5Ad&ZX9!VZ~z!{lUw{x?X4z{%ueF?_;}*y;tDNdg(?zj ztnBUM!|Y#UK2}cNF#H7Lx;Ar3(;?Z!mGXq7q$Tev#`)Pm|9PfRK}zaK_;r}KV{!h7!HE<9GLsQT9)l0P+v*qo2R zjV%Q7{SUIFrDV_BU$jtBEJd6ntOY^e7#$rA->b0H4n^eNE*5Uj%{3x+rD|4@I$a3* zYNkdqa;A)UTxb6lKH!VIx6`ANH%41;@X@LW)T&rx^Ww~jGENkZa1 zijKq;fcb&z?#~aEDTWUn14%M~WbaB}TcZ%Kjm{0#!u0LlvPmefpeHy)iq^sTwCu`?{hPq?BKe;5gvvkc@i8sQBA)^9VRB zbqcFX&9Is$^Eh_L`zkpYBMQpmFS4-ZQ25I6aQh;(IxFzU}Tf|$w-wdmH|1P zEG-3IjjDBSBA^#EE6RM@+A!ON3-$i?Y2ZVW!_e{x&Jbnv3su0wJ3`QEO4+@qFM2A3 z>x(c3KIVnMa0?6D#!A7Iqk2lviAW@p)6`kId5~v42H_R0Zi=zEYiX?v8k4FeyhhtZ zKT1!k!M9h!%>ye6Ls7i@*hkgF!{cOVF2~*gcbGRI*P+RVs>4(N#Q46OAK?^x$k%0I z5Gz3kA((*}?5o5VR@X-tg#z-bv^)=HGp~65a4wq`$n$&teJxAW=NQa{y?L0dKYwz9 zshN%l2iym0iYN}vkXFrnf=>Ly1E(Ixz^F%UPbQqyKTz6l+>b_^7j`!{tFNroI+rC9 zW8aVv-l5J^W+vCLU`fKzM!o+jU3z=ezp~j2k{x*t*vbPcgl!^BftQ0 zZv1ZM!JU1*{qK>`OzF+PDT||vP38rLFVFI1eFPuDaUBTNg!3(?!SR}7 zzedFtgWHOBH2;92!tq&buijqxJL6{ki=j^}1x$Z6o&6KrA2D6(kF1f2$s@s%HY)Dc zUQ=tUcD$mkZQ~P7DzDbeO^{SO1Ui)>ZwY4Gx&3LnFamT&-3<%2idP@*;d<&4V-`}y zrq{`#KmN^~BOba9`8LTT*PIYVX1Y!BW?3E{#6L5vSU^P5Zu_9O5}>;h0G*);XVX-T zl-fN8dvccL$=A&DFx5UAQat%d*nzh|@cU!597RS;gy?9hPow37x=$ zn2uM?pC#3ToXF9d_nKyMK8prD1T@MkEx?w)=?{@RbDA;yz{KsS_7}nZkj%X!)Si8% z0v(*UOPSF}AM4HT8_2NfF`fGKLSN``d;uTKC=vPel*SyWeJ`UIbh|BQ_EQek8*Wkc)#sE_ zei-(X-}I@W(NpC{q}DIw!ixHgje_ZO+1B~aWg^AT$K7?nn3moAidG?Zc(07=U`gcz zG%^ylg4^s2x3iLY_t`qHCTPA3*-Nu2ytImU z>*GvplWe+aP;twxI(w9|ru(Wy-}OQYUjQNGL~D$!kTZE*3`_*z}%CH`jPGhQ!fxzWD=_v9yl=C zKh^Yy5)(+vT8ST%MNy?-k<7SI0;Y_lyPmk;fyF-J%X(fv5X08tUIXA zrsvww@9vDX|9>^H+P_?>!7l!|MWAo4$ZSl+S-d%R?3nIa;lE>8X6?TkNT(=)IpAI{ znzl|(^9_Q@U<+iA^i)ui+d9sjo9}uQ0hQpNz9&K0pT1mzRlInyd^`=@5(~4LZ@jIo zt*5}3X-w_G14p(nH?Ll6a(JWUw_ZkkL!HvW{v!aoMD;N{2+jffN^v`UEg$C#d=H=w zEH@E|O;6yg!TVWR5%Zr98DUnI@Ww!G-(~$hjwlBckhV6=fwpLJ&tF|3hXj>JL9NLa zf6B+n*@Z>HTo|~d)RDi35FmvhWMnLKI|l~`$LszX#$M=$VeC}pKkqu@UxG=V1+0S+ z>mpEHa2kN_2=+C_xf*81ltMK>F76mxJ|@(-=?xeS4e$M;UKD{j_&hj((sP7?6J!ab zI6?J9PiQfb6d6>T*nOeH%8zM}Mo)t45!B}R&|L5k(Q*$UprYv~6&3@#$gnb&O+llJ zs~Q-4oBG#LbUqb)OQjxV}*JY&}8k|RRGZx7{`xtb_467}k$pK%c`h~7~8N&y!?aIS` z43D^-lq8)SRsUis@8yXwe7fNKYPD>qm6jQ(Yj-S_n3tXafbsCq5jBq=2YWN+o;9O?1-l0s zCE4tbyv$fOz|8AMCIM#|vsj?RX9|6R#XS%)=bLc7m#*3BRs}4{x&e6oj_uosQdHmS zhY}A~SSnvkw`DGOnApRdA7;&f>O~5q)CVFkhUst!aucq1LeZ+-w(j7^QsbIN_$e9pAH^|j83!^EU~pbK;CeC_VTA7oU70Wo zOqsFtTwqPy>~pBRToaF?pBVj50+PZ=06N^T(+$pCMA`VmcS2sBBQbIJH% z_=+r*bLu&GP{YG>laX}V3U+Ng0Va*_>9>Eq^kHk?i5UQtP8+Z|Drp{3QD`;?@jhS$(*(T-=^-$DV*I z;R7Lr<|{5hUBP=;`IEZp85!9(iiD~7Rmc;$-A#ETGBZwkxEY5Sum6aZPTU0X(?0h~ zMExVqKq{_J>DEDpUuZSkO7EU@A(vr1aXa;>p%eg=m{WB??4Ziq*3O9gB&VT5Rvw40&M(5*-SgZaSL>~qx|3Ppatg`$qnq_>@ z7_1$dV=R8`Y8ZC4P8^v({{Ipk!@f2|3F;u~g<^3@U~)RRyAMo;|6saZa?RP$h3*#Q zedTIO(rlMt!?nK*#87l90Yxsxr?yVaZZyw!9RkPnzf7uSxB%)L{7Cxo8GcjulJ&eY z{-`xoa{^P)NPPqxy{JtpxR%Ig)NI)qHMoXHrdDwdOY6lN3P*1)h|?Fi2&>m6j~@uC z-M4RFj2V{VFRD$e__WMslEGi^cYWzYeVa)pG&jIbKqAFeLZDQu~h@`_98?obeL=NLlcf z9)(*ah0%0md>?S&8A>Mkr|MXN=C~!m&WhM@topl|c<}+d>!)EXg85e%6yY=Uj^l-ypM-Bwcm^wJu95lEOc%P>geK{W z-(#-6Lksi6=%!dseFWw~pzB>#L8BoLayE1rY0xHV*u~k|_H%$N0B%~joK7eaTa#6k zd{ggv!3$%K10;3)QbvwFt^j65j4c9dx0==-mSMG=@gUlSQ)HS)Sko zB^Vc54Co=IAD`-x@AJR(*6h$~IVQG~55vV)a^_J`QjL7ywJfWB(AqcYz5cLuCF3j9 zY+g)`ytXzCiR#$wo-qe{`8%k^*Y0j0Vf13}`c^dP{UOhzdZmF$H9=Q?UttY|I-T)Z zlp_rMVAyxpz*{aCqHhyx?I8*C6bp>iwV{59KFiR& zCv+yLxL&~;z$%8YQIuh&*8NRVEy^w@i~Jtds(tS$RiTU`+9!5w|4!&Csw|G}4d_G6 zk$-(f@F~7Z$<&kswNNP3hwVlE9Xc(ASfp?LgJUREv4I$%J&;eYd{Kcp(H@>H#`mP- zpK161VDHHM4lf?0%ON*B3lo@_x;VG8Vm&{?Ur1HLEK00o2UFkW?O14jHa_hWhZq7_ zHVrG>c`mw6K@ks3`CzGtwi8iLYOKPUqJ{S%>@* zG;1EoB?qxs#ZJZN0-z>!_!O zJ8qL;>U%uV)p|!@&c^RwNph)QwcpPn_G&F+qZTGMG={T{y1pI{PV9-(jL#g*sJ9vI zyy!IiEEss0>r%%8pgdS9OGIpZeJj1xwr-cNuhULsE``_<_I0Q>2!9*lyE+F}OtJ~G~kFNkbTO=6XHqVYZ zd)0m(D98ai*JRH1{q_xe*VQ#>M)K)EalwH&W0Y{e4%7|ah~A(-wY2T-15_jwoP+-$ zV4tPM&W0=CzHh@B7(D7Mhb3T>#-*-wh+h)?)&<-Y}qFqM1KJO6vrVMIUjZIode2Oow6BvxCypA}TX+R|lJ zCnJ}_>qF@HYLuzX{Cs)!bP6K5rGkEOPBk4cM)40@(Ai*Lt#!HeXvlw?KM;8%=VDHC#o+aYqanu?Zt4dfhQ2HNsPxr{u>~`>HOPQHawAlWw!gm_)%U95 zF(3misrg8g-U6rY^7UtLJakx$M)wzk!lQAn2|O)}FRF|>a|jXoyX-ly7cRd@{KtF96?nIpdDeUU zSR9mea2yYA?&5VcLiLwb4(R(<+CMw}ruUs*;ErmRpM(|*0Z{wel^U4Cw)oAskTS9B zQ`!Cf{f{0!O1L4pe`H|{2TOAK+#gfFOo#tC!vAN}A;d5YUYzBJycqnxc9>zAGs7-B z<@M&s$A@>6Up72Gaj+|=@7r@49p;7o1OMI`uA!#3w7B@$^jz!+NTAx?&_;IwAS7(48DflP zp~naj4nT}Us!j0pY30Ap=zQN&;Vx~*cK(M&@J{%DvIt_V7{C4`LcESvvb(4nMRlN) z8O}vWQz|WdJ!ym~(ahSYr?2uc@Qqf^h9_q7owK&OvHi zQT}V&*&(sz9*@nw0&kcx6o{-4#>|7~SXNU)rCJWES(f8vpg0WqA89>iO@+@#j zW?!|Tb$|^-6qGB>pBtls2rI(Q2OSWbqSLT+JdvWEyAeovqaGIQsqo|d4NXSUp+xsl zOl`3(CvZS;x%=?k_kqkW1e~-{w@k}KmhWZD%hxRlCi?Z=m*H7GEvZ&PX_hDBYLZR> z@=s4sLtZDo$sC&9f8mFl;`A}B?dsumuDJMk=Y>vHTmfX4K(Jna*Reu~4fu^MGVO+$ z59^;LgodHblSbsDBDIv2d5CXOlJPpZksZ=@$7j!L~+o(E)RWu)g(3{|5)_IQ0x zWF%WqIH(m64O3SgaI8d9)bd641dP7%No+6t4c2RxmN2j%+Buxk+^B>-bRnD8PXYpd zyP=Vb_3d7rIC=N*tUvScI`a^4u&`c^NB515lPNmPf7UpFj9vu=dA5?GE}ftzzz$Jm z>hMwQ#G;e~WAQPybN!R@4(i%kvj3k&!v8&wc!KFZP#Q;D%tZX17I%c!QeJ#xDjOr6 zcj{9A0ajLmQ#}vMJ~}Ap8kube>{#y@yAGB@S~K66T5Rm{U={XhthlkgrO%UfbQZH9 z5Hqzll|iRNk0{rD&h4-DGBLz=fBN~?R=0jHlUj)``0EI}_tsVa@3QUx{zCqV$Ui7B zSN-J$_^+w^IjM?mHDA`(*TFpkDL4sEk;8lAZjVEP97?@k1CP8r1W-US;JhvtEAO*x z3o#e$$C}R1ruhu>bC#C1udlD!u!RyO4$MCd3^gs+R=Rh!bDI>S^#SJvh?U_o17C?0 zE@aUV>o!X%7Ma;x+TJG|ciZxo0PGo7jqwBr$R){etvNyb@_rGDz6pdZ1eASfM~;WX z%qTK460CR~iovNuptl_3<~|IW+Dan_ux%O}6Fz_b3F8D6 zn2z9Ore1t&>s^x0hmEUD2IG#DflnAF%ir|7iq%g?De)ak&wkKnDF=bw3U_jW2njZS z!kahHJ^cPub}2qv#r zne@VIn|$_Rx4%8oUSvb2tU)L-N<|>PqbEWXl97pz&!6Fk*q@nKD< zslfqJDE7f%2ppaY2{h?idET8I`t|GAV8Sf8A@yBwO)!lI$rfx~{np~|kN962gnUx8 z>R2r+!gV#ezry1Ne`G^L!vVgX+lsbF)F0X#0DxFqX|@kOSC`vW>!6&DkOTF;xXPNY#Q4C3NHVq9o zsRV7lim-ABWa8rBLN36l0d6K4)FLl0ud(0Vm$O#4ti)gofSj`k4xW7g``f%-IqcTy zD0s91%-11{#&`U<^FlN%2H{X=2>)I$InebY`eZJws~!lm!2zL@F=v>%>C*=TMK}IF zlSMd_T@{_=KX&knlEKoK{~!mPhj(9rO)VrOBwDbm`v$eVqJoj8cAolD9lOw;buTep z888F#DdmnQz!MKL9TE|cR5LdZOhOdNQu{{WyB{2UYZZ@1UuR@n&r3=!Zc=A4 zNXZ5cyW^L zFr)-0H$1lh#=jt2#5FwjY!TM`GgWArRIoXjyxFiuj)Vv{7$pHV4%l(M_j8{zMR>U) zkpswZMphp}#f&EuC`PM7)~0(3P(Umwp`_OIQnm@c+z{fa>EZt-4Xz4CdQd~Xyw)Hn z`#}RoDo3s_T44!@^XCg-Ll|!iA62tgd=Jk^@B#lE{E^V`m>X&4=qSM((bC*}-Z6EF z!61=H7}8)W?Nr)|RtP8r=l&PZpHB}|QDGWekj}ULyDN)~Lr~q5`?YXC2G1;7GMDGU zlH2@|ek(K;G{){jJSze6lrYDbwm?*jr-2EP!MynwI`tiL ztIN-Gv#cyH-xrQv!tQ<>-sR^e!TCy*cJRsl58jjk@w{ z@RIWVH=q0_f22P?A9wq-xN&vm#gbz@JV)5n```WsMkqKiak7$En$`s!`G){ic`TY;ZRYI)0(^NOc zFRF{NT2%z5Ltu6Q4nTnO@;nUp4~Wohu@*ih-!9~A0F3#-xdmWn!l{7alJSSEYKZc5 z$$RMv(I+R}kNQn~PXQ6yClpTt40AXi*De|U=9pd6(0CJu$u888Eb zl4%wL?GDgJfoe-u_}6s8rd>Po)-T_tpF?G^)%kXtFAQ54Pc1lq9v+l(Z1)b>r_u>D zFw1u;v`HnmFa&Wxj+xn6I=#DsvRc|mHQFFtu(;o3dHp!~rD%@l)h^CQ`+t-9Ty<1t zH2Tknd(S+xmHo5G>gJWiKm+b82^T9>e-w$>%1&$+jIu5A|rMi9ve!+k;U$T~t5W#ZY<9pUiud;EfL z`=x6`IRli{BTQO<_y%=~SI%9T+{=97lj6^32{AEgGadTrQ($@`{N!(@$#m&R&CdrD z!GnnQKK%J;A||Fgze)TwbTTo$+y45eWs`|XYuoLgeg-BcG}Gz-)7$2ZiPc=`?C40h z(rcEel@PcIPdG>w;&?S%%WCEMI(Xubeed#K5D(>e28=f)XIO=%$|k8tQP?9>h3;o- zAKXEqOqI_#%HD3irCcD=OLlL5Xowf($Q$tn%Mk1^g-A5oI{r%qIrNIpGUUvwT!#V- z_~HzWdX3=qhwheX#-4Jxm?U=PWDLR(ETtuSW$WjYTk5gnFkfF^_kN>t^QH3LZ(>(b zhyw@M*pg66Yc$BeGjgEEi64&2U<7WuS0okY3h`@egSNQlh3m2yTMAQ82g^a2pyo?~ z=AFKsb||vc`TfopCnGk43q9AapzMy{d^Fzo3sZ$q&3Fil;S&DhSsy=M<{!3tt)+eB zTK@OYX!S!>?PphBsm}Xe!Mj~P_zm-Y?6?PeB&4}YbVcBkqAMHF=*EId)4ILQ9bZP~ z{r$Ja;-U*TNAZtsdic=!d2L^JTbP&|>vmV$3)iQd6DFLFwJ|pXe=DbgSKFj3q)U8! zyHy5C}@!_nwJPG~tNpTZUNl8p);?;%=0{Wu5{ z5-*nWF}$%LJIb;vs$q&JRSStST&#>HSe%NwS<)N6$2T1wanvYx65Q2L#UNV<^5bu( zsM*-mAimT5-fL#-eDtTpL-U>n2X~b88r~V$0J|25*4^D!NZgVAJK;G@O)c_DN^ext zIYjjyI~(yI=i#xlvT8U6kMqfb;^M1=TpNoeDj*>c0m1=PpR!KQ{Xgmv>dK3)5kE*6 zqW&9^#9kv;&?-`eq-A6h5+MY4>BOBFHC}FRTT4sG;G8C^rE3<5P!jb}K%y56y>8vY zmAjFg10jA5j~y{vsVM2c&Z?xMyojQU(^}|p4%WOc1>g#saXUg)V#YvK`S3xS(xOst zdM=?U1|L#tI>y7tH!HmQtXBa_Cve@w5iIbVh~w4v{pH|rDtiPqxvQ&7j+hvwIQ^mb z=3UE4&8gWI8F9fye8w>#X|mifGCWP}kQC)+p^U;KO~UI;y>k1=?hbvW=PVu|X-gR7 zHDj7ETk8iq*Oh*+Xu*B!Hf@mI1;hdUkAm^o9aIZ9Tdrk?W&E-+eaYA>_t?rmpx`eo z%Z!4_6VwWLCuK(;C}_LD=W{%B8bdqofWbFIq710VkHcgRv0oh7WDP^SGkey zV+k6{sY3Pxm1~SHdH)D_LLQm$f%D_z(_Mo8+(mKLq#Pm8VRd5c5+{%lBs0Be?nPi8q_rFtg_rUN1qUaBg%*fAoT2D~uO6cegpI4TYkhrAWX1rV*^B&8g_#dyN9jt&y7`c2Ig9mv? zvxyp(zoNN#0>WlsufG(9RUv%s*VV-dukYV@4knjm{&0&qXjR9=E){(BpnfsL0cqX0dm`kg*@j^Y;C5 zr@`3c%(E-M-w*rt+1gfsz2Vpy+`{t%tK9R6@=;Ptt(LA+pKd?p-n~Qf6!rT4+Tc3V zQ+jLMH$yC4UE4=1|U`1*r)ZZw?U3i{k_>h^C7ma3botUtM_?9jc|3%2% zbuOsa9t?(gsIb}6b(9@Tt;AzpG5o-I16M@-TDA<^&6j@(?QLoPMk3`MtgR?*uWB1Od>X{Uf1*#Vs&t5>Gb8{iC z1e}d@G6#W6yd`emr3DICcY#@3EF<)$o>`ceXFsC`+A734`|aHw=#_HZEXxQ`rsB?? zIf*;Z)=gf%ve5ig1UK*5N2KVAm>V;{R1pB3Y|RU7o2f$3ABz&+)oivxmsr^B<>X{cv?;SD>-75ND{9&{39P$f?&DMv;AuI=> zEO?Gu;;z|H^_K!+b(#;2wiV&2nvSrriS z{~_+Z2PMc6hlq8*;lB{Hu zkd?jH{d{X&*XRDu`}h6bkNf=R>MG+L@AvUKj_2_l8&<_ug=w!CSI2kcHD8_oBnozj zRd!ypZ7_NQ)O45O71T?dKl(9P54!HMFr3Rim-$4tWajyU#Ulq}ChBV1o_!jRj`O0h zW~G@jOcwa-EN7V1C-;%k#d9caV+_ zXB|%Hf!1F-T55($wFXpYRn@gJ#dZvtM|54~BCoQc zwzin+Zt`V-+aur1%4nw4&t-VP?#Ypj>Vp%U(^}5O%D%SE)~9VTU>9!Zwk;8*efqdJ>LhuxhKPNn0*;i3z@SWC0q z!do&@W(={gc~-br#R0nOnSEC5CPm+)_(fz&U(45<-L=h?={i)}KBU0@Wz5au)bmmk z-e%kVUgsj<4wTzesh)yvCpD+3zxzUjSLKPMkSvGJdL#99AGfaad6?epjrSg(7gK<% zEZc~>E=ZP|n!!>f(yZgB#tUxnpqj%Crgf%e0-^vJ85v>}hR*e(+Zve_pjBsvW(6FC zTi;RoMgJBms?+iQp1uac;j>MkCjj$OjTCQ&j!cBo;`bygE7%v<&7Ewh6vBKl@BZ_< zVixIv(9!qSr!90!6iJoswF^7tu!_DPCsB`T0mzqaFRwZ0d$hl~^_XUHK}bastIPd*M9eJHkKK~*#P*L5v@;`0r_jSBj>1ljSTRZ5{^D`F=xY-po91c+`NtW#N zCqpQ?yR^0ao)j01{Kd1HzC6<=Qvj(aPd8xR%L$1UcGb?bAg=b== zzGe4cXnqY}6 z%QyG(%w$Xb=PdS$8q4+zNr_pCZDi;}iJ6f-2X0MWZ zSfG)(d|@u~?!*1>d6e)l4_?=l@Db&Tq@o-i|8tqLR>t|XbJ^jpes%@=7n14QS3NAB z+Rm-gru>#zk)qe72t_0tdfThs-ejhC!jaQV_xQ+4V?JV5P%f(wVcw-^SR&+b;>Pj! zIFSTrj!&MHsC)mY#PP>^On z`p4PZ3bXPKr-he}B)h(eZ%HIgiNBpXt{svPz$=}@YNkiAeyYJpB4wU`UhXR55nAqQ znOXI2vv|>}0zR^o#ICIVEY&vU+>`H(BExg}JXU(OOsTd><*)cU@6^P_J?NcV_&rUv zDH9d>Mx z8+9ujFZY*VHK;e!>ueq`->G*ZDSL47^9_SQQ$ti};=J`5w zLMe5!d9oUeI3%hfP+Qli7G6`eA3pnU3s^#pr9%%u_^d`8Gv%(!_w$fbx!9G0fPhm% z!z<5C2Kr?k$!&^ue27t-{Vp1BkyIGe+_TNagrO?SmfO_dnNTNs%TcGPf4qRp^FJ$M zF;VTcaWzhb@$ql=NU_~tE0cMro^JWy{q6sJ=p}XU9TbH0bSGL&@TIbIa?IztiIx;> zu|4exgx~=4XN5d;q%bMHc3#a1-FrhD_kh0co2 zF=C)xqcw*7Y{T8EF2ZdVkN*BbI5S#VTaWxHU#dr6pupvP zUF?>1hdUPt!$?@eYA2oW=#pu*w6WR3#`Xddj$aLNlWjhK>))OBG+q*{764MtL+s@W zl*;jX#;RE~(9tzCSBp&ukr}XIob>0Ka>T^NH)veCG-GhFnbZF(jIM;m#Y1&|zozhA z9@NAD0o2Q<1SgV+<`5r5n+G1`2E5W}BIrx5uG2oAFyHHyBNo{HmE1T3aWIt8N*{8|mmw zK)FXO@&Te?NWxmA9&^iKx#7Di4TFP1^chKC6HJsbWeuA7!;q z?4p0%clRWm_jK2(M=00OLvxTbOHIbbw!?#DH-`Am0V{T*4NfDGTvI?fV-GS5pR3w} z9(aFfKXetndB+ETeEmF5T)~U&>$~jo*Y%$_M#u3)xvnjFtEZFob?Rd0sBp!@{S-L& zc6{m*ZS=Sw6(OeCDbdDfr{@W`6Q!Vg|3zWdRRwsF+8gEC7#36?AyxFcVA?t$u7QjE zkSQmhC`)0JZ;})fNV}|~y5cQaR4FT^_@h=8l(kRc*m~|c=ay6pX^rO;*+_1rLL_kS zcmrH7b8Q-hBWCBpWUed2)NuA_S;b~?Z9b+m7bzC>iswyCu10^T;$>VtbiMMyj=O^! z=rx3xRYo|?&~{;D@EPgwQj}=dV0Of)kogV$^1Z6bKrtl?N))|fhOXIm_B~sEM4ehV zvd3BH`M4B4yc#mU@z--5epn6RL+D3{@GWlgkzH@GGAdR(MLSxk!F3i7gCNU0Wo2cW zk7o~|xOAV8^8raXw7^U&)u;}xl@#W>PlMZh%fMIO{ss} zJ!`v>Z>n6uuF>YF%Os{Qa&@hLxpkcc1AR5tSkEGScs8~eg&la#c92qYI4e=6N=yFC z4wW{EbDu6$D{jIX$UOBDI$()bcSp=mV1UNB^(5jJqSrWg?i_f&^9*Kd4|m>^v1rhO zpn&krdr^>(Kr|DDg&seKu`WPSz`9`K;G{!lUUQ!p3oGl`DWz~M)M#FfKHT^idpo>; z*49Z=hwDJ%ukRI;w-aRv;YfV`ypb3PR(sES%Bz2S|DJAvS1i9-O(7*E1%&e-Z?T?% zZRiN^#+yP@Er;`)V@7g=85VLj=?F1H_weFH%QsAI@G{D@86F%=uj+DC&p8l(mqST| z(b@asXSGt_ zs{%XTDLu2(3s3b^9yjshWE2q>$4LTtu?hux13sqqa@KV|BhvDgxlK~LiBZ8!7}G(W zwr=HNbP;-?AmTw@OBu4NE;ZScP!pb&_EEGS8dg`QL|S9&Rv4(%){1#df%7^AGf`}e zZ_Z(Vie+E-$^#8S73yIkHoKB)dq$?r`BUB7^fYUT{0^cwV-So#`&p#d^7h4&i;Dby@%+Qov6W^W65G+IR1Drt9jn4c*z~l{kLT75G@D)gjw?O$nlq$Q3KsxoC#PfK!2T|( zq-)LZI;&Z$-ew?B51Qc^0RA7XMe@DsX$8Zp=~GTU51JbZQWn?|hlRVE$88NhCK-U_ z&9<%2&Yv;--5HycrdJhg4`T5FXYpr701Z4D5`4b{9Xicj?#C0YwgB=43=cNpoRpt< zUX?+ZUK?V0h8quD=Z4A^K^%lnuz#F;-S@IQ;KllnQ)J=p%JG>?d$3#LBlAWE6 z5#7e7Lg?nFPoGjw=Bjx->!?dPiNRnToJJ3LpyB0$^AT+J9QP_t3r(H3n}1J15#B;q zHYuLR-{MISB5o)f&SW%zRi=}ydmf{O#ojG1FmQmeNuX#iJZA6(bKv=}Wwm|wWySdI z3HRUUn~J6?!z9ekDMR&y=L3K%%JU6HtzNw;xlFr%zk)5=Uh97*6Hpa5{*M;}SFGID zyVvd^m|iHaQN{}QRJb-O@^VBg6Nl8jBOD)3DQ(sZ^*f?n3s7PynUw$&vexe?&y?M> zX9vyIDOV?hD!t7|aq-3!z!#6pdgpr88ebl!fJU2~=Q}x-gx6eiZ1UEvP*zYNk+^>0 zJ|t3TN3S?c!R}?+2&2C9&QELd`NyS`?gz(Px@J2?#Gn6Bu{qK$fkVodCw7ID(c(9l z%gEk6awN#q!AdE}RL^{`Z}^99QTmXMu*W<{`IyL?nF7oFFtJc-Gv6w(8)tViugtWQ zVhS)Di+oW&rgG1QXfYw0$>fWS1&%{0=u`e;B;q9)rQ>x@nakSO_ejvA3yb51rEWcZ zRL~DgWpgOyrDn02u1mJ<5>t4&?8Q?Bji*ihj%Dd-l~&p2?1X-1^G>Yy_LR8^2OB5V zT9t>~gV7G%^(an0=^QxNH_xte-xY#oNoSX8LXBBtt-|Z@ux#tugPcsLVvcHUjb|hA z29*l|9+~{Ht6nZwmrs$`>&2Q99%VywtDWX7;>*62@1{9mDDTcx^<1$ga=K#QOY^Mr zm_s%!+h6a5n!##%ucP+_h7uiqMZ>SQul>pBLv3=R_#G+EE{9}|*jeq-O>ZV2`ykFl z3{&I}7t>eCcF}RB9mM z!<8`ftuj~1Z0)U@?ux1X;>=&0ofAZ|=3iahgw0HJsR_Me_3XzR#yG(5nFag#COqH0 zobsvkkmYPr$HE2++a7LKQJm<#iFS3?s#Rx*m<+WmcC8V zjy_tbPq_d`p8bdNR0BQg;N-yEzn} z$<|Nt?iU!XH|OGHhvsrV;~GvgxVo(?`)oXNzqtLEo%H`7ySIH}g)8SfVCF!mq20be zsH>~%_QGWWZ}qK&2L|p3 zuF}}g$M|>)SU{*`oPYXVRi{%2P`$UoDR*&h`0-~P#7zR{6xpkj<;)GKd41T zRhmP`HRz{s)i+*#TTA;89TGqI6dSa#26^LGNEj}GoJcY7bT-;29InM^_Tz11I-`JI z4g4AN)X2+UQG@ZsM#m4L{AoD| zK2g+gaqhgSTBsScMd5Yz_Nti~j3`;xOG}+GP2b@t|MoG6qdc?1jZP#(qU~NsSm_Is z{dAq{0?OJkaY%Pr>6x@_EHM_A(cuCJ1foX9(sn%sdElxX7w<6aw*sjw?n>D^>S4VA~o9~|?w*v-Yo z^>NWhH8#}nWcc8&MBcr@?;dB`)HTW)%DZEs1%2-~%GbSDV5g_7IN#D_*rv9-UQX~# zk3$EVbrH6&qTEgtX7o%dfd}@+)TZg#n>S{RVM;Sw$4E*(-YYaEy6zDW8EE1Y+V`admfrkV3c9~w3^N%}jI?P{P zg#9Iih1va0938XDF-_7eqc&^&29V&!jTHl?yG$KD-)hWNPLEysce9lZaKYYB1ePKZpP&zDq_WK2C*InEjKO0r$yFCO{ zBpuDRd2{#o?{B3H`Sa{0PibnFtf+9r_V8!BA2QD(#pYQQ%ayh*(x1P4jjccH?}jZN z4Vy*R-gqPLSE-ZlwipQfSr>*gy;>Gy5OImw=+a=ZGd^a=cQ1QJK&PA z|0Iy?Q)**5Lv{J9K8-rzfk8ZU2Y=dyQBhHxvkZi&k770?|JC02OYN2NP>D~qD2R+LC#tAJjtmjnKNS1KS!&c4$`!g*0)AY1!fsAH}=xN5P zB~0na)fN;98q|xa26I??Zi|&LsQ2SxTurRrUME;aY^O=i5Dq4hw2CFPY4k!tkaR?g zvnqm*dwm@(L~C_HRaa6(=xFRy!;L6&eyF2pSIvTnw4e}fyImn)(^?2zy(>cbqtQq* z-CVYmZY*dGl>=FfiZDq-t=-VM*j!%6p02Fj^4vLor#SgXPmD({4$sWJ4ijYyq`lha zoUg2tv-u}8;`3*8%jJm}cRf4`r(6lpBk|s<5aYbxrNV}}OkN93r^3h2pK)h*-Nt4Q zZ>?ghbIe8u+e_8AZr=2bYrwxb03N5lvQJOk)!zR7qUBHUNc?eLP}1a#C~x6E80F+d zjKsM6NR6P(!t2MtVC%xWgop|CgF%l>h4qY#M05=`CUn~Oc_L80J&K%Yn zVU1(d62KM5L&a7@*z3;@(#a54AfzJya}HH8wd?xXVC>T2#AotGo;VEQlpF2^a2Mm- zIHBdqK-?B_lfsRU0V`I`sNdaHr|x!!Nf8Um;4f;#e~JHAUX3Vj1@!^JZj|ZZk}q#( zL8NV!my~>FRZALh?~(!j3BDkafAZj<4(el}IM2Bo7&ODBaSn_PTnOUg;z;^1 z07qrp)Z4?t#(3oluT%YF{RwWwyFXL13atfoDtgfC zw?SAQ*N;I6E^=IhQ7?3=KAB`C9o^X&o}37s#_aB{yCT`Cy#%_e^|?T*J5NmkN-&c> zGXk;%dyUpQ88o`j1NpoHzlu@D1KQpHr?p7+M_K|GC~o?O>py;^(=cE2`X?kZl7-K7b66{`N3O7CRDb265uA-zjTFfH4oLx} z!fC)ZcLsb3%mrzMt=(ifoAf;Uu(^y_?p%E!N`c0be?^rXN)moDZ2z|U;(&bo^hu*C`T zMML&xzI$TEkB2SL!aIXAd=K5(XmjJ+4D1e{!M-)&2E1%G zXz1u{`Ux@a>u%#$z|Rmes5Lq;;P9Nl%Rw!^fbY=razm_>@7a!bA$_rbQv2`Q%M zKf5zFDTi-x`TvyXl*Hrz8!xo^^ptmGy97mu>i)?@L7|v4bCQaSvPIhCKsEioXT{DT z*K2wV(BZXhvws15?r=c)-FyRdwtQUoiRvp_Fn$utH5f7uH08qDZlodOOeP;Z)$PCn z>RB!I2kpzkxCt^E{uX9E(B7PaR)&x1FX)}8JQeU}TtAD=oi1{Tctinz8n3g@@OXO7Ar4z{z zP#RSJs9Z^mph`iSb5n~^G1P2cEQu7MmOyT}T*aly@v~zq|3>}&Pl+TvyO-@heJdnf zOPlkyKsF=p#;sc`H-{eKIGY(It1Acsl&-R&hVaa0jILVR{A4ax$ai+Bw-D2Iq2G~E zGm2QGP0rGl@Vko*FMTpNpZDzFYu6H=-JLi9XMZ$A*4Ea~SEnyly@5~J0dwlVOO!4T zd)$AoM%_3MKrpiMkOJ<0=lsGuUqcR<%RBxbHEIPtq*^N{>1Z>XVvAtjAP%K+(@bKw zL;W^W7Bk+&Ote};c_MsZE6w4((%A)as-UtN218Xq~B%=&18xV2b~R`VHG zcWlYKr{6JAuPA}P>6toP67M2+XfsJMe2#PjTe`1l*X97+-MckLx-!Jtwx zO6_&y*dTTOtHLUOOHyOJ#KPeEg=2565Y@*?b6|({{gqIP?qL}jVY#6Z`tGk@Y4sLx z{}sRuO%44;2Nh^AH*FC!BKYsSrg{auVGU|^H(d7?w!u<6&Gce2mc;ISaZ{#d*+^=O zO>E%p+e}3&&(nXgJwsj!-GsKWbIloxO$}5xd`Kh(QE6!yveWV!az?g)?6@f`Rx~`* z8z-{nU??i|ZI@vf`p@^MDu5vApLvll-eJhA?ni|^zFle}RdT@~L9g?E zmR|bK0oSD8L{4j|-mMny>kG&o`Z+d@qaE8kCm+;wCnqIE^4CKzNW3cSPCtFpkE}d# zq}-r&YMsaA4tkH7rq&aJMNwTlAz!%LY%9nyAp16ROJJFYTr5}un#_n1BXgUs4(BJLz4NPrnatPfc853_$FF2HN_jP(TXYw6>sFB-rZe9{70LJH$Ks}nP$3j8R z!)7DP%sk=#WLF;Fhkoa-&re)rV~%hj*Z1abY>R%b%8|m@@0>q{d8Pext#kffEMn3c zt+E|XP-drl%dg}CGGtsNd|+sXL;*Hm^Q)8%>d_}|32wjAcsAltF!vkDjnY?$Yzf~p z)Z12j+vfM@C)V+cnLP{>qlI4=geh2|xbXQy~=M00+ z@e<^tK^$hOuHbni4IH~RRtZ}^yCLF7z)Ys^-UQ(;a$4wqw*7R_X86|_ktL$1PNW$Y zI&{3-dHA;M==*~wb8R;&YW&9BKuhhol1@Uh|}vyd7hz*Y7G4)-{w))7e{aHeXSPSk=3=sxo^L1pVUDvfI;B8 zbnP9ii7gWMTECF-Bhe{*dL!NUu(w!o66+W|F{j)LZ_wfFSk4$%pqb6w6P4e;DpH|NXE$ zdmN!V_@SSRDGq|1 zaMvU6!V9GLI_-~+zn*3d^qG94ZRXAy2o}`DJHG6xCgs|!@<{P>Uv1hbQBoy8c7NgB z$JS)a{Ce6UDP*;$wDt2BKfcb!b#>S@eJfzez^OS>B_Hcp3B!eTT_>Gug~WP(a{91ZPo+*vUjro#fNXJZy|2qN+Wr2eM5jS)lz? zKb(bJTZ)cM+2+U5UFwdmQCcovI$|@EN3Olha2H;_3jv0OZcc{}ue7jlVVLZzqNVN_ z`SIO~{->if!gJ4x_WS``8K>{L{JbVFPwl!uy?}`zI=(=a{^#FO9ewcrH>H>A{$FP$ zI>9wbE-I4m`f?fLSElafUp)zhP4Rv)C}>?o-ep_cc6A}ONus5|qvGI$u=fCmVDmCk zWV7^-0??Ibbj@rlGCQ&wXJY3XV+p^ey};4m4d3_t`JI=&Q{Jzd1+Q6EAyUH5bGkbr zK;u_CMRkAwehc#25@v#62OUU~;;vsnEmg%|f30%I4#_Os7oA>!)<3?3!6m=>2NWgW z2@{s%u0MYZ)#(-9YHg7DxUmyX`S7f{>yKVz@zJ>2!(2m}0#D3ny>u)B3(_9*9?rOq-AV>=&qmr_>il)rsV} zlluBE;5)-~|JTLV#-}x`{C(@XGQ#F!akxi9i5-Tno}0vP#e+5wsxR8BgW!9H`@)zI zcY^BM#mrGEs`TRfqjZExOyHdQ!GqVNeqWhP8-lq8VVBL#p4-%1U2UxP`$c-czDYz# z!h1%LK1Da<)pepbB_6cu57Zxc;cCO8!I+syH2CVrjjVNb1)Wpp6|Z!+C1;+kCUAkY zdQ1_Z{^dKK%7dx)@Ngi2)J#U^%iGk)V&3(RA(U#{TJHm3 zj>d1?aJt2zZV>tCNCtLzQ}qHAQ0QdtnNU}(v{)KrC$s+84i{1?1d16Z-k`EQKZRJ# zE$hxKvyC{wJy?&DZ(*vbSwjfWPD@KF(_FO&c@Ml^LZ}L9AU2g^Vt^@PVE4#S2hG@p z?&Dx_;xw(VtAnd307z)yNADiXkW8A;VhZShFWXaHmAvj%f6+yWp-+x?H(Pd}o6@s4 z(3$P84fZFR!S6#gU3K-Z-aHN^SZ?C~A3kgcKmb&=WA}Vx916wyz_P6K?Qe*Dz=4U# zJL{M(Z`^(2X-*FEp>eewdZ@9VE|gC%6L2r$wcs|VwM$U}h%EX*u{G^50s(r2ggo=C zXvn#s5`^7^$5^cnTttmp~VNU>f?v#kVuA)s0;1oW)mi&pj> zSUN}ukk584*|kKy)=6^9rc?G;w$mV-9r2j;PR&-?C_=H06e&ddenC>Fzj(pN)zQVV zQjS~}Dw>)MYFn1bYcPiK>6tLUf&EX23K#Iun-IMgwYFm4_vw=~F>ozX#*kW8LBC&7 z1FE&i$VdSCW$oc|Jj-}w@Rn`NS62u%%WpQk&A#;8m7*J2B7=B}%sulJh8$q~YEpv2ZcPPI);b%r=|34-Zjf;dD;@FZ|A_1_occEl1UFc`WSqBXn+k2qK%oMtAy-Ulhqs8Ve)$aIF}aJE|9YTYRkS}w~N7I%p8JQ zG+`)cfK$PMd#7P|dDgyeu;OkVmKXy1PoKocbHUf#Bm?^(UA_}JAC^}5Ww~|LQkH71 zqmX1|Wk1)}c8s}!_CE8)XB*Z>C>aRAvX=x?1#s+CPMeKJlE6>H2Q<9eD~1g+hpL@aV}CAZG%ja*@UE6kj0s zgYL$=*LsCrdu}dyvMfqlr{*b?Io8d2PT1k#5gr%|w{R$sn6E_sMZ+*jILtM*&Wq1@ z;Wl-j8b*QFO{v2!9d#-*Y$YKkB}{`mDs{!!XGT%d`hZ;yqcB= ziCNd7wsjAz%prWBRq2+oL*L65xKbx^KXCitAZ!RcDx&9$O`uWPA8>tQ<$R0NL&xQk^6wd`W6z;Vw+3?DA&(8qVEM&2}DE;GSJm(guk zBIi2HL66)O5nO3RtsgL6v(NSX34(GO<_m)=;jD}7(zs&p?mWC~zwUE~$F7`mCpWsS zmVeflhfhM2NR0%>l~MlmS`5Dd~T;f5hLianXk~brRDYPVs``Q^!%+oTH9k-GqK%a?~o{hq`WP0!uuasv^9>bA)d?g5^9$QqtJ+0@cP5lE>zJ&>=sR$}oDATK2h!Je1sQq4>+>14Wf2xv-G7e>jgmmYYR zn&{!eheSq96_@lP0l_xpRF?Uz)&YxcaN$J_#<@!(vB`TDxSymF+8xug_E@2$wWM_% zieeM!@S(nO&oH5)`%%;wJb0O?Kh>0jAzzd8`j+fPvBYyVv1sOJQbq_Tq=#!tz7Grt zwsS>suHL(Jfe2^^?DT~IIEVnnEQ2EpNP!$^$hhV!e(sYN(a98`A!8M{ISVk_+FJSX zakT_Zx@D?0Pzn`RL`&f)A0v#Dyh?7YC9EZIWXAg}(PCMAo-S6CXgzrRze2i1%u~dE z(|GMOJ~9?JrzLJuX>F&h*wQbn#T!G^`o58=P~a)(>`~DOCEaCK!XL%BVA;E6Ut8yz zTQ?3*;a_CuCsA@|VYmt?NDpsS?exOB)i@gok7~jBuY!x4G34saJeL{&4uZr^vxhB%}P05P~h=nsLS_-cnKN*R*Hvyz3R` zC<^bwYi_yo-`>)*Bef)EIsyF%+S_>|)2BU9{sru$=IiBu{rqAr%t~P#ydswX(pw1L zAvYAbibOswLfcw@%5kls|F1zwNFGC|*LYTJM&k_J8>p`oL(3~amez{!k(Db}cutmV z+fbd44-1>SibVp30q7GL={<&nV~HRn3wNC;9)CDo)Qi=hI;enTIGZcKwgFTW zHT;hC+vHRf2#wiiV+_@lWxuBMeJ{`m!`_}9X)KODSXpnV#scJDzZJ$RzGrcPIQnE< zMte$K^XrX{ieBw;>+?pPQxF~BF5Bicn>OE*#w2Jcd!}M=a1b}UBl{-^Bd&Cl$T!z7 zzkkK}j`5xCcedYqra+~L5W-6H-Q}dU?dun=87*TBDGe&yW39oce7r=YHu6}>gSW`e zo!kZQa_yF?_%di6Nqu` zL@_Ru`RTL;H&aspsMs857hkAV)YkqrXrGOE(|8!p!YgW7abczj*NUzc+d@(nWl2d& zYWKq?`$@|&15wrX^>t2L@egG1FCZzGx<(saY-Im(c@w64d|Vhrp`Ut+!G>0_z#hJN z>wMaAGQ-Jm8i}1%>;w4ZXa%1AReV7^;qhb6u3JmrjQ79lu2E1}nDJuhQkr4EJ1;-} zW3Tw_-U8MIkxNED9KucsDBWe`t$r%-)Ku}VS;9sW8J?TWik_-bv0Ek2>p$}!IXv@9 zXgK)frW0E>c^mCqvAS$iTguk$4oelp*^BJIimscMR@+&>DO`=?ps3=>P+kp*psx=DLS5cJWEci5HszPcKqoSpq-9<@3dcQctq4AZ#irK7gUDA16ae9W92w&t>LQ?oC<%+KEmn;2z zQwu}q=LeDuVpm5&ziA`h>+rmxP(I2u!W@wnWG?RDa#Tl}Wm_moBvQQP%hT_L9ZXE( zK6wMD1K_E51NLMX6u~@A^?otVlCd)L^Tln=7c{ezp2ASxKW?xyJ22i7u4aVY>Q&{S zNBRbvjYE)JflJwEWP^r47_Co9Xjg4O>DOKQlei@q*7@k%Hf{$zcDO@&HgI8oo?3MD zsQiLOwyP8}k5#yW(O-w&dg*+_m@z;xrhrKD>!IPJ2Q3yFIK3NUb1rjlcZy0Jww0J8 z7unA%wg=YdbeXM`a80|Jqn@EVI^`Y;o+^=$t*xA6tV~F2;p~HKgKs#|iC~-d_Kiz$ z$jVQ?Tt7c-GwNtlC>R$Oi6f#B|1J&C`Xc7G9a<^%QxVeNa9@2h-R zn37jeFq&mQzs;|Jg#!P)ii(>}{Xbx-Cz)m$;inKM5SiTTcKEQ*h-MYs<9Pf#ZfW^_ zN1sqDAPe>5(~~u#;45~8S1s6nLGX;V&6iBRO#zBsWMp|P+yA}0`@H8ow|^WGKZ*Z- zot>3kcuvm>jvx92GPPWAd2-xkBtQN5{#{oJad4MpV=#feJ20JF#Hs!G!Gr9JA9bz` zecA)>hk*$hFW;l}V~cuk_$tTg*1qzP+g4?f(_PkkrtEv4-mu%0yx%Q(!zSe*nCfF* zu#hs!Hjs|CwY1ET)gYo*SG%z1p^HGV{NXhf=H&`&A31O*Xg3L*ji{@y&ov{5dd!UD zgr74oSZ7N8vr;Fs<`^g!zxYad(P2B_1PKKOMj|d~`eWROm7LrCk$$MP%L!Bv zB7Bozxe?v`Iv83KV$^TnIOr80YB+N)eE$rkRYyR=y4h)iSx=&uy!d{(t8F{I# z?jw~%?7SChJ{-)y$zWGUzZHKtI9_<3ogGW01TJoFhday=x`dF5i5~91;0D!KXn^W^zcT!`Z5U4N@KJT zFc0)T*ztG(1wnj?{%>C)$;1b=F3!reL~pmzNDfvM+xXqM-s4zUJU0T;>~ImVv9XD( zI+~h3V*34dsabueHY6I_7o$pSeVfz!0)`YWjQ8mgenjeu%$L09>c)TTzPY956lO>; zO4><&F%N%DhHB_UXU@C1Mfirw9SSNG78BDB`18eL7nT$y<9OCFboKUqF+Y};rL)?b znx4N<9zo4qaj0$q>7^V>`Z?(ms+vKMY{c`2nY`Ct^EkLYvNEW($RWLuSRJd@M5*Xg zcKgSXJ4VH}`^SAGWYM9w9x<D2E%p?^{t-N@=F@X$1{ao!80xLd|MK;mAN&N<&X? z8F4~)1oCL-Cj2QZw@I|p?VK=u$WhMu@iUtslF&JmqEbIbnwBOE3_BXbqYU=8hdrXA zr{5T$=yY!2Uc6YeeFdyMaz zlD1QP0k9Gdty*I;kjdk}v6s$3S1r{%e|dX0tTc3BRSk8LeW#h->V=@G!(Ys|rJck} zJwVdex)xYJZgS8|F81R5`L;|x)*CMm-PxF)V^GWZIDEB>UMPaBhtXTT61qu1-H;OQ zy=0)RO#o0Ehx+!9c5J>;XdD19_u);$o6cnAsc>ZtJ1=)CJXIVi*ZS_|xJhh_S>RF0 z%NEB?5D?gSvd`TRCOoVM`I&FL49@*zUMwA9BW^9VkYv?l(8#yD&B?%MX7MfCd}9aA zft^Lo*~fN;@EzuD%22z>jpeJh>Q>z)RUkdEQ7J!*CCc?XOd<~4lG$>z{bwfoBQh%|O z1%2`z+m>7zQ)YoUtCKc(OS0eM0NetG;u+E2J4sewR5goh#e2&urxP^4QiRg3#%+O zrWtyVAzZ9Pijsez9`ux^!pc=E(skYivtBCsRiL9jeqW9q(WH;pq|emU)Rik&W(JD9 zV5qBnrolB(YnS$r8|Vjd!_{X0_?Gv9cXu-d0J&U{l$ZAcH+e5okjW@^*F8hGg1F-A(i-VDWjvh6u z&jZEK;7<*kvAaQ?7rGXw^VCqFSH-*+*}1b=$gfzmE_X%_wT)J2^%2H?UNXU zCFWsifcPMRexRnrOr4@{qKJ1 z`)5^Gj8>}Dpx9xq?nu9%nw4v8YfBlO+M=5wOz`F)dQgK3l8`@ytE|4-W^bhz>SS|fPw<1{--$?kHX)x zKIs$BN#+~-6~a~CbT~|Jp<>NKj!TJaqgrY`w;P_b@XcH8Pzei!-g*_Ta%0Y7xedIY zGrx|ddUsSn%Y=B-oAH*jB~Ndu)M!D40sqh0%1F{?@5cA<3)-E0QuFVPnlvR5ac@);c^Tds2xz zc!S1+V|O@s*#h%7V|cXht)$03++t0_= zY9xRSK<;qK^>`2oXu_Is4f|Di`rWPmt~#07*~8Icd1*spO9s0-k+ecSOFYA_<7 z7;y)31Be4Lkkdoo3bk3L1rqxdOkE|jZ?3%xWE{x%?!$af~xwtr+*96wnZljx56q|QBC#V!;Zf*`>r^CJ0 z8A#HKSU+{^aY^0%=KQS>dFFUMNq`6IcyeA{8m`B-S6aS!=OZ@UL&&-IqK2_t)PZC{DX+Adjuz z_&cnkVan~P27-_N#AeF?nM@mO?*dW(abSa0<; zWB}vy0?EP5*!#d0-_V#h>wQWTwD_2ke)GTWKTPwsADqA+l5eT5ie1g=xweJOZ7 zSFC@D*I!sh#(MJ`%HH&`Z!Zsh0iD@xcw@R5p0|I!1RtNpuZ~t!74Si1e4-_bddu;| z*R2J9M>H5IoDwrG&56CX?4-X3f zZaoE8ux^_s6aF_-D=J9}VdRe4;!|k_d=E$RBfga9=Xn5X;oD?bn-f+-n(iCqd#`kL zdqeho(y_Dxr$*Bn(W#LWO>d>bPSrLU7_N+|y3JW4)YDKArEZX>eqyVPJ*D5EId7=I zkMFd1dc+SVG^>d^E7h{Y;|7cTdOQ15tu%-MI5Mn9!n~Gez>TME<>Djk1rY{INF(8Q zdqy599>6oIx^};6*bT%%+nXQK2fJrqZafCtWx5wRbP)G;j7c>2HEf0(%7?gwI+^YN z(wpuNdW4E;*x+3DFQ@}2`OPs}+z_&^jjpoudxEw;^)G9eOClfo2{|;6d)rca$5K5m zo(J^~mGrZ1?nt6)4N^j#8owd`0lV}g9AEA6xjo`J3hd*iEZlZ$Z$A|vqw$>cjEQ#r z@(M)Sk9Bo#vOjyzi^Jr-Zd|QA^AsNwarGP}P6b{vchSeIJpS;R@8)z^_boa$HjT`^ z`|c5N_w>graG3h?rTOeSbL})%!WiJ+-JNnrPb0tlCyf2@`2 zPsHIOdQ8$tuwhz#`_N!tMf|q3O>*031FU9;J{bmaAhr#QQ1TS1AFoqcIiQvF>`a(~ zcDCCs&rQ?W-+%mAl)A4gOmEai3@{Cd+zMK3C6a$PoukX$k?%=}E+SiJ&ATsN3@+!O zU%O^a`oVf6Zz)`W#@as}hX3rlV*mD`u|Hn3Y4GLgLD($-H}IOpI#z482N}%@PoXy& zZwG3vpa4+X$ep}RgAsGOyId=>Gxh&2ND(hCLsf!h-D>*101)~(q~H=e3XKK4aEfqZ z&ei3Q^o9+K>G3VJN|Hx{B>q=Dn2x<UAc~+F%tGOP+Vdy0`V?rd#LmCb2FO+@BA^d+0*;rGT5s~(`&_(K#3Cv z8`1wOf$ZBhyW!T<`P`G9kkExCjBEGfFtsQ&qI>8AN}(K{sI>D8-rHXI>G#ZECaSr_ z3#<8!o|l08w79h23Z;c11u`g#41U*l%Gv3G-|o@wO#fB8`QJU!af-JkPOMJ0xM7T( z25d2sw=mT^jf+=MC=qh8OLw1$|7R6mwV!T_S_%mdr}CuUJhL-TFk`t4Bj$!(ST)!& z1IE9wWB4~!SON03x`KR3lrR4{@M^<8X7bf@5@@V0AJbMfQg5DR1R6Kt;{?Jz8HR(7 zLrGR9*l7$knNK{b%E!-_C%F8G^`!)4{K5LQBb(3E$<+^BPxQ92OYv89%j)!`(9^P$ zbSxH2F#@;G8t-*Y*N_Z3ni1oU4i$~p*Ri#<h-58dPk#y-U6jq`58T zd5wnyF=dtyq|Ld_<+{rW(i}kIr7$l&(ln8!hpF~IEJj#9h8o+jl*wxkyA>*+;qAzh z?zsoG=kqNCIf7f(4NkfLvr+vw6Ecw`@h=lH$gpN74Jz7)5Y-%W$OR?IUh?x|NfJtG zO$4pJuI`nYo&Zw-K~>Uwy9<_KVqzNuN}&ZRNmSH;NhRRy#ZKC(yBLGGg++o{RaCjD z@7rN}tIe#-&SdERU6)c(iW{Y#H1(%86L0B#6gbeo1IxA&hGEcDmSgK+?V4`62f+>K zS6g2Hs!jYkLuJ;N;Oi$M0_Jp5#L@=#Xtms@PbX9SWt|64SF8O}hvEO%s=n}@k|NKiMx}^rex)>nrwk={koEr~sJsNZYHya|$G#KI1?>x}r z0d5+eY^*qC1)I@###k0@JF=C8Lgk#FcKFJ z#9aEZBW_{hV`9Fq?{}}cw1u%B)@k(BSX*n=j{%XsZ2sZ9MVqUNx;g`W{%4Opd6BS_9-Y2tltJT;}c!Jx_>+w&sBTZ6GJWYniB=^r#XP+iF$UM40KX2 zq>Ny;3UAYK$-IrDiKIYZUj#kbO}p=2nZ}K@on++}cp-)rD3~@f_uQ8VE~mR|84*P` zjrE3T8@A5*bys{pcaH*|#1(g@><6h{F6~T@TL%tbJkpeVw04E1vWq-mq%T!(#fw%*gYmK9rATf&EH~_6NT3u%BF)NVxwihe zMe5-cRvmE{3qb3a$JFDrR;-Ho9PE* zcfbJZ=OWC}gps)tjwfQDO3b)0>PAOiehDi?(rOo&$c{|8uoz26uUkf~yne<(-$|xk zR8_lHyURe#pgyY+HuH&AUY`zxn!%)?v8zEX=n*nw$Js2wU2x}N%=@J3PS#!Z8nf}1 z%~;kQ=F|&?{sDx#Qt9+<;2(6@>Wz7ppxj_FH{^2Q!JQK9u5cE}5)SRDy|c>WF0!(> zf+M^N%wyq3F)4p`aq&_ks=aQs$v9v+^%aClJWhkV3o0pjPw^?{C_s?^i@5g=#Cq@l$2E^iLx~7=9A%G?kZ4fZ zlo1(~9m?LLagt~p$zG+95k>YqNwO{q$=q-`^iU|J?V< zyx!OQ{d_&2kLP2QtV1R-%ztP3^He!;V4@?OHYZx{_GmnLt){GS|eICeid<>WV z`lN7J0s;1&GX;Yr%GkgQ-5s+&R5{N#N?1SNL^noRmAi6KU31vFa(dOTB^^M-v_)j= z+aJ`43mzqm1dQ0CJM8`&0$921hiX;-7G7@Xq>-c&5pnlg&Y{0{Y?Z-@IP=6r9qvHQ zEfc6SGBUAe?$DIH+xb!vq@2Cf7)lu~al!%NA-g!?v*y|d&H7iCgmrq2E??6Q-CA}R zmwT8(;W?!VdvW%4^g#ltGaNj+HI83uf1TQc^(sq?I4NFKDP2EYQAV;Ya@a^4PS6}! z8l61Ik_^f4;ehm{)S$lA*!Z+Mx|u_33@^X90qe^e8cD7@tf~|yXJqP*bL=N}J88Ui z$7@P%%2uRR39Iad1NCQ#RxA&PCZh*(!_6EWrs3WUNRW z#DHWL-Z{vW%Ew^V=*)6XSH{``1F?ScjsW8(far&n>Oe{x3T^V$IGFq7S}GrMj3{g! z$Ab|cp}qN|2G`ctJ8??od>vGq3~XtBH5(nnN!nWFeerqXWpTztSu7VKJC;oV53XNa z^-z}E_tGqf#zEm@Y8C6|6P>hXw^A}{v;~F;Jg_mX;}de=@W)BE@$wBZFYeRI5EgHI z!X31!x5Lrxm5K=ET_mbu+yslWOO>sd0N-8hpo@|R6vo|6DqF66zmlbRZ@jrY-+}Qk z7C+*$+Ok;x^fKLR4BGVCB09KcwPwci^?OpSY7`tK7ST+@wni!V#jcGrC$T@;yUpk1 zQ=Z$Qn`A9TnD!CSr)-}_1$pAeUW9f0@{k|xEs7=kcALDmE%BNfFvMz@%};Jgv!uz` zE4N(*cI0<_yb|9|U1Z-rKI_hND(zQarxu2|C-56+$V-~PO+cTQUVT9<6Y&aw6F2p$ zbHf$~*0v=s3bETwDYkiStSUQCM8UhzwLnqy8~;;DC79&g==}nmvJN_r4~!2+4|fRyOGP$H5_u=mmVHr zeNfrgt!;bnodu=5NUvwIo9%|m$|^;UuGCu05^Hm?ssSN+CUxIup-;W+dt-HBXeVpP zauaxuCTsM1*m3lUo3Gz7Y?8 zJ=+_Apqrf#(Ju5YNn>FX5DJ^eOqTGBvNR9dA^ED)AUHh z_2|gRgGzQ_JM!F)JmMDQ19|mX9Idw&f_@myP!*$i(@5rd65gyZFm#!yJ_H6TfE2`0 zg0kRJeX#LS2{vbUeDrn}?Q%1|d^s`kWt?|O`^sfiGF_k>!*$08yh*m-(S>aTm@06I zZNXMZt7uMx9#4pm*??7VNtYnj(xr)S=<7u8Ei|MRJv4Udo16~Y|2?eG*yx3L=4uSB z(4U}!HeUOZtDl-5Xa1>=Pn6~+M{1n82Hz(UC1NndlEa~OYUBMEH!tqGu~)1JlcQ~6 zTSjqRTa&Ve1_|G!liA?wycntNXO*Sg^I7O87FYJKC)ud?#;<#(mB7>4b)FyBH(ypOPe+u1}NA#(V+1Nx&KMbXlg z+>drN9n}A>sUagW<80-o-yNRX3`fFG;;D*_4s7sw^(v>tUjsNxtm}X(A7NE_qB=7R zSUkyKVGtupHk9xw1yedY&P&J+DvidtRU6}2!d&(`>Htz`2yC$)RRT2y`F>|2Q4SVmt0!;{~!8Gf}TO;7L z*-I?IqoV-EC>XBTV}R{p|Nrf`3W@t)xtvHZOWFM2S0C!g|2By*FMJY@O<-e3&upsG z6EN@Tk9;G!1SMTYABj;N25_D8{*#LPF)c^b0FO4-UgjtX5Z3AEc;D?1KX|az>po=W zv>#wQ4B>Eve~xa7D(AWO*f*>0XN(yM4LIhtw6sLZX_3Bpqlgj|vCxtM`bnX;Q)?qPQQ+fu7Hd zGhaR5p}Wq>5l?Mw`ShvZ8ZKorYQ5#*%JE4O(gPE-lB`>6Oh0vv&wU5cGc9$A*jf+L zzn7}Kv3JZ#b-CGAdt@Zkga|pJTyy%umdQ4`-eCb{E9LTOJs{b5%<=KDk$~BVFlgX- zLuIgwD>n*arM{T@NIEy-B9d~V%tUgBa>o@9R^2-GVRX7N>zb3L=G!e#=iH@80a>Cr zqb4hOsBcV6D6=8d5+>lLo;2ZA5C>GU#$&v+XyFmd+=7rnyR4Q5pznTL+j+vT;vQ!Q;E%`>Fv)xUuu9wQL&BEb6T$;ky z7n<5kLS@4rrDPIZtJP4JavR?NN={D8?gCS!SHHRAZDHe$RNkQm0ql4GzaU0AC4*uF zNEs~6H9}u;HOSK`*yF@ixKFUW28Uv$*Zv)rf!oz)nWg@QIsu(-U4N5^&LEVHFf4rB ztpyJHz8H`JU+ww33;(|BpIvz3&sI62{@c3zz0?M?6hOIskI01A>Cq2rXS!tMNpA zD*5U8-5D~eS`0}n7E`0GITIO;`r#oV+m=1RAs8S;JUmynzWJ&Nm%JwemVYeO=1nW@zsTAM1xSPW_nSYL$tIAME?4n z<=m^w+EZ6KKmM}7+BjYd~ztbf7os(^LdRQ3@(xpZ@}LaE?euZ z0&$6noW4Q-mBPiUQdhNxrDchD{*@aYWYqu_>{<_J{J1fJP%pZaMrXZ?4Lr4%cclyl z*LL<~6nw75(}a1xBmsXM&CPpzc`jJxffrL}-&ze04U)g9*YcKp_JTvAA^liTxGLW# z3(Vr=P0n%;=RJ!iP#HgoR8Ji#e|nDhYp=0`*wT~DnOnj2FiaL!TE}M+&m?Migmq& zQMty1^s#M&*}__XzS1zx`#_nLD6%usPSMgQ-nMs4PmJq~7pybZx$8OhCyHk#F27mJ z!Jok=3?p2$w2CKqbM$*0ZZ)J9qxC+&OtLfGOtG!aIme5tTd8#N2MAkhs1xP>lM5hX zZMWn3M%>;r$tA_hmR(A#9{A&yCO*toi>=xE$=Y*yl%;w+@-I^^@g?q>y2H&MPo}?d z?H2l6BeVkP*4B<$Nx|7?-TYT}ISKcfF=WVd`oick&uO%fl9CtUgGd^yv_GJ7Y z8|>x~9~R}su2R2nK$l?IYUpM2tXlbA-Zksyg$NT9?D$|5APK`S?95$V=g^`^qveH4 zy>PlIt69tIRmWSY>;FU3U>}cf@@6lBT<^;7AoBUGBP$0M{63J)N|1{f3 zRlB$LSG+079GsmzJ2$Rl({at3C9Hu;FWC%4pMLn-^5WI7ICeQG;MONKJxURM;0}a? z`TQ@kYFL_!duDmbs?n4@S1^QwHpkTjbv8CoMj4W@AObW91!|frMXv39Ho(`bPJDQ3 zR@kEdEG&8&4Gyi>Q(fymZxNu|2#@>Rlb?*V37=WI+Y|B+Wh_1$TKviMWG^+(?Y;>Y zqOG-i#ha$e=`2ZcWX&Gjl7qcL%Rp`lr|(1pmi$$f?R1O#EW$KX54{?3*701vTmLO3 z)VR&DH7PEUn-)NuZzG{*Gi#caPf!mF2{|_>!P6-mTGe2?Fm_v-JtiuEgDc?I7$E*t z-)29(9MLe0)~^gb2HqzoDuseK{ArQqVMBb5A?9%Fk;sWP_P#jQt2fnIzwz9ufNGOe z(Ivy`aQe*1iN|+%0%Hv3Z}3a~$si z;8LC#wb5No$o(^&YfNUBmu$*zHACb4Bh3px3c{kej7 zyvs91orsI?wolh5vaCf7s>l;s;cw47cBU*X6qO4~NJxBYS2L*A37g)?+fnuoV1p?! z>`#WVjQ48L#WruzZFGp*0xqI&fn{inJ@es{vv68Un`h^5-@RE%zmW}awH<&B_cY#; zbGLOhHl12!kN|pAK>5pbf4^5BY?{c$u-5Cq0$;(v3(7}`Z6JwzZF|zLYi)mVG1crs zlJ-EuPuyaKwgtizhFj7e8j#3=Sd+-W;ROQa;WT3pfkrin1iAZpZ*<7$cPDCs5UWEw zIX(S7`MyMK-GDCtAwj`n?AJfRDUDD1a1gOm6c!e~l9iW~RM~|w43vvp%dfq?MlkY` zVcS9mgTgmP=BZlcd#I^r(LV$8+`FyQ{C5U^U0^KOBeh@d$GHqck|2>`-+Bmykp!-p$(B$$V#Q1V++ z678{5Q)53Ky(HNft*fWea^*LIR@7Pa+v|b^N?Q3tc9#Nu^5GpNf*`iL2RT?+@GQOX zj*p8Ii+03<3F&$sQB$`zy^RYjDS4gwomDGiSoG3^D^s)XBxz@CuQ4FI>x-I*do_9_ z+E&3ot4CK(Rtw-K#^+vSy%*uy_E^CEx~X{5HBdp)c+rB8%XsTVU_4btnf^Yz zXS3j;Lma+rDn_6NA|U;t%#EX2t#4)-ln#J;lg0He8Jy?EQ)?byGtlP_guyGpOYpBY zL1qqg=!FkOc|J?`n-unEZNZibT47vB7PG( zyB=%=KiPXw4QXinavx2$x`ynkt(0A1heR0k8fR}FR64QgwgXM|?l3C&9><&E{ey!ZT`8or(Dyc{?k^s^ zb^HmkI8HwO0Jn4|FJzZXq^1lFF*7s6jNG%RNR`t_DAc%wifOaTCL(SXJnf)` z3D{c*N7o!qi=)!$87hWZDw7h%J&ahDVJYl#Kpa9tLR2*}*l5l^k^stDT_&P5wddG2 zL@5E;5Zwl9F$ys_Rs#QN2+LkJwh}>hIfxQqK?uhX0DEFG>+ao6zXhDC-e%t_&D-fNcHXN*!XU6iUP?)y z?Esu5Y&q!=$}l)QjC0b7fq@(nQ_rx`*-UI{e9zLWAqui=32P@%CxLMV;+kCf{PKx9 zH;SBOc=g5`FI^@GYp9{t9ATt&%kTT8k?ERW$LLZkS&D=D4K5nuF=$H0oF%b5hkw@G zJXv}P-pRyNg<}JaXq-8Oa<@Uq^1kR?K-_+XSy@iVbVM+b$*ds#(Gy*kT|_jT&lg~t z<$bn0H*u9wiO`YytCzT_%s7!@0T4#U9@Py>hLAW$>a|h`)B>xGD4rPI_h|2m<8;8z z?L^6kV8gI}_y!|Gd-ra`i&wJTCi<)6%nKnI8}fCn6XD?CFeNx^hYs^?tu^Z&&o1k^ z*m#BsB<`>{D5w(ExzYKUiB!Bnq4fDu6)Fsk;H8U+iSX2c&-=z(Z@R2m4z0SdE`l$D zo>WY>&5334Z2QD|K{lc~eCaGzt!n1g4u0x4cpqz`rE7ex>Zyz#eo}{-XD!R|YVAU_1Aaz4iDSCi=te_3iEa)W>I;gtJ;$?#NUW z?PGJCcN>T;9ZEFR4vIW)cDqc?jj+d)X)TuPZtb2}{%Da){Noet;d zhO>{>qa=kD1MgUOY-XnC0YlOI`(scJoo4?C*zVIOpmw6+1lbmt*~;#(WhN2e;5S7N_7DAV7BeNh5B%>PT}vYXCLLBShe+D3a&GBE3U4& zmo&?^?0_T(e#fQ5j=?v`%2K04_aGv?fsBHS--Q$u)f2x4{-6c>H4wlE(3ZVO&1 z98#cJMPf~V|H)IQY}|I4ox|;*v=#^_T#wh62-3-JK-8#pHdt*SJ%d%9T+_TJ*(cp4 zH75EOv$dET@Hbqz(1}lS7a@cEbLm81`P3ymmFw_S+Cz7INNEE1-p2V#!IvkXyz{`D+7P&}Hn+6E61Wdy-H#u;CuU)k0~qb&(`FfL?}38u zrIvxQF7W+A_SN_9#@|X`9o06Chw5ecF1+|Y7y{$~^FEV6mv@j0*KnvfX_&l<=}(Sm z_cZv)!5~SmQ9v&jWKK9zjEz~tH=9j#Yr-`ydA-NiZhL25Eb#{KTv#~$H4}7p+kV&O z$F&=M_0(gCKNUVWsi{{fpI#6R%@Iw;3;R&BU=w|Yu8%l=W;OkY1_yz2K;ogf4AR#V z7ZN%ygY8>goDwd>(i?`tG5oYHIlNM_^E1#j;n9GsNqY3GM#BTCx%Z>f)02}{co|UK zIJB(4megt4p7aHO|1mgVg9U`gu@I6_kPTllY%U3jh%nMv_$d7+T`a#fgR7Yt%2mw1 z=@O%J(q}wtWt$*bF#8ZGO2t$G_Te2fcX#*ko7?#f3gqp02*Zf*}ZNWqv1H9y9F5Uot{oH8=v$79N45-rinF8-zju zvn~78G&b*)&1p8c=-VwwH&&aCZG$9hu(8XPD^~`tHdS36SQz|F8M?gZnm69lbCtTT z8}@~hU#(GrB`~P@I5`Hke?EKu^XB5^Vqma}@^Qh_%Sv*F&{z(dJ09ST^ZqV;E8P3Ti)}nl_FjnE{FIzVIt(-WIRXOSIorH*^ zlmZ^rYiq@gXCIwJL15CldR2gL`k9lr9=Eihpz4R4P{i$^y>e~sX5`>$hQ7=!IH#hr zmG5=SvN*YA_&Wo1YO6@WqAF#=^R;nW$AYk19iLLKT=%2UKMjc(-eB~V`W=?8GOUY@GJ;Dm#2 zYI>TITlg(ylImV3NJ9H!y1KgXE7A;A5Vi;##Txr&OX+q_HWZSxrXqbkoH&1xyY&4L684UG@iPY|~PD&{?Jy>GcV zOTTu-LqbSog2~texpg$(K)fSPPj0U-HF0RNbZiRO7b2Wg&}ri7#s}E+girag#>uVH z^VS1SJ$O97eX|!~Vp)+W!%v=F4uZ`adqd)80mlSiZFTLh3Pn@1Oru3QObjP4+BGI- z(@jf=ByPJhU0YilJzpOE928aVO=s!)V7>(+nG+9HP-#;>(a_xE^o@4^T28QVfvv#y zg6)#&d)zFj?pj+)=we4yi%;CVv~IqlM^`GE2!F)8^bx$w>F=0_M8l8R_0!C4F*710 zB!QsI=JbbQKXgG5YB(UCAtAu)`gWBF;@K`hJ;O5$+7))&zL!M9!D3bkZqMHR_{rGo zG24CVxMItume`l=517R#)e27h)??ldMaMmpOPAQft6_MN0cP@zy;U_e2HDmZamj3G zh>ievUp?GkN-dfnP*fY-)bZ0A{Qsjk2vp*K-@5->J>0+l(&a8+R7~tS$i)Cy z(s&WAp4C#F(fU9tCP$nN(WP8;I+aXm4L#KsdkFRM=C!N0koO_^4a@-`rdXbqK#dP` z0XkU_A0qzrzL>46TQ<3@dhfndPmr|UbxbAA_3p^EMPD`%9e?_FVFB8vKXP5CENv&z zCdceZhjl7CI!RqaZ4stE16uw zcx)3kQ#(bmNWzXYI_tinrbhG^oINz_UD%NKK2#iTk}u_SpI?uSt@+i>?(u{DR=(rS zCzmHUsJRH)D>1`WHf186j3mxV*g9zROlp)1-MhPuHY4K$S*k2lON|Z@1oOQ`i3e~@ zg1cnH&$!Ngvy!s%c3PFPXXas;Fs;t{9#5X+2w?ZM&^|%fh*=jNYqV&WlgUjv++q3( z2#M&|{T5+yoE7lv5@!gnA=gA5*-f*aujRoJy{W{{6ONT%y*#@6$qA~R;Pi-zoSd}i znoLYqtP@cRAf$ZY$KfMFAu24a!X*7ufV1qcnk`i|XQgU#tj~{K%^P;n7Pj*odfph) zFcTSaao0ok$#37R>BW6x2$}8Z^m+dL@vMcSNAgPzYNkTZ5-qA)unia%QQEQgiGLZd ztlIG>wJ_PipQgAUxjFCcIyXQIKE#-AzfdHFI2K{y2$$VnRowJ`PgJSbxj)^-%=|jp z$6l|q)UJUdGT3Q*)i+H$*RA*;9u6!Qe`$9@O*3GJ0AaH^IGNfl{=cmgVqCARm%m2ZV(Y z%#3dMQ&_G%fkJKAEt=yB-UgI?w1qr$mI$1IUP(M-5mGGt5co=fjJ(t0)y69Uk8D+B{&QZej2p<>oH~KsDLsN(H{uEL!s6(&cBi)z?3QC@pok z;+94&;jcN-i$8N`lB6*h>tN(*Rtf^K>e`d4C3Hl|U{Q$nL-YdULYddt{4I7lplxV& zNCu;SD8~bM;jLNwC6_>iMm6{t|4~Ymtk*Bj&rYPmBNPmj{Q*de!v;PZUZ-#$Tk z3_HXhoP0`nl=SpK%uF05l$gAYO@B)Sy$gSr`hWGIfPV$=DXG87Hqfql!rJHv#Erl! zVPXZfU~Tuh=70QH{>~2Pp3Smq-nVZ92;1gY>hu2p%!fjJ>g~b2k{`%QM1AeL`L}P^ z(!z+sAaUmFEY3+xEHQrz1v}b*3I(a%bRM@|{PB(d)rz8g@GmP0ow=8LrZ#?mG5n9O z4F7!Of9pf>jd8{p+hrn{O6D8kv0QLwnN+jT^@CLNH*quJNlmfVAI7t=#43V4E=|b{ zR5~6&gws)@mvw)%h^%_EmjAfI?}!tKd<~NHAc-oJ~%})&B_i>YEz1L z$|f`p`TPr=dm??x@z9KO!RqOuA+XJH$MQ4`6}al1s1`oC8S<2I{>gC6>?d-{H_();@C2By6EFqXsUE#uoH27>3YvBm=pGdpQYPRE|{ zKmC?G@q)P=va_jZ*dLT!?&2{#c+TbeeSc%|U>G1A2(BEkIEsBH$h#9Ru;GZ|1k_F( zlxlRK_!+~7NP{n^;rOd_ciRFktt(wBDsbES;A!sGrKP64*SVEncP3w87F-`cwyTHU zbAxL4(LLL@pE<2)rgN!tHcpOONvWGI_z%y@0FEo1tL9&qvR{w8cj9`GwbB{tE~a^n ziPD67F9iPh9Mp4;K6hBjEj%hCVR?(~x(`LNXAdN_`Q zhHvk9>hfYuqjB(Q_8Wgbo_L-R%v*^wkh>2kigNy(yeuUAYgcoVc_%VV>&X;0_nt-@ z_5EM&*anmvVK*qpFkXqS&b#DdqitlNUh{Ti&F_78V6TJw0byJgY+u`_3#W-7C75mQ z=lC)-1o0sPa4Wp*GZkt6>{Ale#(%@Tt#ARbIEI3hn>WnEK!|$vO3i^qw0$c~;*A`C zyI(`b~=SEv}8z&)1!nkCx)Rf7x@s>%>Vz_n=HXUrHL3Ste?pKlKR2G_F z2M96U%hkkQNPHq=nxRl3JhjY}$W76Xx-;Qb$e#x;>c(670?i^yC4%Y|aG%~cS$uTw z<6S|*25u)k3i(auT{cfX4XPpI!k#@F(0%Wt5I5aML}yH%Oc1^n{8}b-bk#gY0m1{BH+!ZE;M7_)Llw9z?iwIb@P4v7Wen!hh)Y)9W=q-PEHB8wJa1^!y?||L9 zN9z|onTWg&ASR({9`M3oOM?Sz>b1?X}>32P#7O4sm$u`K%EjgZy7huT4@K{oVr# zl$zaahZI@F*LPXZz`--@@89&x7(CJ=d~}gX^J#-vIbo{`6E^7nJ-$1V&#w)O!-!Qa zc$aWx>)zDfr}XpJjXHG#|8f2H+y`n5t1_jR_5&Yb0n#!19sLp?dtw_04*Y%H%7B^D0WI_$zXImPe z9kh=vHw9XSK+BRi#%;8;N_D(hRep9GC%+dI-iHOBPw#}ws2@Mw#z5}IOshtcAOq|s zxEjSd2O~Vu*5b>fY!@2~vKb?6lzW^Fj9W4*&-8_=F^*Iy*S$Xe@ zIhvO*6>93nJW`XJaCok2t@%1PB|QD`nFcA->TAZ@I~f(}ZfnyXP)dKcsw|DS^yYi_ zVaCbXTxvK>?PX&NGB&@gEq)VqIEB)X#zVIeKM)Vc{XmgC+Tt3%IuX4dHq+C%r+w26 zYtteoV=nG8xpS=XTU)@#-?EzQK6!znvgh>qAmd%$)0=2b`Ns|g)2v$3l6^%od;m)O((LChNxpmNzAMT1p7y&{ zIqHKB0s`c_j@~w-ewkKzZ2r&G&9>R~^EMiBo5!6MH{}@A_jft#Q8*PImmb4MxAEQ3 z{rdUnRB}wKZxxF&Rcf|O=rO9)hr$yX!M8}Bq_4Z*$xx++1Pc3T^v=Ps4U?Foo@p6% zCwWtJ4XS+Yr%#%aq2^(*u7e!usamZ2iC@VzC`C4v`Pm48pO{5CGYKfC!J@)mq78&G z>a~*m&4PDr{l;6_RkE$2#A9-eZ`LgW`b%{tY ze7`yIvk1$6l%6v|;r zaymSkg8-7D4<;gK2!=P|>3U1R{Ym}L8dd1^3+&>eiA@&5RHxtWP@$9SUpt0n!PSs= zIA+WVe_{CN9XxdCD%>=ak`!csojQVP2pd~48*QAOv!DGu3JQN2yA8)t$DwoV+mQzx zNnIL`DT&?>QLPALqbt7*TVb{|xN??1_!ASVGXexNt){~d+7eub5I)4I9&*flg}X?QzL(CflFDK z$@rs*qLI?-&bxL@W#745GWCMEYwlK9YdMC+foT+I%U5Z8-;b>_O`R$I?i$+!niADy zHy3<{_Jc@urqu&KQJSaEZk~H*3+c)0yIU`%RIY*4$Gumr>sh@>b;g+;6B*sxWACCB zJ8|nqdQ5{uTSS|G;*_|>dfv*!_ZMRHQ_REmZ59hM=36dc3bgrrs-f|>j5=m#_PcO24_Mgefd zW|__#zkU=M06dFt^(0xfL7$$R&HEx0xK0iZ;y14a!)#M<7w>>rP*N+n{LPI0$9d@~U%ptgga(xN zfXd^*p{GJyG5@NO*uWkE@Ufw=$RXEP)TTo z#etV|HAp1(({ZXIw5v!nQS9(+G7c`l91kBr+eIuOLr=5E8Bp6~Dn{h`mha!R{wBtr zvbIBkvEFvSw!(i-W%hhefVLQOP}2)TtiWg8+XcKMDxY^*pBwMDVuUzWKJdJM96fDO zN9viBxr&;uyHC2TKRdj&N!d|N&du93%J)R|^!VKg2$;BXWiqX_p6Q;FW#b`>%LUqk zfF(!kGcn0F9Z{B7HuOs`BgUrotem>L`>M42o|@~#R_yfmjnKvehIarx1GDC6*WfQ7 zTt0I%Z*lYL%6mPV`|Wz}>70fmrhz0B_aoIkwn}yCyhQ6K4llmHnyrxWgYm8u@tUB- zWUWd(;h4NiPrrP2z_G9h(OEEi=EYv6O5B#Tvv5FVLA)kK;M~jN+4!G_oBHJP5rt44 zFF08%FO8&3SlxzgKRHIv$tlYR>jP8yH0+Oj-@iTLUi#zoNElo*gGq)kT8Go;QmKIF zfxf3WVbo+aU+DDB+bzsZvVDccqKc=n0(T&hD=Wra_$9_q{%1u`l)5%O>%M2c^B37( zXc=v;JoGy)6%9x2q9r_pkbb)(tIt|A1-9-Di5j4)Vv$M;-YlZjl4%uwaTj4V@HUT` z?nlQTtK)p9txRePPD|5RU3($^0MDwqr6n^fD=Il2Oz;Q-46fv08-ZnFKF)WX)fkwh z?7#exLcxX+P-0y#&CZ__gbsD*n(M`gl*ZUXQ0$q-tPz?J>DX)@k99Yaf#dU;J#l{% z%TlnjUL#xrmMZYK(TDRi+{2aZ=S^dNzF5;lu4`~lG4)refk73p!J2~sV9a7zOVBM} z?l8tqHh8V1jb3y8A7+RD-1ZzjxUj{&;g!|lWn84ui0z?r`~Nj zp@O+}y!34UgiB>wzg?T3#mCn^K0b)?zM*pk3>>!Gct5~t_*l>Ou-YV2ziVGS+=SHS zv_Fo7#wC0V*|8=KC7q#8WOIqCv?+!RpS$<&f#v_e?~_B@=rq|@{6VFINjaVaBIDPl z(P+S4=iSzO8!OXfj4Umy97O9K^khKsmF-u;SaBfOf{xbTUgAZ~$m!~(+1w$;x_Xfp zY<5AHh(o$Y+k@VuaO&=yyWa28{$>ocv?YS?9tGoCDDKCbY3Unv9pZORI^9Z#^}P@8 zQ?Ht526lwg9^7GPp-T82sG}1yGgB=W-8Da~W`Pu-Hna!Y>(LLB_6LLpLiH3L7M8!Y zb8`temF>Y4n)AdZGYgA5bA^37E$!sKFkx1tqU5X}3o>T(J`hdOZ|xN(ovGvtu3Wcz z)o9WXFE#ha`sK7JH-pzO$u8j8M*T>{<@>_o1;H<26EabtMx-SMG-En-du7z zz7GF}s?!rA%MNFQn}KEcqh(1@***R6obrAsdA>egl%vGkdwruk?EGOzT3_GmL1pmK zorQVyp8sifk-XmyE|Do|m4I+c^qRDTG&t#iHmtw7??o$cla5iX^3d64;lT+9+CsDX zS-&~8I)@_x<%nC%P0^|(r6ohMFQFyDa8Q1*Ywehwf^k9@bEYcivs_L_X$XnVnPlBR zKvRNSsA!jM5EK5=?|v7rAANkLPxD!V?Ay`lq(_Ho)hx<9~h^bqag+yLgg2 z+{M&$gggW543#WVQ>ExvIwpKushXlh! z`4(v!o#y%3JC)u|6>m6S}7nLKl_;MSrH9P4}(i=@%k@&e&=(X z-XwUpn~O!Qg!+!pX^BWtJj&4P&~njj1Yr2C4+&DBBrBZ8J)WprnWlTV1Tw;n+{C!d zIC_s;v5wAv8J_cvM`xZnJgYn1&E#-|mn}BJ=118ZPE&U=fmMj>5*I^>U_{E73X$rE z?<9y)XKhs_wB>y)Mrm%hbB@Y4O@$Z%Y4Pg-@Mw%=e5*hb=v42mvfVO%r|`Jgudq`0 zG1m5NlHdYCPw-3H7W@0QunTRwoyKEcc%>HgRxBw&Ti{;*Ec7hIGIqq{14e)#3Nzhg zM1$$YpOZk@y9nwRU_36DJmvU;C2_DXcq=77Tz#%&J?AK=@Cc_`WOml8S2h(>W+L1@ zb}CH)NF(75tDTkj4ppY1&`xSDUmgmth9hZj z+!S3hNy%X-U}DJfsa=GHsAc+S|%?%zV2@IExwd9seNxWO$uU0*T2 zF2&E8pkGjQ{G{+SF)H1pm{E>9L*fj9^`7~~x=uucscyqF%Aj>+ zKGEp22kcmte~BXAcmLkK>bTZWwTP#Yt8$*P>Tg;_Bww@nTaWC)NMX8T`eS9dWg38O zWRzIWO~E-S6Z5IwsH@ia0$5yF^nkNypF*3xTO|`Yeg6iu!Kj0A-p%WPB`|v=!hN?z zet}(1D`C%Rlfxz?CYFtrZKIKA(GrZ|26=i;v$L^bVuy&i^z6HyaS+qcY+;x={c40i zEId*gNJWhEJ1k+>uD*_F-0I9P+nX|vh={0ra|fp&sRUyMriC6`yPSv=3L4rJF0YC3 z4zWm0H8JKZW@gqb#m4UQ5eq*M9!n$#1mE)YNugl92VO9~Vl3N?>>oX#_4x>=6U7?7uO?^oTC=|(D9O3eu+YyNzGO#Oe}SXX)$QHf~TiI=(5t7ASfIkWerb=RAp zF!ti&;%RoFg_fsw)gsl-k|}4du=#TiY=LhBl)Hbe2`;@mB_6v$M@HuB>^%I9!J35w zuQ9`eGU6C(E)l6lfqNLlnK8yP1M;?bdmEK$<=gJK{GU%g-`X)iEW}tCX9TfoW5s}u9e>Ej0uMq8uR!jXn7>eN;)~KvsuMMmy2oem z`N%^v=3$@^8-YUkPyz-Ed#x)3mdBa2 zKcVFR#i0Zg?Bo`z{kovoaLmE(mG!Hw3ej<1-Bw)lYfB~sLAAAiSP0SL5k}{=uSHY| z1M+EJdY)`!ecdOj7>Pm^P4N6*GY?}UY*QhNCdycyNP)o0mIZU*bF)C(vk8yxPM_TA zebEPl^=ZK`LU+I9UeOK;c8KOwcr{X*(Lb@7jcxmbvdtN-&{oxVeL~yT=ldQzbE)X* zY*l#9SAtY>F!tgu<#-KsG$>4VF>Y0!fU61pQIL8<+Dl#q83dYlj82|#Cq$k~K z{!MG}E{N5RO8r$mSnM1)Z%VJszMW*?YyFj(kx{KGhrm+8)0>|A_^=1aS^ZdSX+ba^ z6~~fkwVP;mrJ}V)+s{<+4k>P~YGhSK`51d}*Zz(V9+?dppX^S8sL;Oz2v&}djEqp)FZ>5& zd$aDys@}V8Ec*-8_V@2^8Lh+$20R*~g{0ZCCGio3CSfpG6i!b*_6`oP-RtH85fr4S z9~Y6IDS}D~!#!P1Hdu35@GW#@TDh5-J!fl6Mp*!x_Fv1wY^8w&%7Wl7EYU{piMJmy zk=`3DU-#NlwB^HxF5@R`F%(xXFE1dICC+U}0_0<1_-ttSbedT7Y4%oubFPzZ{e<#9 z;xxO=+ezEOwWiw%^XHcrj*UOU!VX{}hW+muSBZ+S5strBL8je+$}3ZlLcIMBUWAJ- zs{XjMZfq<5;)id-!7-#+ufY_s(rzBW-Vkx|mncAi@p(M;jgyy~U~q3H!o;|>Rrzhs zTh)&v<1GJi%Ti2iWu7x}%q^_*bYDe9j7|oXzVoC{Hm??mUgDaI->DTf( z-|fObA51v8dgd=ASUMNR^vV(g&+d4^s0mNs)VFUKZ@_wsLK>--fyd-G14a!+0Fl>h zyEgJt(P{m*Y93?U(}yVd|5J|^yMImR^)m*2RQ29x+@vmUP26;ZnaU(CZuJb|6^xeb ztQ5Qqc6brN1rQ35Bq+(q>5ENDqM&0VB0i97yHvbpD~N^$oCmdsFFLMWeoaXy^)HeC zFG1e~`qj>Qjo1$0JqNSj-w55;c7KG&DtXd)f^U$dm5OE@P}WbBIDww^$qKYv{%~Ju z0E?uvs?4Vpy~D=ektGIC&{6lqC`IAB&Q&jZTt5>~-UX>v+G!}$sVA=p@ zh}7hG=uc(R0C3;&nNXiMA|ZZg@!`W&&n5Evh<;n+h2!d(sO66ff}fk4f$)9+PBntx zg#F&0#j)FwMxlx)W#WoX7Utw=%cM0~%KbbYhS!dvYlX050ze&Bzl5Pbid*wk30Cy2CR3 zd7;*L7sev&q3ZS2#yu=5`y#q7;Ivgux|KqKz(s1$NDfY-{Gzw!n0mBxbV)?N3q#UlH|OM`g+J4H2{6#Js4?{enpX^LjLDMxTK$iSUn?ah_9d(;XS#DJexoV< z{nAUM)B3*$kWtewk=pIJY+T1yU{VaGs+{(%9@yBY+^*gbs(wbfcVNDBblR_V_c(n=V2^OP<&p4f`;+QJHU2!N_^MF2#;r)si zx2Qaq(Z%GD!UZJRx%CBVZDEnC{tX*|B^!1mCjQDIfUvvA}til!EJx`kpU=YphO zjMOO!h8MZHxe&07KLQ$NX_?ICpw*jpwMY6YR{u|aG>pI)&{fygs>+7t{>L*R>We(Z zX2puHJ*212@ZB2Q*!JTRJ)X=P%=Mn0AUve{1Yblmp@1S=tgA%WJ$ zgZ1(a;SJDV07`u9TwyN(V|N7f9*j1e=?NPj4_lgWXo8&e6vAjzy}~Tw%-{9c1ll4j zPd--~u6>}D$Qug%BsmWDhSzJmh74;P?J5b6m)B|CGouI{o6L#-3u+^d=%>4juQ`N`YwGJII%l zk%4t>Bw-Os5VzpeGy%2yRoj2TH3gT(!|O7h{e^9cgevj_cCWA-5-6OB@k!RnsF)?s zO;X?h;;hwkiHeGKr<}|&^*fN~>D9fybDI$&4$vEr#w5$2r+y|a_f4rd3LDk)?8L2| z9#S2@z>k@5@dMyF+s#nq4C_Av^(2ZV{wW7WlPZ8cl`D{KiQhGdG>~@uICPq@dx$d! z(k4t}2)`+iUiR%5+VW?Zryp5 zJ5XZyb)B;G!Z$GNm0cRT(7}(QtHtXvg9r$|(qQuBciz}Ukj1%Dy|fh9KNhtPWu)pq z9b4#9S-hoc9VvPCF%FB2#ct%*ZgN0tGY z=PLhgzk77pod8NXyJcmlR15lBoZ3Rq=D+=`M{w#)x?^WU>5qz%-bU+RG?!E)AvB;h z!jmCgXY*=V;ahS4@Xwv`2pVZYa(~P8&g*k;OKwsnvH%iHA|E&@o)eFs)Y+<{>f zy|3ODfl2@bo;*R*M=obw*!oxX=XUh|`q4oz7Ap}hwoEG?6N_EmJ~W#*ue-@#;)5hA zV~uAc>AgdC=lL5s+1T(XdF$}m>jC*j6^=6xybM>?z-p5t{Ge>NWMZPTkS`HLAXH5b z;k)V5_%7nubO>2D$r7te_?rWR!;NIM%o263i03!q-qXE9L=Q$5xJ{8&6LuJBQ1snJUh2RS^>w7eP`_PJ{iE+ae7 z^lX(`eoj<(XA@irPd_L7HB|jfcGZ^Kil5Glaj2~|2qciIm-?o(_ zhJEc=S#S**W~5DZb(jD&Q*?<`T3wIHhNuN+vG@am(XU7-HJpco&T&(BJ}~^Bd)~ly zcm(BZ_Erc{xT&ZlOPo3%^!&|mV8zB6%ThOpQP0834o>rXoI9_}k1osiA1l)qs~{fX z>TpX|D()~yf{>NXmIn1u%hjSI+o7cOB-fPj^0p&jLzhzY)I&{eIv}ib=p>{-j>G;Q<#FNue zs?q72j@G2=({!eMY2QYA5P}}& znOQ0*GVy(lg;NI`mkx`HYL2w2X(W&y6KKmeqVb%tC*1-^6kpynbp8mBL$}sI`fhbIB9v`bx{{h zR9~wW>;fyxXI7uQ6<~{}Fi^hQq(e}T@iz$px55-kpbksIBm5z8=pjLzz%1=a%8j#M z?_TenQ#d3vTjikHSW3{_X5IA*h*zkiqk{n+S!?~RZqg&8#mEtDNYYa2AiVn$0fSAv zRmjCGq$0Dty2c5H<*M=4r{SXI{=c!=BGfC?G&1(9fifCaS|~ID<-h%;jIm!+fF&!nBrX<8O$0a2+4mqg62NW*Xq}7U4 zV+lbDG=5Y=hA7IPBt0KaqMAI1-2hV1p1&tn@d4NH^ zix$q$dM&BQNFij>VCl(LpqtC2E1^&js?Zp)23u%r@&}*gazd!Ch|**P!l?IdQx!Me zNv7Npj?oQCHGQ{4I{fwR4z{$*4cw(SL3YRD3$EDHha%uE2TT7*o=B>~XIz1}*RiF9 zTvj}J>Zo-q##sx~Q*Zp}?W zW^G*D{?SISWgeT0S2b3fpu@?&6@RLC%7om-HEB_&T!AlXl!wgE7K3${gLg5!~i?-i#Kj^tEzCEFLwHWM%MQw~1c;LNrmjs2m>P(gO6Q zC3NPGhOs-|>5mclzkK>{f~|+cKMA&pttrbTe~_W$di3S$u!BjOF9<6+gdG=RxefZT zc{5;3ni7baPb3%sU+sbSBX88Zv}75!C+1;;elDMqX)CwW%Ei9ro9O2LzC919kALuI z;4bn7Z%49=E(taw%kG<#gkt>HsH%avxjEgU*FE`fQ|g0z18-ew(@WObr)9v$_OOO0 z$_85kn2CKqG$$cY%5@@80X}|swkQk*6(kof60EE&DzFL|q}=#8@R~x!ZyGh*GU8ue zWeZ?$V*BC1Lu0|g_+Pz73VEL+$*(nH`v0lzO2e8w(>1m;N9USzl|gVR9$`+jP*lJX zaRE%)3NCC>Fd!gcEsB5`MfQZnPFoPFT!^Be7#AQwBpF=T0t5$J0Y?zRB8Ej2*;j!; z5<<@XhH2}ZnID}W!!O{1H{bUz&-*O*bKn0R0fs=XlTj;XFJ_XTfG*e8 z-LUOd0i7x<@;&m$jZe)^t3m3vSzu1vlr~j-2ty!neATx!*fUJO5)o}CFeE9qN~yhf ziPMCAnAZ{Cl|Nd=ob%kv9u(;^Xy6Dy*CUFEb^M1#qxj#`6|T4M zeaP59qg{K5KivRit$J#XdX`B$3rpH1XD4g||_(K)xD&C3z?OujDbxtqK9SlBtPf8HS~ z<4?Z8Al-oKLqb~xATcmX`}evn1HyMuuhQ7=I&b@F%q^&s1)oPN{2fry$WkAVO6J7U1-imth0Y!~3%cy< z=CWaVfFJM>l*^qfl5hoY*;07;(bsa>-W$Odfh$24u$#OC(oR&)7}z%O0*1+ZaNi&w?H11;6d7caK$7MWRSE(oNwv@B2W5Cpm=!)7>g0eoDCKdWSW zY69NysgA$PJY&TDuWZjr^uDMmqaGa|nVZ%98Cw3c2lr1Q(a#m=o1tD$T+gGvf-YZF zT@j3eler$HW}cwJ;txv>M2c#M{}BQx&I4n|Q2EO4VzZ!smrrQpI2%&qd(1 z;}bVyMoFxm%|4+z-8_Ks-|H&O6G29cOL)ekOWrb7a0h4sA{PRQ=A-G^@o@1$ zYtUahIw{+7vOOHWo#R?w*18q0H1n*u)-N>$DgG9Nx8lU*+#F7N%g&kQk+WlY3%_gq za;8^Ho>1~jCY5CUAbQscJZUN<-eOeqi}k{9HVR#~yk9L(_xr|YQv})+(0EPQ@6;k8 z6_XhxISla9ie&N)>eW~GxS26R8Jc(yyK?EcMeebTsZ*sh!PEQ176YAMXmYY0^V|$~ zlu?CS7qO3)!HdOY2An+ESsD`H>Ut%9gGb@8RKkR-fIPx$urOqWol>7!MBazOIzs4H z6OYd|HaV@CL;b%YBnnX5Yg?J4!^1kspZ)O^GEUJwYxD~O6$r&oUu<@|oXC@f^?rIcNa&*XKKNH%y?3@d4~Ei3 zS|xC_x$NZLuYYfHb@qTiul9##w!=X81^ICI^uA}MgWbVnM*bDqAdgxWZ>5Jc zR}I}~X;-@b_>22&>2aOTd-+qX|DcoIc_jalz;dL@dW{WSSyUeIZCZ|BJ3 zJ5*Nqjsy4kk=r_03F!hq&k*LVI2AuK=a}d8xO}*??AwY>3)tW_|FeJ%UjG;R4PMr+ z;*mnh1)&n$ydrBK2zb}g0&?-dbce*8tX((b=q`rM!3?vJ&#+^o{oSpN%|F<|zGsn} z%}e)-!?>X7``+GQ4Mi+S0BD*x>-m+`2!8LXFVP1B@$akg?5R8YA%#us%Z5#4P}!~= ziJli3R5G%!sKaA0H`}I(y{0LU?9bA?kD>uH1hstvO@f zz9c=H^d%Bmt_@G+DKuHiOj+NKI;k%IozAqgnBrfoHCPtcy4T#Z+267$VkR{*&rb{g z7SdTYl$p-=f4F)ulT0+^Dp15mUe>wL(ls`3v~`JZw#%w++!8E+JYa}WyCJj>q^kY; zj(h&QVD;z^wfehpf?dtqJ_=^$a?_XZ=bis-;lXP{b2#cPgSZzKFvF4FHhKcxtT~Sz zBl4xXh?z;Jkf2ne4(am! zEDRskL|*5hWs}E@L9F0=xa%aJ?OX`Bmli_&&($;2vIH?WQ7nUzMQ0D#d$Y~zwtW?u zuFDJ3Qa}4$JiGQFnS|Wc{hcZ56)qqvtp3QX(44B#XLiHu?g)h**2wRf9aR7?W8;I| z?Xnk!_03LeeD1di(D;NL3rAsnHsNA51)A0p*v8hGiZAu{$eLY16s1gBdkAOeXq%NgJLh^5&UJ^XIj?E5$j>FRk{O-#`;oaZD!AJaS z3QJ)HMP*75OoO}OtDnrI@$FQs0o5(zfSB>@!G}0W|MY5u_gRV)68;pmDHkO-m>-A- z9^d@(y;NW*l5;K{!apP`V2jdhvnr?84P-2fJu==YXc2o@&vKG(xGUu}!75lh|1WjNFPi(QY zva;H^@p(hT1l)&LsU9c&z}7#-zucx7Jq~C*zxZ{+0E2ga*GgSovy38*mq?FLg2vt+~QWgCA(@yG-6B_C$MegX}42%&AH-;&K(34Rw;?fw2KI zryN=NBgwiDpe~TVF|xN;@M&OQ1C5IebvDxOr!RjV2Xc-?Wjo@VkA1Hf07Ztf9*EB! zxo9OnzZ!^iuX6bi7{3o)TB1=o_c>{o^8scUequsAE<Q>*B?Xm>$x$2tlKipubu`Vl?J zrcncSsKOKmqBSN2C+euFjz+9(&B1}y2+1b@N?Puj>^G~x`XG`w3mh#+9@OY76(W@| z9FlJ9(iIH7-+fijXS`5jC z#eaT8B*|y1cT+bNNI1%2UsZq7JQ4Yxmxz=SlItIfY!%jenBW0^LyFn4@zr>a(|xAS zH*RynqvyfygiHtSkMyH%SloBSU8-pi#y==5B;v!Ap#JB#-i>y4SH+EqRMA?pMA2;G zx&DsRwMN`IF-@5gkH!}!)XLu)ufV(hnY1Uy$CK(EV)#pb^ai>WP30RS^{q?Yvo;91 z+%7;;II6imZl9UVIP55{J|$Rwv}7Q1+Nc!UnUp+^@PCEnzn0jzNaLy|*)5gK?OVIy zZ6ca7*g^$q6D0^M2ciVhWpyP`0@x8Ay1qg=!bB~-nKsw0*>|LibfBKA-fNf<{I14O zf9oT7HbxX+6gdk6&whlC%GrEW8lsg$-bH~5$Q#S2xHMx50?vA>;;wyURL3_!3}Gt~ zFgF@tO@X;OG$uiZr*)=C)YUh+Y%ln8dLsdM$<`6VxkkmSAWlS=p_N?st& zKt2#NI;YuZBnKelU1!5co@;K0-ZWve1 zcc~POcBUa-!CURb%uK<-f-kJ=XezeEVPo}&-)Y3Yv?ga_K2E!G)prwEhU2f5lg>9d zM7DW71$izKpT$w9ZUK2E6FV_uC51bp-jGD;(ZtE)m5608T=TLfY$oD+cQ4v5h7BTE z)>u`+v1ht{fv1u{6G>WK{oI|M#rhx;q&uFO>ff)m9n26wZd$z+NeY#4fv+66og(o8 zsS301+AwOH%aT#iM;+fk(g5UzD0@Qv6jNlH8;m~KB_vpxU0vretFM}UqLK?#>nN_C zA&fI;CVPHEH27?K04~EtpHhV0ZK7oj#Fmzpcyr>Fd#Ad;Fq8m&;aK6vlt>`~+|t^* z^%G?r_6uq;bZb5q;EH#2#Jk<4d_uyjPCPJy3&?6-t`R$^wjj|@0L-^po8d^q<+y2} zugmZd1cQ;N=rb+pxk$R6;E#qQgaxfwbc>s>@(peND^V}fFidyMk9?qU9^yMKte$}+Y91ji9b-s&uS7gg}nAGn$f~Z z-!lSTI!*Z?{zOMGtpx+fS4Il$dQKP?9f2>6rOArU=RB? zq?t&GlJ8MeR}yDRK~?=NEb&PQFdZo&(Xa>tVFryV0v*F!f@Op|R=E|Duei(Ot6>Pb zruktGCsYIUn8=QhRup0Brt&i!MLRyw*ToyF^Z_w6l?Un^P&9;%5D&nfu=^~#A|T^O zIPjn`17iRS(vHGD7Dy%(DTF+J>7bZ1AIxI0fS>3IYo!H`!lk_(=PE-Xr8Gj4 z+Y}0mhH~RlTn|bFK@zkovN|VkfISLPGR{==pfe{D>aX#gi!{uWNGa~H*ES$M@C6%y z+VHw^Qw@#3?fyB+)w=}|G7XLY@THAU_!m8-|MuNahB>R!|LD>rom>9fKJwsuZ5*xn JUmX7W{{Y@t2`2ym diff --git a/13-exp-naturales.html b/13-exp-naturales.html new file mode 100644 index 0000000..60fb415 --- /dev/null +++ b/13-exp-naturales.html @@ -0,0 +1,1522 @@ + + + + + + + + + +Métodos analíticos - 10  Otros métodos para inferencia causal + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ + +
+ + + +
+ +
+
+

10  Otros métodos para inferencia causal

+
+ + + +
+ + + + +
+ + + +
+ + +
+
library(tidyverse)
+library(DiagrammeR)
+library(kableExtra)
+
+

En esta última parte veremos dos métodos que se basan en características particulares del supuesto proceso generador de datos o diagrama causal, que los hacen en algunos aspectos similares a conducir un experimento aleatorizado.

+

Estos métodos requieren supuestos fuertes, no son de aplicabilidad general, pero es menos crítico construir un diagrama causal apropiado.

+
+

10.1 Intro: Variables instrumentales

+

En el siglo XIX John Snow tenía la teoría de que algo en la calidad del suministro de agua estaba relacionado con la aparición de casos de cólera en Londres (que entonces era una epidemia).

+

Reconoció que tenía el problema de variables no observadas que abren puertas traseras: la calidad de agua que toman las personas (o por ejemplo en zonas de la ciudad) es diferente: en zonas más pobres en general la calidad del agua es mala, y también hay más muertes de cólera en lugares pobres.

+

Otra variable de confusión podía ser el entonces llamado “miasma”: cosas malas en el aire que contaminan el agua y a las personas.

+
+
+Código +
grViz("
+digraph {
+  graph [ranksep = 0.2]
+ 
+  node [shape = circle]
+    MiasmaPobreza
+  node [shape=plaintext]
+
+  edge [minlen = 3]
+    PurezaAgua -> Colera
+    MiasmaPobreza -> Colera
+    MiasmaPobreza -> PurezaAgua
+  {rank = same; PurezaAgua; Colera}
+}
+", width = 200, height = 100)
+
+
+
+ +
+
+

Dado este diagrama, como hemos discutido, no podemos identificar el efecto causal de la calidad de suministro de agua en las muertes o infecciones de cólera: podría ser la “miasma” que contamina el agua y enferma a las personas (correlación no causal), por ejemplo, y no hay relación causal entre tomar agua contaminada y cólera.

+

John Snow, sin embargo, que no creía en la teoría del miasma, investigó con detalle de dónde provenía el agua que tomaban en varias casas a lo largo de toda la ciudad. Lo que descubrió, en sus palabras es que:

+
    +
  • En grandes partes de Londres, los suministros de agua de distintas compañías están organizados de forma compleja. Los tubos de cada compañía van por todas las calles de todas las zonas.
  • +
  • La decisión de qué compañía suministraba a cada casa generalmente se había tomado hace mucho, y los habitantes generalmente no lo decidían ni sabían que compañía de agua les correspondía.
  • +
  • Había casas muy cercanas, unas con una compañía y otras con otra.
  • +
+

Si las distintas compañías de agua tiene distintos niveles de calidad de agua, podriamos expandir nuestro DAG a:

+
+
+Código +
grViz("
+digraph {
+  graph [ranksep = 0.2]
+ 
+  node [shape = circle]
+    Miasma
+  node [shape=plaintext]
+
+  edge [minlen = 3]
+    Comp -> PurezaAgua -> Colera
+    Miasma -> PurezaAgua
+    Miasma -> Colera
+  {rank = same; Comp; PurezaAgua; Colera}
+}
+")
+
+
+
+ +
+
+

Tenemos entonces:

+
    +
  • La compañía que suministra a cada casa o zona es causa de la pureza de agua en cada casa.
  • +
  • No puede haber aristas directas entre compañía y cólera: el único efecto de compañía en cólera puede ser a través del agua que suministra.
  • +
  • No puede haber una arista de Pobreza a Compañía, por la observación de Snow: la decisión de qué compañía suministraba a qué casa se había tomado mucho antes, y no tenía relación con pobreza, miasma actual ni cólera (que no existía cuando se tomaron esas decisiones)
  • +
+

La conclusión de Snow es que desde el punto de vista de cólera y el sistema que nos interesa, la compañía de agua se comporta como si fuera asignada al azar: no hay ninguna variable relevente al problema que incida en qué compañía abastece a cada casa o zona. Como observó asociación entre compañía de agua y Cólera, concluyó correctamente que esto implicaba que la pureza del agua tenía un efecto causal en la propagación del cólera.

+

La idea de Snow entonces podemas :

+
    +
  • Por la gráfica, la asociación entre Compañía y Cólera es causal (no hay confusoras para Compañía y Cólera).
  • +
  • Si esta relación existe, entonces por los supuestos, la Pureza de Agua tiene un efecto causal sobre Cólera.
  • +
+

La tabla de Snow, tomada de Freedman (1991):

+
+
tibble(comp = c("Southwark+Vauxhall", "Lambeth", "Resto"),
+       casas = c(40046, 26107, 256423),
+       muertes_colera = c(1263, 98, 1422),
+       tasa_muertes_10milcasas = c(315, 37, 59)) |> 
+knitr::kable() |> kable_paper()
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
compcasasmuertes_coleratasa_muertes_10milcasas
Southwark+Vauxhall400461263315
Lambeth261079837
Resto256423142259
+ + +
+
+
+

Esta diferencia grande muestra que la razón de la aparición de cólera tenía que ver con el agua que consumían las personas, considerando los supuestos de arriba. Para llegar a la conclusión de Snow, es necesario que se cumpla la estructura causal del diagrama de arriba.

+
+
+

10.2 Variables instrumentales

+

El diagrama básico que define una variable instrumental con el propósito de identificar el efecto causal de \(T\) sobre \(Y\) es el siguiente:

+
+
+Código +
grViz("
+digraph {
+  graph [ranksep = 0.2]
+ 
+  node [shape = circle]
+    U
+  node [shape=plaintext]
+
+  edge [minlen = 3]
+    Z -> T -> Y
+    U-> T
+    U-> Y
+  {rank = same; Z;T; Y}
+}
+", width= 200, height = 70)
+
+
+
+ +
+
+
+
+
+ +
+
+Variables instrumentales +
+
+
+

Decimos que \(Z\) es una variable instrumental para estimar el efecto causal de \(T\) sobre \(Y\) cuando:

+
    +
  • \(Z\) es una variable que influye en la asignación del tratamiento.
  • +
  • \(Z\) está \(d\)-separada de \(U\).
  • +
  • \(Z\) sólo influye en \(Y\) a través de \(T\) (restricción de exclusión)
  • +
+
+
+
    +
  • Generalmente las últimas dos de estas hipótesis tienen que postularse basadas en conocimiento experto, ya que no es posible checarlas con datos.
  • +
  • Con estrategias de condicionamiento es posible encontrar instrumentos potenciales en gráficas más complejas.
  • +
  • Esta estrategia funciona con modelos lineales. Más generalmente, pero bajo ciertos supuestos, los estimadores de variables instrumentales son más propiamente estimadores de un cierto tipo de efecto causal (por ejemplo, para tratamientos binarios, el efecto causal sobre los compliers, ver Morgan y Winship (2015)).
  • +
+
+
+

10.3 Estimación con variables instrumentales

+

La estimación de efectos causales con variables instrumentales depende de supuestos adicionales a los del cálculo-do, y su utilidad depende de qué tan fuerte es el instrumento (qué tan correlacionado está con el tratamiento).

+

Primero, hacemos una discusión para ver cómo esto puede funcionar. Lo más importante es notar que el efecto de \(Z\) sobre \(Y\) y el de \(Z\) sobre \(T\) son identificables y podemos calcularlos. El que nos interesa el efecto de \(T\) sobre \(Y\). Supongamos que todos los modelos son lineales:

+
    +
  • Supongamos que cuando \(Z\) aumenta una unidad, \(T\) aumenta en \(a\) unidades,
  • +
  • Supongamos que cuando \(T\) aumenta 1 unidad \(Y\) aumenta \(b\) unidades (este es el efecto causal que queremos calcular).
  • +
  • Esto quiere decir que cuando \(Z\) aumenta una unidad, \(Y\) aumenta \(c = ab\) unidades.
  • +
  • El efecto causal de \(T\) sobre \(Y\) se puede calcular dividiendo \(c/a\) (que es igual a \(b\)), y estas dos cantidades están identificadas
  • +
+

Nótese que si \(a=0\), o es muy chico, este argumento no funciona (\(Z\) es un instrumento débil).

+

Veremos un ejemplo simulado, y cómo construir un estimador estadístico en el caso lineal para estimar el efecto causal.

+
+
sim_colera <- function(n){
+  # se selecciona al azar la compañía
+  comp <- sample(1:5, n, replace = TRUE)
+  contaminacion_comp <- c(5, 5, 0.3, 0.2, 0)
+  # confusor
+  u <- rnorm(n, 0, 1)
+  # confusor afecta a pureza y muertes
+  pureza <- rnorm(n, contaminacion_comp[comp] +  2 * u, 1)
+  colera <- rnorm(n, 3 * pureza +  2 * u, 1)
+  tibble(comp, pureza, colera) 
+}
+set.seed(800)
+datos_tbl <- sim_colera(1000)
+
+
+
datos_tbl |> head()
+
+
# A tibble: 6 × 3
+   comp pureza colera
+  <int>  <dbl>  <dbl>
+1     3 -0.569  -3.73
+2     3  2.89   10.3 
+3     2  3.59    9.26
+4     2  4.59   12.4 
+5     4 -0.744  -2.88
+6     4 -4.23  -17.9 
+
+
+

Podríamos construir un modelo generativo modelando una variable latente \(U\). Si embargo, es más simple definir un modelo estadístico como sigue:

+
    +
  • Las variables pureza son normales bivariadas con alguna correlación (producida por el confusor U).
  • +
  • La media de Pureza depende la compañía (modelo de primera etapa)
  • +
  • La media de Cólera depende de la pureza (modelo de segunda etapa)
  • +
+

Con un modelo así podemos resolver el problema de estimar el efecto causal la variable instrumental.

+

Sin embargo, modelos de regresión simples no nos dan la respuesta correcta. Por ejemplo, sabemos que esta regresión es incorrecta (por el confusor):

+
+
lm(colera~ pureza, datos_tbl) |> broom::tidy()
+
+
# A tibble: 2 × 5
+  term        estimate std.error statistic  p.value
+  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
+1 (Intercept)   -0.739    0.0702     -10.5 1.27e-24
+2 pureza         3.38     0.0184     184.  0       
+
+
+
+
lm(colera ~ pureza + factor(comp), datos_tbl) |> broom::tidy()
+
+
# A tibble: 6 × 5
+  term          estimate std.error statistic   p.value
+  <chr>            <dbl>     <dbl>     <dbl>     <dbl>
+1 (Intercept)    -4.02      0.137    -29.4   6.92e-137
+2 pureza          3.80      0.0187   203.    0        
+3 factor(comp)2   0.0447    0.139      0.322 7.47e-  1
+4 factor(comp)3   3.77      0.162     23.2   7.99e- 96
+5 factor(comp)4   3.92      0.164     23.9   4.03e-100
+6 factor(comp)5   4.14      0.166     24.9   5.35e-107
+
+
+

Y agregar la variable compañía empeora la situación. La razón es que al condicionar a pureza, abrimos un nuevo camino no causal entre compañía y la respuesta, y esta es capturada por esos coeficientes.

+
+
library(cmdstanr)
+
+
This is cmdstanr version 0.7.1
+
+
+
- CmdStanR documentation and vignettes: mc-stan.org/cmdstanr
+
+
+
- CmdStan path: /home/runner/.cmdstan/cmdstan-2.34.0
+
+
+
- CmdStan version: 2.34.0
+
+
+

+A newer version of CmdStan is available. See ?install_cmdstan() to install it.
+To disable this check set option or environment variable CMDSTANR_NO_VER_CHECK=TRUE.
+
+
mod_colera <- cmdstan_model("./src/iv-ejemplo.stan")
+print(mod_colera)
+
+
data {
+  int<lower=0> N;
+  array[N] int compania;
+  vector[N] colera;
+  vector[N] pureza;
+}
+
+transformed data {
+    array[N] vector[2] py;
+    for(i in 1:N){
+      py[i][1] = pureza[i];
+      py[i][2] = colera[i];
+    }
+}
+
+parameters {
+  vector[6] alpha;
+  real alpha_0;
+  real beta_0;
+  real beta_1;
+  corr_matrix[2] Omega;
+  vector<lower=0>[2] sigma;
+}
+
+transformed parameters{
+  array[N] vector[2] media;
+  cov_matrix[2] S;
+
+  for(i in 1:N){
+    media[i][2] = beta_0 + beta_1 * pureza[i];
+    media[i][1] = alpha_0 + alpha[compania[i]];
+  }
+
+  S = quad_form_diag(Omega, sigma);
+}
+
+model {
+  py ~ multi_normal(media, S);
+  Omega ~ lkj_corr(2);
+  sigma ~ normal(0, 10);
+  alpha_0 ~ normal(0, 1);
+  beta_0 ~ normal(0, 1);
+  beta_1 ~ normal(0, 1);
+  alpha ~ normal(0, 300);
+}
+
+generated quantities{
+
+}
+
+
+
+
ajuste <- mod_colera$sample(
+  data = list(N = nrow(datos_tbl), 
+                compania = datos_tbl$comp,
+                colera = datos_tbl$colera,
+                pureza = datos_tbl$pureza),
+  init = 0.01, step_size = 0.01,
+  parallel_chains = 4, iter_warmup = 500, iter_sampling = 1000
+)
+
+
Running MCMC with 4 parallel chains...
+
+Chain 1 Iteration:    1 / 1500 [  0%]  (Warmup) 
+Chain 2 Iteration:    1 / 1500 [  0%]  (Warmup) 
+Chain 3 Iteration:    1 / 1500 [  0%]  (Warmup) 
+Chain 4 Iteration:    1 / 1500 [  0%]  (Warmup) 
+Chain 4 Iteration:  100 / 1500 [  6%]  (Warmup) 
+Chain 1 Iteration:  100 / 1500 [  6%]  (Warmup) 
+Chain 2 Iteration:  100 / 1500 [  6%]  (Warmup) 
+Chain 3 Iteration:  100 / 1500 [  6%]  (Warmup) 
+Chain 1 Iteration:  200 / 1500 [ 13%]  (Warmup) 
+Chain 4 Iteration:  200 / 1500 [ 13%]  (Warmup) 
+Chain 2 Iteration:  200 / 1500 [ 13%]  (Warmup) 
+Chain 3 Iteration:  200 / 1500 [ 13%]  (Warmup) 
+Chain 1 Iteration:  300 / 1500 [ 20%]  (Warmup) 
+Chain 4 Iteration:  300 / 1500 [ 20%]  (Warmup) 
+Chain 2 Iteration:  300 / 1500 [ 20%]  (Warmup) 
+Chain 3 Iteration:  300 / 1500 [ 20%]  (Warmup) 
+Chain 4 Iteration:  400 / 1500 [ 26%]  (Warmup) 
+Chain 1 Iteration:  400 / 1500 [ 26%]  (Warmup) 
+Chain 2 Iteration:  400 / 1500 [ 26%]  (Warmup) 
+Chain 3 Iteration:  400 / 1500 [ 26%]  (Warmup) 
+Chain 4 Iteration:  500 / 1500 [ 33%]  (Warmup) 
+Chain 4 Iteration:  501 / 1500 [ 33%]  (Sampling) 
+Chain 1 Iteration:  500 / 1500 [ 33%]  (Warmup) 
+Chain 1 Iteration:  501 / 1500 [ 33%]  (Sampling) 
+Chain 3 Iteration:  500 / 1500 [ 33%]  (Warmup) 
+Chain 3 Iteration:  501 / 1500 [ 33%]  (Sampling) 
+Chain 2 Iteration:  500 / 1500 [ 33%]  (Warmup) 
+Chain 2 Iteration:  501 / 1500 [ 33%]  (Sampling) 
+Chain 4 Iteration:  600 / 1500 [ 40%]  (Sampling) 
+Chain 1 Iteration:  600 / 1500 [ 40%]  (Sampling) 
+Chain 3 Iteration:  600 / 1500 [ 40%]  (Sampling) 
+Chain 2 Iteration:  600 / 1500 [ 40%]  (Sampling) 
+Chain 4 Iteration:  700 / 1500 [ 46%]  (Sampling) 
+Chain 1 Iteration:  700 / 1500 [ 46%]  (Sampling) 
+Chain 3 Iteration:  700 / 1500 [ 46%]  (Sampling) 
+Chain 2 Iteration:  700 / 1500 [ 46%]  (Sampling) 
+Chain 4 Iteration:  800 / 1500 [ 53%]  (Sampling) 
+Chain 1 Iteration:  800 / 1500 [ 53%]  (Sampling) 
+Chain 3 Iteration:  800 / 1500 [ 53%]  (Sampling) 
+Chain 2 Iteration:  800 / 1500 [ 53%]  (Sampling) 
+Chain 4 Iteration:  900 / 1500 [ 60%]  (Sampling) 
+Chain 1 Iteration:  900 / 1500 [ 60%]  (Sampling) 
+Chain 3 Iteration:  900 / 1500 [ 60%]  (Sampling) 
+Chain 2 Iteration:  900 / 1500 [ 60%]  (Sampling) 
+Chain 1 Iteration: 1000 / 1500 [ 66%]  (Sampling) 
+Chain 4 Iteration: 1000 / 1500 [ 66%]  (Sampling) 
+Chain 3 Iteration: 1000 / 1500 [ 66%]  (Sampling) 
+Chain 2 Iteration: 1000 / 1500 [ 66%]  (Sampling) 
+Chain 1 Iteration: 1100 / 1500 [ 73%]  (Sampling) 
+Chain 4 Iteration: 1100 / 1500 [ 73%]  (Sampling) 
+Chain 3 Iteration: 1100 / 1500 [ 73%]  (Sampling) 
+Chain 2 Iteration: 1100 / 1500 [ 73%]  (Sampling) 
+Chain 1 Iteration: 1200 / 1500 [ 80%]  (Sampling) 
+Chain 4 Iteration: 1200 / 1500 [ 80%]  (Sampling) 
+Chain 3 Iteration: 1200 / 1500 [ 80%]  (Sampling) 
+Chain 2 Iteration: 1200 / 1500 [ 80%]  (Sampling) 
+Chain 1 Iteration: 1300 / 1500 [ 86%]  (Sampling) 
+Chain 4 Iteration: 1300 / 1500 [ 86%]  (Sampling) 
+Chain 3 Iteration: 1300 / 1500 [ 86%]  (Sampling) 
+Chain 2 Iteration: 1300 / 1500 [ 86%]  (Sampling) 
+Chain 1 Iteration: 1400 / 1500 [ 93%]  (Sampling) 
+Chain 4 Iteration: 1400 / 1500 [ 93%]  (Sampling) 
+Chain 3 Iteration: 1400 / 1500 [ 93%]  (Sampling) 
+Chain 2 Iteration: 1400 / 1500 [ 93%]  (Sampling) 
+Chain 1 Iteration: 1500 / 1500 [100%]  (Sampling) 
+Chain 1 finished in 56.9 seconds.
+Chain 3 Iteration: 1500 / 1500 [100%]  (Sampling) 
+Chain 4 Iteration: 1500 / 1500 [100%]  (Sampling) 
+Chain 2 Iteration: 1500 / 1500 [100%]  (Sampling) 
+Chain 2 finished in 58.7 seconds.
+Chain 3 finished in 58.6 seconds.
+Chain 4 finished in 58.6 seconds.
+
+All 4 chains finished successfully.
+Mean chain execution time: 58.2 seconds.
+Total execution time: 58.8 seconds.
+
+
+
+
ajuste$summary(c("alpha", "beta_0", "beta_1", "sigma", "Omega")) |> select(variable, mean, q5, q95)
+
+
# A tibble: 14 × 4
+   variable       mean        q5     q95
+   <chr>         <dbl>     <dbl>   <dbl>
+ 1 alpha[1]    5.00       3.32     6.68 
+ 2 alpha[2]    4.94       3.26     6.62 
+ 3 alpha[3]    0.302     -1.38     1.98 
+ 4 alpha[4]    0.259     -1.40     1.93 
+ 5 alpha[5]   -0.00562   -1.71     1.67 
+ 6 alpha[6]   -4.02    -511.     493.   
+ 7 beta_0      0.0634    -0.0938   0.221
+ 8 beta_1      2.98       2.92     3.03 
+ 9 sigma[1]    2.29       2.21     2.37 
+10 sigma[2]    2.31       2.19     2.44 
+11 Omega[1,1]  1          1        1    
+12 Omega[2,1]  0.811      0.785    0.835
+13 Omega[1,2]  0.811      0.785    0.835
+14 Omega[2,2]  1          1        1    
+
+
+

Nótese que recuperamos el coeficiente correcto (\(\beta_1\)).

+

Notas:

+
    +
  • En estos modelos, muchas veces es crucial la información a priori. Iniciales no informativas pueden dar resultados malos (dificultades numéricas, poca precisión y sesgo).
  • +
  • Fuera del ámbito bayesiano se utilizan métodos como mínimos cuadrados en 2 etapas.
  • +
  • Sin supuestos lineales, hay más supuestos que se tienen que cumplir para que este enfoque funcione (ver Morgan y Winship (2015)), por ejemplo, ¿qué se identifica en el caso de efecto heterogéneo sobre los individuos?
  • +
  • El enfoque de contrafactuales esclarece cómo funciona este método.
  • +
+

Ejemplos clásicos de potenciales instrumentos son:

+
    +
  • Temporada en la que nace una persona (construye por ejemplo un diagrama para educación, salario en el futuro y mes en el que nació una persona), y por qué variables instrumentales podrían ayudar a identificar el efecto causal de educación en salario futuro.
  • +
  • Distancia a algún servicio: el uso de un servicio varía con la distancia para accederlo (por ejemplo, ¿cómo saber si un centro comunitario en una población mejora el bienestar del que lo usan?)
  • +
  • Loterías reales para determinar cuál es el efecto de recibir una cantidad grande de dinero sobre bienestar o ahorros futuros, etc.
  • +
+

Puedes encontrar más ejemplos en Morgan y Winship (2015) y aquí.

+
+
+

10.4 Regresión discontinua

+

Muchas veces, la decisión de aplicar un tratamiento o no depende de un límite administrativo en una variable dada. Por ejemplo, supongamos que quisiéramos saber si una atracción particular de feria produce malestar en niños al salir del parque.

+

Todos los niños de una escuela se forman para subirse a la atracción. Si al director de la escuela le interesara hacer un experimento, podría seleccionar al azar a algunos niños para subirse y otros no. Sin embargo, el director de la escuela nota que hay un límite de estatura que hay que pasar para poder subirse al juego.

+

Tienen la idea entonces de que esto presenta un experimento natural: entre todos los niños que están cerca de 1.20 de estatura, quién se sube o no prácticamente depende del azar.

+

Nuestro diagrama es como sigue:

+
+
+Código +
grViz("
+digraph {
+  graph [ranksep = 0.2, rankdir=LR]
+  node [shape = circle]
+    U
+    #V
+  node [shape=plaintext]
+    Estatura
+  edge [minlen = 3]
+     U -> Y
+     #V -> Estatura
+     #V -> Y
+    Estatura -> T
+    T -> Y
+    Estatura -> Y
+{rank = same; U; T}
+{rank = min;  Estatura}
+
+}
+", width = 200, height = 200)
+
+
+
+ +
+
+

Como vimos, hay una variable observable (la estatura) que determina la aplicación del tratamiento, y que se asigna de la siguiente forma:

+
    +
  • Si \(Estatura >= 1.20\) entonces \(T=1\)
  • +
  • Si \(Estatura < 1.20\) entonces \(T=0\),
  • +
+

entonces es posible restringir el análisis a un intervalo muy chico alrededor del punto de corte 1.20, y para fines prácticos el diagrama se convierte en:

+
+
+Código +
grViz("
+digraph {
+  graph [ranksep = 0.2, rankdir=LR]
+ 
+  node [shape = circle]
+    U
+  node [shape=plaintext]
+
+  edge [minlen = 3]
+     U -> Y
+     
+    Estatura120 -> T
+    T -> Y
+{rank = same; U; Y}
+{rank = min; T; Estatura120}
+}
+",width = 200, height = 200)
+
+
+
+ +
+
+

En este caso, el grupo Estatura120 son aquellos que miden entre 118 y 122, por ejemplo, y estamos suponiendo que el efecto de la variación de la estatura en este grupo es mínimo.

+

La idea es comparar en el grupo Estatura120 aquellos que recibieron el tratamiento con los que no lo recibieron, y la razón es:

+
    +
  • Caminos no causales a través de Estatura están prácticamente bloqueados, pues prácticamente estamos condicionando a un valor de Estatura fijo.
  • +
  • Por la regla administrativa, no existen otras variables no observadas que influyan en la asignación de tratamiento \(T\) (no hay puertas traseras).
  • +
+

En la práctica, usualmente un grupo suficientemente angosto produciría un tamaño de muestra chico y sería difícil estimar el efecto del tratamiento (no tendríamos precisión). Así que recurrimos a modelos simples de la forma

+

\[p(y|x)\] que tienen la particularidad de que permiten un cambio discontinuo en la distribución en el punto de corte \(x = x_0\). Se puede tratar de dos modelos: uno del lado izquierdo y otro del lado derecho, aunque es posible que compartir parámetros.

+
+

Ejemplo simulado

+

Supongamos existe un programa de becas para permanecer en la escuela que se les da a niños de 9 o más años cumplidos. Nos interesa ver cuál es la asistencia escolar en el año siguiente al programa. Veamos un ejemplo simulado:

+
+
inv_logit <- function(x) 1/(1+exp(-x))
+simular_des <- function(n = 100){
+  edad <- runif(n, 5, 12)
+  t <- ifelse(edad >= 9, 1, 0)
+  u <- rnorm(n, 0, 0.6)
+  asistencia_dias <- 200 * inv_logit(3 - 0.6* (edad - 5) + 1 * t + u)
+  tibble(edad, t, asistencia_dias)
+}
+set.seed(8)
+datos_tbl <- simular_des(500)
+ggplot(datos_tbl, aes(x = edad, y = asistencia_dias)) +
+  geom_point() +
+  geom_vline(xintercept = 9, colour = "red")
+
+
+
+

+
+
+
+
+

Podríamos ajustar dos modelos:

+
+
ggplot(datos_tbl, aes(x = edad, y = asistencia_dias)) +
+  geom_point() +
+  geom_vline(xintercept = 9, colour = "red") +
+  geom_smooth(aes(group = t))
+
+
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
+
+
+
+
+

+
+
+
+
+

Si nuestros modelos son apropiados, podemos estimar el efecto causal a los 9 años: el programa incrementa la asistencia en un promedio de larededor de 25 días de 200 posibles. Para hacer inferencia apropiadamente, podemos ajustar modelos como veremos más adelante.

+
+
+
+ +
+
+Regresión discontinua +
+
+
+

El supuesto básico de identificación para regresión discontinua se puede expresar con contrafactuales:

+
    +
  • Tanto \(p(Y_i^1|X=x)\) como \(p(Y_i^0|X=x)\) varían continuamente en el punto de corte \(x=x_0\)
  • +
  • El único criterio de aplicación del tratamiento es estar en \(X\) por arriba o abajo de \(x_0\).
  • +
+
+
+

Esto quiere decir que si vemos un salto en el punto de corte del tratamiento, este se debe al tratamiento, y no a cómo son \(p(Y_i^0|X=x)\) y \(p(Y_i^1|X=x)\).

+

En particular, para el efecto promedio:

+

\[E[Y^1 - Y^0|X=x_0] = E[Y^1|X=x_0] - E[Y^1|X=x_0]\] es igual a

+

\[\lim_{x\to x_0^+} E[Y^1|X=x_0] - \lim_{x\to x_0^-} E[Y^0|X=x_0]\] Después de \(x_0\) todas las unidades tienen el tratamiento, y antes ninguna, de modo que esto equivale a

+

\[\lim_{x\to x_0^+} E[Y|X=x, T = 1] - \lim_{x\to x_0^-} E[Y|X=x, T = 0]\] y estas dos cantidades están identificadas. Solamente usamos el supuesto de continuidad y del punto de corte para el tratamiento. Nótese que este supuesto se puede violar cuando unidades de un lado del corte son diferentes a las del otro lado, lo cual sucede por ejemplo cuando es un corte genérico que afecta muchas cosas o cuando de alguna manera la variable del corte es manipulable por los individuos:

+
    +
  • Hay otras cosas que suceden el punto de corte, por ejemplo: es difícil usar mayoria de edad como punto de corte, porque varias cosas suceden cuando alguien cumple 18 años (puede votar, puede ser que tome decisiones alrededor de esos momentos, puede comprar alcohol, etc).
  • +
  • Hay maneras de manipular la variable con la que se hace el punto de corte (por ejemplo, si mi hijo nace en septiembre reporto en el acta que nació en agosto por fines escolares).
  • +
+

Una manera usual de checar estos supuestos es considerar otras variables (que varían continuamente con la variable que usa para el corte), y que no deberían ser afectadas por el tratamiento, y verificar que no hay discontinuidades en el punto de corte de interés.

+

Puedes ver más aquí

+
+
+

Ejemplo: parte 2

+

Arriba hicimos un ajuste con curvas loess. Lo más apropiado es construir modelos y así facilitar la inferencia del tamaño del efecto.

+
+
library(cmdstanr)
+library(splines)
+
+modelo_disc <- cmdstan_model("./src/reg-discontinua.stan")
+print(modelo_disc)
+
+
data {
+  int N;
+  int n_base;
+  vector[N] y;
+  vector[N] x;
+  vector[N] trata;
+  matrix[n_base, N] B;
+}
+
+parameters {
+  row_vector[n_base] a_raw;
+  real a0;
+  real delta;
+  real<lower=0> sigma;
+  real<lower=0> tau;
+}
+
+transformed parameters {
+  row_vector[n_base] a;
+  vector[N] y_media;
+  a = a_raw * tau;
+  y_media = a0 * x + to_vector(a * B) + trata * delta;
+}
+
+model {
+  a_raw ~ normal(0, 1);
+  tau ~ normal(0, 1);
+  sigma ~ normal(0, 10);
+  delta ~ normal(0, 10);
+  y ~ normal(y_media, sigma);
+}
+
+generated quantities {
+
+}
+
+
+
+
x <- datos_tbl$edad 
+B <- t(ns(x, knots = 6, intercept = TRUE)) 
+y <- datos_tbl$asistencia_dias
+trata <- datos_tbl$t
+datos_lista <- list(N = length(x), n_base = nrow(B), B = B,
+                    y = y, x = x, trata = trata)
+ajuste <- modelo_disc$sample(data = datos_lista, parallel_chains = 4, 
+                             refresh = 1000)
+
+
Running MCMC with 4 parallel chains...
+
+Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
+Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
+Chain 3 Iteration:    1 / 2000 [  0%]  (Warmup) 
+Chain 4 Iteration:    1 / 2000 [  0%]  (Warmup) 
+Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
+Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
+Chain 3 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
+Chain 3 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
+Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
+Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
+Chain 4 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
+Chain 4 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
+Chain 3 Iteration: 2000 / 2000 [100%]  (Sampling) 
+Chain 3 finished in 2.8 seconds.
+Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
+Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
+Chain 4 Iteration: 2000 / 2000 [100%]  (Sampling) 
+Chain 1 finished in 2.9 seconds.
+Chain 2 finished in 3.0 seconds.
+Chain 4 finished in 2.9 seconds.
+
+All 4 chains finished successfully.
+Mean chain execution time: 2.9 seconds.
+Total execution time: 3.1 seconds.
+
+
+

Nuestro resumen del efecto local en 9 años es el siguiente:

+
+
ajuste$summary("delta") |> select(variable, mean, q5, q95)
+
+
# A tibble: 1 × 4
+  variable  mean    q5   q95
+  <chr>    <dbl> <dbl> <dbl>
+1 delta     19.4  12.5  26.1
+
+
+

Finalmente, vemos cómo ajusta el modelo:

+
+
y_media_tbl <- ajuste$draws("y_media", format = "df") |> 
+  pivot_longer(cols = contains("y_media"), names_to = "variable") |> 
+  separate(variable, into = c("a", "indice"), sep = "[\\[\\]]", 
+           extra = "drop", convert = TRUE) 
+
+
Warning: Dropping 'draws_df' class as required metadata was removed.
+
+
y_media_tbl <- y_media_tbl |> 
+  left_join(tibble(indice = 1:length(x), edad= x))
+
+
Joining with `by = join_by(indice)`
+
+
+
+
res_y_media_tbl <- y_media_tbl |> group_by(indice, edad) |> 
+  summarise(media = mean(value), q5 = quantile(value, 0.05),
+            q95 = quantile(value, 0.95))
+
+
`summarise()` has grouped output by 'indice'. You can override using the
+`.groups` argument.
+
+
ggplot(res_y_media_tbl, aes(x = edad)) + 
+  geom_line(aes(y = media), colour = "red", size = 2) +
+  geom_line(aes(y = q5), colour = "red") +
+  geom_line(aes(y = q95), colour = "red") + 
+  geom_point(data = datos_tbl, aes(y = asistencia_dias), alpha = 0.2)
+
+
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
+ℹ Please use `linewidth` instead.
+
+
+
+
+

+
+
+
+
+

Notas:

+
    +
  1. Igual que en experimentos, puede tener sentido controlar por otras variables(“buenos controles”) para mejorar la precisión del análisis.
  2. +
  3. Esto es especialmente cierto cuando la variable \(x\) en la regresión discontinua no determina de manera muy fuerte la respuesta \(y\) (datos ruidosos)
  4. +
  5. Es necesario tener cuidado con la forma funcional que se utiliza en los modelos (ver esta liga, donde muestran por ejemplo este análisis que es incorrecto:
  6. +
+

+

En general, usar polinomios de orden alto es mala idea, pues la forma general de los datos lejos de la discontinuidad puede influir fuertemente la diferencia que observamos cerca de la discontinuidad.

+
+
+

Ejemplo: edad mínima de consumo de alcohol

+

Consideramos datos de The Effect of Alcohol Consumption on Mortality: Regression Discontinuity Evidence from the Minimum Drinking Age

+

En este caso, queremos ver el efecto causal de permitir legalmente tomar alcohol sobre la mortalidad de jóvenes. La regla administrativa en este caso es que a partir de los 21 años es legal que consuman alcohol.

+

En este ejemplo particular, los datos se agruparon en cubetas por rangos de edad de 2 meses de edad. Esto no es necesario (podríamos utilizar los datos desagregados y un modelo logístico, por ejemplo).

+

Veamos dos ejemplos particulares, muertes en vehículos, suicidios y homicidios:

+
+
mlda_tbl <- read_csv("../datos/mlda.csv") |> 
+  select(agecell,  over21, all, homicide, suicide, 
+         `vehicle accidents` = mva, drugs, external, externalother) |> 
+  pivot_longer(cols=c(all:externalother), names_to = "tipo", values_to = "mortalidad") |> 
+  filter(tipo %in% c("vehicle accidents", "suicide", "homicide"))
+head(mlda_tbl)
+
+
# A tibble: 6 × 4
+  agecell over21 tipo              mortalidad
+    <dbl>  <dbl> <chr>                  <dbl>
+1    19.1      0 homicide                16.3
+2    19.1      0 suicide                 11.2
+3    19.1      0 vehicle accidents       35.8
+4    19.2      0 homicide                16.9
+5    19.2      0 suicide                 12.2
+6    19.2      0 vehicle accidents       35.6
+
+
ggplot(mlda_tbl, aes(x = agecell, y = mortalidad, group = over21)) + geom_point() +
+  geom_smooth(method = "loess", span = 1, formula = "y ~ x") + facet_wrap(~tipo)
+
+
+
+

+
+
+
+
+

Ejercicio: construye modelos de stan para estos datos, como en el ejemplo anterior.

+ + +
+
+Freedman, David A. 1991. «Statistical Models and Shoe Leather». Sociological Methodology 21: 291-313. http://www.jstor.org/stable/270939. +
+
+Morgan, S. L., y C. Winship. 2015. Counterfactuals and Causal Inference. Analytical Methods for Social Research. Cambridge University Press. https://books.google.com.mx/books?id=Q6YaBQAAQBAJ. +
+
+
+
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/13-exp-naturales_files/figure-html/unnamed-chunk-15-1.png b/13-exp-naturales_files/figure-html/unnamed-chunk-15-1.png new file mode 100644 index 0000000000000000000000000000000000000000..9465580fe2d7983b34042e94a382e82116c19397 GIT binary patch literal 132118 zcmcG0cRZH=+c%O>q$m=R5DMAZGkcSfnPl(m5os7DA_>{aC?ruL+Ey~6jF60wEi>bJ zUv=O2^Sl3i{&>7zzhAz^b)Dz=IX=hnUY{#US6hXOl97^#h=@u}RY{+SXuBK{(Y9CQ zB>0;kQl*>tgTh1A^a2qPa|Gdk#IYlD=ZT0|iPV(j4gK#;_W7C9b}x&~s*#Y=kP^RE zD77Xwq&qcf@$TAj(MjP`9p&FA&OF|>bZz@Fo=h9Rea9nBh>q?Kq z5?~p;u(QE-uL5~@%OCz^aUpU23#0u(d@)TUd-3jsugtEo#k7Cl5)nm4kR1B=eI~IS z@$P@$wi0EA?fCbt1Cj2lZU4R%CgS=|{O?;vBD&ds-w{y}QTqS;HjIpDyVSpL<+g?W zKfEl@zsr$(OHZqKKX(tQ{7Fe#GP1=qDk37Tqjai!}H?B3sU*pNlEnd^k4lXSc7_cdUlares9z1$Hp3z^7o5Wo{pYADJhBY z@8^2t4bK205{AwsIdAr`})17T?XG=|7M5}5p5Fg0- zJRTSrNGfk=WVC<({x5zKZw{!=chMV+{eO89|DPW4f4pqsnzmf^@87>48kf|B{JHbq zX8hN$)RdH)EVBJ?-YBp>di3b{@#B*X2}e(zI_271G1XK4>k0)e!>()IXa8%#DNnWS zTzUTdd77l3(dpBBNY6SrnCR-pB_=MeuP)#hbCMM7ATha>)3pY3ZWJm?fca@&|`6=y!pWjjPAKxl3 zxc65V-2C=3X!&PLM$w~3;g>HfDk|<~maw(4nV;^f8mfz37>KiB_^&F=)*B<){FElS zZ{I$wn2e0f-}O7eun0;3`|#ldN!{twrzyg}^WMO1;i5_9ySlo_ zugu+?{iMJ9zxJ4}9A)3TPhY60GCq%G^*uK)}Sr#Gylnjws*Am&q+EYPKm= z*U;F`H%L`zyt~q1*HE3Upjm~B>B7l~w*{7$O2TkYY1%(MPMY&QBkbp)5Kkx^G2`L{-Ju*!a|`tE}YvuU}=K!KmhO_vD*5Z`QO`o~O9>sB#4oXCx#nEDwbK{P`2xp3mfQ z=DE6?BIo=UHRa_mz4Ek-v3S{W>3{YTD&KYZ;@0L%x4sv+{Qk73H`HFq!N2*Cq3Wr)CQknOS&{gxT>n^_l#R6 zhK9eFrp!b{$}er(q5i-2OKfyB8~K}thNvSX{ErOsw3#KmS5_D7t*u#0%2WdaR`2kd z@feAbY-2+vAyPeJdb{Dy8bbeI9=;vQctSG`~ z7Z>+2wpIr$;D;7Ar-p{gf>-CU0qOZI@1~?&T>D*+ot=H^`hGVzxAi35UEAUe&z~Q; z$t+3DEb*?lBdqS#E9=g}(?WJ1^XuOI-Q9AIT+`&iZf<;woDWSXeT&QbjwBZT`MirY4;q zX^m-_-PdA^oI@pfdC#n0lbBv5*7choZa|y5E^&~7;iPSS9C~)65Xax&(UpmoB-!1n zOS*mgtsP7f-l{UmfB!ygufexH{`u0Psm!#r3%|z=_FwPBR!^4>qCOy~bSjrPv~6L2 zzSycZ{q}84wJ*5oEX9bP?(R-^_2lH_0|yQa3wU~Z&a3@vVz*7U6_13O2M4c*Z{JDk zq#-0!7V>9l5k0czNjzgx6VGLU>{~KfSy?=zpL0WX zH*ek~ylVVDd73k4&e)tYG&B?z79Nh<_4hWp1a7=Kmet;_zk4?-hBC|k7!S{W-ZQ^f z=FV{@aQ}Rlf3DOdmPK}RbEE3owQGrq`%;@_{AV-szoTZ0&7Ktp>d1>b_q`~usPOgl z6i~Z?pGdnI0WgLy-D6ze6Lk#@=~fFTKYsiu={J4jfRM5qx1O<)(df)f==`wS=4)T{ zM7|^qug-GkucGe#kMi=2mnkUq4Gb=Lc~MePaYW%E-ZGQ<`+}K|PVnSkNtX&>6CEA@ zoaa@qq@SCc`{~oC2x{iNcX==XRWBY+ZAL5cv3Q_that&(<|&Pjk)q-eF|lWvnR4me ze@i-SUY@w*N`6Olw5blZbE6FY z=l96)d$!Kbgx}LpRpsL4O`JZnZ(kzbUCr|>HWx18sOH^P0+`@6^PTD6D5>3Cn;pDN z_e}rv>5bVz#ejgy{4ne-Ub6~SPy4@*gNQ_H@^*Xuts|*o?wdn(yY+~bm6ey4mPBGh zSLa7iMd#0-#{+m=T6*h3>e}R_OF@Z`x3^3C{iyrKXt3BP(t*G8*Ho32KNJ|`eM*QOcpw*W8uFyWw>Ol5W^@U5xjEZ@@twvqf@8O zqgsIw*LPUG3>0zd$j3l`{^A9&!&ek&W1|y52Ck{@1` z)6>)Iok8WOz0lB5GqYY%*PfG-lCu7@VU1MRuU~)frn2?xD}VfsWB=ZrUH8?oywY=Z z*REU=VqH@%Ue zp~p!kwUQS;zl>a5jtA^YZN3>3lXlYcM}=!|{(boopY4p3|8|$|6%tDd4o*(OEes4~ zG}tm8Jm@#s3`g@J*Aq@*M_ zpKYm$A*BnkafxLvL&Jy{;Ks$(`SbISIki$E)7*9PKC6k|`}bz7mq;uNJSxp)WowDI zkuk{xuWbBT#%|wOTXY7xLZ8JT7I$oC_wn($qyf|xy0Lc3s|A0bAZ(XV6c$Dl_2r&% zmG4x_{jv>?DMNZ1npY!UY9wRcYu{gAZg6iev)6HTb&U@LD8(EoGA;Y?_3JXQ;n*1~ zzxL0chlYl%s{Qr!_4NlT|2|{ga86(K^H{W?<>{h;>cT=ER@O|c+lA4OdrtanZHCMT zZLTf;LdD_|6HdpozwjR4yMO=a$Vg&R($Ti7fV^lpXk8urx4a!+CGlIuCnNv{soCu3 zw+#OEg*Se6T_cH)qro0wR*Woq9?n2*40(|;<~?H z@273zd`Us0ACsknmhR`}E!@PAzR4u+1z2roXSbNbNVx7W22|#uftrxsmqB7`uST0w zcT!T4Qb$i!Dbrk$`cq8BaN;{~HR>(il52dwx4!22624WX@h?SYa&kmzeCu^im`s<+ zsP+a%za8`s2$&kEwfbI4f`;e$<4SpXc}~tbUES80gJNj<(?5THEiw}WbeJ!o)uoMi zYx>ywHK5^Y?QIkr#?L`1|JgG8mU{l5(nsUXjLH8#Sz`1<6(uFo0LMApr`a<%3Z_Tm z1vQ-G56U&P0PpdfeSUrE;LrLzj!~F2cKX_`18iq4Z~OcEn?LuEw>Ag_40`NoYPMZF`KzYIidU-ve6JVC~r3*@2w|5p|xPhN8$k(;_(e^UP zZ@zp)L@Pt4ufAS2TZ2o+fZ>F-oS|U{Ub-bimgUf)O42!s#E(;n4Uy-lIx z;xdVDo%?*YHmcbU-86!o6~#VE&vxXxyU zN3>3@nexC)uHT*uB>qX*<#s(gH`fOP2Xz=dS7i3=&X~M%(;Z%1s+9MbE_UsFeROm* zYE{2hsP^&W6XSgAy92Rfn>pA?roUCb-8u^#(@|g`8@g#O6yG$0zY~&@GQY$9_bTHQ zXeCG59+?W23W)qnjy)h`_bQBdH;W7%V@YA5lZ{O~Fw8_>lZdb|CQOCbh-0M(V^s9O zlx%ElzLZ$$^atFu#~#qHCf#>@zeaS(WI%s)z+1br0-e(<{D0OKAKn)L*VEC`;)q&a zUd}k_$#(g5zN^>YrKYncwG7zBbW%5(ficGS$2*Fw=FX>2pMuk}v9T3C^b2PNA&6y` z6b)YS&>Io11+7FOrOSrajFP$d&Ga+NUaan7CUD^WeCGbB!Ta~`x3;z}P4zBhxONtH z-a4XURASj28rP_K#R(5w#%IFN$!VhVp|O~I|M7`S;Zad)eMLuF+uE|)958)BXUxry z_Xgii#5>&=xOMB+@EqEReoOk_%Z;NWo4#F_DSuhQXX5vCpQIi!dTvE|IT{q$D4JCj z{LxP_3x6U1GUy*Vf#2MZQ}ee!-4j3JzS5~vx!A6t;ukzUvjimyA3j9Y zqSyQpb^GT3I()kbiZp9UV~> zA3uHi^5x5Pd#(mvAu-5y1$@18pcJE;LD-@7W3tfV@83%AQ&Ur~zs!@n(G{|TJbdN% zctR`7zZsaE)A{JM+@tmN;P>m*z&|kugg6QNsQ|c5Nm&`Q%AmRvy+=9rkk+9K=&_i` zaim?ny|sah(d@5UTW6L~q?rPVUC~V^1B= zVcMta=r|6Z;IuU5-hRIUuN*;jkaOaVOvqaB%Iu}#PnRxTGI*d_u=yA>l126+yN(^6 z1|J_E-IE9EW@f3ctsk2lKhRH0cjW=$i&LHk)UJJzmiW|zsj22_|68o&M&81`JukpN z4}9+I9N{%F=n}i6d$4-Xp8eO~+m-#2q>mGjNc(i~d%>eebT0V*$%DDCwsNXYKBMbVgHiSA(f&>c(jE!FkEy;o%PR5KI0n zO*uO{iu=!6A3S*Q*s)_kEP4x5Skd6`uZXikwQw7gBO|BM70a8F_!Gp$gErSIyS8q5 z+cl?j=IO9-^ZlNkB`h`|+x9~2u$tgi^k=WdiPNU+`6hNP>Ab)HEMUh1WUx8jB0wZP zo$KV`W9_+3@1kf|VY6rfXD{}R%Qp$-1J(q0Idop_4!V;o0yu4JAXM2A{Dx|@odf7&21VS z=NdKh8W82BCJl9Uz$0a^EueSMi)gLOtdY=WB4Yy9R|FEx)YMO(7JJjLL>i+Y)4vM<;R=7GjIf>}_OmvK+ z=1HcAn3Qu?D@EZbhC{G;F38ivFYL$9$dbBS;;`q%gamo2E(31hqTWJ zn&|1Z#dBzUh-F~`-=d{WNKAYmYNVnPq3-7$5)!hxdt+k*Xo6dK9y$>iDG62Y42HU) zq0;7Fuvz+4GI<(>q(kKOO-(so$G9Dwoms@a*f}{r^!BEzS3~LSe;FhsBy=j|g@5$* z>n&&>sO#{qPdh<=IFpacI)8ao=DnQ9zA^c3-cFGc5-<5_T9VnlHig`?Rq!r-o3kjzUfXU z%jnOaEYg9u**DSqNiMvX4OwFsRV;0~8<6jE!?;hN_@?*tw*a6p;BmIy26}oF)y?c)kBn9lDi1?1E}vp6Xr3{zR1qqmuDmdV0D-#7MH{C_1~6Yb$h@ z@zGIb0awD+hV>{C@7`J%e7hsQp~3K7U0rW)FD6gmyU0D5RQswr?^RVv%G1<_ZjHud zw3`ei>v}^15Z_wlTx?POIk;cOY$$K)H48~9l zpE6`+gO*%)V$Z#E)2UZHKU)o2jG=s2I>+Vgb0^C5krS!X+%vHQ2@hbOv8)3mLgxiQZS7}`mAh3l{H-(S^|T1>V(n|k{Bq4fvy zX3%?_yodG^ir)X_ktqs>b|1Pshp*xvCy0>ePcUHD(lA7b2@8J%Q1O<0sb&vd1ps6x zIeFyu>q8<7d7sC9eSK?cYI2lg3aNj!=U#^%&~SM-+2zB%7L969)pGCOhs%KW`OK~F zjL|bHa&nrg{g*SUs;a)#BoGtXUT+#{cX+z?39yQep3?vP0+1zO~O#ooD z>)lKzXEDU_Muho3^P|SDnGphpi1U|O34aL4^+y{3{u-Q~${s#^7K+y89lLA%W-Ob_ zpdTMTd>GEg8WkX(J6cO?!UOa;vYbbgSV3%MJ_ z6dQzMSJP*Qr)Y8~#l@piR%;thQ$h5#Gc~ll$Bu!T zF)prPnTyRUpNN)_6S3N3*T`I4Ur9V>3~&b-E+!@h{aFIN3NO>)=LC1j!@n`mKtL`6k$aBzThm6eyH&~Ber_fdfaDt5K1y1M%L z^Sgd0L`A>!_JYW!%ErI8K7Qt@1A4lT^j%tdda;l-@2rp^PMvfn1_sqUjaoyv5{^LI zhHQYh-}?HDADLto7xOJPag%^{l3jjnQ#v8JCr(;RORIk-`Nt2Nc;ADqa*jbkLj0EO z|CDg76S7-U{BHBj?pfyX#97yW1m1TKfeFEx}U9s z$(Xl<`?*Jrjg9}5*^^Nf8z0E4=T)_}Aw{h&{xWVh7=Af|UG2HK9spkp{24F_tl`U| z)dMJA2l{#ciXCs82w%TY2;JS?pm%NqHPQ`%i@>v3pLy9fhmQPP5fOFRK*^d9c3nt_ z#RNysnncS$qpAmlYHy!_!Gl(AR_=8AE5C)V?)T|wzQSLB@Mb;b&h~b8A5xWC3r{~p z3ykhFkIQJC`I(~d7f(DaD$?5cL`1Y${OA#s88rnzca)6TW9v($rKM?UY59a}OGrq# z9vzLAVdv&%nVOeNMAWLA8D@M4VsVbiREIZsO~1OMz5P$12>|S`<6|_50%wmMdx(*q z^n==C`}XbNa2({>V3#(=RuEULd!9OyY`sSRdiCm6T`UU}fKvHg?{~I#blej_-#Q>P zy#4}zzqPt>R4uHwR(5NF)yHQM_rqsZWA5@xJ{?3RI>r%N(&fwB603-bxNc*ck{9&{ zbh#`+9Y86YE*M_CSd)=4fZ^5D*yyjai;C(eCcS&VRCKKcF;V8FH*e2y+)7K^`2KoZ z0Y5aW^NVDYz&jW0;q#~#Di+!``6yOC4GCEVnWr+S;@Qsq|hsR0a zcg*P<(b0_`KR%lACc2&6b%=$6f&xE5dvXQ*3pUl&t5;7O&ydOk1+J{FYTY||Yl{_j zDhu7LI-9t7a;;?A{paR-ze8-7|b4!A7mUx^+TOP{MbTAu*&6 zo6GCM1-z$=i%b0xfc*Srsogtw9^>L-r68xE(CZozpv-?U9;Sr078R9tj2r!4Ihlf9YIwX%Q^B%eim#DIJfK+O8x`^|geC5Y; zb92sLixaiL`ZD7no>3GWZCPk_5N2jh%hgDN==TR>Vf`5u1w}G`AtAwlSIG7R1NaFj zK=+gL8jg+yT`@Hv2huk0BE>I^#1eV&I<#oF-Lg+jilSFD`vihvM0Jcoa? zVL82xNbc=bC~R+fdR~YIm1(6(_~4S*iBWdg&%N*%w9}Pn`*@3YS zf#qmzZR?ZdA3P3wG12+~EZ+AIVUJ*D8LAgt>v~sQb5cS=eM4K|=+Oupl|YC=Xb1Q` zS@5bOM_`C~kF{oD$mz#!eNB7v?Ivyi=^kEbCliaHZDbdT4c1y3?&6SBD>WS>(f8ql9b^#raYeDhS65(UC@Yf%XliQS2#zOSnVDT$f)qj5!1f%T$=y#wdQ(8x*nU3;>|NxX zEw3B#Lh*rRa1{1~BtbOcBGdV2*Fq^soVvKEu6F9w2>KnWH{P-f;?TSg3yfE*n&3U< zZ>w#3s{HsH7-J?V1evIh9zOiKuP>x6`&9Y3G`FJRofzBm=eboYh}7TK*N?%lgvdpO5K9m6^OvB6u{}|c?@)jZ z4UX8*grbLmbLYW`^C7LImS4(4Kdq>CQx5|aFwj6FgnWQt=5%~6$v{PG0$J4Sh zAyLsoP;Nl$AKC}m+1u;fJt6PV`vz+B4l*(xFXB~@1dM+5z|+9Rn7J!r=Ucygu{*&4 z)$T!el%B4xwWFh2|D9}94%`+m4K;2@*!(>#2;6A=R^7u$>gw)3`u;kp{NwDL?k`{B zEiFw%a8w_qM_G5mFA3*)X(o%r{=X-5ADhclmzEcP@xK!kGLpgJ)TOFD_cV3|zb? zej$GV5OEwmQ%y|`7Cjs+CPCYJI1p-gOi=>REI#%2nvJ~~M?hoY%)r%a*D4%8k79zL zBaL`fg1BdkGN1IDHh*YTgbBhwA>NeiogkvFu6{_$U-v@5^?M+$RE)x7FyPn)+NDXh z5k-5$=yG)}P?{d7tp$>^+os1DQ{g{nV>pA!qU9M;CYKI_1dvLV1O*FMhJ8r}`4Y%N zN%?_EHXc>zlJS-{Zf^b9xG<_JeSY2XrvFj}zySA&(h!&cs&o+M{_r1a!-x6#vvYF? zp!s7?K%4~*LplE(84UxBB6un&y=z5 zpz~AA2Mo4&5T)wa_rizdq5F!@WLH~XpGEpAQ5Y8}KIQJ+yD2FrdY|#n)EVjMv_QEN z6!e0MxtPXGMAX3xbzw_fQnJMI<(VGo;{4NTlelAU*ZHH-c3bSByMp6TMLVf9?MxN zihTy%dr||X$!}IMiOL>63lS3Agg)rmT06>|tZ%jZ%^Nm$cBQeNXgr39hzJAIqq~Xb z@rLj?J@Cx%6elMqF)E(twOwkx1?IsKHa6v(Or|f@%AwK$Re|z4ySQl1 zabhNP?C8|e)P&@E64Muy5W?2c6DK?{IWbt!+;Us}CDLjx{M4SG9?6D-qxLNPjOYGW z8pA-c!^iGCEGz`*ZgBTnp0Vh(u*(s=M-F$(ym+~ohOQ~xGII- zjz$f&Z(raNyz1ekg`BPgom-}6W>!_cTG<+mB2L2Aufil6RVY#7$BZ7Cl-isMIr`VR zPymn6Hs>Q`!qENJ`-%!4PJiKIMs>+iI{k}*&})-lYWEWnV5FpqkC zQc;2JC0j!LsDpr=y25W(2W7nB;o_n>n2?d7bBJ|GUK0=mcw9+j_0Q@;UKdj#fup+I zV3XAhfRQLC7k1xxb!A0$S&@>6;G(H%Yk&Iq5$&q{@nhh{Qz7=GL_~tuNG!Xd${jlC z!73qnf67cvgHz9Vr3|?cL z`&*;WzsEm2%S;efNmKJ91|+H$GlbxAQL+%dgM*DWh-tir9L}P=q+}Ijp=At*L$t7W zyWhOv&IN?=+_59#m~pY;R|^0w)Gj)Ohm%v`xAx4><9JESrw+GLQW&>95#-svb3Z_| zA@$BB%(%C2-->|@KtsbMpYyFxg(`+7m_P9D%a9N+JZd%$hM zNTrdm(aEjM%wJs~mDdgZs+!XV?^Ln>k|Q3eq4M~z>#bA^S8Pr&R8&;pd3C`r-TE2{ zE|n(v4DYjZ|M4!Y8T3KeX>iN;@7=2}#=R{p9(gZhkj!6rbB7|j^bQ6UP=ZE#Bi4wK zDW&W56I}xkK9Y<5)BP_c&o|QPMJ3<8`|kbw(|&mgvEROZ8yg#Y`c#-N$=S_K#--~- z!ScDhn=k~ykgyU4FxgGi~FEI5MqATbt5)-*8q42)OS?ZO!I1^pL# zC6FLx+Eb+967Squ`m^i~B!(Y)v9YyoMHu5}r{?FqO5YCQ1t9i`zL)gF-eY4^$o%yh z_8}0qnpYx1Mp%S=OA4eafv4@tx^1jNfIL7npai_VMn(IA3PO1kRN#FT#-Abj=Ks#F zf>?x2fY?EE3-sq(aE0~t<6C#aI;=tD-~c=2qPl@W!m zBvM>md0UczKs&5LH#jDaCp6rMjTI9TO0ZXNL=r7&`Hq~x0I33R!QU7fx(AQ@nar~V zmW<}6rrhIhre2C6ihLwTW*cpXKE$wx>In)7fxYmx1e1q5K+U|(Z2;-63}FN$IvTSe zJKA8)u|0kg+zsopZmjoR37X_A^Sl=;=<0G*MK{Wecb6ef}T+&xmB4O1U-{?XW|8#iw22rhE5vHbvT z%Kr4>{d;C{ultBBU_jX8J~5oi%E|~D2eKdiauNv*F8$S&`2m#RPGIfgh_Y;buKM^< z6VfY$qU}sNLIMJnkkHi1u zm~W&zc38otcR-?cvMT0QA|1Y~hKFVhM(qL)TYI ze>V_^&95O&rfCC3LLLqld%otN(MQMrjtu}RNE+CFcq5S(Ktu3TLWp`;tl{Iwb@V*WQCSy`*eykp2IKyL*7>=3do>lP3YfDf8=G0FtH4A-{-!w5(PejXW& z)N%Sb)BsfO2Z#6zuaYG+Jbm^I-t{xoSLnHFkavIvRIx>+*VRU`EG|Rk2+|kFj-_O0 zvr$JJnV3YAIrSt;I&pdp!l}L;8Id}IYWKAB64o~llPgpNJs}~IlUBeQU~9J`J~bcp z8cVO2Z==1>J9@wU+vqG8rU%9pJ z12Pi_FAu!%xxQ|}Tnhjb|NGUW{Cp2@?_dC~W&;pkh-xi>e2}ZTYwi&72 zCZ%RW$ZS`RVB-2vZm*sPzPXBn3i)LyRiu_~*~jXxjPvKgZ>Svb@X8%miFP!~6+#gx!zOpg+cw5sf^-7DkRDdLq~9?AgJI z37&x)*fYfh=@*g@suW|oI6&Rl7?#Xan6L9K>YRr#IAu<%^&zWrU>BL194t~KEAQ9H zA{Pk|kEf5RPH3~<&ZUSG;uYYoBQ}(rl7jASV*MR^^A9_39gHY2f!DqJ)(1kj7U$;R zF>{B?VX=Luzcr*j)(R=J-p8q;8~RZSEaYtCnBpG8OT_;dNnSl9Wn8wa- zp5HLaum>I%6m)8!XRu!AQr0ebbf%m~N~#(gv$MHVL`1~G+#KxB-r3o#wz5;%*SA7* z`ZKr)p|t8?DH=H>NU0&~mpxiBVa_MU#gz|H6s6G(Rtt44I5-$=F(fz`oU-sObPVN- z3)^;3!w-A+PHD%E9hV4kW6X1mE%u{FX-Ne3}QzrPH43V0oc#NQtQyh2G>hDh7o5>VBz|KNg{gT_7@)Gc#+`cJ^tr~ zuzfM_kXgq+73SwZb?ZyH&*RLcP1Un4Rv!g1B`y?(a>IcXm z@{nj0o6tfq{Sd0gLqJi*HkM=S>yL0Ld3w&FszBF<1_xgs++I|d>*dK4!FUFM-2K-f zBXcadL1tNnybcjJzuFsJEH*Y4H1XOsvQ=GPc^X4b_XWxotSinA@XE;4*oC3X0ml{$ zKPW2d19?R*WB$ar%+GbKXN_$`JXkE&;WiF3O-y)Iegk-Z&;1=8J2@kRfBZCp8iq^M zH05NLSyC6*y8!TNN8q<_Vp}4Wfn*FMN3+<azu&+?zSR= z6|kStxJsI92I70bNN|)Y|B*I|18^&=ga1BA+xbR<{}f4?+2#PiCMqflCIlgbt+p4v zgv*Fv;f##Q7eANls1Gc*g&mFwnKr8f&Z0mLoo-dGF*LI=>BlVMjTnquQ;_ zKTtx}udCo7)i0pjU%wt|_Ep1qJKick1eEjo^=qhnSb$+FN#erOMn>tlYBWp0BaCOD z81$~+OG_W76N!i@$+afss?imeW(EfO`lN9e5)x}DE|6eQ++F14alOYkP#P#?a}|{c zsgDSVVUv{KBdc}lXpC41mF9M{H1bv-lU)2T8cFS`0BDZ=xM zbFlJ|{x>kk@Q~}?zlX;x9lH4q+FtfqR~8nQ`8)mqqJ`&2_8&Mfj_qjm5+29u=g*%P zFbE*`JW@SFSCF3%c_RF4k*>>Q*q=`WqTt@HV#>}gF?#s;OhKo{41z_=J03zpLUP4u zMhfspBuK0g@VXloECQ9Rt!r7>E?iv5^;}>3vWs#W>jw*My;E{`Qj;{&7r6aj9LF3y zurZmKnUi?UAS1u(oz2b6{N9*&?1;+E`zKE!volPwT`F=8y+uM&GA}omf(eJvFfc94 z>|(wN4*HlQ@9qQYik{bpfF}@-QPOYZo#qH4l)XiUTUV3avL&`@NgGwv6WsU(Zbw~+DJM>|2vfy6B+p& zj8|%*;E0Q85Ih$4SY4z-moV!C9*|P)Nos$RGew&`Xqi_!_S@;D`TMGKexVe#e_Gy#GtXahz#~Po; zwtw=(%fsV)28k|0X22IH;^-H_FsCu2o@g~d0(oaVAeeA-qd` zr+(y(8{hErm__i<|M>?`JqF)^7d<1=w_6se?a?xNC#Sj2OhE^6-c&PW_;vG4z_}U)jlhb;(PbZ_4LlVxS0Q` z-AQ?hpdtk5&Wc@PWyYw$@tXgPLn6MULZbvAov7Tl_~zBCu)q^vUTsST_l*a}A^#V% zU*r8=@S7~*CNe|~)Rw!*j+S{}Z4qff+6^+G3g`A}U~+iS$b13|0M-OF-Nzv& zbSx+&UV6qT>;gVQ$PqDAv=4{mfhE8`n{)6pPyZp=1P29nL*d~3-wB}Cva(bOAD+d5 zR9N2dIuW_b?tf)^=1jD@7Zx1$7ow*79gOVHp524CtJ3>^I~iI0J-7qlo^-W(1s(Tr z6frwH{668JC_H9aq`H0h<;X4zcn#NsM#h!2W&XgM4tFB7#&21T69i6Uzup$yD6S1! z)}~IDyUgk9sPF5$gpr0A&#@&VLQ)W|2EtI`j@_DCT0n6 zuQ_IbV+3UYyXlWujPgU7>Cw>-c4b&r{u6pu78ZR20|W2h=iVtfW^b4t^`%BF2ulsg zVaxtF504WDDEdyCRDj_7RP16q$W>5R^2G;hp?yLQKg?|ft>+|;<3vVA;sW>4(;sAH zq()vJc_PU?)IZpE3X6G;ID_(YXaKEugpa6%Acjr7n?P=ixSN>bQ< z7)j;kB#I-FSDNkU_wS!S^g+y=z093G`qI{OP{imMH4P0~vsZ}HRzaJS8fvPqH>viY z!%=2v-K$&vFz;M(AYRbWi6{C(2n3n0k4!HB=1iohXlc13Q2-cRkaNjqwY9zd4Cn*I ze>l;o6n+%@#1?g$_A=bc<>itQjksMwNG=3H@5P-4EKPPp97LW15A%UehMTP|c66dF zPtguauP~sif1eBB+?_rPPf5X^F6s8|b#!G-&d)d=`J<@%C6a>EFY#9R1L&;H;VBq^ zc8YMr=g$Tf7HR7}z}{NvQpsxzB;((z11>-ifQW2!1fdpqYKh@rT3a6jmktlTfS7bx z{2&bttCPMC@Gp=9U`vDK_PCt(4;inmXSY5<$j}7GfO!os7ATvsk?f4&#Sf_>&YTgN znesX9`B%So-&8^&qHIoW6u|R=K>83Kits8PAQjb68f6DP&&)U`1&`<`ULII+U)QPX z?Cc+)df(;ST*hqTbK-16xYXTaSzBVK5f-B<(c8}wL7At3|g;PHMCccAPjsN_NS4xH=~ z2xmn+7U3ubSM4R}yeip$fPvw-`SaGMriXl-O7(ZT>_|!FcQKrhBkWN-8yhy?XLO}z z9}bCoT?u|sha!NmOt)1>2`%XrzX9uKoOUWbb_&MasY9;@J*1?iw-+uuWypjSHdjnh zYHMjtp?d*N?#rKsK?yZ4IWCU1FxONBfe%cBFXwMY+aO#60f~*`gn+;S7zZ88wZ2nl z938pUsQy`i=^ztC5Csdeu@n<&M-tqA9$#@MTve^V93c?5IFF`ig+cM&H&c@~r zpM?Y=fi(01!2xy&i5E9h8U>R-!e7FXII`{AH=t1cOI|{r5SdvJMN$tb>G&q7oX!v~ zv+#bs2#DrqS#u@?AQ_K?q>CE^)d5FDIiVoKCedZ~=KV8A%x-<(HScOd*S+~~ zxIH+Og~7%w9r*O7Q4Avk135Dl&J^vWpg17nWC+{4xeReCQ{;*ljS)}KzZN5(@BtjIgF2f^I*ijKR|6lz9t1kz z9@jwCorR_Y=mCrSJu|6Xbk8hwV zAvme(_5`UMa4;VKyufYSE)lV3L=gCO$EwU=|z-Ec+ctY9)&6>eVP=YbfE za}>ReyTXV{m1wLLo+b;WKh4|LR@7#^m~wNdxs_EY6gI=9-)nP25nXq&Oygr?IGL%~ zF5-nZOcOjG-CEFwp~TD2kG$8QtjU=(5@+9BLCP*=P6wU##Mw6hhr?1X`wkuAdrAmT zW7Zi?9H5T40J4pdY~-%ppRbn#b-LK3H2ZZ-KP zvC#sDPExyJ0#cQyofe3#h6}@~$#L&Mz=XOR2hO>xo0*=wtcbv0`FkKSQta z-HxB4*iEDx>)<2oYEn7!^XIYopD_)#PR`EsfIl0`>0FDsoTNP(z zy-tnLH#8icnquC!kAueA$%&DP2^GZq+Y4(3#R?+?>i?~#kqW0yCwOdVW(DFOkbZ5p zK2a#<2RH`b*jg~TqiGU`Xmr}XlASA`ueMJJN=_E^g?e9qi zcp+%?B*X&IV#}&aglKUeN9Lvfgv`7@j4!c4D?;=HyTp;;`g9&p*uG=O7Md74G4OdU zETJOWM+85y+Jc8}U5iy!1+W=R_`S`4d;~;~7Y?oKcUwQSWME*>-Ti^lKeMsD-3#25 zn3x!rETg3F@%IyHaki?w0B5M64gI zl9C#hIv@7h+6AduTRC@(60iJz3Mbmdg01Lny3_#NAd{&55+wp)1}Hw7d;^Szr_IV2 zfC`^>G(ngU`R+v+AIE(;Ek$@NTvvOC0H31z%BFxN6eN>7uOelAiL*-tiOnmv_ly62 z+DGK@JQNS}nqbq$_1o7|QqBO>cAQQ|$3qYo2l&uk*m*|LtO;J>NfYSm&}DGqsN)7q z$(XXT1wcLLbV_P!Uk{JxIJU4jAB~oRv$~-KTw6PZ^f-F9;@-^M+>z;N?TZN#KgPxw z0Lh-pzr`mi#4?GqWeCIVkUJy?js61>5oEJ7P~uyexr9YTE{BH`9@5q$BBI;-DE;G< zEiL;IsQ{(|2Iv9WLY6z86dU_YM~#69lo$O0m1uP{!A*w#dlyP^f|QF>R|9?B#t#-w zAzMK992BuqTFPZAv*#Rq{R zrS7l1V2{YXg8dwPajj&*Q>%Vc?%ur%0D}L=9s=99 z1--@&k_p|chP@x`<>BkgxqA%v03i-0W7u9ot^y}^0b;N}p`4@G(Ojp-#}6RfkGa40 ziJC~RATx?t^%~51s7g3pyDoh%;JTxjYY)5AkK&RNcbr{Ct6}`CiyB~n08)JP!R2wpF)H#`Uv=_*yU-thpd6c-0wH;M4!7sdjA4?BbJAjO7^lkSX|8$Pq4f^3u}!qC{5-t2|< zM2Fgo2jBEtzka3v^BBHw+8RRvB?F50zS=FqCxoqwfr(N;jEvuPROaIP-C*eoK#98o=ib#&E-r}!8G@g) z6Jsxvp-vVvg-fm`H2NL@gOx zvP++&XbSn)xBToT*)&cS)bHofP`J(&<-o;ZTNF8w(4HOHZke5Jagf)Rn@wTQsq3-q zA@S-@9!5@9B@eJHY&84Tlzj_|Nfz+73=NU_DYJaf{)6y^j0@>MH-?XLa2!tYG&=#i zzS6BvqH%QM{+JjC#|Ypbj`}eu4_JR69E2_iFW));186rQ8H8A2<88L>+piLyoMrXh zGMT?gFVqXmD+(zhUM03Yb5cbW75i&`oUyWEsnO~{&7Bqe;J9b+-ssraf#;q_PA~g& zaOB>-%h2P%boup_YuDCRS8>evnwPnWNmpInPe=hwH&r><*^&P$!SU!IN6aHon)}5w zH@*)IEi5ct2KhLFV?>7vljtCN{Dd-#4gt8215X&WfJg8mckE2EJ_a}zDT)s>gY%Ax z!oL}ACkMF==Qjf$$rJ{O1Abt>9pRwF6w$srmKlk>M8UwLitKwK^?Hmn?)y~rP8d=# zhVTnSHcrdy;y_eU5%2mEKKSnMSJi8e&{8(~_O7n_=9z;){gIKX$YnUkj^k}x*`MX* z<-Mivu6X*itGl~RS_s}cj`tj2WAs-C#Utod1_no1Sx?}UEW(c~0T6gB@qrm<&Zx8R z#lA+oZ&2}k1u!Al-U8z0`Y)fx$G79S5F#@9z8tLNKL!U6uXca_thoQEBwS5Mj}Ed4 z@Z(`G9}l*GlmKA;bnwO9yIs&`kt2Cmc(tnzvv+W0fR#KD=WP2X9QHyhu<^cMjqZ(u z*oCz{7|9s;J4Wt5c`}djbaofAM&HHUPO3q3t*jKk@fv*qrtB+$tE-3i($IJy{-kV- z(`1CtXu(l@VFT#45Pczg)VzFYp|0)(RRgEvAac@>LXAGW6iamDq>`xnXl*D|?*!yi^*Wr4JTfa9ox&@I*B!NIo9&c)f;Fnop^&1IrP z;hDH02;H(6WG`Pb<73E>y2P0@35h4Vucu)!pq!v$c$ZL8P@K23L+0y=lelPGdwX_X zUftMfIhy+g1D%q?zY`>JMrmJ9Ub?BytI`S6iBqZ_;H8?7lL_< znnR+SlaEhZY?3%r1wEz1=B;*%VoCT<4pVb&1 zK7#+$n|;5=##r}8VG9sWr_9VC{E#7Jf3v1WM)Sd2wEBH?bZE4#-jCl}pMWujxr=G^ zv?UTi9~@#NeT+Fg6OM_}K_%{sd|8>9L^6R9tYesxkqa0v(_N*Pms*VR@q$p$K~s>L z5t`xnyS2h<8E9T@BfFH7b0nAupM?|qp!C221bFUp{v_heES$1G9QnfujBb2-dOr<~ zb;7nsZ#p_)KoR2503Nr8u$k~JjxJxS6cZGjN2U=zSr!v^_8>qc6gF5d&@sWvBI^hr zTh~Cwu1li>-Z{JVf1k%Q`}HkvY*^TyOPHmYOVBCDEz{ty z!QvDDwI@swo{m6#<5AdF5C^r4<6?WEUw>?B!eReaT#wnAGlT=iI2VeVS*gPM5h8Vx z=}-|85)?NFuzSVDE1_oVFYX1G6BZTi$F4^moi*xy>PSl}k6*(BG;EV3mB$C6fi@s+ zjL1Dn^)n_#oMdUcR(OE)Yq;Ik&Nf(056a4DKj7o0mI>wY!wS|5;md6s>1>#M*xNxk z4A?w4Mw8EXfRPbh%k%!2VQDnV36Kv)QV32);yA`cM*+|wJ}5Hd#95M$gpPzKiI0ca z*!c4d(-}B2Cuay{Pgd>?(@{Y|!N*4g$8A9e4#nC#-?%bQnpnQ02&+O!#~}}(rA38_ z3p|e_kF)+#8kD4fUpNy>GC+GN9{3#}PPsSN6R9Xjyf~b}W!88LFcm(!8scz$2j~2y z)aD4E7=Y~eIpI*8+(AQ2a!_VCcu+-I`3=K&kLS1ALqPie4_E&k*K^eY}ClBkGENfEM@)j}LHDnv$u28jlxjJE6$Sy4hmRA$2{BcVu0h`!h7`M!L9fBgJ$ zp679#$5F4>^Z9t(ANTuhJrqK$_k|ub_to#vgEAfddIF?){T9)Z#fy(%2%k4^pq`!y zs2aVp(=}=J4|oDBHh(t|OrTc;*8*pazlG+OYza|*qfB_!2&wo_@!1Zyqhe?|L0Y!{ zYTZfADk*_ryw8W8`ro>t^mFW=oG$s$v>+mpItQ>MCMSz)EEP2O;^nj1(!`0(YNw2B zb#dwQ1iR2R?2}6yMh_4qWzEK@T9vfg|uq z+r?SunG3<$tbY~iqxp{9vxnbaT$~RnYi5=ZJ4|6`&mnVRsJq>*gKk3sWF!N`#PQH_ z5}zacY{VO_SNnao>!IUzDYP{QSA(s^1Fc=bYTP z@82W5T?ku(?F+n=Q-Rl-W3Co1Zi^*<%x%v1e~2y^Ij*WS0ee7HnRovAO|*yp>XbiS z>)*e(T=!b~_{$^T%}_uKX6U#$`%WTcWVG@|zE?^T4`?u&oPHGSgVEfq>7kR^whpsM zqcB$FmhXagV0#yqLP%SrGrdBK{}$fCoZ_#X8Wi`Jm)C`O91#I<;)&LV#7IxqBl2j) z3NUBU1nUMe9HF!`=E(d7CdAhZPS=%pWwY0Xn`(0PE zR+b6*+SaD|c!v=ghgoT9A(c-!>Y2#rp5EERM6xwUtyiyyiajE1mn?Y&gd~U+a#XFw z%9spqde@Fd$J5rfq2}R67oM*2kB8<~B*MTcfBf_b#F)1!P)RpTK!UOG0d6@d`dETp zT;BMFNDH;*4Dd~z(PbfG`vnX7R?5s+8?>{Zg@1NVPF&>^vVlSlR%kiZP-DK-#2n|-m%Uc3z^&yL zw~U~hYaT_48?K)eW&T2x&k4h!;NZ};Do0WjDwh@1d99s8pQR>*3S?x2)yBI~1I2)- zpojeJ&!0ZU?%zLZ^ym#fJ~Vj!n`Sdk?=bamYjS27d{>6hfKq3as~o`(u%!&y$xx`n zgFb-_7Qg#WiD1@>R6NOtK6Cms9(V;yZ4G=7MDjd5tQ=C%1OXCvzUtAVLg;dzX;;~1 z{5u7;gettMuHIyDQvLwvx=v|(<%FNZHT(1_HRx+Oa3Hq${by!t_9Wk`a7cS6Uz|<= zraH1?6MWfKXnPE_Q>N^u7lCLQTchC62hK zsgcAlLOCJsMe{)(?(AF=}vl$dC1 zC&u>=Y3@+`6i|B4(uY%r4m}NO!h@`>shI{r53-C9*ZJbgo@vMC*xuOocbET6>DbVG z{VctAGmKfZ?=3caDh%P2vNt!i(e&g%cNJLk= zx+b4G6{){@pt2kw04MG!(A|+EYjIWk_!$4WJ+^|^kwBran>6YD+qc-JkDB|+ETybe zpyO}Dc-VL%JiM6pz^pCzUU~VXjw4}bf62-p2D&GFSv`bKNBl1{`8{tKe0KJWVcK$o zhYm#xymZD4m6N^t*wu}#NzIkWPNI*dcb@gvlg5zklvaI$R8l_)iH^o&X=#PL6EGe| znYRVNAsj3Mrq0T3U-+gUD;s>qZ-2(Ne;p(Ygy~<^M|T^TDUlB!d%#c+}|kIUNH znhH4k4WJ#SoHB2j5tBSTbW;@)V-)h8{F%BsGWCM2>>V83N?ho;g?2G6^?7AwJ$$`F zfTxZ0_`?c$3W29lmyQ;T11pb>Kw33!+~LAu5~4II<@~+dKn(BLe;I6Pi3qQ`Ut3rq z*?Mfonp-F@?nM6$|goeEfCV!k6sfU7-`#s2Mvmji+lX&QPS9rXGn0Pc(9>9Op7^m$f9a; zfLw6JlC%E~GqECHY1o`iLWLBz9OY`%TtDWl)) z%69U1m1B3+*T#VM>vmfhTPTIOHpV0@Z1o!t|Wrtp%IHE6g zg;vh!+pD~Q-ZzE?9-tyT+OM4E2~HZ47&|}+JmdX&y__Q#Ob*Wekl+3x@DR3nfo!=)&5x~8sZF(-O$5e4fX;Gq5^43Hp`)!W zSe!WS!CKzXFVTg*3k%zcqEvU=Y!h`;3#n{rlg^LM8Af4Mx0Ev!;zO3{Mvj)~mhVHj z8*BRuz}Tu)*MWU#`{5;GhN(o{Mm*bIOXQ_hslT2M(U9qK-WhwAP~^p+)m%*dc=&3 zq+*xnl);t-Mvm#B?&qpFEpMsQo~#BFck(?i-B0oTmoG=-*ap zUQd8QQRR=N%IX3dgXlW*`}h$Bw) zcs(J-@6)GGaDuhBZn-nMBk;zt*>`s3eIvd{97oQrS~>>by9aL`06IQ@TSmd_mbS^0 z`3oO_;H>CrXE1}fu#UGMybpU2DIkS3rWQ>LJ>EBx4muuY)Hq(i2C!8qC zth*?3u&|zSak)n*oTP}5u{X`pQE&Tc0N`Wk=^Q-yQwFHY?Lc}GbG6|qHu9VtAZApP zLzmp>fT+kxQllM*Y3LKTCS>r*xie>u0hAi#eE0xF{ApOs4T73KvUCXmIk}rr{#Lon zieP~wt`ep&z4~03-=x_qoi-)gM#anL zEu8G2c=hqKXN8Xg!H%D^x;PHuyeCasPKyp8Y4v?&Hq8=Wb+f-eap5~Hsz}wPnE;A~ zfY07Cal=|Xk_md7P({o|DJvh%BVh77I9m7k&6}M(73ODyKk1RD#;1uy@ggvp2SyFm4`;f#e1s7)9f5nM z_dgZk@zK_&_aE3J0z*dToLK^&>e_b?%AXZZZ4AA92T;1W5Nz)h2$E`30(NsA!|4J| z85}*vBL(6+f8he~igNFsDk_M3(qHrk0Ij74Q$_~Ka+os4VP$2|^xNu- zv*$OV%Bu4w$oRTKsiEK1H9p(7-vqzBcyT?zDjglta^`9tH7br>nQhygz;7P@tqBrm zUAW*Y2t_9R^Je@6Ka1bLKci2P`#De&!|jhmIq>r#l~HH^IuPj-&+;WP`zj1qTU10?=4c@ixycgVx-* zu^38mp=#6}_dB<5_vq0BkuMlCjqQW-av_eD1V^aUnv48R{6;pLw%JcuxDZ10(CRUw zMAINEaSOJDh<9SS#L?b;e6_M^vI#333T$xV#ICTg<#=g1JDz6`93U2pF?lDP*B&rn z;?JFAJ&^H#c=ftE-jTb92LXupIvsjM+$L*d{P^*-J=)VQlKtAARi2+O`gc%>dot^% zc&>3H_)E^0LWq*a%vaO|>_BWb@9Ohiwz-LcP5LPLOVis-*GorZO!hlPKU{r2nAJeWVJYAge$A{hK!dm@8iEfv>cz5du}37vUdiS>gri z#{BH|J7Y$0=Auhiua24WR5B7~EnL}lhgc_XyChXXs3y->;9VZ?*Qoqr$+(8B)2DY% zx9925{GM|8Jp34_5kc%mMiu4df}jHlTc6c?&1BO|Y$mg8A3c67?JGB2TYCoiozI7N z5vfN9PSsyV$bgQ|*M=egKawNJN-(YX`3YUBt_LtFG6+SzU`|pB+^t$(cL#pMoUp5y z55vEqg^g;R11^#L;n_rY)ZR!k>qA#ny?pr+hcI&J6Zw}fU23Cc0liUCRsGZcRd-Vd z>k35uQAGvTC;dp77%U-#f;|zZJsSdoapFX`v$Z!70zPbp{=wk#Hpbrt!!PjfmHND; zL-`yW&mpFPYj!js0DAj&HkP%D3Nb;t>FFdWfasv7q2is~v58sHr=`xi^ulL2f9%Lu zes!4Bv;Qpg6x?5&d$l1*WG%&FE4(ychkyR~vD*@x8(0}@9B5p-EO}M=^eNgsVJN>j zrjJ2q$_Nf}cc-J?92qlZYq; z`xO=+X6}EQ7PmBJ-##;x(fE)}->PD<^F(F}@fI0%k$YttWqJbro@!14b=FKcNl8zc z9U)L*X`^Q|a(d=%HbH)?^yX<5@HxAVPsX9sc;M_TcK{4R?ix=}Q*ovyPJH+FEodu- zkgDi!zc^?Cc`EMDK6~mELT`^Tq1=>n@4*AcR?|7r)6g(rc?0`V30RPjloUHwzk=#% zV=8xSsEpeK`Z2Zaz{$N_vt5l6Py^9I(g5vww^Yq*!{Lf5r)Y!^85tJ=L$b26NP1x= zMp`=&oN1e?uNvGBsjgFc=GiF6MMt|WTV{9dg8A>jH4;|Avwst1C`g7m&!NaCL%2jl zV3Pau>ldHC?8vyJzeglRX|eT6E)=xAdxt|$fJuYQrW^I#eFvms2r$T)F^L{ynfG6Z zk1OjUE#0_!QCf9*=FIc!Hf+eOtv?irBY`*=a`-mY2m1+AID2-6=KOAlg$Izd+Lv=!*%^^)b7YL?nVg!Ah#DL@M7T$=&p348I%FT%IzPi1Siu08prG$==;5K z2BI_nzHyKzh4XG{jonc8;zj?zJH$J;`RShDG_v#WA7$xL%RRr3ES};%gf<0A(kjO- zhYOc{eJ=n!JHBd%?*m5+y|;g>bC*Fo$D5g{kFf3J)TlJL9_7X1|MlaOA$IeYdU^`n z>3NsiL2AEelr>ICk(IC*8Tnka%^y=2VgT3KDMdv^@zK#KCr(Tbh_Kgt{k5Hq5nowG zWVK&yF=7Y$#lIcDVl9FTTuIxTHuI!r#}L=vKuLC;wq0x(SJSfht)R(Tw0Q9_E=x#G z&Trj%l;)6u!!A1V|1RPIAY2ik>T0CUUbyPrA~TWiapZ_*+0zItkj#4tM=Z_FH^F!1 z9NmPDiF#4t?RWcxX#A*APpYdmUUKnJpFQ&0x^-H0VmV`DV?^3+o42`ec7Z3=d6VGi zJmAbfhC?vwku&d+;7V=mGrLhzvb|DaiwKV$pKh91nS|7`%r`~sc6wA@Av-qZ5DM9c z_wIFn*?{80=!b1u*O{U14Vg80!z^PiL$RCMfP?{zfJ2Ygh((Aq16)E?Q}e;W#ysw#0+qu6$5;fR8L}dA z|Iwr6F+F9I`bLD(kqRQ-#8JEZJNL!w7}C{4z|)p5pOkw+9BpqwL*O*wzaGE~EfGpc zK^&ir+S1WpSy&kIIckoFM;aZ$i%D8@gR0UMG8A-Sb-%T?{_knhcO@(iKES*e6Jx9% zRP@HVs*g8f1Ztz7jUO@;q8o0$ty3|wr9hajs^YB!*Aow9Q>>uRQsL9et+R>qaB$A3Ibt7>$ zH9=SR4JSU|`t7RaFr+lcgnuSHlE-<=_cD(8>Y+-I3T0G5N$D6jilHQaTdYEJ;qpgY zzdSbI)#&Ypue!lpT6Q(BV$iRada1G}u!;cze^TNmh_YSIW_}A?~_%=3D-A5fHh+f!1@KP_1wOD?e${XlA&_% z`B>YUAORr^fJUH+AIfRcOGQPn;_1#VmG?f6|Jm#~Lq``}@oyxzglaaH3dCbe5?O1{GV zdNvkEnwy$HRN0D*O4#m5Q9OP8_=n^p9uyB1^Q~nxU2;?RI?P2}ypv7` zuih7NPv-kco7&6l^}o^ZQmOd#`WgPo@wx}%+l=0NGH* z?V6#}SGQu-UXUxr2X|DW=)dU~>%F0koG-sd+~F42458kN&=lyi*BLVdjL8-D+Yo*A zl9cq%Z$Sr;Fm@Q{ivE-&pMkvhj6E+)AfdK1Wl_4~LO3w}RPV^%vFz*^d0WFweoD+q z2Ni!-C#)&}Bgs4f4DULQJIWYB!YsGwRy!$>cfd5=4CE0PLJz|N<`o&lldb9F>RN~9 zgL^Ls3FpU~uhmpc-I(us1@VL9m##X|{s;tUxWNLCju*0uSh(8|yAk_@A)GcT;n8fi zHA?$l*A@1!dY@HPQZk6cD$~)0w+}ToNARlNDJm+g1;k958H}6P(6G*%Tbi=|-DVoY@q-9t1&8~g=dB_IN;ZQg1Qf%NIH`X=L_(|d z%jB%A@D=+N{OPo5H}GqaK3SBb11fLcG4~o1Nn(_HT36taggrC<&#!->9z&?GZLmwT4m%MN+URHO z@L|KYq2q^Mlb_P{xs$l3b@rATcpd*0ev<`Q;FT%x*on3s1_w=6^l+bI37A%MB8<_W z-N(0^F}cU+QKLYCz!??VoI5F>{63Pjb#6KWwvm@cXPz=})8>GHLeFw4KT70SAHaYw zXdgLES$U40`suEh5~4!;?b|IK8%DB7=FgdPM`L?}6#<#FR~&ID#JY96wXpx4 zb_U6SfNw2M1J6x%Ae(h!rT6e#CSGb6;Qub4{zP`4>k#oyO_5b5_fXQ4-<<|?0mcmW z^46-$p7BFps0$ZW@gqravmP$@7KC8cDj?5}=zxyK=4ORQ|6$V$yRv#1f>heJNgl#^ zL=8vsW2bm%%=&I46p!r&(xe-49MR==vh<6}%CFEke$AN5PMkS&18`{j_U+#WI>FUJpe@b2AHP`*4F;OtyY@8Z<6f>$1Y;J__MA?|_IlQO$O=>Wd7JOp zzh^I^WKZw48vLCZ5gHIQkXOf3VeG?Mlym9QvMa;N8ShlQ8HE!59H!>zstN0<7!^su zp)I(@2t44_u~Ob)XBRc&Wh>nUN=A%x+*?`8*ad5$6D>D#`qr)E?(H6EPFivaVKfIv*{>6w`a_V4Ge2CyLu%`Z(&jwkyE z>W_SlwyaF8A_kkC)!V`k}7|rAvOk8z7i#9*Za_Re$vfD96B&pL;@k{WtB1KOaAQ zAf|t9XBa9j`7Xj!lbUvznrG{Ou#sdDo2da@rW#!O(ZUSTL+M5P1<f?ns2AmQt~Pmnp%DObn`G`@2H%c zbNk*s&=n-mkzA;U4q&$1_B>GZdwJdZJzl`D6Z50#KwBLLAynG&v zcVG*Gi{*3_PBb@Z=@yYl5_D){WCk*1ht3gr_o>wFMr9yB4Ie4N2#W@NI;s(r8L(yf z^5s-cDk`s$UqFrBxl<6OT^Vfb%+dpo#Iyv$7ExHw^jq@q9lZ%(1*_ramO6>ltg$f1 z8ZkTm2*aYD9zRMs_O6h$yWq0DJEJhd>~8Y%TX0D_oQ>MMcMU&~m5?5%Fu3t z4J7O8D;}>K=w(;rQ^q{g`ZXfdSs3crQC^z^sb2hmC-A{Hl-gp6gE58}blCOizJ%$^`^o}MNEExaY7 z%Pu_H8d`REtf{tkJ?n-p2`hd(A{{Qpdm)HWt>+v|vpDl!ljC2-n^Y4Bn+K~0UE^CL zD$1|5oiypf6WRP%fjf2xbdtVff>nS6d;s`p*$PidvqFG%_uhHvYO`wkMMO&nLjsfe)#(rW zaWS6S)UjizUf+FFEzi8~K~Jr`posE>=U88V!^g*i+BP9w*wc6yohniom5saYOr<5Y z!4#Ns$XTS%rOx(yJV{N2(lPWdo%S%i5Zn~}+jIz5n*jPi%`zj^w<(GyA-s64IDYxc zY6=^#=zVkZU+5E}d^q{}aJ->}1uhE~&?D84`#0Umo6>Nc9nSTXR5TEl;3@RmJHFxIhblK&jx6 z3YSNxw*A7Fw+(>CM#%nM8vrg+0XB($Qaa8SN4Mm-vXnB z#6%%}o~{Zbec=E80E}>#p264G;mr6hqB-DOLzX&&@1PIN7Pls;$f7Ka297tlX?rP%@q_O-YnD2srG853>WOD_w|3oRtAfi7U zPd+RkTv4ow&P8|b@ksY07Mp-0C)5^=Kx+u&%_!5@S3|Nm`+AYOuK@N7Lu5$_7o^0~ z^dbEO$kp5%R<8J`yY+?brpwCIAJ~4G4SFlCk)K!3MPsg}$ue|B4Y1xudGnd`k7s7y zJ#o?1b`IfxKHX*T zW@%N-zk$CKfLkE80@_ZIJr2E&jiS0)GXjX0`yIpD#ChrIw@XWRUGm@21GSH=tnBRp zbz|=;Mf18#?%gY_WqR#AyJtDLJOlQMw2eK`xniT}9kxg^dlv^E%M*1KWD(P=>8Mcx zm&fP@Fpp!Tu(|(6q)0n1XN+GsScaY^d^9LezZSaUwVMCyVjK^T88v8-19`417lNoz zL{5z>T6}4hM#q(-+1V|Wpt^Dwie$y9JMZ@XN7M?>md(QL8OZX5yQ>*<2912nu*j(Z z^upaAoU5{0rZH9?Bd-$~e&_Dp(6BJ24f7f~m07X$Jga;n9bH^%K&90eoj!Y(AQR;d zd9U;YPAQq@YS*!36`R{Dm{Cy2k@IYNq#WE6}P@= zO&dcadX#g6omAgrPBZM;-n~CtT8tP8P>p~8juS2UdHh@M@jiDh=qT3&MBiWikXyP% zm3K)fk~)GK^?}sPMhVeu*j6Ev4`P9ZPhZLjME}M>0_J~e5rU;A9uM8@a!+MUWXR>( zTV(FPydD@RGJW=wBYPXqJ#LIQpbZ!;&xvHAY@-K~Av{R17l- zfZVuv{l<;UH~wd^TIPn@&f9d2)dOdWTxD4w_##6`piu<4`a$GlRkH&uCteP2wVd|! zkJH?_0wYoSR`);)?~MX8YivZ^}wVrdWevxA0Bh3ynOno2Sr7~ z<>ah)?FV9zZA?b~eFaJDfhjj7Pz`Z@emHT8xRsi!s*0)q<~cc89opo%!i#H-Mu1|m zd~$Treuw!RzN)F|)4O-k+_N-BbqY+abqlnILEo9s`m%vp^-5<=5O1tqcE;+tddTm#z$?y}aP{VrW_T?pl zYqR*`Rvu>k@yuW4uF<+SZ{Sxtk2xpjRzC5+S5k8B;>7{G{U8*X4=Pr##2|#I3@k}; zUJ6hc7o4i6ZJjx2&~ZG0e=kn766I%wP0@NKA^MDVDJ*^a;sp!tJ>AJwr=5gweXhPx z1O*9)!K#38yo}TuqwD=FxAoHx`N>Q78z7=JsvpuF<`9=c(Dr^v zb(?9B7(qL}zL`XfJ2^|QhXU-ooty$Y5I&l(WMrL;tD!^79s2=~aCQjD0bnd`8Ej2@ zG+GHDLkJQIyzZZ=QkZR^u6W>}VCQH$SvIK1e)3-oOxu5joTYC|z5nV|i|GXGv>^p^ zo4d*dD<|p zk6bK+7v$iLthn*8N`_=R3h6pi^9h1Fk0lBBSR+5wc8-umOHXJ^@ z$khlqk(p;gn#B0XIK_%Z7Lrcfoqdwz!fU3J2)gQav-7Gn7;nLWa!k7Ya z$z5Qwd**HL$xOy@ajeFU_fIrt)fL}kyrt%$;6P|?*~@+dd646{t0aE=9+8)Gj+csJ zScuZ<%EnppT}+-V=W%&SPZi5CkaHfBE}m|ogfapx^G6N^jR?ck4^a?23^}3m-e2UN z6kGl$7`ypa_t zUnUI#;kv6l2ZV5wIsdTS*4x&rKOm?}xL3 zb&Z$*#fzZ>1}p_W{rowq^+Rk|@1SWnztVjSgpmSJ7PGTq7TJC^#mXP};h_lvx_E;L^V~zAL#3)L+`&G&mzjKAI5T0YE>Gc63rNay$U? zRj?m=X48hW%dE0NT%#3IkUVdVAO=Gr#A}5Us!X3((dB-SrG3h=cMO7bh(rt1;&Hs?Y)8o3l=qDMp zmT8`YL}~Xtkx8J420U=}$dQ8?1kCD6UWEX(l+7{h1=u||%DhmHasrZ8^OcSWa^hHK z=J^#bxN8Zo%)=vw+*8I-&|~XS$p%ESYkhskGQIV&HZ%q}Kz4EQ!i8D$=G_EkSB)Os zXW~*SUBR@mAFZEn?*M*kp0{xM@?-n=BNr=9_yckvKmuQf@y_*pVYj?9_tl3CHuGfKZp}RwI zk3xCmiz%}u*E_0bC$YHw4_{|M{Qli9>X(%IR)lbHS_x+bbCtk8AM)!Os3{zH;=s%@ z`MA_`y}&EzD<@8x^eC^7vT|Ui+M&~gJ6Yh7shpz|-T40f@|7z~Gt~l_$f%ekNEo0u zMJ_mdwjU!bT?yQTXOU0bbL;}=CW+*k7(sfF*TX>EN>;oKfB0c_{609TLojuZq6(Zy zha){??p!;)9%x4R|EuTe6u5-j>LiZ5N*{6J)E?^A_Rhb(|D9p7xO~~nE-^aL?HCdn zDyEK3@b#P2%`XiNm*_}&ZvmS&5!2U6lpve{dk_VVTm3^IS1AA41-^KQP&s||zYgV@ zwo4r-$*!m&2Vkn8FRzh*bNKx1z&7l1vo>rPohF6mJvY^{)m_WWc%h(vl$bvM9`6h} zG*f!@;XyK1Z-v~2@mqsOh?V6aZj)Vijg^?eWjuihw^I#h=Gx}fze(v^bybDSd$a>@(gFfXGfa2-l;mbYrPw!fs%HYO57U|A+1z;G2R|Hj=xw3{Sm1Z0Pc9#sLCaJ~$Dd#D~qgq%i zWL(TUOEzwa!N$}o6NpNRBsTc(UWukc5*-7V$Pr2}*JmkS|)vqi(jV&$GaFESCsQq-JG z_nmma%r4YQeEI6t%#4i6D29-Evu7i*3B1^)@YL&9+dJ2D6aCQt(s7n^qrtI$oBnl} zm*xj{7%J9{hSNTty3rVMJSo68*w{%2ge$>$`Ss{sy6NcZs`lt%|Dq<-@gOO&4++C& z(Cztm0$&v)d0=i(gi1%qH|o#Tk0Je~Qf1E@qE{y%%F({@dL|}ncSRuuoc3$Wj;3Vel{?XRm|HC)u3h_st;(#ahiJmH zD2WVlm%wkrGikTvuAG_1+AMO&kC#!QN*x7&`O_bvAB!B@{>SQ9bHXcd2$-$+W#MnX$NQ*=khy zKWQH(#*h~I{6Jdc&!1QK8a*_m+F!?7uLpQywOT$#dim1O58mQ=^PbVus!w!eYWaTO z__6{u9{^rGqbKUh6VEk13w*kb~5%xOSrPU{U@6 zHVi(S!U z@zZzQ%%u?HyQ9vs{ttaU5WDYpSz&%rk?HSkzj*u*Np;=;x-)i_jL7Q`SI!xavE|_I zmxx%Iz9A7x_WlDrVC*$9Hr~uOTOrVplb)_j(3&kW@iz^TCd>n>b;@WIMS5Y*8q2Nze@3# zXB7ZJJ-8G4XIToFIzTLR2f<>*nO&xy#bU1i^qQG8-ja~J1L)tNMd=aveKjYUv%MyR zGS6YgIrz1Q$eP^?9zagFy7N>)W;$R1mNlFM^6Pv|me({5*>3eHEoe?yC&x%vMa9g? zZ@FR`6*0X!FpHt{(#zCzSTf$w@ONwOW2GcNs+G`b2m!b63gf&k#aijUtbYxj8Ci4o z_1eq8gs7X=J=GPt2*_`T5>v5_g)fDJ!G%h7XkA1sYmo~eed)xAy?LoWg+6fRKgF-4_IY33Ev0T5+i(YZHLv(XjIS zTkU}+Zg&3L-JX;f8~Y90ROwnKU#@(KJhKjkBsXp|3s0K*b6)@chk+Kr1?%7n-l{G_ zg1|T5w0X17H>sz9O?W;?Hf9T>+d{upId9jr1fzQDr_d<2zU%%Z1J$44dC)7nfq)on zg+lP?uqRK1cG+fA*RmOKFj))t9XYa%*ml|~1%*Ad6@~MmIpwGHkdS9#V>jZwGaAjZ z4_^(m!0*Bs7&$j;F{2F!4Kv64hGCl*DjwJAdbf@Nhol70F(*ctnpz4}$%-M0VZ_~P z_{Qpv2y(_w)x5S#e%GnVtLr>(yj_mZ&B549D=Mf`U;5j zKi}R@M;yV(Oij%`dF$QUFS`1HQ)uetl$36A&AfByBA{dN*+-9Jr(8Xqy^B3&+qX3I zT$&8Rg3`vr^6uS6MB5t@w=OTk&4&seuaNOTOA4Bf_XB%FQEUfUBL|3T2L&L^TJ*R{ zHa{t%=(K6CXDA9!7kH40VlWVG6Ei>BY4IpunraHoV(#AI=Fne{3HB4Nk;k@vDRUms z8%_-t6n3!2rlz<92S%Hiyp8Om>ezRaG5cN5c@@V+yXa+g^}$-tD&|wcoY7NI5?3}o z^WVG~nvy=4CYx)Z{^KZsEk=;Qu7BQkVp6~GFUqr|IsVe6sNK6gJnLS+ z4sM7$VvcW$VS@pa`kOWEYfB3u2wr}ZYD9yvNtG5AJ*%zl?ooJnkLcfEj)X~*=S>iG zmHuTdTJ(SF<2Uc$Bdf$YGhtR?S3z-xGWta^$=K^n)_-p(+RQ?Mk61eR@wnMY0m9nFdr%${*e9h+?v3xXv&FaM%!qUr8>eN z;^pj_GuTJ~+k{^mXPcaog22?GYN{g`%uI=CDB}~S?QnFOJ=>FUC@XqwuiaCpO?ygI zM$tnNx9@+wT6Wv-jH#3m%V8ubO8ZT&HU4M$R*&_?Y2Jy?R(U(P^FzkuY58&o(R zT@952z1kld(;sbZ+;*}J`z%CWIW8QIHQ_*MZH0t{b4J{EZQ1=k4bp?mBjF@hY(H>M zOY+JdAh26Gw+X_#!!&OGK}i=|DLT_yn2T4hET7*H&6n@BdqBieMxB&3k8iojWSHgW z4V)-iosXHY^2&FEPcMJ5HcYf1F}s`B$q(E_=#$gv&3NcaI`?F5^&^e+(W31VHn(eQ zlU57a9nto}6#+oP&I`mLcifN9Tp--61x9~j`4XMz1Y%+V!bt|Ybhm{=JA9EZsFB0b za&Wt=b4vAaBwiWW#lgl#*UZeHO_MXiqSx+mxG%zAhV?h8mq;6`9=C6%E6p|&4nm0t zTOICh!Gw(-nNYcWQzMR2Lfh?k3D>%KuK0}%htwSAsPpf57RVSkK@cZLn7QD5;%F37 zKAMG62DKFR4U@TUf2VqpD+k?u%C(z3=|0g(N%uxv>zjV=OiMoA zv3v(ypUj;>s->T;#hbNy(S`$fxXFVt(e+k+v|%a-T+_Hy&e)EEb=7(+#Cw(ev6 zS%%s9%NL~!x%&?vo|Nxxp$yBA4DNWOtg3ne)|zUB-=>xvN<4aIP3nOoVIe5_Y#xkld*f~e z-f^eOf{NkYHyu1DNJ6whYFeFyJPAXCUTa%z-h7pOtK}VTLt4&H*As42@lKp$bL_%} z*bf0nCk(zBG31|{Z`iSE{O?|m(qcePC;*9xePF}cT%5%|O=>?GHNr>J<*xcs&$&oh zHIm^L72H`tU&>8wxf>%JQI_4SRTRkQ|BGi5s?fW4EwgBQ3>RIE`!Vc1K~FDWmXNdU z-@hNrK0@mXh426F!tS!~`@B&v`UzN)ouJ0oR@#B{TKdVFPX+^+@vh5Vy}7@#iN#&^Xa{qOH5 z$!_nxIm2Waj>$SYX^=m3JT`+iuUfI9`ue5|QBe;-0ENVS6qHPo|4Y75@3pzRRAO5l zNA;>7L6a@^_99PXS(=-HpwGb8xLTrxDo_9A@Zy+j%=?mxk1f7^c~ulS{)jifA548> zx{&v%Yi{17pR&S}J50MRIfj>+@_u*3c2S`u9R`xX@Rt&S+QO7N5G&|I-4*Ub{@x;Wl!lRx^YZub6==Z5mQ}0D_~iLUwc0l`^l5XAeK-UBA;eYZkq4x zT=3~Y{nvKDNzY}=_66NvF1UUB zEtNQKk{xf0XP%Rtt$ylXCm^b8jtrL-gjOBe(ntc1c8ze?8GUX^$?@#$ef`JpQ_Kxp zJ<^Xkg;{8!i_34oQ4Vat@?U@c%=+k>Ht2wL?4`mUh)<|eKoNsMQBj@`8S>wnHAiV~ z4?dA-vf}hctK@HSq&0ofv}vDVLIGtp_fOFFYCDqu@A0dAwk=zyQ!8M(rqYu?|2jwR z))?D!fJ#bkD-wIdY%4~m2Ozl z%lWR+P0NO_hhJ@3X6_p~Vws<1=j-v$u9Pn=J7oTB>yl@m9>Pb*#}Dj2bbDDn=m%Obl(ip})oD$0xRlqcY1{WlyJ_@n5w{HY-Dto;W!~pep^t;_Czz-c3 zu0Ig!l0MIo`$r%gKsT*YoXq-7WAdW=M*#Hv!;kwafCvc#W)PYJx7YvIY!KlV_kC1r z?nOw^!Z%J?KD2T!BEr!0(|$Pnx%-J*tD#WLeHN|E9I@uqC~;p!=$?X>`+_saxa3iB zv6t7O-&!mt9`;96637&NK5PR|r<>t|5a`6qbs|>-nj{M@B8CB^PhUy~$XS3@aEEU{ zf4;w!su^$n(C8r)auSGjA>Je8%NBW2$2j3>#WCeX z|2ULDJr2^-tLu%ekPXJYCRsm4C0n!c7f^3QD|59cPMaJvoXBjGrZL?o2_q2)NBqd>}R! zWA}OBGjhBqO}605NmSIM?O&0;gaSG!K~3#xa2eJ!Hhb|4pu= zdRsW(+_n|qzt9H4ook5ef|W!Mgm2F=hpFwi4KunBiq36CT+YkAsP?;-(LOrYu-B-5 z8|=GpLMLo*FLxoMp5}Z)hpQ&7N~W)&KW9RE^+tMmenJI?-ke z#}mzE(r4rYc8@F?n+E8lCxz7r(?VRGqmRD4AB9!85~oaa?SykihuGmhd_1H-C^)9Ois! z-MV)|3X_V!1sx6zM?lab!xx~RAWd)KTA3sCm#fjH+I@247^17taM(Y$pElQMq%8IK zZzmoxbVPc+*sPzBc8F@IB~MRVPSBXq7Xr@S>R)6A`sX<)eC$GiEkZAYu5J~yf`FlF ztT7D@W|A@K1Q|~cD?bg0&(OXl-LJbyUe{uCyhMu{FbWdtK|xkt-rn#7TG1JGB2gE; zy-SL&Z5|nuj{Tw1AlKRdwR$k_|{c%y5^SV)8i`FWz=}(VtE#^I7hc zs~?(?m-hm$7G0eE0DGR{?T0d(y!(h+;-zR#W+D`69XOAQV6Afr#k}Lc6zb@xQ9oER z(vsHPOpk3_|ANcp$tzjcEms-=zm=sk$PQi-XC)?JG}co`*hkA9ukR;O4>Hjo78Qef8Mj}^{0J+B1n-UAJEH7xG{|y&*z}CW8`23 zuK*K`-JzwXCVfEyS;IBj{P1hFrw!Cr;zl?01_-OVA${~|xZ)9HADnp~oArA{#2r1l zX4x{Cqi)tpG5swLbQYyFuvuFclwy)vW{}>xal)Ak6IYY@;)77#dRroIk5p0+h^;(J zCXo6?->rStuUxlnG51q?^Tp&(o}tTRAwn5k{?gNC{>v>4M6Hz96kn0Ufbc_yo>!QQ zM3H&|VkZ)HhA?F2<&BFhKwrlOzX`$u$n-n)23bTyhMc^6*RGVbTXzHzTc4P8+vx(- z4VqefQ)knecXhF*_fDt4b8};ryk89{=Dd0HAlrcWN~xaC&Opn5$NdfB5e-{>y|_g= z$cmO>qR#7yZVb6CGG_fAR8%Pc+F?_`Vs@_K-e=ze)opHI_QiWZ<+yQ$VZ7vK8_^n@ zf1E%!$S7o=`Wp_BjmzN041!m`8F>>&HoAUfR!!!X{`;g?ggB3RtIxcA^6c5=8(3x1 zSo$Ansn1`Q{qyHf)G~^PrQWXpSWwFokQ0ROBCB$IQGy=4gLV18&<|4Zq1q*3AP+ z!uX~aI>nuz3TivXWv`lIT@IZHFvu0eCwL+JL5W3kl#;Rz>vY1H-2`cHK?)~&;?A4@ zW1GXE6E*az}47_a<8z|A;8KATA?#WZZOck#%+&pG3D^~pn{ zjh`2e8<)pw5ve-}WQ$1TRZzc{%xxYIX+;BNtElg6I!rCdxN*s|a#}_rZK|BzCHBc1 zU>TYtL1srx6s|>lA7>Wiex~oCKlHfrVwYW-bB!45I%4<4=ll1`$jhjrd*qQwOcnMn z)`gMJdm0)TR58FLMYSq{?il7~^Ue274=-?K%_lU^ALf$dMK2)Lvc}7`y;o|`vBY(X zWBE)FSyJQfaa*Upe&|*E%dnwHB1m_3@3m3DK^cVPm7?wS*ur}KP0gYhZTIi*85zVs z2X1twL8+FUh6|2a+C3uVYBwm3vhQ<8VZBU%r>EY9X{NFIQ;CY~_wb~YNVlt?autcB zoD3dAx5DrtNti+ZMR6f>eR2mAL$~c?f~;KU{^exk=7*bZg`xk0IvX+(=sIOsos*cp*_BLpow9Z%}*a9b${-F9ud4x!J~HIK*RC2*%Twz z7f*fpGO?jy2fustcQu(0PpFxQkEkz1;9icE6kl4WJ6>BNIQi+JemcQX3prn@N_4io z%T=-ym8IRzRbefIp#NyCr{%y#lgQX17W_Y#FALNmzXp1d@5DBGECU^)qw^ZtNbSl# z?m`s|koZa1x;FI>>&PzDGgZ#8kOtBPEiO1ZXU2?zcczv${54pgo99b%Mrd&xi@2cp z?Wa#u@;caiki5h?S1VpYtOm9ZWH_9o3uGLSv#p`t&@+hpLFeiO@NlX-6*@99{!lLkoGcRt3`3TM*kZD+J zDrVeyH=e@Aje<5U5qx)XWLod-X}7o+q?0&P{@Fp#I= zAR8}pgB3<-nmFdixLjq$uy0?#R^QkffM5_i7;7)u-c!?D8M}@iH~_kL;K-2&FWpo3?W?c~Sjkkr(yH4y zo~x0*p59yHqQCF{3JK_5y;^o}5oFgx`ECC?G!{oC+3KL~e~({;g^1o!|I33s|F7=I z4{Unp`AX}pNLA~ZLG1@F`~A{`walo{GG^^{fda0ZlPH#R;oho^hcqmB-w3og`guz% z7yc8|n0$8|s0$A3#=bQXyLV5rwLL|;^pJlOl%-W7NWq*374mUwC65?S5wRHGR;h%M zpK)L2hgHh(SB#w=n|k#~3L`-jqg#2x931ds_UpmE%zr z-l3momn8IG>U>m?Nc|qz$_bTyeYLZ*hP1VpNuSJq(X!U5+iYK+Wb;+yZ7AzjOl!h< zEF>{b`&~2?E9G*e4~{L)NaT6d3pYfJ<5@6G9^dGNP5@+cBLpR+0dA;=RS=SCkalQz zva%WxQg8-?%=7Q14SVrk60IDfH4lFR;~w3)lL2oh+w%v5F-EA4#ltMVci+PLGAvJB z;@M9RFw`iQsXq>Q$k*3;c@{Bo7-Fx7g~=A~?EsjXzv0tcV?d0Ok`myq4m8d|RtaY7 zUR!o{6qdCM28M215GZi}LI&sl`~FDhv;Xg~R#(>2D&L@eh^sUJrfEb`51?(G>X0IY z```0LJ6v_GvBllfbH^R``X%QWi8+WaY?%{b>ke@C<@5gxnjdDzJ&V&@qJK&tl(~wsfi{LHynZxYk`|)WDJyVeD4-pq9nWMjQS=|EHj zq$3i=*0}FdUFd8ufno0I=-5(v>kO7IRB)`~uxF;rB9VDAA{pMNa?Y<|oDZgJsT(ga z`XZ4GlT>2HeeC4?zh0g}4dqAA62HD`mE)#fm;w;>@y90BDfsP`U9#K<6$zw(_r-P9 z{7VZ{MOy1y%$P_yEx}GGVN@t?f?&t+(tX#h)7WQw-^hmnFtl>)LG}gr2vQ!_JsO|~ zl6!vkz|xYE`un2AT+%maP|5xKd;UF0g9SR@+@-MC(!}KP!-qI8V(SMXbZzk-?&^gh zi>z#D4$PS_boA5G$V4KRMo-|U0+#b&+*ScbH`Lc#pZ*vR?aGZiOj&>0+q0Xr%ezp{ zHgEn-lLHm4P0S0<=S%GSUVvzfqd7PwtA6UDMVq4DQ0k!Duy^ zlTii)7uJKf!qzPYx;GAF*_;1OMuf{ZgqQG2HB{>ck174?XS4>V7$OFTY11;NWmGvg+ zDC@7j;eH@HIhcT=X7Ioj>zJ5h0+f*?ioVo;*sVd7mHA{mIkLEpaS`TS6x7tlAKP10 z8(7x$hNp*NO^+J&=Gbg+zTb_-Vm8TD8;k1(4pq++wkb_anbL!9ddHiMWkcTqxn+zD zW0-VTM#lWPbMeSJ1RUq<`;!TdGqvuHjxiKIzn>jM5=v=^e%!dXVV_yISA$%d9T)LM z$c`M$4fEcbA!9-*EB5>G(2b)3sxZ#{3A7r2>vX0aO$=rG%eXvCCF*+vJI40;Uo!wV zh~+Lv0lRYrBl8Hhfv2Zym1ilyDIzKUM~n!A01qfT$ljRc zuS6xDYB7Dz)tb{dz1`3~J8JYm?XkufrlBx`Ui<(NPtk)cbis&*ulUVhxKzn*CJg3O z#|+(+VP+}#UO%urvOf#OIUak*kAEO|fa^mkXozQ9Z{(Mq7p&$BvgyL|x7svpjuH!N zJ>-zopQY12)kZyT_`e94LpDGvqbk80QO^ub*}9a<4++=Ekr6z)q46{OaTSwS%$9Mn0SatXi{-Tm1Su9ammYvzvjMH^ zva;-RO3p<&6rdx_QmZUWW?lvkK{g~iGTj+V$`KCo%a z7LyoV*=U}AZ%xfIckQmRKnKu9Z}@Cwa!~icdeXsN40P`sjAIw>kx8hrObQQz=>DxJ zwZ>=2@0Q;|MTj7T@yO-OKC6#Bmp%>Vm4T6F3x;#lr|Dcu*t%8lazpdtZ#zBI2HUMF zR$N@tlo0(1`VaJwW2OYF2~X8LoNoa79u^hxHaFP_WdYhRgUV^zgO7kB9yxhWW<7F) zHE*0cT8DgayOK_&iSXl zKDN_bx@*^1kbzXHh_k;t(C;kw?6OfWK+KV|jT6=J); zD;SM{pXOC6-Z)b%=AdCK9_s*eMJ<4B)meZ`3`!_3kQCvU_{6|W6q(;uxv+S;NGJ_+ zJFe7z2^~E6G^tN9?OEF{NdD5*FW?EBydQ`)ec?Kf*{s4@>fT^XY)Db7<6dKh6gik8 zko;(Ny63v(oM5C<7L#b@)-WvRe8I$WHJ6S=?D6R+L?BWt<9CYS=_)F5x<~W!_S)W9 zFRU&Cq`g~G;*r&ZaWi2^izr>YjkXd52uyLy^Fj74!6C%T?h1M_im8*ae7HdPn^KYLU6e_+hK)r6OY8R z@AlEU!PI!16G@lz1q4=k8C+n&nT4W!JG~^NFo0Q9N8`MsRl5TWQ(( zn>jCz>^@5uUXUG+iYNl`KIY4iSPmDRA}nn|wmLQtD2P5F4c>F*6ZJfv%&7X3`9e5v z%SLnS_(jSm81RB)$K@1}B2z7D)f*7CCQqE$4qGf~5AocnigxP>(;QfGaBt*uM)ll8NHj z>~p?F{3V@il*fIWg*h5(YNrQFOk@-NpaBD(-oG#ARj7aQg#A~*K|w{37q%DtdFn+ zSWcKOd+K&Q5It$1X=eqDmi^>DK5r>GD*Vo2Iz+1qG4jt#?IXoEZ?0eH|ADkgZm3-% zeMMqE>L`*nUnV6*K{9j7QTzcCP4y@+X3d@rZ$quuC&^Jqj1~&R9767c@RXA$P9R`J z@!;2l*tb;eYuT!rKC+Bz1DL7~&$vvjT=DpE-1tLCc+nmhuavB9!#V+NlF7Wm;z7iH z_RwM>B2y>r2*4Kd@hN+q@0GDC6y7t~eoCMdR|<8B)<36YB<)q@`XRd~XBEEg)tl#` zpPF=0q6ao?0)$Os@iApN86?o)X9`1**FpR0cD$ZV$%RxGQiSwi6yp?B7w^~Q3?w?t z3YgI#2<@dy|B#CrvFGfYpNo>dE zc|V6FD{HJy9?6w}cf9_jf2$1t`c+10;|jD!{O7kzI8B&rC3U2` zAg5(lPhnF71ZL~VHOsiB7cU;!%707U3l2A*L64uTQ~7T~NF@3bZ?AHjj^Zcu95Gve z_TdF)s^}-dFFEnwLe&KAAPqlSeJmO%L7p8~ZE>175&y6=Ot%rLDQ@VC#wFJcSKe}) zvU@3hQf31LyF=g`wW3<5bLXobzgkcvpc5E>@1Jg^bU;^NJrSEBk|L`P!pD?)o{o?< zw(0F#=?t&3I)vy{d>g9o(=(wqt&r0@b~WqO#dkslN+=kgr!-DF)&bdH;J?8)sjsn^ z<83k&Lghe39zqlb<`Vk{7iH97IvN@REkVMhn;>O0ynhc=vc@d$H}W!Cbw3u-UH3Rz z4Cfe(hAK5{amNkl2v3!C2qWZjmcIpmQL$kHV%|Io4l_}Eh2de9Pm)ZLTM&KuEKQ(L|5D`~GV!^Op_V)`YOzMLq*KZMZR z5|0@HX^pd6DCK%SQ+L3CO@{@Q_;=Z4i?y1|zFWFkSy^Fykda#^SS2&jiarcY-R*Jd z)0uAAKJa}hfFoUo?x;M*Bp*LcdFwc1-aIV~VSt-CWI?tj8sJEvhg@<(F7*)ylx)kF z0i``{*=O={ny1hh3Ih<6vnNYj=FQtnMNeqNnEBW-Yx!ibuO#iWkYuI@4-_UI|g=iCI&X`e=K(xfvoY@{vLxbYkC+DoBOPru%yCys$ z!g^m0CeQocnwwch=n604ES z*7Rqo1@3ai*AMHQx=)RcfpTa%^OVT3ruKJ(59X#6Ha$By#gKWC#MRc%om0)C+9M=E zG)?DSX+beqf5dFAIKm>F6^`6H?JEI9v+sRysgcWs(+&zPEDy5~Z{;3i%0lh^e&K6W zH}qm@si|@+EJQV?@us~6EYZV>N}$hXDS73g>UTqif1?>|xj%xoV;eYJV8;O~%|U?q zuKhi!%&2b@=byWFZQtRRI(E%LbdfiS*x2Ow8wf5=;6Zx=1E&NF>yXBbiLG0TY@iY^ zW7%awMLj6=#&U(OY8C0Rad9^cJ5J8e-}mv8pTuE`EmY3}J&eCSOxLrt(Yewpo40J- znE7(MjvSFW!26P@>Me{d6%hyF;8Y7XWTj)xnXC;@7^(gr9bf`?At)Xk$4qHmQcLcb z%tnNgj@LF|fl%gV(xAKK8tqLJ(eJa&!sYM!kmPYBp9>d$5Mv8D`RC45Nqf#*2UrSt z85A6xRIaI`(}~s3s^1Ibl26T3Mn5U@%Bs8I%vfI(WR|1+@!dZPSu-osp?dq0cCs(i z$548G+R=Tx(;?ywvzjN}^M)hXp%lhtb^7#gup%+Xe!bPAcA~r%SoowB5h<5nuj}u0 z;c<0qA}h*FFYD`%G*I#vEK3_lh$8=(<~IR6(r)rAn1a53v(z>6xPf=YDwm)`F1$$fz@K(Y&e!jZA!E z(7Kqzbh)N*N=$Jbcmt7yd?#()E7|Q!zCwx`qTfXlJA1RZ!WqTGU_xi~{BhC+-)Qkj z6i5%)gtaMGd?{Vvf(19u=*kx4|F0co4&yv5BB16YdURsS&Ydud!bT^4FbhyJrJ5jw z2s|w#u{NiMOzu&*%08eLNcVx z>2U)zrig#X)Ec8G^gHrn`b)(DqzQ`I>ig7#-KT1Iw-k;%E-0YJV2d=Q{wr!^ZcnLi zO%NgX@_5{Rs-d#R#Qt!;#$nO&=jx;*SwM3J#rN-!$K*NcD0{h4)5OGt@-~N+0FhUg zSu+T~awQh4nB8OZjD>M9cs!FUqi!$NZ;b2jW$ODF0(e|r zzHHmBNHO8%GiQEhlV4bN`O~MrfQVYAZBUi- z;RJKpG19;qu>MQ}@Y7eu1!|V0ELyyNF30639NG$aA;V~5wL>j*O7JI$!k(DMuPe4v2Lmjkyq zH8y&-3;VYIj-6t~LObpgwl-AQdTbm=yUg!lU}@oJ9b^>gd-en@SP&$bAW2N2<-`0i zDTx|oYgMqou!5?vXC?mHwLhTApf}@A)iLV-E^tYo1NZ$>lwx>U?-GY-%EVl!rM$}= z!rS1e>mDf3DCR=Xe&}_ldl_lH$BW`cN813Wa6KtGZ_zTvRyNcIEACcMXJWWPlhd-I(0cUJGF(xqF&Ob`Tc??6F#bfu516=~mZ@Oa7Jp zP%8|&dea^<5Q^n8iyK0zgTuG*B8q&Po+Ogs}DY1~Y7cid~FY3wX{{U!8*FPkj9{R{8v?N7Q% zZN9C_Im1?~2)wlD-n~!E2OUfxsq|w|J1Yw!blbYwUgIqOLgM=CQHRh_!8h#LGskGq zplgV{fY1}5axcx(aDboT`XF#8IS9Jxv7^p1Ldh-cakK(gDKMT5BX3<3`XCF(lTNuH zVCX~$R1DlnZ5c~FFvZfNr;3U@lMj)@HH-`mp*ac~)~{roFFt;2Nq)V~@O`DH2 zlAK5X&Wy>gm@k`bn^e~IafyPgBz?#GhP~oRPI9uc+qQ3)XdGZ8D_g^gTPNM2Lt6+P z56`KhJLgxVK-%$Ue%HIw5i&yP`7>9Ek3?pFY(80h&O{n;zRea8OI9UY#}T2Ooio zogt~58P^W6|7BIr(d%XRr-;fPD&Z`_E8LO>#j>u6MQPj|8OAe zhR1yh^ViMK-*}q^f0Y9JFkVuVp9Om5dF|JDgJ}rwL0Y03^s~i;Qlj7|79dPA46%9m z{5gmZa)jvyuY$uzLlmIz^ZW69_=pjuZ6CqgVCxkmxwq(NjvPLmbf=zs2mg;O7kKOF zWMNeXKXhB-5jYipN7yC!L^ zMj&?fL}bi-P0!UJJQ=tuSrX>NM#!j6n4<6R7`d4K=F8U)am97FZr;TG&GpAeQL~nd zaY}CLrksW^rk()m55JeSG(A0k2Yal=f8?aW`sJi6$#Y(W9APiCYNI-)pO9TNlE8EK z(-Acwtbp!Momj>Q%EET$tQ1lf_;?f439lWzVPquAn{NF~#P|}?`|3UweHCOOH_563 zr?%iUQ3p;foo()R5!0#q1b<`5}*IXa+jY`BBC zr2R>2>(NUewNUpgeRiR{`y7W!lLn0#p^-IG)wJ@(3osbDe7k;ndSB_R?fV@kVj%3= zSG(pq2s*ZB_+OVO#mVW2?=qPyt>4#g;lg1H2KZHF{dbp%MkuREd{jNWQqB6Hlgy!% zbz8h}VP6xI7c8P&)6xKZm9~5LG|L^C_S7{F4hPPk-|1u^U(|Q$wAr&Qd0?r^y^zI0 zU8;`MrC6jGygr{hI1riX!dDZu!E?4h`Aqd0e`@AOU9}1m^(H}H^e4`(RBqY!w6s!F zF&ia5Lrs1Zc*fhNCN>zVPw3Zw*l0b-ui3Z^WIgGfY_Q5eZx!bP=PA|)YcE{?=KVW_ zlc9Y;ePrVcG1K03&1(CJmE*P$Nbl%*^PD&RJ495V$dQ3hgEJKK!U$$L6{hVLkP;aS5q5=UnZpKjY;}%gf^}QRxcE`@s-%x+oTSnhjw*B=)d|Qvi&{(SsqOK$&o( zoRyf0eIW|0^s-#0o!i||zuuHDhzoWw)SWOMjjf60kf&^9l#pv% z9>I-62h{&(TH4g4sixM&bk{8lM5bo;vhwl5b~;^C9G_$}egb-mS0)Z5SiR{Bi(CCg zu3!(n%=%s`LZcvT_B!)UZ(Z%{*FgY}zh*82Vn&)rQP5ghI^MI{d5=|6M5oA6q6)h^ zQAhXW{eJ7ECONHt?z(Chc>#Iyfs}{?%#;4zcyWY&@$3%i6UUExr41Xv(llKKt|>D4 zJv5C(vBGEHjKMN*mzVqY8*R$+_T(VDu@+REf2HDG9-fY3CJ)gnRiN4Mv5sI_WRnE3 zB&UFY0L=qScXJe=(D$FJC$)7WhIZ+)JTS1P={#l>Ot-K+$v(g5hQe9~p*DLDR@}$) zNwFZ4`KZX>-*NZs5(!m>p_?R}ctgwuLkNTq=yH7uUSDVd^?MA_#^Eg|r~(rpY#7;Uv>t6lO{`TTS?4-3}h3vQrmra?&6y5(WU z*)rZWhNta0{CE*0r-AFYk`5WarpQ5Gi{e#|9ugItOcH) zioJV}JA3vgpaf<&#FpBiguh=y%7}_VYtux!aaKDfxyK(yy@ANc!Xl+^Hc&2PxTU$d z-fT8W7~qYtXwfhFy_D{{+ae7@L|GBB$eLYuz25==Y> z4_0%3C6etTCnpF;3LUvH3}-Xwi@rrICc(NI5yU9YOY||Lshf&KdyuAku9I7PLm(lH@;UjIruH4KG7EQ!oJ2zVR}=Q*(~E9Bvnlpbp#@cDWOC4@ zUotMW1Ye_O3$#0HC%Z6%1knV4NCN-?K_|G+V##i%Gx(73CrPcP=?e=TZ!-!eSb4)Q z1N@=YBI*GDDW-^S#GqDX55yw)5BexLA{yX@+2hCImb7xzfHf2n2N~g9xxG-=eRvwBF0nL_pFZP9JIMdz`%hfKj-GQ} zTndgi)COLn)GsVYyRbSU;x|P3?K2Y@H0ABRy|;Jnv}rdUWkIMT4g3lT2Zp)3nL?no3^7@a`;; z)@hp$+#zg}rXu^QGF0h}25&#bB3wp3-s?vQxB|z9CAs#Sd?XAh7zI7;!&~ZvD5mSU zZ019TXjIG)dj9Vz^bci;yBtNyso&`B5cKxxeE#6USA-w@Kg2>y$Q>U)-0-_R^;z>S z^~2c15Kld(odK(nJLoRB#5FVky5B7;U<3gTXZ3xG0s1kE>m*L%Y&V_vsu z^X9F*0YH5^HUVt(^?euEe(Mz;45--S-4|sZK75N^O4oj>j&usz8LwxwcO+eX(#__f zC^}?sJY5xqONAsg~tlLK*dw6c{Dz)A0sZ)XPatVD9@sQJPeS-MH z;Gc3{p*UqAln{2TZL<}Wy)G^^nH4s#hgw=P!Mb;3*epg*_zGr2RMph(lFqj+ZITFLq!S|ZkW z52sW5in)&-oF1~9{*(52q%3#TOTy(Z$$JImq+a`oKZBUx;(Y*;G>6(ORIvRp7tDea zY9qf3`vg01v`+iDhST*kam6*zYuC$adpL)V+QHkqAA1Yp8FU>=dbcbXfm* zt0n3;Hp?fI^OjWQMER)6ZW((vTx3OikCeOW66U|3{+i%W+aY`!eQMmc*&Jq_dpT_D*n_1#G$^TU(sd|gVxOx@HaCe_4HWq0qEs_gJi&PV zMGPC&orfD{U#}MJb4E}>Ze=|Yc%s##4wTa~p^vUj+(WkxZ^XYQpuwNOx{lG#F!Q`Y z-)*_%>FD2)6Ll3h?>`9IFJHQIT@eDOoxG*wK!~L3#CA!uqDk&<`TH3EKq9oXHXnFs%$=g`m{B=iy^M9p!}Xd0kT z%9dh;e5@9qLLT2{C`)P3!|y3gD|M-l$t7ms)Kyf9ngtdUXV%w|gNphf-6f6e-8+x= zJtITs#=l}0zW2rug;g5#lnt{7dmPQq4uKE`X_DQptYy%==FdYo(P;;M(z(Kgato#= zGAu+t&kqwZUr3&I)_Zc5kZ!u8sby(T-@eqz#zd-AwaK}_@1Sd>dNFH3+Ivdq# zEjzhbDs7;|+?QZgv3vJ$^OTy^Dt{@bmr`SUriyP9(@@#gvOjCJ#eYgzug1HA`vaCz zL#iq(g9$@K4lMeGb0>+eG@H$-MVdhp;%MEeEQ$9G?9{T=d} zw|McuvsK#B`)f}o-(}(&U*jD5Cxx`6=xq`)u z3ok~pM{Y1HCcT1CkOsYw`R+m48kt;lxs;ksT6qqp5rI_tG5KUmeg?I@gUe0%!Oe@w zH$?I*4B*FQVwcg#wiVJ_=zL+gZ8fQ|`J^G=5zGY&yCnZi_}*vFo>AzgeLp8*7PD}w zs-%6{k3F3hBow)2tl8(=gFcDMAwg}JwJ5*?SPKnQp-}x#bBC<&2Ki87e@1m?@Y6MU+*Fcx)4w;zO3f+ z=kn__7P&u;{S6oxNR5Cb};7B;0K+l6?&@!d>B0s;HJx`vGWwP|ilio$bbQk>X z+uft|h3)dY{|Q<6ARX#^IF;bZGh63L^La z9ds$jR$=djI#QUM-@Tk{SW^&1j^FLp#UQ<4|A6@JD#k9Nv&jxV%#=P~9#?EXZU5jY zzZDB2|2uI0{Q0DQVUxSdwX}T2BH-1ltsV132Iqf!98B#FNH1ghhcrBt zr+lid@Q$CKU*JvY0*j7^GJl|p_(qIS4b3|>)6Gru?D;D8k}cYDoZ5mr0x#0}=l5LN zPedwgN{YEISJJaWM%&D-V@X8Ku|5j2Jb3mI6xMwqaA|(tY|#W!@&+pqfD&eWlvGr( zkXpWC#U7GBy?{9D`uGE(Iexc(aij-ET2BkMmt}BmM_Kuc)~>9P#en2PnFKMF%@Gvf z-+#;?4|COsvd^olH{MzR2Qn+$eTlEHWyJ{VU6*kfMl9R+J$jFe$a24b-+BB`S&h6uREF?W&mWG%W}5i{;z0yTx%~Wm zjI;VjFfFr3I=+zb(fwj?$6M6-U0od)qx4S5S4K#%lY{eO>F(aqdZo8- zC(qWTnYa@CZqk}|R3r!n0N_PwV^jE&(1kwdEi@T1{!I%Dh|yy70Z)}>zgEavoKYX% z9NK|?)AQeJ7)qudjtbm{{*)nRxXvAaO5F*R*ROlpwRc6s2OB^WhdwTv!@knY&ixL; z*w_qDyB;@fWTWg@{hS;2bI`&=e}lRFA7cbH3VCPaSP zTBVPB1B(*k4_8y_vZz2!8@=p`S+i8e%x&OTz@2<8%8?Yiq}-A>r3tN1j{5OqRnSVo zvX`L`AfB|njHAqVb4w_!z4WecWG_xackGgcg`)|@wSjzm>e4+c-^wwysh+6Ck=`)+ zz~;?&$l;AWHg4E}+UD*a>+K`DR>u0|#EkheA$zdwTlj z(N2O2!Ad^Lt_sypS)B)eJCuUuyw}Q3SH9XQAg^2=r?r)q0}$PD<4d@3WPe?UK+Hd; zHmYh4R=v!ja>gZO3dr)>wYE<>#B@EWia9vM`M#YKbQNsZcDT%#F*J8zyNmG;S_dL` z)~CD#=26Sag!1k@B2ry|EZ%Y4@J0MFd={Wj| zY!chL>rnwaD8gEMji(A-wAYN7L()KI5!J9)Uy!ghHvR)iF#UcQUc%VYBBBHdWR91& zCY1DY3$!IS-_o`Ys^@7Udw5b=nLd2wzo$=siIR}PXX@VK`|TUnKbhV@pvHMS+jj|Kn0cc3^ zq>|Gv$YtJh>f`!0?l`Q_yIR^w=bJo`CL6r@%s-nhvwhfsxZBKZTlLhxrfP-8+4Wo-Fpq^7#-t=AEyq(lXl^`da((Z6$lUCSE$YH1Mjz6Hz_kU**yos$S zshE_cHMb7C3=7St1lhnRB6Er%^%ql6mo8tvzd@{rHq67?a4R*j<~1U`-T4{&M;IB9 zJKh(cQYQnY2=|fQ>rbW9!40kBAB0-5kwakUbDB8>iB-+IfHdSQpA_xMJ}knnALIy2@62bn`|q1=86?y&1()3*Arr;S^r0=LtdR*wFx9BQz$2TF#& zKRtFy@F-(HGmtVJ#biNX`X^#>^AdfU%d6~PIHU9uDO7*wR0VDANqOhuZ!KVcoRK+T zpsVY|CP$8TV4H0a7$dGWW~zkjbH3%;ad!q&sW3=GZ~w-_@i|Y7n3pnVVC{dvDRWWO zB$f?zx}s4xK0yAJwDsrgLV5!X@RWF>AmRWg*oYoTMOEgI&{eKPUvA+xjtzOJv6zy9 z3TNYU{p_ixV6lm{g5Z^NPTYF`fNV#O`dngjae~~T1F5)hJHcU}vGX^m4YBG?R z#244Wb~6HKg2hk9uc}9n&LfxLNL41#sKv*|^7nyMq)fk8;n>zOZAKR(|0*+T@aD#K z>*}YX8xR;0AH*BqdUxJov;CHvKFqoy*wh{wJ?aZ540v@1QNq?1NS?Y0SbfT)@lvzQLf)VQrHSJXi(9D(*Qpx&?&9LrcO;lY>3vs z)TjQt$C@n*f}|7+2i%0HhVPG_)}6|g6x!d|`);5xe`7(8t$ADEiYnP^1WNVpccvX9H3m=k7m?gn&z4Do zxf-8WF#jq!->N7lJ;dDBJa^E7c*!8q|TbrXYJ+$+^aLHK~>5!>{M~jv(+ApX)0}IX4Ml3e*ag)#e$HC#ohK}5h zB?;@bLJ6RN)ewWz9@Jq}&Vm-GUC;;Q@!aO__H2T5q5qvdyZ7D3`n-_14}-aIUR9Ro zky){p{jSPL!|<&JX_d4zS%J3jtGC~G}pgurt<{d`RHam|St5#ogr0qt<=UE;!AV#l>Vi)xHY%4fqv z@A-H=p}8~BaRX<+`V$v^`;na%Z^6Hrt7x_S(%?b69(|$3%%f zT(n4CKTr?q9?JBGjRy^tZ{u0fzyG+26BnyS)ENa@xj}$TnNmT$X&6JpOhIFuafHg& z1jod$N<8#y`i)bBZ6W+i%G=iVc44&s#Z|!8b{Z!b9Je2mqOC-Qnvl}5HvBHopRyTq zfD1sr9TV3#p3cdM^moOijk3@GKuA}>U!t|X(a$MZ%)p-EWc=&6y|Z%}T)Do!qnlf} zYJ`NYH}ow}wb{b>PG1Fco^r|c4l! zj>Fz*r^`NXZL{eJSMyDDy=UxRp8sj&yEnP>FHU?L@$&P}53#s<-p@uEh>s2Yc_2`V zRw3XQ4lI}AaK3Vz2GfMX7R;Z8j*I>L;7qaq@?b&8xC6-_NIMn)>Gp4q}=UH>6Nl{P}g@)O%x(Hh1y2n8R+2b}}> z3}7{5X;i?%m^VWq{rl5cSs4%O_JxhvIVg!TO%)|1?RmjOVSFy1_|GrJYy`0zqgPkk z9e@XFZ%Cn#JT)?sp`G6y9TkfsfE`DMHru7HP2_b^=d##kHWtjN;wi95XO3OwUOyAj zzKRtSpWIE5WS(%loUAWFJ+Vb+leEO9A&e!P*R@wZ}R8m^t z@Pkc=QM!Pp|6aY!6@f$`3timRd=z$l zdnwIQld_M$|LUfy!Gy8rJ-zh|4F%^7WMlJ|9XozpKVi;;ACrg*6c@Me-D8BR^>_P4 zULB@L2>&ZhXH1!bSelxTpLXzKPABy_lL?UM-y81hXZcD{1r2oW89E#h%#JNxBFn3* zs+wNru?b`UhwK4TQn65)!8u)W^Yhn%_lB5u!%G|q*pVV}8-wP#4P7L~^LF}y^F^3w z+2e+p#czLgIanZ(z_D63LoQNd^L4D(c3Ax$x4|KkQ?~!|B{e+}?k^f5y79(Y5sog`wc&7UhG`;&Oz89RCEtFj*irqu>?Yz(C za^6qWpp(XDLj=DK22S__$))uG0YV_gUWc~{uD|ftd2jQyyc1$IxfCwXb5~bBetaQf z^Ho+{(}oc8fspQAk3#UxZCCxIudg6WLk88UsVU#QsUW*RU)G#pPuB~p2Wthp&y=Sv zaKoYde(+6nbu9-!ui$^+<__fd0Co9=a%JZP47I*}{rcLIt;_coF+k6V-1qmr`1RSd z!Mbb;2kf)~5();l{Pc;>&Dj}ZQX@B9*q)i>bp&==}UHK@$O3UYM_G5m1GCm;sYZgY^nB%$#e+8=ygW!uzD&2a4l7 z9b_MxUxh9c5tI6EhC{?&j@F98hJTI0VAxTAW+JOT=quC}GJ-H}URwe0RTH z^@2i0LPi^!A}@?{HtT%=X+(7$8ru9UyGPCToh`3WDnr}8(*9x z8X@T~z77}H9V|r2QZ1i_m@aUTkw~Ot4Yv$zJly2VRKp!euqmA3xA&FTUY+Ih9{Dcg z+6VGps23QTnKcU&S^I1})yFSW915BP*%Um=w7HWtdU3JYx9{G4^Q?;BIXn9$31DU~zUsRG83<}eCBePp zQ{L|Y{Ah?)d8*pcP_eo+;C&Yz#>yZc7X#J-);AC#ObI65%I&itpGnmH+d zz5mY9qE<0y;ne7vo1a;{@KPcnG-pQn>jB0`zA$DUSTb7hg^O<#8$}&yT z>YO>d>(XT7iA-h@{i9z_nV_(Qb*@)uDKgH$P{wl&T)Z#u-!JN`Yh#n!``X&W(~cq6 z;9m-(RMK*)W*(8dcFm?0%>L$pK8HhA)!6B?a3RA^pJ~rd@0czYdC`MSqY6rL8Y5OB z_h-m_!({Upo>$adIQjJ@Nv#I@;TB7uZJA`4;II7o+odzY;AVmIkpI1BS))j+I;801!vCqzn#2 zzY_8B7cUL$MzBo}s+Y|^>y_Z#56_*7@@Xqq@>fC!?3pgU|Hyxz)aAm{uesx&5f>}E zX_1DmC+pvVe!;i7C~(WX88d`Yf*Z4U&5h&*1FU>+nYce7Ctw?q;`?j|ChpF9O zT2EBvsv#+bVO#oSn=pu9nM#iuI85dmPH1=leSsPnoV$_`jnQMr*#!ew)0LNSgJbQf zKe8s+4Dpz37e05^V4DmL{{B@s;=FhPb@u|%-@dlyE?r}jnK4mUUqf-kV8^NpnO81f z24m(SU7RfRP1O1*Ei4eg$iM04qO7XAA#a*;k`vq1_UBBpul8l^U}zCLuj8FVod9Jo zKHlmg{eEVIAyCQvi?>Ov8o%8%CQ}S$%HZP(u ze8xUh?i^OL%w@bYT`Jmp?%WF4^-RZjSn#>?=TFXens4=S#@cBUCcLNXAcotNOtX{I z8vc-vo_C=WMt}L8aSaTh;EbMW`1t!ly+`UFXi7oNm$m-H!EDxH@1xFjbt7z>47J3GqMa6bpvF(mvv-xb*O*A|e?fLqf+z(pxt8@DZ5`+hzR&J7H{~>zvenb>06@3or-kX%x!Y zi>=qN=n`qovWriD<#~)!XHt=oI?$%e+vZ!c2I%v-Y_IA8ZS{GCE3zra%3j6SZn_T z_vG~^C81c0>v8P{zI>x6O=1m8*I332ia)Gqok4d&Zlh3pQB_5$i8Hyd5cm2t7g7)A zRp2|H*RWK)kr+;3Hy-5%lRjDx9Pdoh{sPtED-0`NiXj2hvfy`jVoZr{ZWQ)XJ55mA9GhL!8(l-=I> zdUm#+?6k1Y?h~_Z6!o8@kmHjxa>5;7gL9M+Wc`M61_3)yx?Luwr9A2K`Xk5(Nc^}i z6ts98yqU2qpPJDaU#hED;dlwCa*L}U_zhjRt`kw9r`i|?2fbm#9=9?uA`*EH`CrEW+$M|>_!~EHn(PtS>GDM6d9`6 zMCUq#0XZxF;Ba9oUn zZrOrL`W~|3spdn~mw?#5_&EQc$&(o%3fZbH8)*l3j9*^E`LiLC_GBy2Dq7*PWZ)b@~^DnTsihRVF0XH`&3NO&e2)j3>%|_yp`a*!Q>j4LF(DDMc zGI!;ciB43}xyjrlE8l^=W#cJcR?ZI0Jaot#HFQIKt}teYRm*^#Pru_rw--Z)H0L5< zwpowSMNSpxOs8t^z{*(&wdiBziQcO^{gJv0RW- zbi|}~EBB7*H@BxlcRPFG5!Cj>ZKz1@x*D?(4Pq^CLWU<=-cy`Kf?<%1K`GDBi!|hf z$(z=F|6ocP5x4oB7UE~RRkPfg^XF%7ww|Pm9OooZKfSY94J`ww4kh zaoBXA;@-wC&4Oy`T+?xg@Y$PpQgh{~#Jo|kjk2rpNSiAP6b)<^j+Tr1JCBWGveArG z60_Lbwla@B*?};RJdKXCuY+Csl^G5OcW|EXz^`~N3yNB}_vBCI12T3~B&DTUEpdK& z@pcX%695=DOgdj$vxB~C$jNMLv<9boQ_H6Qm`-qxbx60%DUig5ZjG?#QFEi%3f?}T zP588FLiYo!gcbsAL=zR6uaA$qs%rD_tJ)>y<$`0GAlf`Rr)0yoR83wVAFY&X?gQ_g?fEG7;>>-o(A!x^+0p5l}#Z_Gro9ne~7d zzba%RUD%8n$`Ok0a1D*SXM!4zXc^MRZ<xS1e{j7+&ql{AFE zs*vC`V~N`OZ_yvFmN2_Yq4M3t8|H$x>B=+dd~894bopeTFM z1lt49%~{@Me`FU%En1ve=)vEF^8D&cbs{uVhhHXlX}--z_r1IOJ5A!GCn(c}N@?m; zMb!7l$_1|*Kq)94L`qyx!z8(j$q(>0ot$bWmUmn0_O6g&tTLw)*kQhs2LY;9r6Zdo z_yoPnSjWd7KFOcp8AM65VS_BtzxLaH3PcBBB}h~Zo=1TU?%3BGC=56WAqW+5Jj+R; zT|uvLj(Xjs;VmV~s7r)c*6{S_}}AN%)T ztc)LFPWYjkwP6SG;QrDf3Wp5_^8|OOc7HXR848A02y3JDns!RdDOg=gKV^xQ{q?(1 zmNWs(SmT@9GC7nX;td-Z8SNwMkU1qsXPT5IHebq^S!!wVQvb@18!&> zEXk#Z&t+vv-?1#>4*>`ZEQyz5_V~a72WRIKgc#M%4%k+zO|ZD>vt}_kNe}*+{y*$T z0M*KxNJaoooS-%|xwp^{RE?U9a=-HXW4bBQ)w3az#`Iy2xRZ>u067e(hIO?-tlVgj-Y}-DH^tP1%CuhcpfR%-`^-&*FdQhOo4Ic z#>VNM(cdHmDHpPWztuXh@0(TX(MK;`5`5SBYZ})~1pTL9t-Bper%X=(hoNe_i24}2 z!P;2|o(mreiZRQRW<(?EPMD$X_3d54`RZ`~*Vg`iIxiCG1)9#lJL6osypq(m@Bzx- zjG6>@c}_Ta>G{ORs`lfAoA>MAH^_*adYr=mGwW;!HsHwO*gChlu}RCGOuGweQE(fM zDBOVGDkgu->va<{FIB|s6D~=6_x|Q^KpW%iYD9rH`|isxPhLC?y9&pDz*%n1Ng5JH zhRpZm>B|a->f^^3OrPk=?wo*g#)TtCd_#mkjMDnbzWueq0uQ6kM1x1Wv^-hs{yHbh zk$LmyZ=GvvH>E(xNZ2mBSWG~SGR07N)r9IiBy9Pee;l{EGUN}Z5Y|#fH^&0`>Bk;2 z>!z0^2+^@t4L4v35kEei*12E7ytyOc80FKcSM0Z^Y=S+>owVsRmV7ND^)09%ZeDEr zHi7T@OHQ!EAzgxl12+aAS@LZjnzoz8#Rq#ky|Z+=(8(#xS*L632T{|%{9?HFVO_iqFW8#9g zE^h{cXgGVd{%E@w1YRUgxtDCqWS&09x@*enIqjL(*jG;A zNj!1*=K#tHV%Enim6=d76zRl?%^Nnk z32*(O(Cn5S`m8I@Dp2z;>S?$23uY<7%ElwBs1UJOWkM#KOP!Tvff|JNE-p^mBL34z z4$hQ&M%2$Qa#!~(56_|N8`ncN1gUb9htIot=?WWrYtaB-NUrl@?x10F^TqM@Yuo4FhdW{-8*cr@-ZQL3O6Or#N|b}= ztl02-Nr&c7ZU^dzT|0N;T2EwUw0q^qlUvdmzc=o`R)Dk_UbJAJRR z@*AA9p%_7Eo&=RV8(uKsfe{4uqs6$2y~@p-qj$W6A#Me>*7d@?uAXjy(~uCUp<(oWC6EVH2&(P2vkOudw$Nkw6&qK|&PTPyfXF>>f7%Kb!VmL+V^Wa}FVP z*5~ems)y`pdV{FUFgWzrx%|2@bQf7mPLbw;*NTGfX^uNQjTah$+%<8o1lduTCB?ah z#NIKT4^5}0xh8=&EX{drwpa1?E_{?31HMza^9G2;K(LqqJiLFuQ5{pBsED7T2uCU` zpLM%JwTKJ+r1t6bhCdP0_7jwn_gVxxnEMaXRXZnfq}{>$jJvA+x%B`*7Ch}j<*`kZ zNCMK`)z@F!8bQH`9_YlI>Xnx;EngAxAbzwSj%K^l(w2K0XN3-n8m9n*imn3tmSP^URqCSWI8-QB4Om*unxs8l%Fi1Ztu# zwHZhP)jNJ=<`x!&ImTlL|JpC)X3J&w@DE}#Woq%s+!bKLR#uRTKY2v0y~A|CtRY3g zh9)FHFy_z9T!wzZ0v$g<;lcRQJ9qG0V}XWoxgc!EFJHkjWiCmQpw1H%hPa+SokL*? zV1z6P`(d5}8=aLGst^Fwm6XgG3jI_4%x(Jg7~3$uE~0o!frg%~JWcbFu^jiglOmRl z9y|8H!$x+KaiK@Qnx(4=u!4qPutt-#U*G;tKCo+k$0NZ-LG~i>T+6;d&KI&`!*PL> zA#?#XKh~kJ^cimW=lFO-!2x;YkC%e34fhi|&d{v&y0RNb&$$%HIzY1t2}}ttZ42B8 zGsKVzmY30ev3r@*;HyY1g0OqPCW3U%m3%St>vn|Y;ce#mCR-K+{OJ#wp&fa63C&6v`Se`89TAI*|GwGQ3^$Elm91_+z(}Yq(%Y zfJYSN}qE`galv<(5y@cf~j1IP_ zatgA9H73r*RH`*4Oaagd#K+w`au>t;HL$4h2RiF9(+%} z(R*H3xtJ2Eou6SU&gOX5YU^gs7$#m_l=- zzvY6P8%`bmI-EVIU4O^~%_P`U*{&%AK)_H>y_=EIF@7V(T3+Q!rH$vP%0L&dy%_aM zAFhJc28Bwc{dYcE9c!m6xK+M;_qpnHA=VkN^wiaWRqMXJ?cOnu>Q-0frKM1!qH-AuCYJ`2lZ-uTqCjbozCi_n|4&O3%1jnBP z9XNTq)r)Hp&u-j!%{%6D9honvJpu!BVq@85+-F&E-OiWSB!tUZAX7QHT=wnBoE4+> zmJ?V7T6mBhs{Y14tDo=JF+W1hMQ7~%q|0SaF7$3UVMLwf27Ks^e=BP6>73b1d&}~# z>38`jt;@$jK0s-$I^H$H4jh2b#htV9r&;^*5+l)15w@N$4;&6({496%kd${P=3YEi zw{B&BJ^=&C##vRdm{nFrcXs5&H&9%2?LPZ2Y=GuOB+q9VwD8eHj-;{cnf0Fjaa6g8 zDgMH>V>)`)nYjEdIh)PEnX?8Xp&Pk|k$c~ed9NWqfXb>kXWApTg;gB)J%7;hX-zM> zR8VA2#e0G^$fC*_0f*zGU{(N5Bg}QT9(#h57r8i4VRlW)9o%?|hjb)<+ z@oXwYN?gz@AOK;~e*1O-WJ&13v)Tf=O-y#eMRdxGAe^e4oIW$DyRxjkYLb&{4Pdy=oatZ zbCi|50V|0$BsJw9yLwFe2S?*UJ+1;*2?AKBGC)Qo;?{?Vhc$cZ53tdr4|3)fbFFn<05N)=q9IQ zD-c-hlJ8+Tw#jJ6wSCTCW=h!DuRq;=!2FdHZ^@hxOol{OQ)ka+*XamEI&N;y`Km`} z{EMKB#6#&G`}xw!*#LIqot#|GFZzEpoe4aa?YhNZLy;s@nuJg^Q!1H4N=ay>IW(7| z6rn<*S)x!1DSb_b2Fg&1(jY@BibPVVM1&@t|5N+)+rP8-+53z4eV+TihPBqUuDK

5u%2)xa*@^UPi9@_7I!*iuzjYyCf!{NVI=kC>;YDPU|&k|o# zGqc#vdmMH@7CREX<1=4HPQu=FG`pWjI-C?b>?USU4R_vV?0MUDQb=txBw8 z@y4bt(nF657JuAkwpU%ad2>EBC;tB6V6{grDecft;M3u4P|nVy_LMrc0@#aQXd`;} zo~_-JR++2qap9)vxtN$`PEJRnql3R{cdR+OPfI|h`D0Jd!JiCPB^NFfc85NB@|gqh z*&a&Xow5m>3MYXUnK))SFafJAQqM?B^Kx+L<7c|e*tzOxNJugjFP-bPrM#fc9v

}p{V01#fX5XhL}1y0Lnd(u6wiw$pX2Pbb_x)FBhLw)@#x7I^KgU>pFQ;cMD9u4o& z^nEVB8CrEw9-4)Quz6CP*{?e?Lbt@9^$<$8mE2$c*rQbx!57$;i_ZTh9M6A@TY%( zc%*ejlH(+g$8{t~Ccs_`SNkLPLwEFO1IiE*XzkMJ>LE~+DI4D$n$>IWjXMGsEc{V| zkASovfR}`GnGWR_o?|=z{I+K`NzhF(Ni(Y6LJ6=(MoS(fO`d9q;FsZD{$NcA0^xQw z6-a=k$*VT?T8sNcPnk}G1gkmXdN>9U?yr&i;7-C<5oVJ^rV?%lRONYLZ|*1w8#Y8D zF^t_AQ@FP&b#2yQNL^eIx32wxdQZ7mubPI2`~_m0v&^VGtewFr_cyKKuV*HGnqUdh z6(a>u5_V(@p^~nE>Gb*<0GGi)>-_QmFC|4t`TW-i;$rA0av)5eLHRWZ8pafy4y-6P#^*W^Y2txkMZQQE*5^W!LK;ky~zVQe0VTV0{`kefa7 z9Y)gNe+-l)QO7V>u#~N1dQ;v?5$*Y=0x$p$jH^^^TwJkXnMO5ZK*rm?N*aTk?EL*> zuIYy$+8GQs$%5Q&8Z+z#s*wv~YI^r$h8MQnDK~EP85G00(*O<~p}GP8am4M?UAiC| zY#Bzt2LbpA7>&pztE~K0w*dw%)LgZ?nJFU|2WRD~@!)*0e9A#BR8a7R+K*gB$$87I zIuOAz6UN7kJ$(i6gkhC(;mmF|q4|`PmUg(k!#GhQ3t~EY$1Nx%1md+eC~A zREIB2tlRRq)AV)g*gN`#8VJ4JZT8CB+glC}Wi}9pY3^G?gUsIMbG!yrn!N{Qu|YXz zX*bNF@PFG_niN~Tv@5JF7Z9C{^&8zPj21f?XXWKtFI?C^db#9r(ax)6IC(2Bc=VW6 zHs?%|-4Qjp;jWpzue^t<>Q1spLj#PNE-8^jG3l?gg?|0ctQ%dErlHxPdF|FC=av%^ zJ(z(8uai^axMaf4m-cfxqgSk`p_glTC3Yh%ZRGqbk{`nKKhm~vPgZ$;q(Az*+2y+a zxtzni&bT;d4-cBD?#lYUt4#d6{ypLCk2ya;sxM!^CUNQ-yURFiWkqRShRc`#*8+@_ z5XlMmRxhw>m`>JwklF_iq>ZO=$!E{*5$&U2Lpz7?KwFI75p>^aa~Q1#{~gfH$J$y! zIRuZ1X$xh}dXr-V314J*o8x-ttF6-6uLn^;nD6vsxg8To{HK}X&>{lPV{c%M8&dv> z@rfV5@gZ}e-YIncgh?ty2?bo1rFKs%48XmteSChA{+b@1vp;|N^7ijv2YFeeQ#xwZ z3!7i9K|6}e%YCRX30njYB;Hi>xYgjtIpBjHw7F^NuaU*$~^pfZn9p=w}5Etr|~=hROeO7=9~O`&*R6Wm5`Cy_Fi)0x3^aSyuP4tCtlV(DXiD6SN)Y&YCrvNRZ%N za(+%d^cvn_`&W%-Y=3h1!lzG1>*?iaMJ{2V=R2Mv72YSWb!eG6c=y_!@7Yr@Mchwn z4sS%f(I>y64vd50EQcMQ8+Wak7zQ~n7bz)za+Sd8ybUzEVgN9tVAc}I49 z@7_np_qR#r^3mIP;RJI|5NWv~Rsu;`r(+|=4d0lJ!eZru-C)!q z*Mr*3>1?c>1FDlmtECnSYdjhiwru&vBRF0128~c@ZZ#1L{T1cYa>5b=kgr< zp9DX4s)`qZwQ~by`@$au@2D3$+iECpkt8tfzPB&2s;OqApQ&kgQ(-44YFoM?;8Hev zp1yW1tj4m-AQJ9hF4g0~;eizu6`zc5Q?a37lkINB40Ha=myr`os){a#73p5qxHq3% z3PcX!wJ!0Og{C5na`oG{LP@b|ux}?oFu}<|5J34!aBdmrfi-?!Ji7+Ml!B8gB1I~%*Wx|PQ*?Og? z%`ERrnVLgYjGFnpD=9h>W7ZASq7`uO;i_Vw=%MT$;f zpGv5vMzw=|klNJGncgEbrc@s3?XM=R+8|BQ18~UITKo6zi3E#}Dy?NAX#xX?4rcLV zdDvuj7%wX~Hj86vRXLw6w=n@{S6m`W&)3)t4#ixo3E(Or6=aWEFmF@HP4Xw>xUu#( z!w(-uOxiiC*?4Vrc9!8{j2PJ= z_PL~c>SwcGdl0yfzlm>H^|lx1Ed^>vDx1RAROg@RAHx7P_VylGzGBqO6jIb3@3$=R zZDvIxE9t;o3}#&5c(ZW9;Y4Qf>TAf_F=5;C!*xnr5!-0*WbR%%^r+R~P!=7uf4{y_ z3y=~xh?->c)~)d+GTgQuC~2wWb6*;E{UVQ04>@n4Gc~DKlx~}2e}_}ZWnR37_4~`MjCaDkYvuCgboRHM59(oj zL4yRQa^j?76V`-zB%q(xS3fMsL{%Pyrz6Zy~cz4a$icT9lFM~t?8ngxDmus+ljTqB=b z;=!lE^l+2}x&i+n90C3pP{!em>er;V9-IGNyCl30goVv1iFQ8)OnxFcS@%a`$Ev`< z!Dr7(Hy}e%jauOMha!&EYX=pV{bPmW3t*_A<;=R^HcH1)Qdn5)w(m~~)ev~!|J0FA zIaGpO#;NX6o4Rsk{MD;;VJtVr?dOL|hst+yD4zozT6)*RAt6k#U>vMe-mCo(wv*42 zK1t6*2QAu2ZUXd>omdP+UrY}OSbsySQ==N*tj^9?p_uVkqy666uL_S&Ib%VCrR-BD z__;6&4UpK{?VzBGadZ?a)EgQ16{wb&3aENE* zYsgjUk8O|JBaQ?U?vBpf)hOG}Hp+@S{xb-V>4 zK}yt^&X@^~6`ASjLj87o=fqRrMSiS0IA!b|s4|I^M`W0>Tcmd?b0>R9Si>*!r-4|uuB?}J7SJ!*hblt4>Lj;a2p zpfQDRbok=5u&ddQ=jYgCuKChTtWrg2^Vnm z(#@Z6M3ha3WOL*hipIC%>sO?y8%On+JUEo)N%)~_hIu&F667~jWb9RxXJ27UcRPFg z@HOE#;FG@TjrXDb6{OPh=Wj_v6RE7AP=y)M{xiPIfaSM%cogL2<@5<&F|q5hT~F2@ zi+U$m4)D=GvVMv|Gaz_A0X-IHj2tY$vAiDijuT9@k11;Xdih6O6nLXl>K23k%x}?M zgGq2Ne|r4gwVbU1Lmozjkk9zR}> z>rsb;Eb}~XsgYzi@~a@N#uyt9I9p}sQD|GHF8%b`Gk5kyz<#zQVZss9Gcr6ZZ237$ zwbV7MSM!*GPbSi@Q@rv_F~H)Syr28sKusIH0KaFSZiJ~Cmt40SyK99J9V=hzQO1Su zn>CpY4yA=N_-z9^us1ju+c{@*bMf%|tSfiyhrRcsvqfT+`uUf#sCG9~3RCN?xqT!u zl3$GG+e^a=Vrh4Y*BX+Vr1k8Q{pKZ&e= ze^&K&^r^LPyeT6<4oY)tNFw8?u^TELeE9HT%;#qht|atdm3G%*Zx7LqEI(m5>^7~C zyL$`7W1T&36Jsua0T#)Hxs%HL(UsNS&saM~Ti4QuHa$K*(ALD%6zD5P3bo?l-CNe| zpoxFd^6Voy)WLJ~u}67*E{>;`p2%{P>SKMe=W}skjn+waA}1g2pAY5+FV7e+!xx__ zD=9To&}T2v>eN2x@3>pnR{K0jaj|Nnd4zxJx!Ru#CB(%M-Uhg>-oQxf29Qy!EF>Zk z8*Vs1IWsMkI?Z2knTw0DxPhhU&Ygy!qn|#l|M7SSz)|a4Jvs}hr~dwG{5qtZF9Fc~ z)u5!5;>Ck$FIb;I*WVH$0CdZn$H+UuWloAzW^)DK=8%Sju5tB2wW;UQW+(@oZSA#g z#w(-?k@uIqY@0qFNS0w}p6XJ3p^)F8JvK4f0TVb}Gw>?^%ZbQHhTZC@wP;V6U}jL2 zv$upzD$%JM&K6o_FK%u-VkxJdv*4m6Scd972rP>n&I z-)q;~FsW{VEe^0-(NS)YouM8=Nt9kz5<{zp>BWWvT}9zZhJNP?Dv&86T%*OAaoh9v zk1djBtOlpGU~EfhkbdOGGy5?vNJ7+N4x(2(J+9o)MmC_cpDC)Hmakvye`GG-xH0oSOQ9rC^S0vhFVkO%Yf_DKHdf1XPS?lR98CK|5OHGJhrBxPkY= zH=e=bjo_&|pWU-q96Vz5Xym0KbYbjYPQacJ43tDxohEi|MTZ)@OL063J1rX zJ9sS+V_tbeF}r@^ogtjbnyIqusDRl3%XW{VCVN59g*ym@^!KD!sv_;u5l)t)oD z-#W!a7k1kUl93D+d6xp73%d&+Jt|d}6BTxew7!J_2Kug}R;*!w*c||SoEZ8xiO9^J zx1B=b(Nf{T(DB@xI84nIYFOAz$L@+FN4|3XxKs!rC=6(y-L}SXAK9Orl%7rn!HU3o zuS^C@yMhL3J*Bu%^$%W5(i(5xzzoKMtwo(Ocj>hcA9B`HE9A^S$}6391_) za8uULKi4k+ECux}%?Kp0+0wh06BBnLt8jLXqg0EH9f(usrd#Hnei{y7A1{L^r#hN| zYgo7zn@cC^^QU7mjJKujdtnJeyso$GBwnO$N?nR?{W;Zdb){1N9n%L)-_~Cwn!?8+0U6Rd=59U*fPtcvFZpY!^aV=* zE)3prZESyo<=4_@#l=9(!j7@-JtV|eVc7=cT~jaYW*3kxpy=W)ws@Ltva;HT9xr!H zGR=%2H*l>o_g2*q_tPO+66ss7C7j~wFzDd5Yc=ehit$zBvoyX)P6K<-uHb1vOsWxjsaS4A^)$z^NMKXvK++6; z#^A-d^Or7Jw7=gdFACU&eh%0$ZQenqSfS}==MFt`_YN2>NDbpA`|-V??qb$~)alqN z*ItY)hqs6&UfIqjVW`<5`R(mL9Uq^S*0FsLqJr2`SGqfbq6vC}5uED&!-m5UFf(l@ zjy8iPr6_Jy%Ivvw@fPl2Z!A?x*(j{Ng@vggqwrprjOW?uyuO$h#0)--yPY`rLEmu$ zNYp%eE8N*UccdfSf&M_hwIZ#)YpqT~1Fg&G@}s+IzJvbO>XI)Vj{jHXTlZxh6vio) zY_S**Cl7JkohMt-Jhcu(0xRwBeqn;`8~5B0Ib#t{?hOo1{Y8K&a6Q(4)VAhs5qOPQ zFef$lj{fqOB#Tvhqk2$`;G}*lLwbY@&Djed}ndL z%G%mJD$Z=h)G{258NvjH7Q=igHL?P?HpI?4FCY=vw~ZS|UyJ$JZvx})j^4>hJgSLQ zV}I@K=`-1aLf^w8CV9!a_TG=^NHo;d`Q~A#P+7+wz z{KI5N4?j(S@nqb0csDgSje!G&&Anhm1c#@83}B0|rl#8B^NslB%bM;EFA58F(AANb zw`5NKGx@;TKiZYUKG|T~vjW)rW#ZC_l4iA16zgXIs>neKk|-~xPn#ASee@N}u<1L? zx=4sPM2H4JZbkOc@-i#-Em^oQ9l@DVbJcjB#;Sh1Rw!IIWD*-aWy_l)-x++J*C%Jh zRAihu#Bpl@`4kr$Yr9R%PZ5hD-Nt^drF$Z{qW4h6#!vp z{-)>3B2#-B9P5eBU98rvNTbB%2(rTuw2U%!$vFxAY9zb0V(!cum|GOYxwdpl$^p3|2U(pu$s_!r1R@aIF z!I0#VCQtWueXnIXdGZR{g~f@~I3C6eJBgOPp|39t&L`}m)>KaQDQ)6;@_R6$%1le^ zCyeLot<38K#)P1J$+^y@=4WT22Mkcbyr+@QR(XL`lNM}Nye_Sl{_?w52$I4YGhPfb zHx^J3p3tDGf&(TtzugB0!+te1H5v?|I!nnzKoT83E=s?@v4l!pXYE;V(FR%*Bc8&=HLEG(rvr;KcQGcQwYuf=iJ&oeUb+Go1m$}b{S0uvnJq+nLT z{6Hm`8(-;Lket3-C62Zon~?9o|6`Oz=4>NaQ7cA;D_-=xju?j88sg;dR2M&i5`C+i zo5Bn8ADNagE5#BO5B|7Vyeeb;j6$YfKR;7EbH;7>-oiGUr|{*}WZ~r91q*(VHz;lK zf~T>7hy7|`m;hJ;sxh%vo~+{ef;LWU8_SIeFXdPN1mm^&kDyC9O=7PF$E|m1 z{2z5C3*}PtH@sN<1)zr-WHi|rMxET*?C=urM+%}1m@FnT+Rg7UxW4z)=oMDzqfGT? z8+$Y;d-)|uNXh9N8eT0<>DLH%I@iid#>$uX36Zkldt)rv&x>cz(2=@-&KS%6XH2O{ zb67lLJbWh)TuJKjmzXwjueCF}D*jqmPfr$=kBVx)e)TmqC=-h64E9>Qy0T(FX7s^R z{`~lMF*UUf=4si|UZQqPTtGA}1Y8X@)*=o(ZKK;`nWSB>yZ9hvB=Uox9a{!OAap#} z81g_rj|iBFwt1k?vuB55Xvdk0QQmGTk4j*GaSRm(0~SmGw!f3m-#}Rf?o6flair+b zyn)hJSRKg!1KUVfCb-=)1`XEURcUw9eeH#+l5A`zPDMpAwoH6f4CNcZJ_#1; zc@g_fVO`m*1;vMv1YN}SAe1UCU*1I5sT;ipBss}EC%;$3RX*<-VufU+t0&}aFEWzfCLkHK*CZiyU zArc}3JM8XSTHb9@8g3pfDr6+N@8HHoljDl$RA^#;w0_1|=)p^y68IFd6KH0lgWJDyZC!61Z)BHWm6>b z@?Bkwp!qL`GMBwYDbt_V3OXlH9ZQbJqu8S}M4H83mh2JZv-)ivA3tUCh=O znd$T1>$;zrb)Fpo!ooJ}GHF5+6F070`JNpQAmRo`XCYx>m#yZfbG;TV4!(6&Nx}esNJJ6I~sj}jJuJp?^ zbG!p2vZf9TA2S;g!*=+V>~cgejnm>&aiZkZu~@U-Gnv$c%1dbZt*z<7J{C#vGt)T+ zUiW&Wp~9!0frZ8fk&&(2+nVFKSAFY_p^oe4Fr56*RHgHiM7=;}6+${ad^U3Z}ya(BPRFzfxcu?%^@aF^%HG{*A!C+}BUv2ta~Qublw zaXs)>Y-urKJHoG7l^1{?AxGr;j+XpA;5VJny0vSQo@GiHFM6=c%!~$fGjSqn!>ko*YOyt3UNy((G=>nlPkY`2Jf$~tJ}LN>u4EI0W41E#RPw^ z`Uu_TNt0tOeVK(Qd0tx#84Hcv%+pPyFm!8Zj4jzk->aE}VsGI`= zEWlTeTDjbwx>4`P@1Gw39yP=bo*Yb>CZwVoWGIY8*;sI4JV(qaEo%oz>j7I#w5(VC z1eUnduBWC=#bV@IX&RV{C?6tLBdpg2MhS#?xqSIGEH4n(Q_LCY>kD4Mpyx0bSs($9Jknod3#pk^hoTnbF$*Y5>AI`-Br7323L)7ozv{jxA4C1~NCp|aPa-g7&loR5DTWA8-8>Qlfs!n&0y zQ?@QTZ7MJ9fK*XY8PI!-{zp=~wX+}wIa`$6+}b+jdo6pZ$#gbG&0@c*5q(%Y-)QS0 z`AXL~O`ow-N=2U|V#A$N_t4ojQ~7c|4MDQz0vXM}N}6SKfEw22b(#Q5fp<~Q3Yfoq zKwZU9k?AP*i>A^Hqq=68Vf?spbo853Li^U@9}}jb>+Z16e&+c(GP}7veoc|4tXtJa zF~SVbyZ7%IP~!y>wvH^3vD6+gVUs2;S$aCC`=lFVMji`a`m50&d}Js9COm12Ozr^Y z0XV^3+dgD5t4Aq>!IJ%wB^Bl68P40aeQP4Rqz0d+;it~&&60PLS)d2DE1Z|WRVH(W z9yL{4_9sKEmNO@8k_T31jsgV-diK+{m7JWuN=ow?6NYM?Zof3{y3 zUOxMFyy#phn!bD6r)U!->XG;P@OM8gcKAkqtT3B*gId4kkwW<}jdKJ;z4-KMS^eVY z&!0Sap#OLJdKO6?B@>(JVf+Nzu4a^s7_9`X73Ol~O>DXR#_fhE+jg|qQb*5u2|Y@0 z9+c?S>nJ6Km!~J~NP6)Ik|z>sNFn8?YM~E7G2kQPR1^Ps-Y>eo7N0$Jxwx)ka?ivB z0E%$WRV@3cE{yYV$))}E#*M=`W}k`o(ksh_-48#B3!-JksFfne?PUpIR=XaIdA#bZ zShWfA?jT(m_3JmHl4qVkWek@7K1Uoc(6m%kRM0&@Rj7wPL=#SVC;#^4PnrV|UBf38 z3X%`=@}iL0AG=(gDVCY4#}Ffnn>Bro)YagsMdYp|PTpF}!WIU5_+-XDLxY+BD*>J& zAbq}9BJsBdbfvZ1hF3$_SLIDxfLg+%%2B#lbARryY%XcrB>R@ z&!1auZ=o=A&Z&8W&Kh6)a#3kttC!V(bA~RM8ZyE~#`x?E+pg1IT={Z!$IiT;`G%@v zR^9)U{q5(){G0E~?H%*B;`Bj|9Fm5ZDK z2+Z0g`-~6aMSWS8Y{Ql|`7H)9-hfJ^LpyONh2+TP z_880w4~zUYXXtghcj^)H8ZG3aMSkY7^ua;agQ>3yZ>8?8B#1zzT?FBUWS_>$Dv+6zF>vxFSI*?n7(B_qcL;7m_9`|vd^`JS!x{faE{z!JeE=m zbA|sZCaYr)e%6a(7~}`;Z|CoC;f1plZTrZ+hoRymSfA5mVR^rrj-Is)`ix+r6wO)7 zjMqfvW6T*4^*21Pau`0Z{kMRd=Um`No#8stduzXurTr?ysD?cazgbOs0$n>xYZ6~o ziB~j;iDJS*Ha2hCbOpDb&-vF59LS@XC&BeqRekfiTNV%VbX*)pk%lu`h>}JOck<-F zM~)YrhG!pmSH184dwkEYd`yNj;?6lPTb2az#4IgYWagk3kMU=Sa>+wC6L5HMJ7$3S z4<0xm@^n!ji2OL8_N#}YqTu%uaYB;u$pZK#4tDKxMjQxV$kn5Cou|-KNN;v#1M>)> zS76?8@ALD*OySR;W9A_QV@!r3kOq3m*ilELXV-dnk1+3U(J8*L&C~pZ`I{~wQ{PSR zUrMn=!^Ugw5tQAHsTDL2CkLx_`B+n(YtpDBz$TBt>b2_@EzY5 zkKmu`kGWe}5=9dU!rcI6M+r?xkG&T262G>!L6xc%&(7Q~^P8e%%}!ys;`6+|zomn~ z_{%Q~iahhI#2JeanBkW5ebW$8&J#k!;zf%bUK>3xDl+Rx)e1EQ(RTms-qpfC^r6-3 zlZDT!SuS}hGd8A@l3jVbxg`p4+6elzfMc^#W5V7Xh^Uyfci%qqo!>zY=?5yNSM*P} z&%(>QxTCV6!Dd)xou$5Hr@!KF%_7a{`4Y)+A zI5XoPwcIo~_d=2EfZgU8Kz!V=Ww0I>P+$3w_29T1fPMaW7(=*rZQ1YP?w-LId_~2n zb3F%1Uiv!_BdXkkkr(hQkO9~RxH++!5h)PSo!FQv%W2hr@=cl%Z8Bi{(Zd{V9Bl)R z%GFj;N4&iM3t{u~A?hIvoBgQH?GEExlA-_noUN)*$o4@^AD>ID{iO8=ok{tbL4Ij% zlBX(0`Q6$a^Ixk4D?U)kn!qTcAj0s@?%CcJd6EJdRM-O5ts9CSqJL{!8!+*W|C-6OIeB+fGesdF?Hp*m1kI|AL|Jp`s39)q+T5dY5(f91RfZ ziHsz`23x3;S>f5)Y0PdXi)Sz0gcbEaO>`lP_(oPKlBt$7BWBH@a>uYupI~hKx~y#B>LFrk`H0qEnv6)q zNu#!Q+4@TnM~?V+2&)bSjU-NN1Mh8^HG6iP$K2{1$O}eJpu?Wl3Cnz7HJLTJTkGjZG(pP7reHr(j660<2%Bf$v4IUCI zZkk$XBFGJ5-`Fe0!cxlY_E%vj7bvT)dlm2}plQ)kb4^8DE+B)yho1GNjAfB&E5sMN zG@coum6Cvs^=5Bm{cY&cd@5#n7G;W`TGMtL9SC?tZ!>w6kCb<`>a4IqwZ|Pn@ZQR6 zMn=mIMD2c3*SYh~D@tQqy2(zK3(79qI=^RGn_AXb+`xaz;%f(u@?Wvoub?~2bo$8p zxOr>xp%-+sjkU}9)h1mj&a~8APt0e>9w81tl>l;|iQJKhCZF zZgT>{o2Yfpd}CB@$Bro_Z|^R?2r%hxbrWf9s%B|UGHaV=-K}zMy!SceT}{oJ+p)X{ z_NZ8#l&c&wNOAAHEcE|JDlH=h(74$+<$QQzhYj3T37fo$lHv_$GOL@~0UVP@G(u6L zNhnO6Rg44ov19Rnp7Gca1)~ZN3uluM|1n|WYDw`bUI7{G!0ZbEIf6i9>nM*~arg}l zJsP^WCE~7A@-@qr<)i2GP7Uf_>)#8{WQ)N10swP6EgT?d7w`+L1qdyc3qe)?2il1V(v+e6HMHcYd%{otnm z_m`{HMV&l}=-y5oU=fX7z_IS4w{-B*E0WWIlt3NQZ%Ljt8=w;WCT+{Ql4=S@-a8Ie z>LJXz4+)*B0GVPV8j#`6DgSE|n=KwAtSI zq}uiGZ#R8P0tOwJ_j8;800johOc*4(fo%#53sl%Q=Dqz!CbA|3yFFFC)pjMbm6Vh~ z%oiID$J2tgUg!0h82}Jqd5gaY-0ha`OH z9b&rdnXsg*=YosE60DXaD6WChPtouH`#`qO0WrwdG}e`WQvD|Ss}bzk`fY7v6Zpj4 zx1D1B6<;;RY!_dTN&}eHWyOjum}#qrXvYYOL`Xee_Ba|HIy7`61TG%K=n*6SqF75u z9k28A6H-!Mfcme#I9T#ReEgKCpW$>m%!|5R zDU&>`-_lJ7mJN7CxF8c3^hn1mWu}&RyDeITlxIoj&v!Xq`pwAdaron$TnujLJnGFB zevmN(O-6u)eUX5?QW^6}>JLP)`6za5Y|rNIe!hlql3=rpLPU*E#)&F=oJ+rA%RAsi zSdGtN%6r|RjMH}7Jl1$SZ7Kw9;{qteo6IG)OvfLT&aTn$&L3w-N56^$K1>Jv(t)-P zyJg7^uVypHURqd~72Wgu!RISKTQ~iX-0_!!WgK$GNrR)U5t*TcdN{79;|8`gH&_4f zP#1OpB5@}u6P^gU>)q9bg)1eZVcc7pBfEpAOnkc)A9+2}h z;}Z~vH{z^4!SU}=>e5Q`08+wEXzx@_#AO7hS6My0MVf-w4AN#hafFZpZ^^&9j2N^- zcl`KO{WS`=-y?lWfi7SA#77_hLzMJtkG4CF8bTUAKl8uSa^7ZRMKMQ$9 zF*z7cPjc;oWQnKd@#;=O4`sP?7cUOGp`4?fIJ;IsGUUjSeFqNskatp3$2*UoDcd=Y znK+anP+`D-Ti1F2Eq;7eR)PV++Z=dqI0L+sKFK9>pvd$WMPKs4AtOfgG9T;@s3I0t zQ$u4(?d9Kp!2WwQhziC6Nuga<{ms)yyK+tE?kdWvs)*K$N=tH9{;(*V5@DQJO%L(IfY_;UG<1JA}Ya1hXYp#*Q~ zC2M8F7Kubgj@R3iG$5Zll-(I5lEj~ zKJ%qtf8*9axSaQ#qGq|0=sk)U->MAnXqKvSZaw_;a{2&{UV{10obAL_leU<2L{k2{!{YW$G+N z)qka%X*tetl$IZ0Y+E|tgFy!rM5z!OHX4`ULoO&F4$6;K2teDeY~rKOBI_6ZfQ#u_ zb|9;QP3yH~t*DWO!cU-V!O`Y-lI+x}s8!{|YXT$VdX}S{6eJ-FP$NNntc6)5p*#tn znRA$NX#{ixT##X#v$GB!IDo`)^2soV%0K_BwoRbIH@mvBAlRvViQq5|P}PoJPo03=n|6eELpZkG283#)Exy#V>dmX#ag>YPSfbkSx@C5vK&L6L&2jO3|a# zX6wD`CQ9hL(*lD*-!hPN#e0t~mXU4w{h#Qt9f&>}6GKF}ur;fV%OEM>dN$%y*52s2 z91||6yYhFd}5%>Pngn5nI6E@ zz=XO)F)zi{PQn-6lSoyFKf53UM*0{NEp z;#&S{td)cyhPbC^@wwT-`DZ|g-s<(5yWe@z;1Y4Mv3J5}2AoexIriB_PTY?a=D2*h zW>lE3E58N+#mKuA!ey43ncs_NPZ&CSw(Xm?a)YMriL5u?cITfV8bu9uBO^n&UnIQZ z;@Pm(&$e~x-cy)C_HCDumR@$LqVM7~cj_zKIo`jdyJ@4nN7|`o5)v|#=5q4k=%hUzf!e%QQG}Jy6!U~0 z=jHXZ8GZUKQ+B!kwRdyYf;+ z9XSl6x&v?DI*lBej)6)9D8B@Ns9J+b&MUOP{!PPW{ z&Nq^n;R<{HjgJdQcsI}TngB#y_d1vEUUvks0USJEJoiA~T|25Loi-B_CfN5Ns8GL^ zGZmI09%l23!TvkT+P_|FCWhCF!NwbREa~FG99;0|T`WD_inRQ0-Z>P`%frTbBiUHg zBKHgE4V1@D9FWoOk*qF@3DVFOP|yMrb?+`r4WqAykZU>ip687N$tWuk>g6534Q_{i z&O{`DsYZ_barV$cr!3-y?T$V=6?%vfao0Y-;J3hPzLcff#thjj^Y;R2I?!kV|C2!h zG|xi75Nsf~TOzd1Mt$m&n_`)KCY!x*qn4@|xUVjmP1y+!jTEP9dl=T=DY{V;Pk)*V zR^rgB4;BW9Xo*R83-)1cC12zl)sfpXZ;_x!?KnO>e_r=kMdPl8ojDm!)8{IMXbQ@h@L&IrdMF6#9S8Y`Ve{l>N ze9s6|%jm6`W&QrSY`n~Fnkcy#&aV;(KFGjFX@-&B}GkL+vlgR&cDl9Zcv>Ow*SVX2kON4c^)x{oSjvvrsj zYm0Fr;2U}_Fj0q@{mf_k_;Faw$F`3p!7j4v0|L!$ZAZcHQcW{LWgd%B?LLFJKX+P2 zobF+>Z`Kq}gwI|DK_N=!h?P`E5Q;o$%?EKVL`q3`PB(?``>h89(S+A6*aeKiuo=@i zEPFb&f7tYCx{0sR3+1(h3m%A24irs;ZBOOhb9LGs`Xw^~0L>0Lujkb`DPJuiU1-i) zy;}Q`Wi#cTitC%#FJErMn^9YgXc1WO$fv5lexHh(hDLQ|rCQW-&Er%J?Q;O|nPj|j zu&zPwDS+{MXF#U(Ei)XgY;7&OGok+A$&(dcYY}FwUpOtY$D9Ax0@xhrH+J9SJg$AUMFTm^4;(&sk1^o&sG!?5@oW?s57yOH$m}25&NXGm2T*mH*Nc}g z`=+dW+gnO1i1-&Hd1=A*3qi)&b%P3TUy}BxJ7wm;{o`@2$$ICU?_0Z9cYJ<*u&AWO z@{0lbuZbv{M~?Y81oifQ6*~uq2U|U?^Y7tU`sWJD7CZ!2;6cp0r@Ur~dT(Xr3>+s> z*l}DiB>6h5had2vbNY}jv(?KxO)?Fblf^XsFSryKf13AL%R#(~2Htn_$-cz1$FGk} zNQT8h2b8?>Nx%E`ZghAc9su0NUpDXkZ<$U6FGx4-?@s*-+6_elW;(iteTOwHnf!sPN`(me=WHy?XV3thVJgNk_R)tJDmf zL%jmq|w3ZnqT)gOATR1S~ z;!H0In;qX8lc$@r(61~4HDj{ZQ$ZpOgTgdJSo%08#IJ^ohtg@$A5=FE61;|gF0#^I za@&S^-}-0gl{Xx%f}H=0C+W|mWMNywfB&sszC0)V)s%8BDCKZ$coP@Mc+IXw!am!W@um!L66i)YKZ=MQ}- zcp`W#+bS!6UopKVIJ#cGoXJDE-|M!g(GCPW2>lUMSHC^ZEd{|O#s{+?cjx#=4|X1ev>$J)V`8_CW@FCl)^H&$~j!p=D2>$#-(i>eK^IvH@;&Lu#+N*V@UxGJIrS4 zu&|u9DJRhaQ)BIpij`mHxk%OXL;e8HfutEbjV6-OcqELmX#6o$rG0>(5X@F)&IEmc z@jc=4rt4lROpW}HLxHTA5J!2Ko<3h)ekWio{T5Rf?(VKn=l7nfOn0Fym%G+OH3hW} zXdwF4sc(LO{k^8jWkYg$_w#Sp(~f|2X$xB0+7acutuYS3i(1(EHrTDf?#XT;y)L-+ z-^YrXNc8zK)g?i95zkT8zy-J)v*D8x-`M%S>@C@x0cUF-uXtOH65ZBTYj0Ca-ID#L zYQm~2Hdw)k6c!djqlI>Cb?0+l`w)84M3TgecT56U89NSMy*i%qBsKy9!FI-s-yOf< zRS94bAa^eHhS+eRW4JhST_0Ht+g73}Hh*%|S*YXjb1X?&4rP_Tsb(MChDW$i@%&}k zKe&4JPUDv|6dNW&!of#%yK>C02bBqg%iAV(;)Za(rkj|zQV)R$Zq1w&8y~+F77xf5 zIDX--DVmD+wgzW!Fy2^s-It}Wwl+2@IM4EwxRLUbO|7kT1X~dh(D}=qN3RDDW~=MPA5qj zPdCD|164sq1=#&q#>Guq2P~hPwOHV=xpskqnThZ*xal$FHuh3rd7DS0o*(=zR> z7=XI9o#%1)Nw~1Rff)?^D_3~UbH5IvpA3J5A)ohUXm9k3OAHKZ!0%qQ;%VcTcqgw4{J8vehib-?^^m~VV%1Dkl z>wA>(5Z%jwg+qo92j{tYxLM&EL)xGg;dMD9mF0T(>o;`XbMNj-Dk}MZg$6)!a0nT} zPs_^>m_!TH{D69Ge!c;`62Yc}866-cVQD2y2#Q%KWVb6uH-d=oSb=i>oiFj*m}B6B zqx{!YL?JBH^qe9gf`6Wn6c~7)iCpFob5aD6gq~j5+;5DhQy^k_rqg`>^5t)hjnXnQ zUPL&Su8#;J=stc@@)$RZr1^p1VK^q3u^4S+vP zk`<9W(1!{lSwf*oM($7$ewWZLRLDORUM+3~4=oHv8ihmdu@@f?KEN@7Tc%)wST1457Ly z>s`-eqtPL8%{gn=Ucip<+=qvf;sb{cef0WuCR?HA?A2=UaYrTO*vNGSYxVR>XV>L&VmWcb5Jj+`Q&Q(Ags;l~BuH>twV zxUE8_c>OvH`(QB|8dMmV-{x@^*gj0kNsnrkuXJha)erKIKG~(Q(`ZScNbv$LXt?&B zJTWk82wrT#LnIMs+-?8JpB z1o{&|7;1AOBs@z*WMr3w%bzOm?D}WE)yn@4Cr9Z;`|&jX5LXnA$jiHwmUi52{%)c>*d%F?#h$-E`?kK$F8$SmhoM^Zep2ku@6G4H54*r%xmC=c zVFWAgLO4CJ!j@D)HU3YRj@$QYn~`^`CV5wQUvYi@EGT!~CjF40w(lm&0xr;< ziUH_bz)k4B0zwu2ajP7>I8`)f-nintSEXg|fl9U0vGj7HH_WpN!Ys ze;6Azu4P(7%b`2VpzyAvvj|z<=|=WCv5A}CTT7bJ2Vy(n0b2L!4qskf8qI;ytAJD> z8@h2dLH4eug7{gK)l;iE6aa4b;Vy@z2|=2n4=?3YF5;IF75Wi6b3yZho_wO}Ok;N9 zg%It$@&GG5l{-yUw>f6x>N#m&Z&)MvYz99^j~}nfmPnNM{3FDb!L@FNRgE{(d{u6z zrlztPkd*~ji_i2&dd>uc5T%}GEd{Fke8M*~b9+g@xu*IzEj2Fu)VJm<2~mRO1N_*h zB_*jzNsZsWA;B!YzRtd&^aI;VNu`@M9cN6(UriWF*ywo!+g)WjVU;ug5^6x?oUM{O zkc<3_^g{#_hXE^e`y4oN;zZ$BvA36))ZAV-*k29U`(5K&8h!1qtKIaKzx3}}j1z_Y ziclABf|QihEm=v;{g}cpb@FV2&7=*YaeexwCy*nTp2Dl;ch+|sj9yT?*XnYPdlV*| zrv6^>>e<2f1jY5|PR22sX+8l2r%!_K;98h1@CBHN#Noi#0Kp8b-~jiMM)U(LMi;WS%?{iojX9ilvkek zaq!hxqaEjlj2iW!@nr}AFNH}&!!o8sda0;%lq}up7P_K0uNmTWg~3Ez=pw1o-apnh zee3!)|NcWo*#v3^0nJ~dp*ZwtKL}e@)loN!(vKrz_7b*0b3`~nn3vW8oi}z~vU2?c_CT^7pv;GP{IYnb-wkND)0YKrz8H@~lE!=a z&2mAQAb$8ELo?*U7{BqJvJ(QZ!j`Q6XTQ1oi*y+y~2fs#KPi~A&{eZj!@Gy z=?8$;ySQyB>F!5@T;IR$?74Gg(oN}XBp9f#f8(Rimht0LSxrPcO5 zc`PH0P;-Htb@~9{QX;4%Qc9vZSi~MlB*8nMlN#WhKGxT#ox(cp;J$r|ul#*{#rNNP zIxd!dN$Wk-dmh~|c4@$up^$Pj5k)Z8*Hh9APW5L?oyLt3tNh;0nmc!Zu9M`C(ViHL zj!Xcx=-O?aUn7!q*v>E($0hzW6YZVJ-^MXoN4lu2!Q@-CI!IDrg^;1uR##72s4^Ck zapo#1ul)_Z8mZ>5O~iSqSjO{*g53Xb=^SDb^{wgB9ZX8B*_pMh^JsJ3$j1wMAe zLRCazixw~Dejid~B#UhxBd+;a2%Cl};`j%hyqL(|>ym4hjP?O@<3}W(!r*@^d%jUj zk!b8PB^>K#h6({elr;yFpJmI`ir;UWGgMgXN*e6|FoLa%@sf&Jh{L~c$Ly;V@+#vt zM)g9<%6U)tdC^fPg0RP!*R_kayIdi56hzsS^T1WStj?RP8Y zzneEB3;GJr+V{=YhVs2nw{}p~Q3QvT2RV!O9L8-GG4sm&C6tdKE-7#al5!hmGj8Pp7p1&H6I?@admz3kbW zjx%jk=+UE-KRyv$epoKYQ-FN}-<(>$xjmu3vilJ%XQ3Nm^s3%TculDN>yq2z%CU0p zFEQIxta3LqL}X6rT&ACjUc88BsDRv7e<9Bbsdc!~f8f6GC;|N=FIR8>E0}UeWUf-y2OePH za`l^N-d$WS=0ioigI% zSK@N%b%5f}^@x~nNm~eZl3w2uE?juECj2qz2KYld-ha@b-1LHig76!YM+qN| z{}E@_CHISb-*cZJjrjC#=!X2&P?o_7qBixjQqg%{SeS(56{XOR5H47IyC>K_YAZ+_ zh4=TDqR3$x%*5WK@*X|}Ip`xB_+?0!2UNg?z189M+K!wQ_tUSu9z_dmblFRge-ReX zjXQybicls|q{&NegF50{Z~G@@d%ZiinzG=aBK|Tdkid>-HKt*~`sMw5Lc;JMW7yWkO;hecUauG6k+gLvX`$pr0wgcBQw8|5X;j0;PtD zcJAD1q%!K7kLjq~bz-(3AL%pUO+Joq_IK4Ur+J|m`RB(LEDW`Xe7geZw=^~`^TGz* zWboiA{DucZ_TEMpLj+?dbiz5Nm7uS_fH_sI>Xh@6CyJ@u!}|3!!HmuXL>DrEil%!ck zW@b?~kj#|sorRBd7||QjEGjhJt))m9VW{X$|@>GMlF{-__4nOM@O+lZW)^rVN&Xz6-{8-t}&O~}vb=6zsEM|PLECPgA z+C)K3caMd7roH$+l`-A7QBy9mHt$QHN3N9&36`&P)u(yo&rGeSE)aGQVXMjuRf4jK zS8Rp2y>4PYbL?S>>zU;TU!tWP_1_{f!;A{UNM`W-)rbzH%1ciF*2*eK_JuV1ckV=c zy4=r9{LadIwtZ6r^W0@N^vtrP|Bo^XuK982`VE%1(ihE4UGkRZzJLE=Zp|MCEyhb4 z-IOy|MH)7hyoAJ`QHL$7r+&NZx%|i*rD9nDP5yy2L{qbxwHO-=# z1#NgaGNaQk7OCE*KvEBR(DF%`r-LQ)3^0!sCN6#p&Bo_xKZi_JUb4}bx`!c=jbK8= z0)T#g22AgNq$<3UrcHY&IHY|2x;o_FzI!7rS(pwF!HDYm+UI1=I!g)(!HbGYC8D&G zWG>bEvuA8GO04C?JCgJSXP1&2++hL@U{H$&Gf*)x%UEE^kvg@f$uZeMf{a z_JZ7sN*Rb}@{vBZ-SBEngVsuMBx-)J7qeB9f1iKyu|wtyL|lmbz3#Yi@t4;NWHTizCyFd0XS{$=>)sn1 z91Q0!T8iO@uA_rb(A)>}{VK9wzuwNo)B0>+=JxBl4(8@}+1z3$em6TC?wI5)e;9&l zfU(z{#fwii#V}WeZ4?%WT&&4QBTP9Jz_E!7Q}c0kH^10MV4*nN^fb_Jb^8^^gm-D@U6|l8XNTxX-V;mgM{)(B(OMk24`5H%?jD$ z#|@Y+j6Eyqb%IJSaQE)mT*jlw``vcPvcbw3jsu+~S1^4FcJ2iMN)%vU z4oC&%W_s(7&TnJDZRwt=Qicr~VkR#cl>Pf#$x^|Rz{8{WTq|M;R|P8ojQ7z|19Q|O z7@;0>)mQFq4_LUYe;fc*yS=JvG`B4-N09z&nJXwh*qKT0_L<4UZQN5axzl9ifIS;c zU6}&Y??S~^^Vs#8qWFMMi?tNc@gO7P&;QZ(=3zazU;FQe28opJkW3*d64F3IWhhb7 zL`g!FGAm6qnnM&)l#C5zEJHFxh7hIcE(#fL5Ud@w=1&j5@tV}_H_Q3MnM%tJq5O1@>G^jp}Xo-D>bw*q;|Np$WLY1 zeqlKyfXM?Clk#>H6WbhZHFM?@7VyD1iey5Y9$usR{Z=hsz7w=FeR>l{iISm2+cjQZ zU~w{I`4P@A55gc8vt3KkvQn(RKiJ2h1!|Ig%i>*@;7lbRv~$p6kOKfu7)AzDLeggu zQeyX0SPvwc(k~Q$Dt0)CKA9cS-lGBVpvi^g_;rOoin;a|Zn8ZZ>iE`dUY$macw4Q;<2=Z5 z!48HOo_fGOBGSH{SloJqGXoHA78DaxN)Gr_r?2Qn3Bfm4jP4vlmPYEmTH@1^@n1FY zPT|DTY5;x3}#VjlOu2A(NS{Zw4F_{#}me2(n7T85j zjdP0|d!Fo#+Zn#vglE~M>sjEhyHIAp*2r$2JA^k;t*UC+lYK!y1z$}HG@FeV8kion z1jPIzwP6FW{?=EA@MMI3_(_2Q#S&HItze-y#lL;UjR0E$GezEXLHggzEBf>guVfHp zru;DI1N@jXng==T7KNlJ&pTZ;sVGk zX*Vs+>1fa&yeGH`l)QM+#m`gZ7mg@UP|iJ2?A^Qb(B9%k{P~{lmh#7MImnk+zQF7R z=i>D->-hf#rKPkp2+et3$@9yuu31dVv2)ce-n%~L4n96trS#raC;1F}4FD(BhbWiD z?h;`3>W7(`14*l)L+BL-d9YXj0klQ`F1^}iThIMwu%T<%rOcD+9}Y`=kj4dXnM#tH zmfz$2SaMiG$-M1O6hXd)WzjmlW6DgiCQ9(3K@ExxVes8lU(wH}_wF%5vD*+sh)YU3 zccw2z00ph&(&qymyT8P?$~sIQ-5%b_EC6d2S0d=e=#MUfZt=Acj~Zya2BP)MoW3DPzuHxA5KCT;eJo&+Pqbul823T z-9Zy5Z8POYtP7bnh?LmPoK7}gz$ntol7TlUHSHf_Y|ne5ZKv3OSrhCg~*)z^G# zj9bAOAZf&ELxvBh@a#?rnqm|&Vril5Qg|qX-BQ9E^MnuYdh!q?l?x$Wbpwz)w>=hgR8H@8m9Kp~S(93S?me$o;>amfVgNflV{D$E;d(%nZ zJ0bd;Bj^6kjS{G!;e)ul9rChmP3Ov%oOmUWIEzCUY4jXVXb}XnpYlyMZ6EFT<4eC6 z6Cz2KultvvhsVTu&GRnFr)g`{bdnH#tU}fWM?3S-MkYS|YHFH*5e#xSsSxf%?8Z=2 zto49=-1SY~4a7MjE@?GaZjT4tX!||{dE#AN$*_A`E0hK(D$?;1Pag?HN_YUtJX79k z8s|HVEqQeF>eYkQ9pfVJy*QkOnx3>8SE6^qmHwu!GT6O|M0MRsl9iN7 zKPhiEz6OfnHmUsHd)G^EsI1G?>JN(Y^7w>!kqUpAxHTb7N&4b40sYtk$f&PMkY#s4#C?@#8?H6A1wYel~- zn?DB<5l>X!hQC#3T9L74rTtrF-$8i5qYLP9JdrQ$o6Z4wVWSk{tiVQ*0)!FES?$oj zvJ|X%UCYnioxaugU+c(eiZ^--`#@Qo!)Hq19{BMdqf0UcG1>A-TWMeksjlXfpzQDq zstiUHC&uTjjr6n1OI#K$!Uo&)>{hV}aAdZ0zmV)L&v|?eFUiZZtobo~GDAHBKg{3+ zVm(})WuZahCbMMaJ{m>wDI1%izzoxwGY{){^h_BZ&6v0sI#p1<882_*$}oYZt}T#}4cRPFkvfvB!>85L7KY zj#7L=p{q&fuwYEcD!$3vI30D~8rb!}R$ zvQ=8)8<*PTC(IMOOip$6!$4MGyTlr$|MVbWlT-QW(x)^fdgLr*)X1`MEdlJ zJ7A3HMdsh~l9@3$iS7RUc|=1Pb5sKP`!i3!lw8_cz025NvE}7*8&sD?2;dTbK43eAwk*WVu9E#QInlEjGX)>?$-cW$5~iS1@qhl=uz6QNMu1Un-1?6&wN`)TJ&*V$hh(2 z^W&PinXephw4fbca3u1;hX~X8^EdLRvgUKn`=X+Fl@s=fU|k7jr5f_3>wiEqv8`Up z6!$>Rf$93t$7Qq6uEq}*IWhUmsFf!cA;+Qo2DuY(qU4|2qd}8sW+bG$1?s{(=;>jf zd*TR_wa9{*1dGS0K3L*wI}5GOZ$ad+PsH9?IYG9&HsTpxIU=2bg9jhS6es)v@Rd;= zQfCKd0Kgc25Tx17FNg=q>pL#ac&0BLQagXCg`U-2`SRd_1NYren;P_I2l+KGK-EJ> z6|BnBH_{Srb21B{5%RaQk`l7GKD{ zTGLwVa2pWgOWc+U>8hmt5e|w9kyJ>ocjetTtAPceD73U_Pw8_))%beN6ydFo(xKwm znBc@Lr|x%USFjWpdClw4xD=SCDkt@EG-_hY+sFGboP#c1yK_!u-zHhpu+47=dG8b^ z*RG;)OhQM20@fGlz@_wy@PA`_)k4wnwOozjC_}^)2PX&q`o3$$6L#K^ig|M|wq)-d zduqI)&TkBc)gfjlA+kZVxye5)C_wiaFaZC=X-6%0_n+{noz!+-LfsNTcjhUt=$Q6e zF_Px`hRRu&8S6L1_~Df2oFD8LlxFmlZ&^QuKCiMea?*|HjOV{a(ceOu0Pc?xncaj! zv|}LfA#v5cCR2ef;YIpaxMshUBl=W~@Fn8rXUa9?ZY;0)I@+XvN$p49xId>196Nuk^G94^9iP7Qp%U% zNq{XEj;u<}KsDKp>^FBtjFVWZS4TE_#nDgE#~6i+W=JoLVOEbFZ4 zksTKTMiInJ4o9W~?$#PQXSjyO;r5C@!aRn@gPeqE)8sFpZfr$b9EcMbUI8^vxzfnz zJmYKsP$YFPUi1-=^Vs_-Z}o*=Mz>Xn^7)Me+Ac@V70S^$t@t%04(>e4?>6}LU;-E? zJgLzsR~7|tcz6BPc|VyIH11PZGU#+_P)8pyl3^pWV2JBqJP(_yKo$t0y+)11jcrT< zLu_pfWzTRFrmw5qO(Wrp;k7f^pQfhU(6nNPz`y`F&VE>7G0L@fZ#0_}>&E%iIJ3Uo0gv`bC6f_Qsq}D!ai?E4m~S^C1UjCy4!=g{WogUF3{m`rU5_QYqkr)m^&| zM!(-}*Z=8laPdNSFa4l7lsE)!1OCh4G|A8l*d_h=!E|A_<;xW+WrHI$`Dw7^$2R-% zw6ynMuTsCE;(}~VMLucX$lsWeZ$0F)c+^3mWbgzwZ1eN9{-K#CPMt!2y)W_t3>qT? za@z(@QiRA%K7A|50FeaBGQeo;ZgQFRWy+Qd7PJChs1b!c?i6+pQh%TnJ~Aa|fA!qY zE?V3FNp+Mp1PlBpJ!2#$jPL{lYzq$VP*Xs{D2(Y!PL>nL?}ZpK;kcjB1tJnnID~GM zz#lzxo0QYkL%oXE5xh735^Pue$i01-YJ1N)n#xE*xkDjq!e8d;1dP26+nt zYD#swb@3rAQX;b$)TD{K&MS<7&uls?_>OV-94ot)i-2Uq`U&D~Rsp>sx7m+?EAvAs z^bDGfkBf|)e7c-94A;r!PxD)gd>O!;k%I*~_J7 zQD#WIcISSt=nBw_HaB_U>6<(>RmLg4Q|)gf#;2 z{SN!kXh;>Ppm~3A%)W8G5-Ij^*3YTvB0yk~p;%s$_0VXYwG-D_M8j&+VB^j?#JhMW z%pQL3S0GG}%h+R})9A-|fj<@+8X8X?J&G{cCi6}q*7z0(2cq?n2EvJ#*S%M{xSR-y z5~x0rC`B8x33f1|amQpbaTy>R|*+|vRNc@BR4+{hKo=*Gyl3>M!)d% zW%yh8c(0JB|2ATMA}+h{o;|-*@|jBJwYWElR$n)NJUA17<&$ggx{V&9v1q7l-KHHl znz(DWuV1C1qeiWUQJ%T#CA95Ja8!$r!l@Njsu0ZG=AzT^1to-Z~p#s$yhYJ6Qv1klv{QCUl zW0riuiZ>hOQPThX@hb3~(~V)R>eOYih?p~9rN+8avYaM)Dn1blR+gs1KPC@OTQJQe z0s0&DL2~tb;WA7)4kiHL$B%yjq@b9>ad>KccagT^a$V$Je6E+D%cXP!B{^)g{C+y` zDclG%fBW`z^s;Y(7u>1HSf4?IbaZUB{zW~EobaLJcv12~O7WYYx{kt%vv#Vs1$32u z>j5?(&JI@{&swUT7~e%Lnt<+8a{zQtr6&DtP(2v^!d#7Suc~`g(Gzc&aSvW{4dc4Y z)}$JtHDX>3g=SxaI2Yp38tT`$1|1u_bMLKNU!uo|8!2SntJC?Oqi4F9rU0kKjybQy zjsKi45nL}Q%S=2n%e&`@%*qCizPP=6GvBP%_o`9}$XK8ve}flIp$xGCf^^PzonGTD z^;IL)1GJ7jcuS*Ja`W16`6s6T(-hXDtdr36C4E!awubX*nZm7!A3s$pNb<|*NbwUdq0cJ#Tz-!Z2gD35O_fKQQ?_=^m4h@xs*5@k;po3FUU*j( zY!C52DvBRFwU3WH(Sx`^G58~W^OX2~F5VbK+wN?Ls_LUi4FO_x9M|GT2M-?nTN-4I z&AYH@GeU*=f+>n&?0aOiCMJ>C;V59(2hiAa(Nq*;tfnAbgV6VjT&XK9>g4v{fEOo6 z&rM-!nvvYq5=rHwhi8@IUGbU5T&G+MjfoTCc3TpT1k``~R`c%#p*g09@4NVR7L?T+ zVFxOTgYW{Hed3%G2KM;W#^WUdTN2)PoK?6Mmt^VMxpQZ&Vqa8p{dE?Kw6_^5;|}>0 zRx)}0SHw4%!Vow)eLW>kPuozO0-Z&g!iOk#tF^_SDqYz%(Z_^Mk^ux89t8pe9Pi}9 z0hx5*q*Rr!C4U|;deM{#P6nEqD>0d%HT^1XGO6g%%4spXlbgF5@lAz<2sK?m>mTo) zVLiax)YTH&E^r-9Zdx9-P6Ogkkv_1c3jIt~{8waY9tAvb?hH;tP1a^7_+O=u&uWHU+^N;g+2heDLc%=eK z&HkXe3IF>~IHsBuMm^vtF;Lj9i0`7+be)TPK^V zB;p?1$bAtcsG5VTtFh@plyKpFr~L{mUfnHPL+xU@3XONy8ztH>b+G~!QQ5igeRJ1p7ukd>OdXC{wQwQypUtsqO+7v}bLe+qG zY$w582VjeQqyQ1WSUqr{KLwdy97 zgR~0oqi~iAkqeAb4z#x=WhP6}dCqhpreQ*QZZ) zO-)W^!|7dgy*Fd_tGE*q`nmi}3#Giw?8$kO@$5)(BZCdE91|#Qwa*CnX{j~HN%LlD zOan=?xKZlz606L|g=QO0H&Lr9ynj!xaERWq_ZmW!P?`X}N32qjVC!A+Ir^FS0e}er z6EUHI>5E?(4s+{PAdQuR@y-uTe3y+&R|H<*?ch4lWB&ZfJ$m&D>t#A<4SBcw9c>pF z1BjS+I#gCqs?JQoiG9$z5cxwn2hJRp*_V``tP9L7DRt*P4v!NtlZ{O4mg;<3A- z>9_kK*W@1Ew&r6B1Oj-{@%cm=Z4G>xA7k~~M#?Q3pREgX&p7n@EN-3v=NKnpM-~&% z=}a)ym9DbHlB4p1)?2VT1_m3z88$;AdPQa{JUd+3(8OZ&e2_FhB_&aNhi)wlCQ%lPV?|VR zE*2JmhI`(xuQ`4ZjJGN(2my*+@5AXRWH_c|osKKm;5_a3m085NY8$&ATkn$mo*fq# z6_xNbFoV_g^HxP`hZTc-C7sB08)OF-95Pk8qc>;X^zz0on~gVwP2Uz(Jdou!t+?3I zq0-ux$yGP+*=9FPg=aW@=8R3NiL7|X;AwibM3dju=Wa1GWaIyQ z;N8+zD$l``-_p;xZt?b?kE63Vl84XQr4-O%NT74t2R5qpM~VudhL@DdLzJ`1{K2Z= zq(lae$uTLSjwZpZSr1X$XYf>|JDuH3r;+D55Y zhooz<=H`#)JI&~_?Uh=D$MX~0o4vo5W@cxr4;)BBB!l|?;)M&#iqFO}s}Y-J*3Pol zJo6bd21lP5LGQd?joV%AFoOYi_kM2eWOicHNhMIZFc%QmMB$3^GyVePPTwPr1Jt1u zYw=5KdT4&*8|rY@4gnv^TP|?5p&T>5^MHxCKf8?HFit>NLDLw{y4QZNQ^?kytf*V` zl|NB(zvH%pFP=Adu8XT{WC5LwdoCI{ySTjjDtu;n@2N`G+&N;Gq4Mj7rk_{0E=qf9 zcXnFbGd-g-G=VqtP!rU{%}6EZT+8L*3Ug(Qdi!^-_mxHuc}Xs|L=!K<0o;!M^u-QZrQ}H~6}% zMkZ|uf7+OlDim zsm3Z3Jp1&2E02zT!XLK(Fizf{vvljGO^QlNR)>=pE-F|yFo(L>wpLes3o32}4jH@_ zlwucKRcI}wU?UBo13fUzc)zyr&8+ciQ9=ebX*1fmw6e}(3V5VtExK^N>rOi@u6fib zAQ>jA*ZL?g8?x8b6NwK1jY%*KJ_ZC;7C$HtWFGOwt<^+X4z&K7I|uLqw{KoqsdIfz zsPeXut78L-&w3_UFMy8WMj-c#^YVmaBtJoR>)oT{_brEdta#tUW8*(KLSq^zG`YLK zh0mCXW@}=8(rNIl&@TF6Y}mc#x8aj8%|6jM{NjIkUG$8PNv60XkuIMY(Sc_A5V)1u zhZ5I=*6mZ>@~B=Wce}hSA9ck9_wj*o*)EvS{Uel+-r4U6@9E_*F@B{?#=B^sg+|?i zY42tw6`pvy@!ap++hX%`Z+lG8u65`tv*C}_<~zh`@J;&7_wfh+rkqMXBc?vTO|ux? zS!k(?{1%avQtI68dbzp^OoG1eTzZ`k*-g>e`TSvlt>f8iNpEJA%`(GAi74ryvL zpm59H)4TW}B=z@apc3LKb6h0x+@!wfxz%bvKr6zN+=x2>ns|W4_DvncAUQr$ymxFl zy;9~k@8w?W;1)&R7i!BPL)%EHTyd~A>cv6l1Xp~q1(VqPG7D#Qs{b-yfcFY29d=n> zk-YgqGU(rpZJy&wrx0{K&N%dq3dF=CBjbW)ZRDjlqi*m42p~G$zI{3@VnM^rHBjkR z?(xC57YLR-BGEU zBZ8(`E)+XLZ4Z$PV}yynSeBe_DrLgCD1H!Y5KQ2xS^V%}B2mj{sI#1*z;~! zf2K?clStG$qs#7EMc&_UTlmo)8SIuBS%%B6Zo|k{BK4 z(jaDvaQ#4#;MB(VY~Nae&B>MG3&|8FVd(NMRy#CPvE4(R4z7;vc^k7R{L~Ct+WE%hU;Er2agwh)s z8Jwm=t}kFz2Fa@Vb5_9`GH-hM)B;8b7oq^u$#}(oQDG+EjO@963dBtxEtiK}+_EQ< z@fz>C6pU8vddAu00tqDD4iOmLX^NX2g~A}5vqqty->g=-J|1G=f0Lrll^7|IdohbhwV!{PiTm%*=H_}IgB^oA zs0ox=K=Y@e%S<>RifFnV*5G!QbDY^^99Eym`)pk%eTQ@#c5;gu0Y$ixi5q;$Con*6k*-H9!WK!d{k9&>YI+e#ki z(W48wE7YLz=}9eAQ2@ymFV4#2EltNYbIzy|pkW-AuB~RAH((njkPzjL9XqO&`O~b# zuaF8+9KZg|iREZQ&~v|&l@gNbqN~(wp2QGqjt6%daoa_Uwz;t&MRoxS$l2|IfqZ?r z?x8PkO3EZD^a(+HRXH;k8m5)ZbVKcHBh^bQt+%|l_j=3-sFmtT&sh zb*?&oLDnufylV8+S!fur!{TTw`M8lBltaW`7;jFL5aq+Mu|q;DO1_~hwy9k!?9A@( zeD_$D`kRQ%Pf%mzz(971CCPDi_{Z}1g5feetb5sYK^Q=$>rh<$xhUn(lNhpr;%`gR zX40C&Q#O_6$mhJCZr^{;5puhqZ%^0Pug!jljG=SLd6LBDPqQ(r5hT7QnU96XGL5!| zDEr0E&W1+vBFlMjE_*IJX3S-Dq@~)Kd=CVc3=4}?pl*0IJ-z6YPFlFneeH3+s#YDo zkz5mTXZ&t04u%HmXe3uyba)oVf>Otrq$lkp*t%60+!SOZG)$3cu+)%<8Ogy(MZ^%Z zsm#fX=g|P#zKN6;QWWNlQIXK-dAf?QlPgO4Xn%+Uw^OH1ddvhWy~-%%o`pRlT{|kM zPEQ&-wbz9%j7)?QH!{jZsyD9hZl7*5|95%9J~@GCEN}vDb5t=zT`k2K7H4jSVtjCZ zaq+okwUsH)%J>Z_)U}No6?qCcr=Sv?Zj~CW zH+u9nq9_GpG@AdWwz8-f=lm(h0{;T42M4PTLCqg?kKTn` zm~6$WuKqLq2%Hdn2&ib@t^BkXz%tqkFbz7{gIW_^?6Z4!es^NiMhW)U{|j1gXl%6k z?I0{qqu+o2F!KNvK@5CbWF&27MRZ})#KWBGga5o_(zuODIvCYhvuT83FLR+(27ca8J{cw zC;A|2AJ1a8qBNg%cxLm-8-l99 zQRt{MG&1NP{;YEG19dm4I0N6cJX0bo*cc=QjNWzkjpge3Osb%}@-TrPTL&=C2S#g< zMV>v&4t9Teb+kkW6=I)@#1`^!aUf)yK;5jLn@A0}yi|MpF$Temox{!-UX9h3+2d(Zo6 z(}tU{*=$8l0mpS>>%DLS>jnA%h`2Kc@)MOaqChQ#?Xu3QGDn^TQmV)L29ASWTm46$ z7(QeqBm90+W^uPT--(%nw}piRJ?mch2vs`LcZ3(>Mx3&1$M&6gL>LYYN{2q#vUO{C zA3clCdxZyUa~#ziPbf_@a~}C0{W)Z2L@cWTUA3jcAN+#ogck+;HJ^)bA)7Cv@-Ssk z9&{gl1+W@U4Q>GeH|Z87-VPZ|B|%ut7>E)*LAo{yb3Y+4bGYQ+>mTXOq`Un`Ig9Q^ zHk}l9HQ&N!8X}u0z>a6aYyjVH2Wu9rcskXbZW$Iq4O@ES#gIp8>D$V9p0L^MdX_f0 z=bYoU`utgwx{C{iaip)CwroM7bBp>HN&#OicSAERja|4uQK6KK%#ad8auVFNf*%>g z+oKQ+YRxPVI>NZY#(C_!|z30n3D>Wv_N5iA1Fh=w zT}VIG)Q`J^-|iFM6{r*xHus2kVt^5%Yvak2Piu~hijKZUoWds(A%gym7*myswb!&B zV`lEeiM9yB25pqM5d%U68(jk}G{7OsG{k4!av7zF0%&>usT@uSIzWSaqIFU2>UMxKJ8CyH%`=S6Ad2|`yPEhZ;oaSu$T zWnyZ`><=VUW=XSkj#?rz`UQ375U#4CQt)k|mt^R`Wv@&R#>5nTS`yrmE3BB61Z)`D zo0)*hQWdQ2i0+tBP=>2>@NPfn482aIJRCldDd6vm23f*TE^jYVr}f{38;Fd|$*~az zCnU}$7x|y3VEN7!%8CkE@tB^Q-!(~_`ey~1kp@uK8K{n<2~GhXu}(sM{Z0b)HpzvT zpLu-HF_{fHI>Q{Utc0ZXDYWZM14D>%@`xHi@*QvYbHhy%hojiIE3Y~NBEf!L?eXBD zG`UCXpfS_wgv``Dpy!ciy}lZs{J??WQuMIF)+!Cn(4JmW;voWm@JWYpUDKRi*VLpW zB+N-D7ME5ly&X1be^T@8R2F?)TseytdD)OqcC)yV^P{#B+?YOn`b6sx@yL5}*8XYs zs_&>7HAAcNuqKqx9((KRjisbc(L?Pv?lW9L+%#9$Nw)J^&~@1f^Yc-{!~Zo%YiKw z^6=@?@{3D=c3{!}E{bC^JE5TE`-@fkHg}L=7|uSc$v0Rrk;`A)L`Ul2t;7Hqxu(Y) zZu>Gu+xu~CW%Kzv$wfAcjexl$EV;~(bfcn_uqM@;1$biBOW-p9u$ZAb}8hkU<&^BXed z@FF8%cao4OY>ok647oM*^VhG>Tpqb;1A94RuIjwU<}Qt1v3+K!x8_oanJ&H45yIZmXSZ*Ly!w z89&4;n8-K}rdQ6CDZRPTKP@~Foe?GIQ?JtsroiC%eUTU>)ce{foXy4q%j^xafnr&| ze5nQ7lu0P0Zov{D>>jP1gTS-X*mWy;F0Ii_tpQR9a+pzHHk@EFADp5tLy1^we#}x2uys&L1vo#c`$h`_-y;{duDF0hd_pVdU*}Gg{kxh`g$-- zWIt8Dd2`hK$Xv3d^!VUnKeyLuib_6J?0=zd2Td2DdX#sFLJfnc`k6~LhY$aS6d8gB zQ$#?UnbS^5r|a3vUvsFVmiKwOEQON*!tnT=Z8|V3s3MF@Lw`U}zMwrIBx)P83;z6g z1w)|Ho4N9hKYp~nk6Q5X`VSxl6HGxm4&m&UM()$geVIbm(o68*^dA)XhHob_Fd>Sw z^ZJLQq`S+@GkRai@z^ZcU#g>wL2f6RjH1b6=kDd+w${+o6D)w!R=T{$Y5QRRW z?^K5bi?!l&1G4}5CJ#+PO-OHgFlRqIvBwkDNxR%$cMhSDi_a+!4Xx^iiLY+ocBZ$4 zowNU%iqYgP|M%-$PLP5Y+Oyu11X);o`+de~*Or>cNyaH}BU$8R$Bk$Eq;Xo>+Ma9H zbe59(SaNBomwo3Du?u ztz5Loc#bffZm&1gnTo2a)jy|VSj5pU9%6RYt7p&WKP7AeKb9{Urm6X1?KP6M3P~pq z%k(`$=|LoMcEK$RCuKP)pn76wF_}F$K;Ou5WidTb;?yvThaNty*Q*@F;*X+xbt%gAnn!vNac>b0ixEm3 z(P+c0dv-nnzS_Baw}q*x+OT0fI5@gWdO9Co85$pDs4OKVH5SLe!c3yinR!>fU>pSX zd-?qN_~C~x#tXA1y`tjcT2L0Wqj%OJCrl5InvUaqdqzhkNE%M|;>5Z8X3w)@b2dm^ zZ)OpHhN1>KO?PL8&(29lQ?HZefk~{sU8|!uLYzLsl7kV^mK=Nm+)Y|P1#b#y(Z!1v zY5y4^u7rJ-v(02MTSJ+TIl}gB`ltP1JJj&A3o(LI|7s8h3!SS&e_%$(PXnwk+cYLVH$*-(j3#B>BxNhH=fLzzfz^P4k@0`EfE1*GApzuCF_Y49yu9->r}CXUO=%?*%^Js<67isP4)~Y00W*ckhN~ zAXjFd^1hf+qEuWDQc!cI9;Y%0l$G7@o4j`YdZ#pZ+mx;FLmUqbU$(Kh5PjZU31R@_uzw6 zB-nFarI$MyzSZ_9`V0pM-FI5|>6_I7ziO@sYOx5jK}=B9(z*yWZ`;Yg@#7l22L=on zkZu)>26_V~DbtPY?SW>E}K+q09IW1?Q^aS#&;{x4w|9*r5{RC)Y;l~eMG>x|h zBu5=Na%9gQ%Z6MQ5V{MCjVhuYbU_Nl9Mxd3`;&(ca|;Ur>kX7v3tak*^cFq@vqrL` zF^XN0kWv~E7!ICWO0_&8Gb9DFt6EWH6u$`n~ zx>{QGBrPmb1?kQ7G+_4+lJtf8AZ>!3t$h17|MH4?>5&~1?GS*XK$_t#oy6>R(^Ji2 zI*36D!uRyb$MvPFdav&eC5sS`!sPu{?gf2M<%*GRM^wJi*V!PFEs&-m0+kC5qxsLD z^PI#x8c~=6(!;#OO$rPk?SSeN`W3$%M9r0sHZQ1ym|z5lX&(cXFh||HcVNRAR0>vm zQY>J)s2XK^P&k`zu2^U!Q1(?1F@sjuVLbWg(zM|Q297H7wtXt=eAo&T)>Md(NJ2&V z18YJ~C2XXNzGZQIo*ooF2>kei=Bua6l;-vfNr4(ni5 zzlIOH;LJp+PdJgP{C1#tWC8en|D3eL;E@)D790-Myuo^U#W>}%sl|r#3Ah0@iX>IFHjN=xTVyz5tRD>`ks>7k$?NyP4o`^ z548g*@OfVJ`FexJ;q_5?ApsmczeH5Ei^?MpkK1}K&GO?=N=X+{LlqwF<(dtG^uySg z9@CWcYIp4w{%t2|{4k8_S>bdKJA{}1`!8-2)_pr`Kjjon_WCN1%#HPWa;$97MQ(g& z-*FdT-rnRFOjLv;yrikbeBzEF^p z)f6I%9d88)GrtPnb+FV_jr{cWD}yQy6DBCDBZu<(^3p!;{iGhW@#I~jpYF*vO$W+T{QN9(Y6$s!Yvux~jiv$Cet84G2cb>7~UtH;`UfaihY zD24Rg2MtkGePkUfc~eze7$hPRS)q?TSs==-V6VanvX&$E^4wq*uv7XvskKRVeiHiH zCovfr2GS93egFHhv}O6zmYS3EsGB}t{jRc-tZyu$U+8^S7`g?|q0ent6M$Wc0i`}P zdee9#tVC=V973WQ*nWnQg$c^r@3#dbV#$7=i=(ss9J)#}>n`+>slyrEmC&mZt|Q*( zAU=T`LEel7hKJv!Wz1tkjB-HGu=4x~Z~Z53n7cxAf)4w=cmMvHm$t-=ijg=?jOJsy zWZ5#bW~Nr7kgJkPSROD5LvbdY&;?1>w!Mb-+CGId$aCE~f6N=GyyQW^B2luis)gYA z`P1i7y^RiClkU~!bC|(hQ&nYV-(M!AZCQzep77*=84lG)**N5#hbjz8-KiacJI{P$ zPMF|HeE!_rSc8DybC;Uql_D|Sor9(MYhdeRm!k4r7fU{q^YP|qA2u7@hMag93_(Ey z{S)yc4wH>HSp6sbDav`Z$Hyh;*IrWe@Y2D< zJ9y%7bj2^9avbq(YdP^!Pgn&KqlG78c=<>`b9PBd^s`EKG;II2oTd4(rl;YrOyZPQ zty(30$E_1m^k|(%O$9v~dkGP6>O+SNfqx-{U*)6+O;DxQK4rB|2ugh3-CK0woxNe7 zs$t{D&s%DaGFD=G>NN5-YOT|p-clW&-ZP1=O$3-7;L}i7J}&(;hzeVtZZQYJBIsN zt+CqED^38f!Zm%Wt|p$X0YN>NCa+lR>T0q?rRMdA5A5s>tjzzp&!R3%zXf=(iv#GI zW=vae@}{@YD$4?$`%C@ZH1XX8fg-pOqABLrjbF{p3_-Cd>>%DTlOqdq1USyzrL?7f z*EkcYKr-QC@Fgv_)!n;;F}*GQNe~hWZxvacaaSmG5%)d%_hQpVF^v&cgJKqR93uQO z&N%)lk&sT-1haGVoSbd~43Kh|ez#avkeEk89Qdn752kCslS2w_Vi`++Xx@KYN54Vs zvq`Pay(Inq`{iDF6!Mr?W9fU3ypmD@%*332%#N4o(&ak!3l<-gbK;Z9-2P3HK6s?Z z?@72|V2M+dqk+S4#=tL37$QP^_>bg7LpkVc4>(8a9P_=sj+o zJ!Sa6u8V%sCoxn=toBUl@2IIqjTM{;+r=}nVhJr`Q^ z?F=GV?ZdHEqc^whd6ANu?*YTe%S-h4|J=|L*!t@g0R#c$3`u;3A>c6Xn{!g-Gog>D zPT!g3*Ev_|I|rK%>dpL>hi~hu{OsUFNjd>CgQAKQuKuqpqt*zk0-Tc{mrp+y=G6SA+2wF?@DR_ zf3(^W9cgqRkFbw(AeRuz5~X>BAc#Em_r{dVn00BIBk=~~QRtE<`5+60u9iUV@Jn+w z>?k2AWTgI&M@T6|kVILH@~W}{FFvX-7)ExR@fr~ND7}cDN8ULj?ItnRmO9h->S7^r zBFfB9bKn1DU5{2{dk2T2w`a%@=wqo3148{oi*l8l{NT7rTbOqZe)R`F<50D>F&pA8|G^ zIQ=ro28PdI#u>uh{1!pPUdbWKeh_9bP>>^F35{VO@zZn89r!+WLTIL-+1S0ipwDgG zoFN$ZPnw*EvsDe)G)HVXC=`m%$o-LCF#ZdgzXG|iB5u`8D@T_+y4y9Ex(?*K-kLk2UY29j{% zhnC__fj;BqxJ(PW?7sTe!nV~ZlF>qL2iA=2^{~l`&W>}wtr^4mhkK()p*wq-1b?-F zHDlmWS~w5(2PtP9MJ_yD->*G{IvXOQZm0s&AgcM6D$SG@RAFtuIPn};!}QNjB-UyD zg{oDWM5XD&OL=}b^cK(2q*w}R`8?LRCb9UpT>GUYQi>c&FyLs{k;N=)iirsc$m1p} zuowk|TRHy*EB&`cQu!e*6(cx_&vTneh8tAVz{u9d}o-+WwCiN04IX- zu%|7?b>*8dbc{M6)W$?0D%lm2MaW0^^QrN@9=1oF)F}{mkUKebR3nA`LDiEisUV@F z$Z{6{gRXGTgrM}yw}LD!UPfqo^7x_o9ZridY#j|=F#Oc^B7<}(r;hc_WDP-ABz5N9 z#!I(73&TD%R_*OY%MG#L@*h||!ydI=g}vlvu-BC2OYPFm$L}%xq9dpRN{J1?YRJpW z^dCqLrufsO3;$G`?qHg9->kj%ZVB-p3*7_183(k1SVh&+un#1GQU~jg1SZ2iFu#DX z!Y{GPQkqfM$&vWKHzk~{xl(^G2vd^d0Yj;nuA|2ONalZD>(y)5%;OBM1yrK7JI~PC zYrcH@zHYNN@T-Fk{CmUy3e|Bk+SBISF?mA$J9Hd!{YJPPY%r2@cp#53C@d`rX+8cyg6~MM$fYD4@X7M6ejN;_!($;$TZ-)Vpqunj?c}yN{YR5Trs3+ zeDu9VZ|0pDL~wxL_=XP=Q#LT2M;HfTPFki5`&cjVyYP!sZ;tFLIr;Y_noDl~m{V=M2T&@X+*sp7Brv$7+VtC7*#*0v#hY6`{$cbP zvn0Cz9DL?RZHrkLs35OjhpN{E1T+oE=+5c3kXwS$$mRrrKtE)wdAonGRjQ98ijAGL zVacTu3YXkrRbTn4t@jr7R#K7|bfwghKkgQLc_`{o9|t5t!ptGzWvn#3@I=u zO23rY{ix+b#JiWi_SilJkxfd;jWF6RD5^G*&Y`Z@iLTHAPu zc&6&NmW_xznO)iNw{D~|$;bGpoJ^1%D$Ta{n3Ay@lM?(RD!d#;7w#V;r@z7z&ShI}|mV^(_%#KVn`^z^R!G{tIK(YUGRaGf803|-= zg>VRi&{5as$95ALj#$ogW0yGJg$v(MF->|hc$bg4+S=0eVFTOJkRZw6Y!?C&w!s%X zJ9Q9Q0)M8mTL+)J2E9+)&mRsB%Mnr6R!zAu#zGvitu#p0qvb9^A7$ zT~(L?$LP?c?8z%pd>|UYIxt1|>C#K2qScj^CNqXfzwX_R;Dfe2g$^K7BIK$E-SwB%Ce~B<0Ti zVp|WLp;E8MATA1~VA;GwGE)C#qN2|2RafvJa#q#Il4RTA1c8!5;yGc#+RBQBpOUhI za}*_$`t|hY|MCY>>m;f+B&rGv8p+7vTfl;cT&6H=8yXcflX&g*hP#{EXd>><@DkZP z8Io-cwIc=xwt`y(9gn^J^f{x_{*nv$by8kJ%KNDxDH16!ei@vH*;m%(PbB4dnYt`8 z^*GCcvtYn}--4chQzwxh1-JNkWz-|+q$nOTifZYSCG#_U^00Acb_}8MOOV1iuvuzN zbyhc=$mFD;4=%SKNZL}!ppba=9J!OS^xKMx=f|dY;aE1Dd<7N?BMk>xh+Nz+s59)W zFipLRrJ!$zsK*p-xxm3X|6NFK0OuIJ_3OwOTmUD6h>F&EN=YY1D~hyTNbHc~s;a|O ze#J$Ft*st5B?^C#XdPN!-CnonEvYXdt|$OI2-!r)vr3a`)BODXg?d(xt|FzY++c0f zhKLYiB$g+S>P<0-!*%$NPz7Y^4Uu(RRlnhYI}QdrW_a{$2Msy&MgI6)GI_0F7isgM zgJ=&wf!@*v4_O9G7C(KulKqC_whxswp@Ib4@V0KB|G?-gMJ3C1zr83;8u<4&-MMq; z;hbRo^`8$uf3>}%=pkY>V|ATj^}Hp#9EG`lRaI*oHN9C4!cdQqBj;44K|C5djY6Ku zdK%(1dvbf4y+U=}@KgLc>NK-~2L;w-qjXvz*YN*VMfnw5W1)OFd-Z%w>!Ni$M_jRI zCILkw(&RP`4pkwe?NJTizmrMEryfUZ!k1cCyw~p4wk&d&veM0xI*3+yQHvmK(L-q9 zTQ3Yd28E%?rt#||p)^}h*ZL)C!al3x(q!ozV=59fA<#1UD7|lFHZ0appu2m2_pFaA8B0~5o)ZJ;w+mj!!=FX`Cu)GTm3OHa;e_DG* zsS+ghqICeGw#{Bp1EyM0{r_Ur5{UYTT{wEq>vT7~>sehiqJH{o_;vR8u$)}dTHt5Xr(~)~BPwB1PX)W89tQj8i_4A`fSbTino>bu27 zFtS6YF3o{ou(gF`DhJnH_l&6ByT0Jf9OHwfEuuTJG3v| znd#gY9sBbW({*IMKL1-s<^beKnAk&<7>a4w$pW>_adA%YlI*oFaB%)VEabA_mL7J2 zz!BHAq|>LOKLZ!)faroqQ?Ruaeu6E}aM-nflaul(0y% za>|X2<_c5BMcTK)r0(m#$_s*q>LXFd_Et8!Q~c`;9Lmq}{$9RPGGk5K=BR?6ubvvudGSU^DLt+ieMZ z1v1!E!b2I#2fTT*-yhB&^6SJWgAtt=P0SnyV>ow4<2m2XdtqjgK|{GWV7)bezRJa{9FXPMk?}qi*bPxBqGUOil;aH`Q=UR zMY{dW>0oze?!r~8M%K8Iw8E|_Na~y~!XqwPN2`~#ZFdftXdQA` z1(iI7_6H*de*zMx6+SZ4*`}W!@+B6G-MEgHu7z>_=V-OluQKV z024539GtXf-MZr%vux4(3l&}@X?CNWZ;ON?!l&LLsJIwwFvfq~G;fHe0>XySG0H`@5gAdracWHb3 zy#FFj#_0!!lZuuRV3VHYi&k*{u}q1|=X5pYq&QFu*}{mR@-FV{7n(U29UvX;{1}B& zA}F=>N)T`Pb?;|+d3&1;+`F~q>EOULB!^IlfpoA^Po6WLl2iiE2oK79`7=gMpAwD` z*|gYru!D2PtH?=#*A7!3S5h)F(H0~|96YIx4wwFxjzs&J#7e*CSaOEemLJS2((W0y z#MM=RyXf4UoAe(6ZjM9tuYuAdWB2#-vpOhMCHePOEi<#SR7Q=G({uP_MO!USK#|4N zYdXqg=-(almli7hN|YfJd8dOwt3Yr4`>&L&MAN4j*=!1KHu}p7$Ny=oMxk!5YuX@v z$MDa87nmCWHqr8+Z^_HE_HbJBe~>@^4?%DhE$vSEcuu+hpMGMwu0P%%@93DDSnxl- zBUf3&{^AMV*Yn-N3!t^&(f=f$#F;!n?V#wT+U~n=_?IpS2UAaUY+AUntszkqwB^pr zm(-jLsB6Je07x;a0R3S%L2s3(iCD>hDTKBLz=97nkp5i-KX!rekqP>nLSeY|-`&wi z)3%z0zt@b&3o*5QbV}Z3d*{v`MZbQ% zU0?sU^JtCxFApDjRyndhF6wSCO}%li{Ga;Dilzj06uLpX#|u29p}3mxhUGd)3qkMy z@4s?U8PB(fMwF7^mT&waXk=ZNERj*tP6Uc&TNKPx7cNGHl=mJ+VJ)}CWS76VoU*?5 zy9D?k1Jp)(HH}ii~hbah0tD8s`(91$A7)wXO&REUVCZp>V_P>a3!5&%5&u@Lyv5zk9Lh~ zyRWuqleCmvCLzwxoyfkzUv?l&r@^-ZYbgGo6=5SI4(@Wmh{Lxr&jg;~YUQZ`Ewx)o zOfjZh<+-JCf-xMEE1WC#0%9Y?f<_H0AO!3MA{J1QlNc22;*lcl zKs*MyMv0i%Xkt)ei~<@2R5(b8*Z?~sy$BYHfb=%Mmz%jWv(~Ix_m8_~%^#DsvSN_) zecyS%_uc#1&wlpa=PF*Gj}e-*ct2dM)5tU4EhPcODx1Dc^Qui2^9v{=Fj_fk=tGR%-zR)b$^Cp(>R2=s z=8HBZChOk|GfwCeY+hy~7T||^q6kc2Q9p>H3$N< zK=FCWAzkmH%|>{>jEtAn&|n}?Kiuv&=Vge0!0kaZD~`hrn4#!97mVF1x{4X6W}~Y_ zOR+zr%=NQ%-gSSd+MdMFsAnbV`C3 zbcBG-bywd3(Xul$JC9D~!b`^tJh1e{r!VeJ&AykNEn}KFHP86dfWE`rUY$7>zB8@Q zZL4E8rFAWMouT2E>Cpvm(-Hf-=9ZHS3?`iUuw#UKeq80KfNO@I@5x!`eu1h3atk>Q zUfZy{gaQious7R`lXZW3j{T#kK;G?+T!KwJTyRx?gYDdnW9${i14pGQ=pKu zo-*SkN9t`NQ)!Yy4|!VrMV2_tMB6n|IT^275OY-YbXYcjM7*J`51;*FKC}3yWDI}w zHk88_T{LX&C;eMU7myp@t2H~ZWD{`jLp{)QVwT7HF>wPh9G$yL_6_>X!hd8^5cVy;#<2ypI=Womw6y0c({o|jttHRLs6L- zVq5!^i>+hlEo`k^n!LC2vB6s*K4uru@e4IDBnmOrRf_xVJzt%nDs$12#VhJeZ9{et zFiC{H^Qvk6UCWF#e13S@j_Y;vco)N(cRYA0$c-wA_W=^N?y^&d`#<8OILj zZOU3casAMnyX!AGE?xx1H5gc-+u}G{`1*E{c|x+NZSgZ5uJwRMIjz;mlk}86t7lMT z=w}+gEw2e}eFP-I)NGT6W>t4Gh>@giWvD!h#O{$16VF6h`0LW_lr4rZXtmcKZwRPK zs*ZZ-J)b0yiQiL?p?b!ivIYG&|JFi{)~8kZIF1(~Pn@kJ2)~3Ihl# z&frY_azBJF>D89B6MgdJ$?ZdyWs6ag{IMRFa$D1)Y_YdoQ*VW>En{fL7;7G!kbHJr zTr88*R^|s4|A5HzaAM2Tx|NF-4VUpV>Wv(o0m78$2*XBFufKrmMVx)5cTg`%>5nEhoS}tmu8yoa zY027NHeU^Bi+O}1S!zLfR%!dz(@mVaoD-|iKIOZ7h=p$$*s88#^THpcynDFV%XjD+ z&ZY&Te5cajXp$q}O3`84I6bHS)l$+J{yUD-Z{w)?-m{I3+r>KrEi?n#b8@F~q@)(` zecG~dH5*Y0)YS}{bo9p`i8+2n-=QD2+h+M(l5KvS+*0?zA6X_1_oQh^uiDd--bvGN z0L&Jud%h(`bRZjH{Mi&SiUN8HLF5v|YH@A0^i`F zNG>)^o)*|jzT(RmEEGMXWSmYm13cMNlIC>yr5kx3+7Ey_;e~JWiGbm|ZWXu}b(SBo zPH8Umg8#gC_pWh?QX7iph~2=!Jln|&D?WbP2iYb}(ldu>EGkH6<x? z^gC+a^B;*o7-}Qcd*IA|H34?iM*aU^32^uStMSk74ZrUk#ojtqx6;;Dfs-aQL?1Vd zaTid~N5b~+SS0q^0t0rUd*Pl++>E`AP4Hlvkn7M4li;@qQCa!MvXGqudYQlec>H+d zH@{x4x!#cVyh+F6896gP<9){<8mKd9;k}ziQ391l9pYF~6&F>wRK{O`5gnkz(hoaN z5b=xo-|Wa$UCy4Jm#Wm7-SQ>)bm`H6n`e4Hx!Df=Oq>uHEY<#YUi9C83_+Nj z_-Qg)DtPJy)o(Gr@`pq=|$ltD(@8?b+@fPA1&{R zNdNr=@9fj*PrcI}4lGLD4po5wt`Y^?%30&(?`{K?+K_~ZIGK*rb& zjvWn7^b^@w9kXyqe9R{5G!Nng&ULoty?vCl|L62KAz@+bm;zQcVcMnVPmdx59hzaQ zIZ|^DZ#zWpZ|z8p#L7#1@3(C3E`w`d?T7T?klyt~gL6%tAvnO6s2^9@tbGgbF`#*% z)y()>Sy9Ato9Y{vFUt%_;h(wLZtHI*<&&AM)nPa=TA{94^V%}~G2Zh5cus0TNC==g zG9uvSG4cW7;VF1RM~%ojaG7KzH|GB2Oy!FwxL3<%25*2p%Hdk1bPWke6EY1&q{lH z@7L#|zm-z+720Aj+;vi<@J|1PTQZradD;<>N+6@9x0}Lokl*b?y{ZB@!~7$)Aa*i# zef@)YAUk;W(q(U{4PCleuKt%%KV7<1515zel~+{gxISKX`_LoFpB^w`B%#oMPlSAb zxJoV6_c$;ffJJucIeJ}y*})-GD{hSrTH^NcmxjQ2iUY)^BEA>l0@*NRystRHm*nrs zwqS&C+9KVFNh&r?_@AP^S8{dNX&n`!Qx5T;iaKaejrgLZ0V~7Y9e!ICZCk82lm=|n zpEEI?uT0M!;0S4tPGRwg1EWKCExPoG8#Dhgp}>uax30tk$n!Wp&ACnynGt5)XG69R z#Z>cajb6;2rA%*S?O8SiIG>S@d=CPp|*h092u zq-`QXE$sVzojv8`tmq6lz~a`OJ6G%Pj29*7bWWf!*-_*DE*0?B`sB1%a4xUtqQ0F@O`8g6&)>L zC$Wx|iB1G9`LruK=k@p4??(_!P_T`D_paM3h7itONGO~|VYy@PUPD*e*$uYf#bng% z#m-TZsijBp=A@Z%er>efcS9SExy5xelBzLlp||tw{}Lc`_6JQ|^LWl`|AMN!Ax3qP ztwdRGCfK^9_0fO4{own}tXfB7jH0jJaQA!{*P9LX_5CEKnM>A zyyo;~olIlF(eW1(OaC_h;)0GgeY4hu)D?!yIXnX_2Ag>7468$dq<}97ykM@Kcg$!9 z@e)zKw(hCgNiIJ2r8irk$Mn?uMZeOV_3{+)MhXa9y`XlS@yJ*OJ$ID1fDEEYJuazDw0O;pQN|6(i59NH3u{Q~&tPap9%ocJ5)Z1>qL5Qgjs9(5k=hrnRmekU-QfH7*uIm`1wpUtDh-j+2~^&)ioaz>~z;3 zQz@lgjk50PxvQIgRM-0J_a9e_C^Xf-m!j=agb*esCVEhf0HaiI+MNH0pup5nL;YkR z%#trSKu;;;LN)n&fd52&KHZ(ou#KKoaT()`N5m>9ma&u&qqyEAOOV#xdHsWvD$W&0 zz$wD#%Gt9OX&)JOWVxptshZQi$Ui``AoQ$pRqXHEQ(7z1(}o4;c)tA6)**@KC+8x* z6luUkZu3s*keE|dhIv8Oew#YI;i4#8|Pa{G`iS z9;Nx$DpM`Tfbxt5*^1hLp-G@P5$BFIe&8GXq3IlR_&rI83sxIld4O1h} z?BT0gO3d1Gvp45?NlFNYbd24$LZ8sCHh56q8PdS`uUXwyPOzn5OV+muHZ7N<;Q8i4 z0`2ZP@2WcP3Z~OJzPb1>CUY!UCC=fMN>5jgb00m5;`cQ7zUaU4G`(%0PxX{AX-{%@ zvyj-7p9s6&RqS&Xfw3f#X_Q$WaAlH6GR+HbyQWQ%G zZ)~a6gj1gra*8Pek`hetxyzgI3MJjMLwb!G6W3G@@$4>(xkwiln$+`)vtLCWVJ)3+ zaRuBOPGi2qoh&<#fY`NJ*`E%t`&9C!lWKI zK`)!7;!==XITjLj+4jtw1#YQ60}f=A-Of_0V)-EbYp(Lh)STk~C~3mP(?!#Puy=NC zKt&aXeh;>?w9W&F3d?N=1K4ic@vEpOYZ$bhKx&6#T%3`ayW{r*F(ndRTN*IbKPsP4ObVBB73k;dkLGNC<| z)B#Y^Qp;3`;Xnhq4XNtRt0pCt2MhE>bHVPa%h~ii&qw;f@M(@D$Z~Sj@Ma!C$ z_8I~EacFCq>g?c9*hfEfGNeWNPsRQlov|)|ot05Ixu+UoqC)FIpCXXQ=^h(4 zy!c~~tmE-=>nH8=BV29{5vd|vM{#E_^Sg(EdTQpMZo>+|T(U9slpLF&!Ba#7G1|nW zfN((*2=;~__(R<4X%=#h4iF#ymC7%GfT}sUmPRXr;Ht&M?HlA^$J`vJZX#f()5++c zL~$9WATXm0rv=WDF+gT~%=J(CS$9Wvw@J@~l%Ns+&6#%JiEMmAwD3I@C)lsiZlVH> z;TLWE%cNt`WJK5P*;jf>keZ_TS`mXDUoqbX*94k6a@>CTa(U+ToP2q2k)fz6 zEVPsa==!$kcDH0m(>Qgy9>xCY#Y>F}en{NX$qT=*Ek{pD4|hJ|MHPW-lZ+A%;&V2+ ztfO?$wS;D=1<)21iH?OGjozw@yJ~p5{RyhqT*L_^(V0WJlZUQKa^)Scr~2v%R}pxa z44$!aG6k8nKDA!1_cHgONLoj9S^%tN^R*?OuRIWJ!4y2F37$TGq5S#n=kbmBEIIbZ4Vb4R;M(E z)at6)gb=Gw%z>q|l#uv>tM}hTgQ|GgG>V zLH+wvc$<@D5-WCWr1*v?`C^2-6?6cDU7BXKl4#if$ND-CZ$k1$t7oV&!`w`%H^yR4 zQci~KEb3}XFzYDM+OpPDQj$~|-u^8IeIO|_zoX}|$$Cnz2_Nm5?WLa;%2M~tO!(DO zbEYF`QPKHE_NE}O$2*zS-x{rVN_oXhO|6%tM+-pq49H775uf#xuUDWl@#9GktRLX1 z=A1;zr=P_$x;P#%Oi8SKO1yzXL%{=l7&~Rx!-e|$qz;s%xfl7kXSd=3&QHC>8C6oekU?O87KOkIMzQ=53vi`vB2 zuKJ6b`7T;oL)eQ{8yE-L6)?b2Mmar9_zWQJD3`B0VtgCVi?rPo74ifG=B*mK-d~W1 z!~T=##zl#4-DGgD*QT_C80kd;z~5aOsEaF=SOd(-t6|#{zaqvAtP{|j*y*`EyIbHyC=YzR}COTYi`R1cZ&*YWD?29{ay3w_f;?==aVGUZ@W80z7Me?lDta}e=geti$ u5p^kI2ORyqM{~Yk?N2}We}v8M(p_0`q+S})oCr^+ws5Z1oQoD;e)DgNfQ)DW literal 0 HcmV?d00001 diff --git a/13-exp-naturales_files/figure-html/unnamed-chunk-16-1.png b/13-exp-naturales_files/figure-html/unnamed-chunk-16-1.png new file mode 100644 index 0000000000000000000000000000000000000000..767f91ea9b7ba511fefde42ebd5174f8b2efbd99 GIT binary patch literal 153029 zcmc$`cR1GX|39oHvxp=m8OfGeBqSNxdliu_BO@cLtfI2A3E870Nn}(~**j54_R0=r z{2o{D@Atls`_KEh|G2NC&+&1*({;UGuk$>g&&PUR_taJ8Dajbfh=_WewcD1OOiu~q-{tp8xT^|k{B#))PbwEUPhEaqgJ@;jX=^gw3`>~BA&42HIKU(irf4l3yABA^v{Mhl|j|@9#=l}bO=m8O#$A3Ti%MtC7 z`0qz)R{#GOZ#xsLO894K3xEGQE^eJ;4!qBBv8jnc{0I?|b)x!PJ$VO*XZk!26FiSP zy1Kf0dRiMBY3|8VrjU0DiYD2co6C}L^7D@`cu=P7>yq^G@u3T=8+AS+PMzx`{_hn? zbu3)Z*m$6AQku6@%0pd<<1W>EH`l_6w)FJQ+lH3r<{vCe?)BA>22Kq*oe2&OzRXwl z`AIl}VU)-cG|Sy;Gy9kSp9rAn5=1XZHVjDV`q@-_b4U^T&0xA?E8> zeZDw5TU%R4M=7u6iC6aD8UkZtVp7E2rWS@j1qB5?eE878!NJ$pmxr#v%k;lBCbGTQ zPrmm2`SX;s?qoqSGIxW5E*cvfTUuIbYj=GuzP7o!$zAL0?CiU>KAxG$CUZAE-SqOm zm$GuxRCmG3%1QwP@qh1?=FsIu=5zl1yT|8l1!VJvv$F?M(S?baeYjgxvt`IbH~9L-g#)n>5mZNx6y)TTSvE5W2?@#E zeej?;Tx#pHS+R_a%!`te0^0w*$l$IDf4^;P&`kHa0YSU2Tgwv~p0QL1sHxABOnxsf zSr+zCQfkE03$6S4DV#}u`Jr9R znb$r&6f})ujVf8L{hvqM6=8U~*r?1Q<^8bQV+rQKGveZxB$d_FP6jGi)+t3FRa8Ng{I&<{Gh1y^h;;Efsb!MmN*FM=tvDGA# zGUE^#8X8h2QFMvZg|MzOojZ3A2}I+*>S&a8g<=I!hsH8s(_*G1ojJ9P#PwyMx4 z^~ZCu=H|<3ylZc_u2!k7tqo^98yg*+k(DKK?c@C&yNI*KUFL@T~7V&Av(Ha5+0`{B$BCqPELxsO=**plTQ-S(9rP38EI>?xulQWEiS$h z^FFiu_3O)3UOHPI7cXAKQ4owpxoI4b+M{y^Ufaf z#V^c4JbLgZCmo((S9#@hO8Uta@LYjd;CIFnAppr2a1bDB~dUtok)>tn^!Pq=w_?mu|Y-PShIU7+{>{Acgpy$g(>W|h19 zC?c@DqT-cJC%crC-`qe|lqdD*=xEKxVwm*t`QN{veV=<^NiVHpZfPm$xj52WVukvh z?(%Pu{n;=2^t>exdf(NhE%Uj;ZJL%?-^hqb+*M(5TPc>upxCTVYI}o*k);*QwNS={oG!-pTx3z+phyCRrW+fK17H{ajipOl7OTX!yyDqWra zzyU$)w&OuZ4*&P4v}5p2Mg|5~-rRiPTY2wZJ(ks$o5H{P$B!TO-(GP_)QvBVHz$ox zO-)Tq=(igDyFF=|jB3_-q6ZhHrHSecBvYB_>Gd7!|GlBKRu=wBox9q5eQ~C@Bsux0 zi_4N~inxKkzObvD2n$`eaUAoEBDAjdLm-!&{qwSEB!` zU&5vwKavWYnwm`fHdlVU3y68TJ6?ILE&al2$ARk>7TwRwb=0h_ClW>M4$#nWhg;j( zwZ;ov>(19nOiZMV(J?ek)aS{5Sl`mZ$IXp{ke~YK-vy>AzNh_@J-PXJRZ>#2$hc~% zwr3M`>tjbIvDY*W4J-V%eWj#oUc7h_eCdAe zQ0{$G!34CWV^ROJ;1qkjY1rt((0*#X*EKyeUj&~FG`Fy5P7snGO}i1$*w7Gq@7}%e z@bRT}R7Pw9jaS_7hChYp>81B@-nw-wMr1?J#OGp8%YO(c&3|V#DH$c@gV4|@v5C=9 z9fObZ^70`eAw9Q@U9VKQ=AkV;d-e?HVdeL4hu#-iH8p;oo?>+;_vd3eu(~Bp5iZx4Cbu zEl6#xWq9?7{;(REnepCOy8&DjWTm8}WYwG~;yTgx^5sh})&JHv@c`|-N(AnqA%3hm zsmF&!hn1Gh{nvMc*~UrlFK#(#dEv*-C5qZ70vf&d&&|zk&yYvi{NiHv?-JU~uO2C9 z&&4L?x>i_N7!?&o!n|+aKDShAUVh`s&n+#_evk6;@pZpB#mqdkvA$GXTwGUIr>m=r zbw?fT>+9303Qr-t7*kvI=;nuNL(bj$y|FeN-rY#^?-RC0PwgDsO?gCA8BdGTjr$W6)7**Yo-FXWPshzh?}l`~fvg1^&aY+WX1Y*gto4IM)VK((c%` zci$s}=Zr^=yzyF@LN&NK^R*aj_SCSHLD2j&D#Vm%`?k((N=NC-m#-Z94Ihx}JvDU0 zC#^HC2nq^TZ~d{`yLYdndddOH%$dy$Vb~5nj8K)nBP5G%W zu}}qiwSHS0o~Xq-Ra2-gi`VAJ(4?@nrYAddx=cTQ{OHO~t*@`&*6<&t_~DoC?`ZoB zr~KznLAx)7LRKx6K7U2Ixx*Sqb+xrA7=*36ay76g1Q)`Yq*_{AA6iZ0Y%AU8xuu8fvfc+xA=v9V&V*q! zU)t42j~2Mddklr~DBrlx-NZuVAEKkB)#e=d{=G7vKmCP#e+2UdcGcwEnVILNwHuq8 zF)97nyI3nNP0h^x;52gqK*SI7F9J-#iM+%HJzJT~Z}|%&XT3*GM!)*tIv%5-TeuLjCXD*|~mxZA!(UNNe_6nUvpF zB>^`*%eOs0kRcz=RYxP!(9od$5xaTm6O-Q~o5iAxjFRiUFKR>f3nhg5{e1ua{mz{` zAN4N*3824s$g}OY(=F6L&wpbr{K#pCLX#R}4%&uPukEd>nwpyThgZys*SdaOF zv?wVlaY4(#o!sx=O}MtSE$le)$5MXJ1jm-fTLtCOz_g7mEG^lqu6Uno>*z3ibCY+I z@CI5%ym6;(I@r**xvrR9yOtpsTyO5X+V3tPAaGJOS-;9_1&i?TsMzA-Xk!ewo+c0F z*D^Qoaq3I8Qr#S5Q@L zX=!;HD+=ln&pYwAXeN`s^I{L5}`Zds2HJ6ykh-OkPkY)Vt} z{rHlIuyB5{m63)9>TWpd+{pv?5^gp}DZ5v|Xq36#}CB75f$0W&9@|1{!=Fp+l$#gJ0^UI>F)NOLcNIwMmY3Jf$&R40SVt^Y*`O~u2}#7SH`##aID9yQcGlMF zm*3cS=YxqJ1q|omQLfhU%>r=$OnXK60pr;(A3m6ap}NvZ@n3%ZoS}bZ;&W?j(M|s4 z&z}_{6*8||N-F$aTgYgL-_Ine;O8;k!Wh*3M)u;xI=~T`3m5E|#R!{$h+)3EW>UR8 z!B0|Pdil<&rw6w0p$r+SJ8 z@$2Y-uT5)%@rGP)!UF7aSNUD=)7!HdN9(15$TD z=D>jiv;$lM0t+2kN?86Ap~uLy$@cBr!ZwXbL8JP`?yy0V=0m%@aGTYcZYDfxlZ<}OAB2JQyJ7AO5j z?7OJQ*0L`c8J#_K$_ZCQHh#_JOfuGj`-th6FJHjqP9u|DFJ~<36Y2!P#CZw<6>iVj{zS>N-%zX zVL{%!;3=6}<2J3kK6QmfK;TC23kxv&oK#*PAQx2LXCH%bu)*hB$LGEl4@35dG0G62 zzwf*G$G-1n9s?zLSE>SAAI`|H{x?}Q-T2IrpFf?UJc-)(aa87GmBz-#dV70m-D7Py zj&Cw%QKbCi_5OypIhR!~p|E4$A2%sMlWs{mJy%dvt?9WJ+>(`*RWu1y%x>zJgIVzz zKE7v*7uH2rSRy$D1*86qO8Rc(I-Pw6td<~TRq^_Dd{R=Gb^H6));ZL$hQ)HX=`Y}7 zMb96K`);fO{O7vly3Y2AOtD*`0TyNGZVdXYGN$-3dTwoPoj7rVRqp;*R4$7ZRTAp3 zIuJALllJ!Z(zxu3uV^o59wSWJ0Chf_D?JTc)CN3XURX48IM`WOh=5QhuyRGGmz@5O zu{=fb=z_AtDlYy9TOGZ778`JTYZFbU%6r{8q5K`KEDNF1;fdt{KM87P>qqeo6Il7O zWi%5tQ1CQ*+q28%xRpaPB;lW+!?YI~lza?l;y1}6-+f2K?#o?S7K>FJ#n;OL#AGPA znujm6cNDTOudD>zxzqQ`-YBa8dplb-r2>aDH zKd2**Qc?hZmG2qXfA}!cm8T_m<(QARcW!ihN5@oODYx4{7%gpoe#hYM;@+8e0eg#Z zF|DnR0B}!@$}CUO3l|+E*&VWRyG zy3Z~fWR3iH3p@8nY}DMjbB7?z{ayU|^Cy%`Y&lO4kNNeDIDV7ZxVT%Mp42i>E181g zyqB6!cO(@^d9SIDW?O^e#qj-@Y}(Jy#q}h*COWzkqL%i@wsIYn=e;w>&UvZ-JN_BP z#RB1LlmecUuzqsQL8A;9S>@u!%9QIAu7?d`2El-A`C7GB07 zc6V}`=*S9t_3GxRs55Qh)2EZ>lFlOpUZUx}M_EM$WnX1nS40?acxtEb`r>HRc01G% z&(q>UPvp6Wv?&^HP1-4D3 z`G;)BrKXzXtj6&Te=CFb6Zwlw)rwS{nT?tGyk<4HgwOWo>V=SfI-aD>I-{tMS~;p& zUpX9xKRy82b9K*N1BNCX9BvdbM;XLq10NK@mYu zv2|wRi~HNDCS{M(jao%ZXcMU2!gJ-GOO}3qe(O+Ut$^9d%F>EhL7J~!y_(h}3KiQD z_ZIi--9V|GUd*@n2S>$TsA_5lHjY|aShP?2D-5DMP3p}BMu4vN{37{B9Q_mDl6Y&e z(uJX)(lapp+1k7X<_B~S_(gx@NLU?V(_uXh9y+8)e1x8!;^>*@&P+VwN_XroT3Tj< z)j$AwQM#~v1>zo_mg7Jr6yksl1DsJ-`G;+D5}zzfcJ0~)T6SxyD-X;8vb~KBKxHfH z)tC16;@~{p7=U9ekE`o4`jae+Mq@1RISC0UzFDiZS4(=6P|5_Z1;6+>19H2xyj(b~ zO-@Gkdv1`4miAF%;w2JPwZ-4RjbA&ZyO!OV%FE3q6pu|0Jp5F@t@2=gG9vZV4`vIX zh#;^>aVNl~sJ`fUz`MqJdS&Ta=+vdPX#)|Yv<(m*TZ@dGofnhETp;eVud54Mq|}+M z;ORYouHNe~gnb%IVHWr3(Z16~*F`TyOr&pu}?MeUM1GrmE&EzLuv(tg-4vrxlXU%mJ6vjPmGVJlGzRF>d;GB*VJ_1_Y?u-ft=tf z8_SL!A`6PLA9&;mgn}FR_RgFt+gkrCok{!7gO zOOs%o0^OC#&QHzF54KWv5HTdHb0iDfM7`fM>FDevY|+(U{U}=+-_tWQGhe^{+SW#u z1jT4WDGkI-)ZsgaR#lkD^?T3nGHY+&^GW z^z^iJbRCtz>e&z<5)uxlJiZBx28__s&=4gV9}$5zc?X)z>|jleuh)*QXMn>F-(Ef4 zGFb({RQp0Y@vCAkV}x_NuM-$u1mfU54i1jjXzWertLwbet4{`` zws84=kd@8t4qf0g*8=BEB0QF`Wq$Gg2qtjW2-4>l(Ue& z##&PetO5F1TX_xk%e{Mw#>U4kQe?+}seq3OZnH1snw8bb1VJ()H)alwyW+sedjS@r z>QiGD7Z*Q1II{Y)F06rd=k4Ptwh|KF9hr(yD;_Ke2&3W$nk=ZuUcX-0ROw0_aH7MF zHSn&;b*}p%ao-$x?0u>V*Nb*8IbN*zWkxJ7uFpYxDe+rYcJ^aTTL`+c5Y71>RJixDna`DMb&>o&8Xi5f_wx7>}uZK0wD`jG}IrgHFPN@tj)O+N^ukIdHK+f6(F}A6v!oT`?@RUFmlp z3LF;(I|^&P%z~Y5Z{YJAwPaxogz9G zeh9wdl0({ck-$sKgJygNFFpuvZr=UhEI@CsL2s`{hFrVB=^d^!=tbB&aGPRWj6*|1 z@sPfuxe{y4Zk06O@%zn zKu@20zpJzJjq79wb{BR6uTOIAP!k#f^w@5Xl?rxRG8hopz-NxCetTslN zWx({rQB<8Na_n39j%O{K;-gQh=^m>O?RChHKG`+N(c#KQQDJxD!_hFZ+VdZrsF(u{ z9%FNDouH1X^xgFOvpk7D2R6*b%iE3K*4=#~aAag8m*+=J_2q7NO^Z|XfbBqh&Nptr z(RM)#vN3)QZv%#R`#o1z*Fsy}Z9^z-XPrkBR)~iRD$e6Cf%+Xy9vsR)%@S$-?#>=) zuMuL$4jvS_{`EQJHSCFb56B4I{QN~Yqi-rIL=_${YHDej)cC3}qAW8aOHv9zYyf-d zP#w>!a+mQ239alBr@X$fB&Z;prj*{D#SZ=AlMN-OW+hKf`|Ea4%(~Z#X!$+wzB@u< zQFb?ny~CA?{%_2;P0fx!mc4p^2kBO}BC<{%5Q31=)ZBcc`z&)N`ol_Z4t#(2sjkUy zjy2$&XG3Zg|L{*0ta)$Y(rl_f0Eo)pr>BOJ`e2-VThzUY^=?gZJk8-2q~|lf^fi6^>1B zgs?8{uUZV@(Qr8E(0uitYu}-X`;@N-Zce8D+B;Y3wf0dk`fqCW4anaaat}0rZ)Nat z@bu(yuj7IiJtPuW`MJ5t_wP?V>;CKYjp0j(4x~=h1QZlZqkn<{+oEWQy*C%sp&N(6 zSNeWj5>j153^)998;DIYF*+gp7zr%~nT@{IH?Qv1{lp&X2nSM;+FYjD9KYn2FX`vI zLmJ4U69yw}3G&GRJULMNbI`v-Y9sFfToA2LLdW#>u_;PNY5JJmz#Va$Dk>?dpv9yt zFfb6n7?*2kWc01C4|>JK#Kh+ii-XoDG7qz5A7Qhch=;ERq~qvKSxw6wym;-NY=qTFBJo<0xBe;&u8vGFhBCl}+hOcSz94fx0T%>-B{ z!^VnErp7q;VVBVa6W8f2K+y}}N?^!;<)li?xn$Eg>& zNK7-Q@~bMK8rnBo+8;Hdv$#0%SlsA&h{7uX+2T z*m!$;qt}?5>GSAM`sBiqnhU~<^o*(s4EKymzsPRW9d zUR@VBeL5B1&1Uj+f@_cXALNbR*Vf{mC9D6VUjlj-MwYQa=(@O_ZKD=r7CZt3|lKyRvJP&(bx%jHt(*QFsla1#;!rFt$wEQAd~;Cb8<^ zbRQJ5c;zfVY91b*v6d90)O8|%L7WjtHu^8EBbQqU&J`phNFhb7&j9h%x95$HZDl~_ zfOHR;``SVIlF$sXK&sf=>YuLUelsYXV>a*X%YQ(n$!vZgMO7w6HL%H4d!*#jlZ1;J zg;7=%=U=^F1J+MSN`mMXZ`pGheXrcbDzRR{q#NRA!=724L{frMm0z8lh{tdN80o#1 zS+NK72(T8QiHz!cHL1;)F!$GoL8xE~)xaREO9p*c8efpdF+ly%;Y&jJkDQY7>FADy-Adha4oF{Idk@Q8=f-A+rwI^tnO3{9$KM1(^`yo0*7 z-0C;ECedf7CX^`t9FU0Rrr%bZb2z{O=>t7>IN$Ci|5bhS60xtn_5~d1rv~h z!2L9QG~7!;f0ba?sy#>NgC-eOXcT>&U2Q^VadAaCBO*1msF1Zn*1(__Dt$2$5TWs? zf{@rb&H@nUz&zG`sVN2cdgF#b%5}i0eu6S#3WZqf+fLYi-#a^n(4z7W<$DKfIsyL*~C^er_Wk^Y@s zUU(d3`~BnLbHsVt+U6xM9ns68ALBcWm3)Y)4i zPkGLBQPzSrc7EPz%74&rJEcOW6;un3abe^OkHrB6=4KrB~`d z?sSIW&1HD!r$e+N?B?9u&&|!FPG`Cuj{Q^p2yz<7Rk&%OFY~m~=VzKjXPZO+mbFrm zB;YmWoN#p*6uz0#I0d z)3$?1`dY}&>O43oXHc>T&nG$gdxrdeJ3Bjf_f_=VV*NrxKi+*xU0+^3e`-IZAmd?? z94PFgDA3BA{q56Zy$0Xk?aRILS~7Q^D%#+t#w~+*pL!gPy<2bo$_@qU&CSyI=V4*w zDY`=)wTnFt0 zn^G-;LjX}ChHqhU@z261CU~HS4q?Nx!CE2*HPgVN)L>aV-4Pa21LH3yT>prD060hs=lfcF48IA=i#E zvqcwdE@phmIApQsNvv5gUGv$@QJb7mo5Ao>vl7{-g`sS9l@D$xu7n;+SC3Cl-hgKi zsQ>|e?8lGe2?YqsTuUr?LCTE80$_lWsw(^Tn*#3)>G59qn>Pu{EIN6%O49Gz{ZgM- zHBJi(KFMw6zV;}^+0D&oYeOvMIw`Y|WfRH%{W)L%I>GGi;En5U1|Xi?o0OQ?0`moc zxMTClo}KTY`hxg34KHx*7Z(%TgxUod^{h^NN7`gBN+h8-R!!u+e!T|V4Jd>s{&JZ` z1VyTgzKi_w`SkDKFNq_);}~nPb@Iap}71dHtU0#f6n$b{M6G`G@ykp6ccn6I%!7U1ZIoAcpXt z@q+0!LO!rJ-`?JJ@R!)!k00s?WoT+XDJn8)rJ?P;{wnh-I$0dw5-kJFi3YLxm_LZs zERHB9Y=%ICknblAuN?wlku#uVI(YD+%hEie5r_>4F*BQ@cg3isWxCA`Y$66^Xy}@{ zx4Q&@OT6j;ID{4SacG(FW)hg>BvYlZ(-F;GFF@7|!lAaq=e<*ENM0>+2YnjOtN*o2 zJ#2ZrrJI6`CD3VZun3NtqzS=Lg4V2a^ULSY6R7Dx#4GU{G+=pb>oj?f9e1V&pE>$4 zJ)JqOQKwgmgn^Mgn$zGJ2Nek!85x5(V_kk1FFotL%BMdo)0~Fhh>V`YBA|q>BxsWF zeM7f>xNJ-F^5eL8hlmKvdG_X0aq{jDea@4PFPts;G}lDJ{6#KncBb6ko}7_zxH@W5 zu#VM!+tp3)5bOZ7&&kO_y2Td(8(3&KI#F_~Fi0&LW6|zioSfDcN0pEWg%W~~e*e@p zNXArFR#sYC8oHN0PpoTQ63hZDjE%3{iVX-e&R>>T(O+~`zl{Y*n?jlURUby%ywAJ^d;g z8R+Iv&jBI6Ol02%`&t`~GvR1)F8>bC=b2I2Gmujv|B3+WwJG)5kRqT`tec>LV)$Dc z8K{GZDC*UCa>mwo`$pSRrCQGOb*5dGE(`ZL!TT_`)QwP4t=`Cx2WeR7BYNoH_?5rx=_tbGfSfs8M_-)yegRi{qL)It;f@2Fl9G zfpwi_WesR)HY&9}NKMV`;;feAp`*Vqk52g}AaqoS^%F*Gxy+<)T-$Re<|ok~d{aS-)d z_S1B^AJNg#czX7hO+P(eF1+Vr=b5n9h00 z`q(Qd+|Bea+Az(YgPKNG;4bqSj2}XCUy+GaeaMuMW*@4^-Me=YEd8uEwuq07OG@Gv zYIeqj$;ruK^Ts3$wxgF~_3~$QT85lnp|&6<3(w%=hYw%|BtbF|wzRZ5Et?bZ`0Q|! zqAW+2H7LQ{PlNN+1S}NcT0K9rx9{e zL#5D^8-^*3o96o8#Hp_EMW&?iYP~JdF9au4O%$F4+=F)oI{>^IuncbkL}K5W-HfpT zo!AAW9igN?A@M+*|KeZqdl1v|U3S!1w-aJkviXw4G+!v18iy|w>l!dl*y(BiE>>&piKS?)X>2=0GFdfy_4(_ACe+b+AI!O^ z>0X3p7}Tj5)M-%Mp3xn5C0hgUfh>=ii$9$syLX-k5`OdMP18am?GmzU@IQg*Xvl)l z`jIY8FA+1 z!+SQ;i0tFu8_3oWDg5l`sIB>xyO=?Ma4X~dN?~-oQ_Kig=I$k|7~&P=m|LX*pGO+8$%&X6LaiN(_eT) zzXS^cnsI#WxX98D#y5HdzUNQSS)dxMvd*mn8F8bOf_0J(SpA&G1U8_=gCRzH&yfbb zpP!$HZ3}?|GZ$zO=&1q;%8?2SFR4i_`sav#n6!ZMG&j#8)IlqNa0>1UT8k=DVJv7V z=H`VhCr+&g z-(7Et(n}oWzoaNs9IvKvYM|UDhXLZ!2t-$uc0&HQtgP(mQ(m`IZUQw>&ET0Cj2(|_ z?1zkyblMSl8&)3)DXDENlEksrwzlU;fCL9`Z`XNZCvGCAx5-I1iL=?DH`gI{|H$cI zP|%i5R2fp*nOBaU|G9*XybdG`hc<^q>Cz=6r4wQHA%2a>5AxD%K3|Y?sjVHZk3LE3 zzBZQRXnVqx$lA*nCYodQx?JxCY1om_x_VqLf%nN1lqcX94`2h-h!HgaNmP>Dby_bn zR7xt6-4s!^e6O4NUaQb6N9x+8KMPSP3se6VbZWxqh>);sMT(N!*=^?swzoWQOG{so z*PsfkyUe$W_lG3RBy1f~R8;i-RHVW(Znv@h|aUHv3-E=4G7Wu*bj~L z=s7P}6(M4O_J(iYZb6)ZSsd$l^O}W)8y-eJUk##er9nHZCozJ7P+d|;h&-HO*O~%4 zUPENLza!SX!=-?^mzU`SizSYR@a>UgHf6?i2YJFnDhj)sVb=C{+i`7hb~J&aqv_?> zECbVTmV0=4LiLqzVAQJl&E`GXC)g6u$v->JE`i+wA&etnevIJ2VmfMJAyS!I4QuSX zSpjt#%0R}<7MeKL3wgq0qSxb_%y-O1NaS>= z9exC-dkoVA6O~UYk)y?gjIKfFZB%=W>wTPkyx1>ZwI(TM^ zrl;r!egDov>PHZX{?MV5bYV}QK0Pw`_ST8~6N66<(DC1|Bmd_k1y-a4iKobV9W%>5 zmU1@i!-&hnU*kvnzwtj65o6gK#&V7BLS}EW!B*aw4aT)mwL^ z9UhBHK4+G=X5Mp%YpCfCMIgiZ}I%Qs+nX&uRCM7nP}I}3)@*`m=R7e>7A z=v|wgM3fIgN{31r)k;Hn)NZ!JiN za1Cij$xpuS<458>dkD;CqCG>HsjNEy@gpEn=*0pFP4ECbZrv(qWqW9-t*d(znitlh zsYw|#8K+N|!HfpC7I8I3u0{PM#%-^_utpUdb}m1cef5idtc+kcUQd;umjlN zn{wjQ(S12!7copzwz{qkkv-)X!G&2({;C`-i#sHAMy6jCe|CnI-w(a4+fHNI9^665?S;wku-I0Z;58i(?q4F)}RB0hLTO~d`$Iz$cb%74C@jZ_c}~tnY-{koSf#- zfxsbj#9kFWeG2Oqrl;*>>`E8JU1TfesNY(afI6rxIW!=4i%^fdV6?p9OY34ZKb(Ru z^JArVRQZWKwX&5V4tQ?<5pkp6^m{mkdt6_hqzQOujV-id%q=A30{N57y%1>UDDr7Y zn(6%N((l>5^Bu^c-{0BOlUsMdO#up1MeKC748!Lk;x{FoR{L|P9c2wep07~Tu+>jr zHEWyr4n&8rJLZbG`1oEy2<|TEL8keL+v-sw|7@~761lOdseXV=35jq->_Dl3@C#Cp z0ymyUdI~jyYkCL!yCEl}tDju2C@sB_SK9S^@dhWcV+V!MqE2|&rMtb^2jv3pwg0G9 z`>=1UZf6M@^(t4%1}`;tfAyRE3#GyZKJM=B`$AZKWQXpoH!z!=J6F}5bh^l-MiRhG z>ffn?@}lFj^}@6^7;cG1Q-J;pb45y{6Bp&=e33v~Oj#ntiJ{xUCiC?2`ZBUrddI8m zW)Px|HK2|D{zRcZYi!W|@{{7ou$3_r*NEQBruGhe5iuyl_`dh|7r3UH_^w|xUEx~* zvn8Y^a245;U!)O}hG&D3T5gxhw6v>u0$8H%36r$Pk0m?>5kXi_J%sox4)Sg3=fK9q ziWCfS@LeJCD>&{<#K6vxBeyUOgTXdzV&SU}Ft5WkviKT~NB%Q*POGS>VEze5!O&n= z>!|bU?6;ij7k>dD{#~BbTGC7B#K0|5Y>*|8`T)wWGmD9hy|l&q_4=!llBKls0r}zq zaYlvAhhxLlgg7{h7Fl_NBN`E};PGnW@@k;kYSp_}XQmU%S|eZuP6eCbez2NX}Epx zrv`JRLKk)%Vt*Dpp!xy6bbsqna28eQ$kh17e)_|Q6)QUO*OR1kk0JD7ZT)%F+2&bfpj=?R`6an{Lhh(L?f=Rh zoe#pNYIYsKu-6SYH;gY8rkZ1d%Uo_3dMbqA!xX_7rfNzPR*|dNIQF#U*2@;Uu*0b@ z+=ewNe`--izi_KFGc3)Gx6n3ii=$sYVMdMZUoat1FhN=({Fo{dF>qyNWf9FMS8Z*@ z-G5!ixB}`OBnb751Wek4gvBgX*^T;CmX@vn2_a>80|FlkBa;2;=|f{fyCTcR{x89IT73867R zjNJ*(l)#?vN*~upvJDpo{bcexmzY>Wh1bbIHa0fU;QSQUE$)*iPYMZX>FMct@MP>p;$++V% zcg_M287BsbCcfXC~^zhT#UQL>J~TZ=8JQkak0 zT3hp|4*?Yf-Y|G|-Jp4u0Wp@fwFOo;Wgr)P&%+G&5ayfn1jn$9D-oo^wm=q{`_@n~ z;Cy26vcV`ThtT>qQPZPLXrVr%I%1A-LPo)>`gf9c?diPWIl&b!>sQs+4v$3h>6uW=6>#5w zAxp;}rLz%l5UWsZ_*jO}OnQ8k_6ID_4c1`fNmy8WZ1C>8tLQ5rUGlw@b_MZ8{l*rq zuM%_08P5fwRTb$M%Xn$l6OxlRhCd=6py6F-uACq^ijqebW(?L1JDJ<=OzYKCm_}Y~ zK0TNWSqV1|a)@~-!u)(|5g$V)#u5l6nT6$!_zd(uVRA$9X)R13&GdMCU4{} zygP!Z86Iw~kgfsMjlxzlUflF~MFg1ZfBVLvgy2{cL{NaQK9c9>Dw7b?y zM^Pjpo;;e7m41M_%VQ1s99h%6Bs+ywtw)FG=?NLTOKNKHlYasM+AUta>osC>r`~*O za#F`v|MF!*vTAYB85sot4V}MP(+Q}K4fNNE_i^cLU3{iU5!aY<%Jj~Ax*QmrIERo@ z4vW}oi)ih}Q_T7jMALOLXvOIA<)bUA!+{a-JaP*+5oaRIEo@hB1LfcgHz4P^2e`9m z1k@f7>!lO#r8^+=f?Ndkc36{Q(1PI+x%IxrBV?4`fy9y@Y)MN-L<%@G<>xOeB{vK& z)8`+4z``>Wf(OC|>duimt38R}mH~(-6D+ml? zkbi2-3Be6$Z-u`%33hvb-?b`w5`r|^VWVd(il?y*sg&VTa`u+glV&EkB8@D~7 zH;0n$O8o2u<}VQgCs2nVLN@V|hCZy7g5>8eAdZQ&^VdZQlPiegrr(YHF2%!h{pW{! zf+ksOYir=E1V?nUEYStg>BYq-9&ceeD){;BSnF9_SXc*rAyeT?XuW`iDI0XuG7fz&pu7UCvRzx=<#BejgRXzT;1vb?eD>HFg(pL@}>z_y6ec@1Jbq zEjqiR+cZ5ffkvU6B&sqra0}OkHoiQq?1?}c*EL#S_bZhi0{r|0`0m!uQq2dYH!vim zGrUOCM4CO?bE1tI-5I4+k-rv~X^aLB2aEGr)_{fdPgK+8Xbl3TfWy*YTmUx+LU?0y zGmcjN3#+5}Bo{X~O#7Nq3gy}1pAuZGk+^sY_GrxC9ux1J88T@Z9F#hBD&mRfhew=R z+L9R?8|x(vhc2nA$`LjpxBA-vGVDl3G`ts_c`##fDYJQVPICk2rihC5y|=e~5{H`> zMa(@s)}X>=$vYtAh@$~%2Z^{->rV=xgmG{vWJ|&Fae~5Ljqf(FnEfe`4FNgw~Q;DLmJ zTRZiGuFX5^IJ}HfzR0N72@X1fWuTehNLZ^l7)J*iBZfeTpBT~S^G>C(nq#_-FavyP z)v8z@dN6jbE-o3`O1yG5>WFE}v#|R4`Jg^l39BuiM zkdVZq?DgI3ePlgQxsJ{TQ<7t;@*|+acuUH1lHmKAgxj~@0Rn$~$Y`Xi%kK9D3MFQM zwLNLXr8pmq?%;r|eqqOct}|!O;44-L0-Rvu2%Ohgj2IyF9OJH_qM~!y1+#r9|9aQ% zETduNs3fuXpOx>ppu|HL5*!S=(@1*-$c5nloM~gAp{X5pCb&^c*r+-R*fe0My$25US$| z%5I=3LW&iXvd^B@B=1-7C}970U?o6V2^ieqa-Tov!e+vdM&UZ^JqA@*DVMSP%b39N zhT$9sr3&+iRaHKza9vlXbJ*w9b#Ch9n&T^#&`8CrMn@+nCYB)|U5aa4*Ud9M$34xqH zJvCKYzo>uDW+~>TON%rkCE_1kIZEZbz9+`K{ix6}OY#lC`yg$;M!y*jV+wr9) zz)llR&dy|{q@H-(Ad5&F;VUPQY>+bhK!Puj5RdEhs81ZlqISa=VmWvu1g?8@L zjZ<7xTot-qrB7I%v81u+&M0W)KT$YH%gIuuNM4oM@>l-xNyo>J>ZxR;ljoRx=UWoa zo{mr+`|i>*huQwhTdS%sBe^YDJSz-pT}z0$7_Vq6Z5W=|&eD8Vt~Jj}O+;i~u^hrO zx&LCr84ByP0f)SAmRaBUPOM0Y9w(8LmBklhMEX3>$|B5ap>&`<-TCr%T8hPe3~*7e zP@nm^a7K}GqA(}sk|#P1hAs;xZ1kA;;Tf0MT?h;gHZ(8*aXr65jPHp8MnO~9cL(J8 zaadR*k12;UP$7PQl}1ab-NOqo_z=Xs9}91%nVn_J)Z^%-jKlMr?~u##|Tg@mMLA2#=U zn|FmqWqfRGnfdvl;~KPNdrt0W`u9Z)>=#&uXiPnXKug#5jR0|b{*D?|ba3Dkx^{Hu zZ*hGc9fFe#P_j>^qC78;wA#C@jf19MsA;;a=?~YH7gQ!L^qq8JPimjGIat?LwP;8z zUG`I3i%;{|%nc{HJDPOV7;ljiYE7;A@naf~|1K~pjGLuvg+We!u74ew1hu&o#s8)+ z#fbB?r{KDusdQ&2&^S8YpXO9GZYj^N_g%lvyYFApp<`ZZ`VkpJsPPHNOzT$ ziUc($=&`xKK2nrOjlEk62GjO}v$pVv`E9Qbt>5b2-GQmJ_yRB(!3(Zim`nz+b9%Fl znoU9?aUL7TbYgba2QmU4yR@|b+h3Q_H4s1ykP-@p;EkvmlGD23VsL0+Tj+Bs!?2@FC?f*ER`}+NV*U#np-uL~jIOn`y1L$2Z%wysE1@6l` zA}A4N9||G{G)FvIVQx=OPw(v71A+{tiBKr&>(8G*YkY|W9*u3KF_zn>>M=y9`E#C| z`7hu@2h6&^vy4%Srv?5%2g&3_B8T>rhUU{EYgl$Wc@41MJyU1_Bl%kDIl_%hot{cppCPWKES%OiF@M zGU)kv7Z+It1+Iki+i`+6i5O91mooCTN@UE4$*;s}-Xy!Lojd)`@aE|E&I<&4hpCGS zZ34^wtoP?9nJld;E97z&m&~UllqBsIK^f~vT$^>k@pXi9;@{zI{j za(n@&H*%T)ss}90(k$IXpG!OuQB*XI0{}(t;}hjyzkdg$DVO_vJ;VQ}G_;|R?krUK z5C}y2dK@~w;%y_p7SL_W-aASrlZnB=%L)plzE*9;|6(N>(hFyDh)GDSqe5Sa$C5%X z>j`y_MnaakBwhs+<^Z~MZ5RT^3-B*N>%mF9z;FAc54)lyp$K>|N+y!$)9L=J3p5wy zyIo4L%x*ps&i2o;%Zt3KN=ILC_W{o6i9>DH%0|H@7Sjha!bA?#m(UWtzu57eDZS@X zmg4$6|8?Ttd0PEO?H9M5CAMzOHk*es8fSoG#1|TZxrIeRVPWW=aLuXg;$pV2e;=}X zrcf`Vc!DvP)@=LEoe>HW2+a@>us>^a|IQu6YNVmTxa8%9i)x^+4^b?i8yodCtbgu6 zHXyul_{VVJLbeDM+1|a5;~goekd@@+X$e8PnGo8)@9i}g_@I>AD)RCI^CBhCQ%}gK8dNF{#78jvcCz0He7FHth6P;3-Jm8UMgAP*)e+ zFzj4^QF`x88;*`;{K<;L?*}v2K{BXm;E&L74_mIuxsYeSP>< zhGI|I5y62eAI8r?y%>)hHQ~6__U({{ zI3V&;Xr7N%98d@{wa`;LJZ5XQm4!lD?cyl0)VRF0VGgSTWoHcx`#$HMLsUvF;~X7T zn>RVQu=5mqiy!!;Ir{eURI87B(_d!R4OG&nB@)uWT0qjh(4clVj@tNTqsDU45= znNtLIDJB1-Oze?@S^*kiQJZ(Kc;D{p?(L1x%H#vD$MNc4XNW;IRqk@|;008zUu`yB zp|~iv`-9~~2@d#kv;^W<4^K}Pc6OjWJj=A4r2l=b(J?z+mY`LC^X84-;y(j22^zC# z{f&M0#b#dK-t`x90LW&BTA@rrcFV-}ElS8=qfpF)9e-#n!oCf2n!CG9ur`uc?#rEK zEZu+f(4kFST$aa@zGL;@C`3FE%L4WteD{u?5QM7$H6)ZEKH(Yy zaZc=ST@-V~$HhLmgjN)@*Lo_l*G`&CEt++gv$ zvC+}Pk56e*>c>TYjpAZ@0@;?!J#=TFC6d2%1J;2&D0(6jUDY1{`D-JO5o5yzi`5<( z3u|lM3hP1KRp94(^HiDQ(M2IcPIqu4b~pe9#+=@hL{oh9;35L{;Z=fUdidxOyR(#9 z+8WTs)YMdDKPV}c(1I<~S2e?AM5qUz6MORDYvOkxoC}gQ|vDrtDvdv#4>0bjD z>KPjtrA04F#6v{yc-GzBF=2+x%7Le3*>cx7=jlW*+x9*dS%wgm*?QT=pP%SPYkQ`= zK(qw6)#8??U6$~QFgNZ0N`Q(E7tO-8e)SEZ0 zjvj3zl(25!pPIGV;DW2*-aEM`1m-kz2Y!g(b&vSA*>`%qCLFgt`0SR?F$tSd|KOOd z=iEN6wfbum!d%=0ecj!4UA3*PlB%lwqMUT}b?Aa1t$QkQAfwyG3^71jS~J%+kmymt zBD#V(FcBa9XRO7VY!G00#W);iC4|h$-ik*CD=xJ+HSN{-KE=V!+|<{{_w@%2p%x$h zm8(}7Op{YnE0N6{-TJ2oWe>5hxFF?cXUs$l-so&;j2oyh_p$b{V~Avfex8zTcypsSZi@{eSEPZ4i|3 zDNxfA{)A-Mu3ZlIgepH7u107=l+zPzK%OH3hT_PrDDbAW)di;)h&9~rNTCEW2BqrC z=S4|wDOp)_GqYW?vZUOudE9&mRAXRb^4x-e1^^CvE&fb|jE4`2@o&tAYn>e(b^L!4 z2w-wHcn#so-|f~{TlI;bm)H69>EB3k2#}HaKbtoL1!~xy60a!>7pBh*4Rist8qDDW zlMlYv>9R7}FRy z-Q%Tg8e_cm62+0m%UV39)BpDzZVdq45%U3iqbPglfQo|d#T_{|DUnxLhxK`Y z4Vm44xS+WB@7x@e2#K=a_5Lfev=_$y_hA5fhIjzC@h=VhEw;pe%kA<}c78m#_VV85 zo!$bEi0W_v;M>alId&9{Ddr$f3TkCKYg8%HPRM7XO!xE?GX*x;3Wy5cS6lMT(# zy61G8!$o*9Vq#v`RuZd;oY!q&ga`Tt7A7S*`Tg6sS&tr_Ls;nOXjsEAxfA8wt%L-Q z7IKiyLWSJ*l^IoLf~dN8;_OLUo-%~{v{zD?U@481MdlLI{Wh)%^_oU zh`X!A)4@i<+J)wF-#%xMSXY0@f1*&X-?*VCnutOV{|NiKv{W&bYnzAHj!!)JMiDeX zTvWOkj_)#k`Au}+>m?QS>hFlynH)M5p5=q*H<$R@mBofMNi+mJqDJdx(KSqphh~u1P^E-_Kmi0V| zNjUSoB-qO<3&_R#g{lIJ{j@9}4pYzZ4kSf1*beyxHH3qkfl?1GX-UF^++1L=GAb%} zY{b1G7Xc#rW_rZk*%>t!I7kD7W+*$6Kr*D^?d9WxMDAUXY*)nyCbYny<=K3Ve?`6! z3s6swF3r^1!ovQ?u7|G^4~+@r-czRVKYYuWvf|p0L#;sk45P*+VUpeh&dr1@=x`r? z{@M5Fk5kMeHN(*UME1Kll2Co^-o5*o0Wxi&41*IB_~A|wk-DFaYgVm#BmseeyqWK) z1aQYAU_+!uMK}Q(&2;G7Ae!iFIVkxqY1@9>ui;JhIwT}#GX7bio?nf@KAxU}U~-I% zHfV)1u<)!%cRPVn#nn5vU)~<-A{xyN`|okl&Kzc^GX^*fp%I>2`Yyy-H%_ho;7YBZ%;HS8#e zi-=c`8*}yeKU#pLB@}ZYUp+o5XfEP{-g%^iuvDQaAOpzSCP5D5R5%OoMOKK0_U_xq z3#j2U2Obu7!wPNmNe4HbIDDT7NOn8xbN~2~(eRnvV?V|RigS;->l=yWoB)#x2`Wk% zKVcF7Wf<4&;aYlk-M!=iu#WYN9XBu(uvKyu2@ zs%`skfrZz$8AHS;oO+y>6R(1AKMnhg#+ND=MKv8g#D+hT#1$7G8yhM+J2!_YGW*qkD3@Um z7+-W(^q+Ub+lk6YE%c4d{jQa#w{_gQ{h!71t(#E>G{=ljqB558I<_zW(!7!952&b+ zUKJsG1e|19nbOLJ<)6)nd){ERYh)bzeDJswqEX=HMCUxQ7FJPS{s}&K+)y2wn_a+m zGF6qUB^wtP6rfcj6RBLVlvK>$EZm}i0jf|NI*l~kk3!xXI*cbTHaH-Zd&|a+q8M$2R(;4;Mqp&dryEU>xg;b)5FGfJ#!}7S*}5l$dqoH_p|@m1kk)eXBnGna2~%! z&Fr!*@&QL3J$e*C0iH3~luhM&>QNw`52UJair#3dtsMfAM|moKmEpqBvL2`+>=9xJ z9*kZ=A~Q>4@Rnv)Ehb^3%=I!{cW2I?MR6$jXJSoK>zw)0zOaV@6%7?4aOt%N0KXV40 z*2up@e*pNPqQr?B)qgYEL4Cvk-%^`bi{lr@Pw%@BDo@8z=tHnvs(xy;^w*iqZ+lGm zxqCULvA?3&r44GUEzF?ee{7TKF0Y`lJX-rt>v4MCqhM`Av5o(RaIeE`(%!QN0%O1n zs1i1*COg8S{-7Og#? zIFRLAQE~UE+ziY!U%%4kwKnzi{081dN(jQG32Y*3)3u>}2y8LSOWX_j3)oj+FXV`( zmDi~VcKfo0N+-dx1p0+%cnnHdxLXfdS~l!aIXCzcOXk_n*|kd8V{|`c;*J4j$4&ETA+k-bEX!bYC@)~+F5sjvnnAj*pb{b*`E{V|RXn)a50B0*oL=wOGgzTGQS8pAm}Yk)q8v*QP1v`wF^0eb%oCwz zzumeOLdH2@2<8OD3(b*>U(78nKjOo<(y!~y%F4QiorxoGR>PP~LO{pP=Yr=iU#`&p z!ALCEr%%M+^~BRBh60U+uiezjf)gFrV2K@_Ply>}neN^Dh^GQHStf~vO%xBE)*XdC zi79}xfrH~q*;(EepUVh{g@PZCc^14FYi~U;H&^_P1wHW_P!cSUzY**uhSn`$TjC1A zNeXn~M_t@VG?Q9dwS5zFy3Hb%AreJkdRcKzF3+^c_sDV<+BWEM%+AyL>NEd2>|hTk z+nH{V!}srVxS#khX+dh&uCCwI_+i|faQ(u73T7fAq8aM~WbpiqA_fTHA?GPbRdgF% z`n0s=_rcAImx9mY`ZeAcn16HKVtXJ5L%hZJr<61N*&nl{_Bp)>?y(k%XVVHhORfQD zRy{vskZC@sT8MLmGIg9xM6=q_(6Ciek-MI?I-t6B5p^4s34Yar{H)DTc_GGYNMrX6 z!w0zIN^Vn?Spa1lIy+}jR~$m~J(ktfj^&Sp2Dl7V&v8SP3;EiUvNFdn%Y5cT569kr z_z-KitwtVfGUcNrE=Fuws6$q3c%t$h*W{HRi((V2xy2#W{QG1ofvQFsR=Pkw*g0ji;|%EudP2-KX+_}{1$)Qq43aa!xR z_1!QOo9rDF0wFuoDzzI4g|_RDD=KVxd9!3qum?bw*cO@S>V`~JDe$qXT-u`%-a;TO z00co_h`27qPMlE`2-ij8n(x}mB7j?LKfGhqE5*`p+&V5aJ~vuOE5|(g|8}u^qw(^_I+XN^v*W_6+wC9~2d_Rp!EoDbbk9?8|ZZ=x#`3mnXWhhn=9ZwB50!a&$6}e(6`24Ynr~ylz$b<>&Q;9qvPrOXAcDB$!`{m{3{f35N;o)^Dhtc~%88$fLAfMuYJ@kK=IZAk((TT5ekd*Kdj5_0! zv!_i=SWD~h2j9MbfB)_s*$pD6zT>hN&4KL$>%vF9zjYfs0jL_NGiW}{%s6u8Zy}fj zTGqaOjgKdsK?qWE%^38Fx`YY!hh`_GM5uB)p?lEeMvYz!ZNg&yIap5T-XoF5O+P&O zzj*-IHc=|I?$+453rHb@NZtFv!H$ZrxT{qQH)yL>EGtz1x~o4W)t0nrA!0{CQnIXi z!)~9A8*2*E0v!kP1Mg=&PZl}DOwdsF!SUAG{-Ax0C5%ltK?`1L#B~EGqhC9RU*jj` zk0D6RCs;kd@3Xev4I&Jh9I)zG<{*cWY565PD+_W@COHS=ydKq?PhQgKAWLH7z&H*h z3L`{4f}(0&aG2l_mQz+vhwL8;5>_@gXw#d!FJEqji+Y#2f9mR^5Lr^~;=9-a&e~l` z$02>o&B!3wWuTpR?h(q=q9!%Lm<}u+5+q{BgW$9)&f9t`3Z-BVt}-0nD; zF5r^5V|nV-P6}i0Z|RLVnxKoo9o&4m)dlG`FdrjT?av-sVhBPnQOhEtOiEG`Xdg26 zA>>2DHne?m6^9Mt*7g*$nTD&fAPx{f^zZh~C{_8pHjZI`{<0+8N=^o^WEW8;f)OX{ z4-aO)Y)Ls+38)bK#M$es&gs_#lwwXw+&4o11Ntb_%)!xC*Saf9@=)J6llYxj=YaP9 z$s_V@B}Ze(+G+7d94Bw(PWBi6JD*UuHD+K7z&vlW&xjJt*3bzfdW}HVi;GUYF1j`l&Z83(yC>tYQn*uZ^1IxdnK>7{p#g0#>F-C> z0k9I3JbNan?p=f*0Xtgl?qZLH#YNP(8t6mIxCY+8Z>n@eU(VXNX>TVQD)InL2h3}n zO9C$NGcycC6+G9qy{C6aSx?B%ZxJQ%uUB0|9xqWNv2@!o((J*-hAUwFv#jWiHeAXG z(+o+;7n^;;L_-rShyr-L_6)56vU@e}+6~h0C8D|_^&S-zTt=P_kgB;WCFWLE*W%+rsVgn-=3x$}YIfk{ zc;%p}1!f5kzx>8Tx62>=zi~L^uG?s(l^mO4cnvR`C8gCHj3%~}Y2PQKi zz!{2%-*a;)pw68?&mr?ih90C5;6)9NG6ZX#C{MZ{)_A=h<~M97D5wV`H8eHpXlWa3 z9@xa8*VgsvpbjB<(GH3ewuoqX@6b~$1Tu3GqfoaOldpVE%@m|O?$yPzwB3P;nm$%e+p z%x*g}ii$dZ-?)U51IA=X(`NL5q<}te9QL65mH5D1QncLXO`1A2A(F%hgghcZyoW*w z+DggD&u?4xR{@@9Zcch3muyURl|kG9+Ja3}=8A6tUkN$U5d1lIMW~iY;S8gbo3Ry$ z2!K%$;o*=gT3K7~H!{K|g`Ct2jq2AE%_Wh4+2D$hTVL*FV`jeS?LB_bVW{^`z~y{L4@+|Oay z9}rMoUatDbMpa#1urvLt7LATM+FLc-ZQHjaez1PEyTWT~qmPj)6Rsk-6Ssb^ffe$b z<(XP2jU#W812Hv$TH7Th-8q%@A=bNhCFK|!hk#>ot*R|D`Q6?JvJN)ZTL zP}s}@-T`n7P~Yip)r}imT~R^=0`?mcFoRBEK*(Dlr|@kT6+zz|s=NloAoI{h!2yr^ z#?ezvPn#|!$(}cK;kM1_R_HGI)cfFo0qx;q0qY2xuv>L=cD|jIL~Cavwh_hV;#IRh z^YbvuK*L}1C+nB*3R+MYz21K?Aq9i(Pt){Q78lR0t`-ihJ96yUBMd`88BIF#o}#F% z3~7zBlF~1Ym^xd$JvdRAHQR94A=OWW6+jW}clB~mOuOMa<(xlgZZ5fN7jGNaFg_=S zf>${I;wKDP>vz3=olLM)QdZy^in-|HYA;>Y#ibi57%U$(37Q zm5(|6^6FCAo#P^`*4m^FRGJ+f)02}F#8$s}!Fwl7(QWqkZ?1*Z5-^|8A)~_jZDN2< z#Zb)2**VrciHBzR15I=-3!UYjt0mTTkl34vZA8n%#~OjR6B!9mi(czA7!k-@+Wuz|7Q?D#=GZ0~(Jev2Y$89`ZW2SV<+D<~`HpTA6FedGG*owuP%B z^8A{Y6)jT@jEs;qPp@lij>cjCewJfx1_CT5O0H?H^ol+kFTO_d)~442ju~2ZtfYm* zI~I!%&*^|~JojBpFDd1)Afsl<{nx0s$2k!D0o@FReFXz(u%txNAAov&0wp0DR6Ist zI*197|1I6>AkP>YoZ_(aI>Ic_7Ce0*H08B~q7;HfWJJKzPdDuKjNb$vc{w@Gg)`JqDy4Kah-jQKI`_G9!^twLg&7MOYg^l9GyC92ra|0Kf2OKMFuQSO zhYy(7seM7So)}T1;4_Vj#HI2xADAvs*q!a|U=NdT-v*M4^UzA_kkywxAg{xCJW*{G z6c|UfC$^2E6@X80e%>1vHsFU{ca`>cM2m&SV+@JHy=(fSI25{DS|V3p;n4uiysvi2 zIHPe&b_lvrT6a))vV0wQm&k{2b4O?tA0AdlhAg*m)g5Ges;ZVhf3B=j7EILQby2*# z-QOt30_Y}_ziQ=FPchwvp>Tj#nbWljb~4n-YPbM2j<=iKk*)jk#YW>XgVSEMG}DPw z9Qt21W3g=JxscvVl!!fLYz$bs9oOAKUb_#$;Z~k=;1}K?NkyVaO4nMNsMjOaPfmz2$im9UVJVrv$e&hP_jt`Ny@K z?yS2^)dxyhw(hi)b|($BSx!wBSu_<{?8QaD(t0buIZo}h?mPzov;2Yrlq)bF;N&D3 z9R_X#8sO=R7l9Bhn9)I$hHGiVmG{^hRViGrstiBJA&CQW>9333JEWwJRd}7ba;4J4 z=r0OIEbsY${~+#DT|R|RTOExX>M~HDe$Q1M5aPGz z8m|aJg+Ymr)!=2#JF{QgLdc4wKpR+I)91toUeKg6{)8_Z#pjQnQfd%7PP+bW`|0TD zAVY!d5%|PX@;Nc;=|K=&MMbtdL z-RHPJvQq<ehizI_PvPW;Q# zV*dnaAVl{b0ya1wA$LXgQi8rH8d=Cj5vh7y@E-s8-#42V2ARXB<(rZ&KdgcUzhZlz zPq@@i=0l33{^Ej4ANiCyw=J&yRYeKXf<~s_vEzbDDy|d+e${XgnZx1q^Pe5kf%ef~ z5at0?SAyK!jjLDm@_JCssT7{aPzBZ}7Y-je!Y3?@85YNe#jPzZk)#X+c^o+ns@3ez zo<2n`0xIzrFpCD{Wt%^Qcm)&*YNnFH4akvzG65TIu1GiR*=?p4Ms^Qw(V?hoX#mTl1;!R zfT%Q8O3BeVk3=|TXJnKBl)>+yCDhu=E=ehe1qIczSy>H)wo)f-lLu;m{ zu1?+7X=OX96Dkp*8%5EgPT6yFlP-M6AFhkY@|Wf1zuI5rTIAzV;YPut!ci-$_X=1k zu80xu3cPdNhh5iBt<7B{}hp z(b&(21a~PyO-Z|@2zkpHT1gZTqXA%9R?bC$Ws#CH&iJept&g!CJGO7Pi#Z2$WzN!> zK&WkLnE-`B;Sz?j2z3B0F9#FYlF2*knR=0!ddD273#fbi)?pZMlXSIK$p2R+vg1}V z!;m{&^mX`ih+dojP50B;%;tdGLB+R1zYElKPme#iP?GihrcF=?0YLxqWgY6yu;)ln z#0KE$Dqv(F(W8wJc`bOz$_gK4lzx_q^?Nf96*QnH&Ys;t{gvnoJ6gGtjW->N&T6&0 z{gsEfF?hWU;4D|UKF<}5o`tEgO{!Zg4<|15Gs1W+#^5NTX?U6c_%R0?+t}hQWO7!Zkbw>bCOZrhsTC3<(6B~#E2>IV6m5+f`$161R4^~! zG>7kwcS~n-+3v<@&_09C6Jt?rq;m=isQKcQlV89js9Fj3RsBO-10XbQ6A$_TtR(n5 z24S@XymJ~Xh@7X^@KN_V9WDPnQ1~?VJ8sn3Vn9>+#4RCp=#eNjcHX&W_jgi)dF_@T zB0Y@i;rw#;U3d3Uj2eFUC|p+BE}@~vrL>|#jX69kKVMZ_ehR*Q&dJ(;+il?=+d=%f znGl3WgwG6O^Sb-Loh9Vt4rUy{-A2`r1Wcjwffdr)%4*0%1&RT5hHQs7l9mccKYyUrK!QK;t#ju(cWJN} zk2Bmyp}?s&Yl7LxZEI1rW=p0j;1(C%C$aW0<#D8$jr}0O>pW-m3*ti#Tf>B&lD;D! zHSd~)ziv65)B9c0=YZ0=RM~=~wExyqwnN8_?M%vpvmBI;b}WlW?aC&Mi~!w%nG(4# zUflke3%vx;Q@BJUdm_zLh8js^R}*>|DSksz=5i0Q-~w^YuA+T`SiOLUFs^EmAAJ$3 z(3o!*0n*@TL0d)sx6AVQacaDqhm<~$9u#XRThLI5Zrz%)*TGlgGYmE$2eQ7ccGkmU zhYqNJB}oF{&((rsU9GJommBHnYx`Aar;iaIB2&M0D=(e!nlpD z9vUbqDOcQ(fc~aO7#SHsL9Qz`L4?!D__cOxR5C7Mgw&*>6a*7xvKw)X)B&$Jaqz21 z5`Zlw#Kd5-2j2SBm<}%yBn3id7>CPVx3)?n3IeQN)>RRTdHy?`Q<(UbRy7_7K_}IV z1^DSX&f?V?N#^j4<^MX__LW@;B;RPGRcc%Cx$BtmO8(=;Irbl#H*NA3pByQFa4Kl< zq~nc0pSY)5&J6T!HF}L&F4 zC0ZkuutvAfu3GCr0$wu14CnQ>(dK4@^m?9ph)Iz;53^9qvqo*;s}(v`B!rhkk-33t z+cPw@4M;`Rfg6tMeH0PBA1vDlk?d#C>5MrY{742BTqm@= z_}AdK(Mv(87N!3c*EXE0iBdlFVZn?SHaFYhjwTa~^mVL;I2+?I>;Vi-ipis*B6=P3 zazJP)%2_fAm{P(0;$J7ud8!N-p`M$DH!U|}b@zSDhoC!(DpKYXBGOZB03?Y5 z5D@C>u~#%jN6{;nn()Wi=TV zJZu0eF7M9*(4G+p#uyV&(e&Dj%mq5VZhaM2@IKGU;l5ja;qDPqLb_tU^9?SFY zE`sN1?hd~}v?9;8Xvnngx8J12{fNhbKJ${P;X5uNbd95HlzYDaZc1m zuQSh0THIj~&gl=r&0-44>wW9Ra?lERZxxsSN_Azc z2+iQs7wr()B`rPu?OVw6VDnIXihQ@oj#5No39x(&YZ^x2B@%gbb#>7jfp}2#o<72! z_yez>C`~jmH67-KOw)q}wAC7Q(8P&y(N4w@+V1sTBxQZk3%Ex`YrLT9^z$pH zkKgnD<%O=wl^V@CA(?NEV)XjU{Jtk+26}}XB)H#%vgWUI9NI1=#mu?NNYKWxnXkL- z!JRuh=VfHno|J-E-UYY+&!1gu6cEi+KLx7QJ<0d7%pU?bN5<4s=U1o@V2A)L8~;33 z7o*sOqrP##RRRaZlLX3?7fkE{I?K4Y@n0SUa@3au*V%eRDV4}yI1)rACT`Z8Y<>MY zUEPO0v~E@-re$Q;$%;R*f3Ba7>@Q4OW`CTK0l61;w-x6p7SsLRXy~J^5uhX-X4;4) zNHTGEFUDAw0|(eze6jjLHGo$^1bDqraJJ_1NDIeI9U3|)`IeWKmKS=^D;H*_Md)^A872QNE}T0%`Zgx{;_FR(A3g1!%+8q$*C#T>(ck(bNCQ z-~P$$0FDvBVb8+v#m9GoOSrZ3uQA}q_%dj(B4i;!0= z$m|-lA-3#7Dz!hVo&k-!ho(fKbwi8NSBa1^$P|#{2LuL$C93+|yga>EkCC>6ZA80k zxBk#n8^Aa<6_weWtSII2o}qDY$Di9gZmQZF(i8*{2)<=bE^zFX+P?R7@k#T8Td!y6 z9sFhgu(;jLE!pDCyF(GL3hO%o%3#Xl!qlwYlRlJ7@_|m}zo>el0};TqP%WRfw-?q5 zz;H+QKsnq)_?rD;Cy(167!@QO=q`~$^gjtYN*^j;yR38A_M<9+04TX}yw=*<8d}ny z({WG1xZpRXrln!^Dc=0oL<(RA!wB`uzBSc-qMEQkc3KHA!<7$HMHMzP%n;?}N723F zDYmucn{Cq6+J$#Woo?jwQ`p~*8&QeBeyPH)rTw$!ny}_EY%MkFVwMGr08Ks!D4<<{ ze^4BFYFmfHsP-}=V{baA@7uvajhlhz5%6OumSiX6WYp=`WCQngC>f2xN z)s$u!Yyi>Fgy~>W!1AR1%M-)xaboLzWOY1}eg$d1Af)|$_koi|+8*XpA&CcP`qe{B zl-}OYPfjz1(Gaud3Pvqrtg5YE2a{+P*R!$*mEM$gUv^Ls{`jKH3KlspFU5a9XhZ9y z(P6w&KMAvAhdncTQ>rcR#MM?1qTcYyy9nZ!03wL8lf#8a)hIR!P)%CX{R)Z868Nw? zw2q>me3l?y?-4Tj<3Lmtw5v)xA00W&L!id+iErC>;rP=lRGU2zXNzlR^(O`KX5r3q z_%eRl8H!gF7<`jTLaGI=AnVvUK^>PeLiGVEXLq}Ri#zOChWitZAw+>| zm=&||$_dvYnFvt=S{N`h*zXtVjm#w}x_R$)^U8_^Z_l4xbPqOGaQI#RT70VH#oGjn zGKp)V2X+^3$)wPEZbRPyfB`^%QN%pvWaIj2Y6^GOpqc>R6;41{CXQKI_()`}<++E< zuZ%|bRUf5Z)FNef($fRr8SS2*G+1D`;Nf9tW`=8VoX@#=SdOm)#yLhuJECkkxDG99 z|A+8e@UT&p2?Qn}g2+Wcz(0$LzkEt14spPQGwEfJRW{Ix(e7e3q+h!&3Kks_XNoeg z1Zn<0><(NM0Xfs4QUTM->6afv`-ptXA!#JUMfaac-2x*S1Y5uphWWNAIGMP(JVc$6 zS{TJejD&Hm5U^!l9#fnFydq3XbT0PxNQ7>R`3N}}j0=81OIK(MSV@u(Z~0q4T;ey- z77nMqra189fIyMgaXFWl|ELzm@o^_^X7tz0oXQ*=93b_awgh{O0Pz02J`?(t8s`dy z01xiNUlXODeDGz8Ea5Tg&T8PwW8!377L zvHYcVG(k`;4cm#m%6bMezsyllDLf!}l~++BEO6Y%1&>AXbp7fUQ6hbGEywBWL=D>d zT})w}$}IEVR39!*c;v=zjU0t61>5#zz^YnlUk6^8-Og+3H22aFhqpJD=NI>TWbGcU z^u2(z0rUN}5$2V+;+4Vptevp3x(P$=`HifM4VgDlxNO?81qNVDs(E7>M2Ms9DE)}< zW3Og^##&i0Cm(;cc(^r`Y;LvVxYdpwyC4jz=W*c%RLs zY~zR~aA|64;$@(DMmXm9Bhg@OKI9Xiet|KJ$^R139HPaOwzXBeO&bPD%Uov^Mr4_UTE*`{$}k9oM*r& z|9`R({&74*4vqxe3e4PX#B9zV z>`s4q28vgC72tC9MOX9hUR<7_)?~Hgg$uuc!a{DhojV57lI-jely@TYdEi;7L*^&$ z2QsIsiitTOjt|Ya=*ge!TRpgF2n5E^?*9J89sBzsRzT`P>{WHva9vQ7;AoD)WI*Db z?-ALt;}z&|;3F`%$@8%St8hAv^uwo_k8S_$Xb{nE#meB3N|qAVtO0QQpMXc9w3Foq z+9Y&3)S8ldgA+>2%J7k}XR^f`WS94laeGl~BiCI_TLJ|B3P~R+!9ei1F9)TPmvB^1 z@T82cs%K0xYYK_l#+W{Sx4oE%43Cg9IoOnZq4Ip%P9Wu!W#}M93NQ~x8T0e7K8{BX2W>rv)-;}&ob~VQc1G;c>oT7{G#n6)yWuq zfmH~q0tz2AC8lH&o(wMSOlms@0DEYHu!F1Zw}jQJxWYxNN3+kh|1NWMMxOT$C^gnF zdGD8=uViQSTk!^?%r?`0sXNjqD@u{82(iKnYu}+6m^^9)KJ@nP@tH}5IL70{4=%hs z40G7^stpMziw!R%v>1J}|PM_gYW|FT68&CPvIG1`P60t+8^vuo!0pxI!1(B@7iy^YbR|hbKkdn z;GUwCAq!8%Y1qCnjv8NF8#e-P&HQLoGVxx4@0!;7N>6X^t^DU|+F_BAdV-ZmqJmPA z)Su_^^l|1ZF%&@8+Za`F&z*mjKg(oXJNyCEO|&z6m%{|wo=u|TM$a{F-Oln zKRY{=|1>=%1*mJ=Kn-Pm7on0}h_+#XR%B?>yP1uNC*afAVHeGquqN$%LGM39_7@En zKEGJ`7pH?$(&m*}Cr~PESICq*!dRSm)zWVjxm>}4qW$j{#3fv%5J9!Iw};ANUL3b? zGQWb82Z#5iODA7?)B*KGNG1**h?OAhBAvV|QakJcR}1Q*=8^Th5kjJ&21aS(Ic;rB zZD3TfxH~(h%xNo6xv+o}3jh2+BQpD>0Q~8(v1sz zqzFxfDbQqcz~z>dv=My7qepu(-aFzLgeM9wb`3>=yrx}ID+1=o#c|=J=3ykg@pzDn`6``FWa|s=`FH-C`6D4N9`R)gM-BX;0xh=a%aQYdv+L+q9I3b$(Th`i`|P$3#J5xP zra`P>i$ER##tyMb@b^6~I@v;B5yMo?R)75~3O-tQ@HdQJY{2mGQBPQtku~cAv^C<+ zJb24RhW9jtRwO8}vB5%Uzh=E}A6|nvJ|}1yva)Dnn^0K1#k8uhf!*~;LZ!w4qYut| z@Sue8pyW+dAlL)=(M%WIQMuDG1NA4@WM%?etCpHowI@kk`1idN|UJw$pcl`hUS z`!_r53z!{0$xj$*_54p|qCg2U@Lbe_+0&m6bH2`^bVDX%$NI(F>i~snIoGDRo+iCh zJ?-jz{Cz-S@_~hdTh`k+IGrA!zY(?Y@VB&HyG7pn?yP_Zu3N-HHqg@&%sypgXNU5? z7RWC#;L z;1crlMDYf^L}uqs>bzW6S2QVUif1-n$vjLwsky1;7Rlt?xknIR?=wLcU;FW+I?`<+ z)X|eY$QG^(Gdv6c_tkykPbNTM-43mE$?N$c#6avcKS`Z5=B1YQDq|H%Y@qTxgf1R_ zrIafHX~)#e%pSsb2Ey}BPd4|B=UEO})@=8=vB>kWXL1r6fob`@SKoJ@5oa4QNbl~KKiYq@z6!cWv zq7DZ_dSdAJgCOUzM?>hx27m*>FBM~vrr{C_R2XBSq7L62L`|&WKQFDNbze6V@D!DI z!Uzo#2Gf6Y4UWl!=2B7MfLomEVx6rlqLzJeUEni^I$A?m3xEzrVtYg};GPf-;YK19 zx1`*8QFe~Tn#BPLB0X)QAso7t0c)b{)VFU>5%ynLIO04sG4T&N##m=LL}=%0?1R4^ z27^>x@f*04(PAP(2^0;q*o>>0^mozN;EoM;LQx=XmK=(l1k5DHlnMEiYb_)A0MN2s zhLGurk*1}~NNi{6Rw02Y8K>i(%*^ng$vcj+CGo(GbRZiM%TS|pAB`SZH^ zP?Q#5xX>hfEJ{z7wC9SRUMK|K{$r}Ufwu@#!ngs{1piz?eCQ0bKswH5Sd76#-y8A9 zOf??JM!NDa+)F`-KmO}id-gPIR1+5rhHxz4c6?*$(gW)coSadC$?IMKfN?y*8xmF3 zZby}k0|v*BI&NbFhcM=Fl;O^xqYJG&bz2hB;*LrMsbuCnRuA)_t)q>!R29~Rp}_4h zoiCw)(&Gb%IX*Ua;cO=xy{^iv)@INeh%60$j$!ID+qZM790E8E;m*I84>kNq^Z;E_ zk#3Ku@9b`93Bc~)X8ykOM88;?#lyKLN1}~+N&E)c1oUy<&2h@jntZG=_vtu7hR``; z*)P5cZL)`uA^X9D#x8BKc$zSumN+O8;1<@>B10t0v%pIo4sLELL&Mk*{J602*^?*1 zl727!e&-_f?Vk!U1RQK75S7T9NP}!>qY#El>~T@|4$pC z8CjI=0=LA^X>N11KcGX<*w&`FBL*AC^MoJL5oMH>Z#nBC*)Oej?hu`uQ5lHEv3da5%DN>DMBJy-GFg+w4G>v-%zR@s zRhN?9w89JmHC{l8d7%08XW>pORJlWeW#7XAcrh_Be1Zl+OREMy4Klmx>ODBY(9NQ# zHxb-C_Grwqef8GWbmx=Bl63El;%R8Zm7ePS%AOD7-|L8`ZLV%>*`z)~eBvI@w`S_a)`%m;jRM)qpLsNy!U+=r zdDxj49mK>GiD?Fj#T$cp=@R9rqe{@kr$^!-fiiLXv7c2qZ}Ek6lgi3eRnghc@w%Dx z1G3R^abpuzbOZ=4yB<5I16ir%zKUw9uK3#W(%&6knQPFGF&%r%ZP#}rF_DTI%#3rh zGLB%k+J9#bCeu?XEiyr6th)7Ckqf5S2{s~aZkyDG)wP$usD|PEK9lTjG|GSeez)!= z9t`=Wkvp@H)OF8k(><5xI$Au+Wg}ZEt$$Z(jXS+AV!8jmCD4# zq!Py<9!!qw2(jP`T7C^DH-YMVW#`F zv;)XEUM7n1Vc+Oly3EE|*l__KpamchK#SuGZPGJ#PT>2nqkwV!s(yug4=N9I9Kt}j z&;_inte|j`g*FaX28P9RE!9KuT%S5yzdtM42y5W6m0+RvW^1a-yoISd@#anXv{Cf` zq)-hKX@NFm2!14T^=m{yv|f5A8X^|-r;ALUr7^w7|29Va1dsHQ>nSO1JJw75|D79t zuBLF>cOju2g$3!ZE14*cC3o-MvvCi=uFXLXr?p*YZU$IBSToB%#*s479-*t}c)QT) zcHy^z`ImQ;%!EFPhcDYu&SHifC+9DS>rkTsq{re%?g7?e@L?r|z*7sa_#j_}nOTT( z^2nL<=f7Z32_PU;Tue8I?m~csf=+}LN=5y51RH2LaEt&g3CX~jgt9S+`*{S3L=Wg` z;VxwB&km#x;NKrU%=71vO^saLd^yU}|Fi%BRe|ekC?1%`L}|6?drPy;B|$a4M8d6S zpdZv0Kq_n?+tk-@M70T%3fgxN@a}GIeRr#v+Q7~N zw~J*Rb~0)|ff&qDwey$<7+{1=3sUj&FzPVdnXs66r6_O}ZVTi-qv5!5Xa$nz zKq&dHc&gCSX(e@abww(ZH%0>+IMK4`BKhY{nw7#?-5(RKW7gr>Qg>f|SX6lEexvHf znFaFk^Yt!Sg?=~UU#}-;jCj0+00c{kW`ONZ?T11wNTr6(^9l-rK^Fp&vz~;j8uC(P zlg-KZq4lO*k_1(aI~L4n{lLa@ps!GSU?fbGb!dbbWnkbkMkRr-jF{F?bX!iqq9(b& zEkfAaR+>sa5;@}M^mHnoG+NW69EYu}0MS80H-&>7F2wq!KepMgUa5ufRU@Cv{sAj!|>|3d2Q_VKw4470f$S#+j) z6j@h+tZo-;yh^BAe*fHqq$Dte(3U5DPd!L4H#^lMk=aLP-C#&a2&#?5g{6Bt6A|Xv z#!+wXuM=GqFQYxh>OzB!4;2<2XsMu@_4G=WwAI+D7xs%Jf3ZlJ^xO9WALVnD%X$5k z&$_;rMTy5Vb;o49KJ2S=xcSgI;Lz^wX)mSo&*jK=l=|D|U+-PVEys1ZQ$kJcvNlcS zwQC))UBkV@mt5;6ee|jRWY?gV+ErBLsj6yfX#pq(Ax(f*EY@mfzwJd&PiRp({_-|$ zU=Fw6AqfT|GJiO%ls!5wxOo-_fkW))6ciZezEr3Elw}DnN27-{)lz6yXKK#1Z>}!zHL3aB*ohvUQ*^s5Bk+c!{E=S-KCmgESBJEZi=%&Q^JRd`1WK zuwRk6X}=>AsxdV%=lD~qWZ}|rl0LnV$Y^J$shn>Jneg8y${wv>0Vx0w71TzMM4h4!g-yfgp6T_OSA8_Ey7=hyn^zWP*EYtD zv!{RcAQNvYOX6FSQ_`}zOeN*HWZPWVV`jqRuq$Y7OV0hmv|7=`R`c-i=<@PK9277h z0y3)QehN?*LK-yOT(wLaqpgk~k8QF?52~WH2q?a*upR^%c%=z6NA+**NunVC;M5Iz z{1oX^tvsW(`4#&}TC=AYpex0SCWa!=0BQ9``lquN;{72qKza=;x?~m>I-TnxwX4nQ2p5jwgcgx)Fb-Pd%1La)Nb+*_CcnnS7vV7scMxqb^ z-G4Z)i`^wgHGfylk{Js4?ifmr>D`5-AkXOMO}uo zT3GX#ZB>8h2Jm2TB0}^SGP{vP511BqoC?UWtGU`EmC%h+W02lF#03LiDe(GdkhF!Y zH6uy{f&vIuA(Gnck}953B0ky@C&(mX&qN^b#BLf|6W3B?q{^hV5=);Od-C*;dSM2PLPfplWfdM zhF4gOfN7zQy7@Oh2aN}U$WbQ(gus)<%qz*8pdThLf!c#D33WTey#6FK9ya#o#>Q|y zTBgQPW&>XU_@VP)AN~T_9;_dLQxuqwW1rz-#rz}28X5W08 zMv^MLy}B=sMAg8xN+edmm^+b=$fL~|@3pdXgEo5KFQ--kcH<0R05k(|HhAGRasc3s z<;mMmoYiS=g|Gpcj>M>F0Vo3i+?+0@!SaJ!-p^s*Pcm_Bu6@^u?;_AH@L(3Rl~v>4 zdIWP|5HC_pe!-|polk&P19omZyUeK7OPdKc)_vtE=!BjV7fD%BN3NfHxv45OKwndeo;VM=eR)-(OwmHh{bFuKV{v3?lKk^I2zSr^hz| z=mQ}aqW`s#hA{B)nm#lU*u>j1;n|tnA2^ z(GV5cWrvKi%1lWpp{%l3iXx-TtPrI_cEtO+?&tr$$LqL{=Xs9%kuJaAcbw;Eo$J{9 z$Y(+HXZv1|GIlSO>OwO9f0F=3C26U_o!}S;rdurY z8p|3pyjGCt;C4zzh^&2IVjABCE>(3SBUZ6ebnX7g>!8_58}e{l3(%$wUc^`UUAqjW z3K&xr_R1tm+zBWu(h;BC-JJ#O50gm%iNn=owG09gn&%r(F$~UIV+IILxqQuOcOP@} z0pKDeEry-JbG@lir!_zfe^VA_JS5-S>CM#1i z@-zNf`dl$|F!e2Wd4$R|Ny4ip0F8tsjKT}~m{A0cGjd?*=#C*BtLYftEoa==ZLnHI zr^<>7LAyT`FD6_{Y=afa`e7LQ%a@0Hnb@fOwtpX+nA^s!L;b(YI}kuse}6yi%yqchV2bov`{Mx3 zd9rp-cQ;01@E-bc+3#*r5=N0uLC1u7)5HD!FbFir%Cx^&`1dk7v z{X*rLKjMj12#6Xoo*x~r!|JFvnM7#PaQ>bAGYd8MDJ!dt6G9CweDyg1EA#S59!-G7 zY8T2BZfx8yyi=N-+z-B|X`IQl=!~eKt|>ivlr@6nEXs+dPJtFuFlpOp>~ z#dRr~@S2cjCW!e0pF&;5P&vg!1H2PvPNcsn6VHkK0>4}Vinp?Idwvo!jH5NOe0_Xm z^_C39`zN0k-j@0?xHcnnfOJnv%cYiyw7#VFfb$B?1x`39MIdJ+jp~SOLR|}kar--? z;;?yW*Wu2#o&E|^4FM7V@WCuhJ3fC#8IrxqeE^p|-&X-DXmRj(p<9La4nF(_1E8mh ziZ_*b!+_&ORhdDjrS>AW?sT3Jf^^a1(s0Y~w$|6LFPERd?FSRw*L;6$NOMFd!y)6o zt@Y-PHR+3wzmAg;__CiQ?Gu?hi~$q?=|azFo;-OTl~0G*!El-?XmD}55%u;VqxHZ6 zEj1P@_hUnYgX_3>EIvXh2bz=KaEt@ZNpo3Nh$7`FR%o^d5bRvihR6cw2oCPP$p_#b zU55}0?Kh5?yJ{du@mg@%qTNL$zDFlTC?i7A4pBamyN}{>@=NBBpwKkALmL;UIZ7dD z>NfvX-7z}8qT(;M&=HpbA^vWY5Op7)W7gbHmX}W0;j^Z7$`J^DM*@_HqK6JSGK@lE zL2EnG+sn?w!;pTT#|mS|zoEuOH4GjaWo9SPF9QRXq23JEm~VDHKka%fdib^~&LE}8 zfs4m{T6d~n(?zcFI_5G+q(I4x{{D7!v;+4xH04Jy+ITgKs2R;wiX$9yM%Y|{H_=mN zA26R|uN~eja}ONf4}`KDi@2404Zzk_SG0 z^`0e%Bh+w5hUp5bPK*I?Lp6)AC2z}0OiAseB|hq$#={1!7I1BAJ3J*gdhTn?(gaEP z{{{T0w?~yhn^Pj&yOABMywi9Rdr*i%jE1FVZGRKJADSGP%X-s_@tfg=Q9PJRth5s4ipNIb91Mn zZwPGN6@H8YM5wZIAb=II&j{Q}zYmVh;uasPjpHcl)m7bdh--O>7>W_OKR(}n|N3QF z;>_GTd-;FbFPi*+j62}B2Tq0Uk9rB{!T+LXF>JoQtLr7sU0{@GRo(ygTjxE^y)Q_67T7)7=^RcXv{l zy{aA2);TcVB}|egfUM9`g`R5Ry;$wzoE%dV6Tra6CMFQPfsC-;cu@DDFbpQqq9XD3 zKaao^kvIW{Iid!EgPtUaM<1OGS|%%mELsB&d<_2*IDQ=A2=t}F5V0`{QN-58<4BY3 zmebTQ;4)v12&}2uyhC5Zvd`^QsrL&c4fbRX_4VB^{GIM)o-WLwL2qql);}b4hP z5Y8@$Q7&BA-=t!qlRfMm|7>ILC&$FRnnPXAe99+`GV}f%GV*43-#T(>o#N8lYXQU1 zdYyIM7`4@Uhv59}f1^nx9DW&0;-&3nFhQ5}@83Uf|Cd0S&_i(%0yZ}MYT~0oe#qi@ z9IF(eM`{U5Z3N1i07oJOAb24ByeAhKkS$eK0Ic9{s2*oAKG)LYBMR|r2;4n^@z&gh zIub-m&|C0_71UKO5p2&$l4@6^7qpPtU%>bXQGU2gLuShnOgTp*pI1=87TH#$q^WtU zFdFt@4tZwDeCaughR>g+;ayt_Pe~cT2j}1Ok&GaIu}8H2@)08#fMDIj=K`UQQILV# zexT@N;yJbmCihr+`@&MxG*0LD71o`{l$6vY|N3tV~i z(3@upR#$C^y$<*d;KV6*eGg1T7HYXe0JtSmGk5Ea0f=jIqo z@;cr%kU4zV{Dobp&5g(hXn3G2Ck4Xdf1wLN84jA9G-g4`7q)fqGzZ|l(9gJY_ip{P z0;oKMPx_)-nX9G_z;$WjWwa}8tL1%}vK7^-IBK;Wx%;pAYL2+v9kCeZd)mo@n*n5| zUmL&)wFyEz0tujtJ&a_~{yCUldD+;KGBR)lw#$;|2x+SAcPHY?VTlm>vX+To@m6DK zSXgUI%N2$7ZaqbqZqYRiC@a$ z*wGvIe!3p(9KJ${*4SiXL=)~f^mjO;l~C<&Ucd35__(+fXgd(6gBG)CoDkH3T!VoM zkBd+^qmwLts0#fLO#SWcjDO9YGv9x|bq7C=1ipE~><4%oQ?CaxlpQ8>h*D6}yngkH zzSJ7$3N7he+0neH>&(r|%Zuehg|X%DpWQb*dGb3>4#AfWT8IyWw5aNskdC%CWGw9+ zsW8oN;$I<4*Gqkt9-jfgA`bt{&dwM@IpfgSEkj!m>Mdwo^->|*-_*gcdf zVYNmuwuNwi3lf|2`S;N-7#zJ`5^OGuSH@oh@ zb$g4}z0Wgl*e3O%3z66ygNjW{u8~CAc~0Dhl($zW8|v!?|JvJoZ@^#-M>14S_z1R( zOe-rZIoa9hht$>7_=@wx_Tk`y{u{YD=MwGzSN26mMpoS1I^OhTzqJr_nK^DLCxisV zzBAKDYYbv=hKYJ`cU{KK!$JQfH#gi&>2|#hBtE3jPFj6yq`gLs z8B1|R7e|L zK0=La;>3xEjeW%dWe6)o)?5~H%|>F%_?6AgxuP{FShk2FFEA_yV)(F`JS>vK$@Don zdhQ6fNBf5k>aouG35dfuQkRgJwDHST93*Y1>jx)+L*%CT%Y@cepzIeG6C+8Aw>Z_Z zI%O_@;b3Qf>)i?gEa(dgpHc>PY*duUa8m*C0t^d$BWxgR3yXkrb8%$_(*$Te=Yesd zi@=_Qx&S3cW3q>oKtJNk02*v_A(`fJNjIAP!v7Uz`;G|Jzobzfq8DDEZva=^PKlN9 z56X0o*jRG(sie{iD<4-VYs?ez=tqay6TTH64OIy&qY`3z*4&vz_3Y{ja1oFIZo6T? zMY6b-wl*YY91{mawk2zmY+BfRNA>XJp>rS;a6((%?Bs|BGtDU+1i3QP+obsT1EQh{ zl+jlRglYG`sPwSO!BD5AA;Pg5N!8&SF{7ayDbfb>^N8{^FnsTIBpBTRmQ;h88`89~ z+Q`=h_0{#x9qz~dWa_Zv0CeEhjX zW9zx_sUfV1G|MYozsR2AR^w4wS^83TRf3@4 zu}@a?3IP55Tt?Yn0TNg!wUxQy+E*0V$=m*u#Yy82N)G@M!I#WCySoQ#{C%NcLhS>n z@wFi5;9c!|rP;Y3vRmZlFFYkzHrn)@+?Z|E;2HuPysYs{Bq4yQ5al>zTYwZ?d^m&fVbnMya*IIfGi}oH6r~R7B3PN?z8ADv3du@qRSj$#KlGTlgyKJgs4X?32FJo`hd_1qXBS}g=a!W{0IlR> zXqhz}qMJ@tBk5qK?S*LunQ|2<1HN13&6FYMFHvnpKM~{ z&JBe>=q*!HxInX@o#?A-{vSE`382L4`uep~rYsRnFhwsfEww=|bYfS$_NeQYe%>dL z5vbef{KO(6$1oBOV>h^V?Xm!+Y)chngOqV`y3q)=uYkEgqc^QmVj9NE;v!;pgVpjj zmKPVH&3+-%DuJTOs`SEVaBM$+{ZgMIr1hsoosy!Yq^#j1lP9-ull^kD>*=ok=;a&Zu6$5V8{xPbUg&H^R?gDvwRWCJ>d5a}Zs&&%1= z&)1b()RhlC-tVoSFcsvL!7}4wX|Phf7_WGtGUbSlv};oQZnskYanFXC{Kuj5XGE`O z3LnK=AX(u2O*X&hJV1tOqgF*MyW8K1TNY~(x;eLCHr1G=S0a8Xy?77#5`eYt^TcaY z?YBP6AuUJ6va|8*nKSU(<0v5;px4c=4w*xd2eWrr7}Ym`fJs2v{voIm1n&I80=LS@ z8315oT-A~|{7LR=Oq7`370@ju^rEeWh9-{ckxDEnfL;v6MCRGHc`s5FXyU1%a@PkC z1;Y6Qyn|Qq2097_pvI6^mQ6jzI9yDD`eW__tb|_Snrz-D;FiEp>J?+aIsab2vbbAx z-Zj~^esy4II^!epz{Ygrp2_bUToMh2LV!ctAGw5o)zf)d~n`$Q;n+gZebiw1ttuAezkmaCvRH`7LvVe9r_~)w| zFmB)=kNux{0(04DwFt)IVQ_&qG80&}9O3f=*Lp@7^g$2q9boS3Y{6knh+i<$2YbgWKW(;KM6o<eg|q{n_^hW`=bZls6c*M&l0Y#tfj@1dZEYbWWvVBNKYl40z8tpKGjz*Ae; z>VyLbk+QkN)nBR~J>ULd+2PY*;SYb--xY~`;XYeBld9Q~Tm>c1e)3dIZGE%v{JseE z7hkB>K_G6=|0Q%@eTgVuZvU!lWaQ@m81+VrHiUV#w*FXf%E%_dX2$vFysdVqA`LEC z4tdT)(4;B%in_%mCnI+@dcs62#W#kh6FAweUg?D!{h&?vxnB(05)!3O6c68-u#FH8A-OU zb@>`?#Bu*Q&^>?F8b77`^k_+@&2p2ux><%^ARkT1owv)JY2S~m-rloPsPPYs{ldTK zdG$ZV^B9jkHAp=V`_JljJMsG{YcOc~n!?QZcrkt)+3H@dQOdn>#JUrV{}UopRPTqh z6sEA!vMMAr;?N=uI@p9oIy%SpU2IVMwDTuOyQ*)VK%v7t-gBd)=E8M}Ms+l%u+SB!8myM6 zUVw{3%f!+41H*zQCzY+WFh^Qg7jOYiHdJdkTE>6={E4THrAMkU@$otYoIq3h@fK0B zHe(jhC3LE-3Hwl2M+qW{t+n+6wh#aWJISQ_ZpSl6cBPpXox6~obXBbBrIcCfjcR-U zX4CVh6eVjNP`!ja5*KZ;l`koip}3#;Q5$=J1cVe=zUQKd1%8eZ&!6kW-E_s70h^+lfc|KWA!Wq2+ix&ij*QSTGBN_3=hN?v zy{IW)W3l5{#k~oGEBrtRWL1F*tfqDg>-VZ|&p{CpSi#4oX}u9Mg$w_ixz)_KZ`Uz% zbl<*1SFaH3qCAv|8}s9EbjBlq-R4zqOR)-dV8ey%gpcNv(N{Z?oUclkEm4&T?j%g( zT6b)#3gjd0OsI_d`y(31+}+(_9o)(4#rR@ett;{e20)-ze&}-U+&T1AxI(F(mTTv9 zqwXL6{25qP_QQt~G)F?|({%yeV9@AxF$xG#(c(y~f8eOYkOA;dE_mR59JPT0wT{t7 ze)0su<4>Osa}-Wsqv6$Ip+aU1-5RZ*wGGF-VWIq5A(BKNwYlG9BZ^a(*$ z*-9n;9EMzU9I``-`;K<`GLW&5H+fqkDFo=vJbpJc!3YACVC3TDBz4B$yRzL>E*69z za`^Y$?6-PgPtFD5X+1Tm*KC76-A3bsDW4B;YNArSJXG;!|I&X-gLDb|Fesx2!{wZX z_D1bxi2xwhK|TO43S>P*z5w3+V0IDWm3WE=F`$K0KT#&)2EOvy5CVL3fNWE{y!I#h zpp?QD)6?vWi~*D=aK48x_E0d4Cc|`%jB`Kna;qX6va|ctFdq;Cj74Jv^rHF>el50_ zj|LJbBn2m^2}m#@vk3cv6o-VSxvl2u(?~UeeIg>zkTXt4i`|f=SOtd)JqW{Bgs7$h z8J>Uj_8vMOU}sld+>uYdgtAFC7Ne0qq|4pA*jHFk0RM~7QQq2MYT8jvaY3;F%~R8) z31_d0Q5VBJ==Qq@;X;7RRICqR;la3i9Ue7S0Utab%6gC@NIFG!N>x=AZcRikeVdpN zwXU%ko#r9ts_x#?%%y0eCpM^%bK3g%cETTei|<~RFP95gK0GY9{(Rou2)hAp{IiRU z1VZ8|h@-wM83x4}8Wn;eE-&{+5%=|q;~cU;FAtWrK@Wib8%hhzdc$V5Sek%95P~Cd z#}6E3h6ihUB|dv{@tF`dw1`SegB@El(a`iFLH+UQ0?J@%c0T|x|Wvy zcg{QYI46^(ZNrue-5ibpA%oeN3pwTGD^PV{-Hv}51~^%SL+bG1xVh={15kQ}{0_cD znMk(>nC=1=7q0R%Q;#u)@DRX+i;Ke}BhXb}usXSpS{F5+)>WD9WVV!&i@&asE=`sb zP*%cp#&9Xqx0u zDhzQ#I#J}#1DGI=e(=p`%Wd-KaXz6dBSxCBe^K`v2j@hx{BcgW%Ar zz3~r-=2uw9y*3qoUvj6rS1# zZT0u>-k3KGJ{IC)sQmOkbo%01;oRe+hnsY@EOdJ)U7X*^e_M$ircy2GzP49K11BpB zFBoxsYJKcmtE=yUWdwV ztze(b^TPTMccwxl;*KdO@Tj{qN~@2XyXq%ULgA zxYcUSaJ9l1MGf)ESH%6pOYDu57)WoBwKe7@i={>ivkVELzjyuucI>VDUl@b%yHT%2 zn%{na9fg)oX%O%uPBNWO8BP8UvA4Mf94Me~;oV}LftbY9LFGHH%*uGC z{{9N?{yJz0fTf=qOu!Yo`FExeKYep~&^3Q@L{%NL(Gg#OI}|b}#5!V`00&2EB03k1 zJ@Jq>QWdic9(8NyWBot{1LicTnJ2B#RSj|ip>JRSV#fzykCBmt$a38IjEs!nVEpF4 zZhK}1+m4aZC%|A(g##+j+_4V!CD_A1faY1j@cZ}3jn8}aiUaoVo`{Rpk;2XT#^kyC zmHEOdGugw9A4ZvL8gFkddoy-|iELoYC3Mc<`>l^1CZ8}X0wNlGF}4g*GmY3TK?#b@ z^eBT%;q-lY`do?d9@zIlQ)lE6^HqsBF z)}UuG{UKW8;`#Fu?(J(-a~31DAaSrdt2}1d&U#@dLr_YZ3U`qw{D`ihVK*jq!Np-V z7!I8W;sOz(NU53f0yZ>(fRAtjGBSQ+HP7n)jz5CAOc((^;k*6rAMnY@W$p1#0$_?q zjmB^bk1Z|Tu#vs}C1d?1+)5#gEYM@|@wt)d?y-PB+srK4IE%D7wgk>F9!HmgEs50y zRkFxQT^B|7C7I*k5WuR$k#7!O-o+MyKH+N7_c6?Y6)B3}82k00@Ggzuj4 zl1Fmy+xmJkpCZmeBR?cQVQS^no)eHN07r$kveQ{=Wc~;-OF)_U1%?gNWOpiPBU2FO zB{-%i1osOXuJnu5xaw4pnuI@aD~pTQRP^9M{+j0;^kXCBWMj4T|M#@&TUsC$jVNT8 zxrqxGk!}yr_o1yo4G+O_dod)k;_)7#4SbDWXlilVPE35lP0-)JPgpn+E$f2^u@__C z#zBR0v^G&CEUIqeCD2v1_kKactCXdX>)dXGrD4>@HY|p?JVFSvMpLgX!L@M|dt*(9%JelF6%;A)kNec@r^00fyoaXw#1J;5r3e2}lVGCIb_&G2J#77qC|C4xOmQhXJ*lR|;myYh|2QS(A=uUm z%u9dZ@mcI`Mrtt1(31aZPB1It85w|f*AAUEG|a*f5NPLdkHOUsrOFN(N>raD%t5}F zkyhnTNyX`tb}5NK0fT_iuDrKzb2u_P*MG*42}(lDoid>Uc2N7zFqn`kEk${!}L~w!&HbB{_r~WO% zNb|#~t>@719c&2AaXF2DI!tGhZHH`})YOVM6i9V&X(@lj3bZfSJfSOD8{5B~rHUDb zVGa!er~r$Pu-~a3plL|%u1_Mkg8B>(Cz+7(=+*u)o1Z!J&QppuO(ER238=KQlsV+4 zgT9eUe0Z+zO`o_h<5W&)#+w;ew6e-8_$LadhamexxErQ!z^oJ{i24`a2)F%5le5Aw z`HfA?N>uHZdK307?zKblA0`8~6L;CS*Lkcu*x zIBsD{puCfZe4;5_ak8@m9K(m0m}D6MjpZRtvx+RMjB{pQaj^` zXV?Z|8a~6T4E2YnAV>&A5hkVn4_JHKQ7I@L`rs8`}=pd%XwS5;lV*} zc6JD5$I(1p>ajSJwfHmZx`X7$?>?WOzmzD{c-AsgVJ7wZeyNRwJ4tbEWMgB4t{_xp z%;z&$k4)bIYCXKxUDfkQW`k6fRJ=->x?a2p@qvT0_jSD1`Y#}}HgNAF^h&gEQvCbR zpA#1;oS5vqnAzB5Fj5uJv;XSc!{TB?W8QrK-x*zK5c@&W^<=4@V<23g7 z^W(E(f*AB9Vk9bKFyln^amBM|+heSb#G|Z3RgDA#Q3ZwcXMst;+?uB=8`H^LBKgUx_)usyoDQU%`)Uj3jO1q+Rbi$3p}O-{Bd#%} z_n%H)C496|vXw{lKRgk|MuA71Qy$5wdoWwJa*FZ%9sE4=G+a7r1o~;z@ef_l zFS**-5L^V62-e2NrARiJ&W#8}XMx5%P1?4ruWuDIG9auIZ}7r1Ktd*xs>2J+&pvtw zE*Dckr*(igtgWtUXUHc%bFjD1ijHQ$(1o3K6ogS=GgDJy!gAB(i$a zA@?#{G$d*cb5aPr2jL4?3qMPKcOf{Q(NPS+k$=U@dI*6x)i@Qv^%OSa!dGQ)S#Usw z1JNt8Bpz=WEE`s;=6=F-3HWX`tQ^=CP~GB;v$Px<7&wN>DW;+mzkid` z;Q|Ws(XIJ8)oOX=zeBc!9iqPlFO>O#vumrE|c*BNRxlZfos9_9rq=(^3-f zae=0$eI#*4=pnZe2m%4nnD!xpY^r*o;xX=$R#E+&j?9iNLt-Y&lTR-=QXBNw;oulo7y*RT5r2U9&-D+qurHn5e0%>oYq5Jk!b@c;@& zz@8B~sT%Hpsd;sl4J$%yZU?Cz-MEdcta`QCOOk2HlvGq0 z^m%sFL6~9n)DmReP-8$zmGARLe&UIewrSYnN}_@EV26TyX{Hi!)hOG2;_h1Vlzpu< zgO{BjLKM-mq6I-O``sN=bzPjDNfQ@Q5rM{hWksH|Vm$p3(@>H8$b191Nr1=&Pb72T zw#Q_v|IiNvexNkQ75RH|vJ`0)7#eh`YVGX2f;z*> z%BtbdX*G1>lOR%np(AV@-EVhyysO6{?FdqsA^J5%MaAZC;g25K0cS@RiJ0$)*h?Q` zf11_%(w*fwZo2TZdcz=VHCyA#VlHoSb8m`s{r(f@Vad5VN!QDe0+}EBZ&#pB0|P0) z5|BARl8}l2+(kXQfIbBVAEs%Ra9V^PzIx?_JqY&cgCKo11rm?|34}i{I6G|tjRAf} zRr?KmP$CvY02mqc34?uo zY3MT00?n}_Pj?y;Qt02VB6RIZ%#+ASWOuy-EJ{n6aV)3+tnq3;YqINC2dVi%Uxm+|HUpEPx0<;sN6!;tZhsc0WJ= zCo=6J{FFR=7^N~04xDw!0+%|>rM((ii`;A&w@9(7MN5hZfJjP$3Q&!Yh>$9vD0_gw z_ZeVkID}2E9Kah1Ispp(c0>g8PxBsuE?eg69T93+@;yfTgYnGpZUI3ea6op3-gy-H zX^r5(a4CCnl29Y5#%QUE-gc2^mlJh1b1hG2e>iYzf4=^P!87M<%|9;+yG_RrUD3=o zfIO4@*BNxAsD4m?C2Q9}dIYL!bWs%^EY**1SqKGV5>nu1i3LnmvhLHw5MQK!;Lb3A zc`m{$jadLsYt&D$2%4Slfq_FL5kKT^Q~3an<8PW189W=40d+bn=iE{V&6hk25mTGH5jOK z|ANLNqC(ugd%So40cSRoOnQ`s0CiX1pFm}sMk6``_noUde|_Q|b2!f~FhH1gMCOfr zVK{JqGHg_x`*Gx;@N$9g9;stLEb|72*OPj?qPb6Y5eN`VPQizxHRdk`K`9_Q_U~UGh&;=tk)4WT85ry>_!9u-h}a=Wh!dMLR+D_Y3`A z?!x?h#D{bN^TVpfF9AIh48YORLtnl$$K3qq@c+#S;Ca8qa&U537`o%KyqnAVa^)(a z?e?1{C(~7os$W;@r;e;1^9bGA`Js`%_`K8rq@r+;fh$mba(kAw927IOi+I3{?SI9` zF1@*h#JeR(+*GRMDA5lQUCF5Y)YpY~pscKUGex14fRfaVhy#86 z_?6Qib=+^+A_gQSABr%{u*X4T1#v)hv*7|0Bk(-p>g?el@CRSBCtK747JZRdG<9!Z zJhmsqnza5w%{Liz%fS{!Fw$|JGO%OH0Q1?g86>a4p0rP)ogrVFUUm zGc#Csp{Rox9Tdbcg5^!`{y=Z`tG`%tqku6C3{=hW<8R7w4F(-#WNt>n4}>5fZ4$gG zpjipPyg(6pdiIiyGOPIS>>SDBMN+y8LWbSjJcqmpLs+-_Nx=`}`rIRK; zkHtzOTh<0fQeNv>WdJm}%cre5e0T;D1 zqUA=|&KMfw5aW^{zVrWw;(9_FhPD#5lVjO92|>KMwTYz;gb3j-jJLRP$bsm*l_evV zMtjEX65lBOIC5FhjC|a)M>D4z{n-}oXp)#SZ?|dUto8Kb(9p|$`>f?=Q|Z#rb|q+N zIwa&yndDZSmC-G~oB$InE{NRRfHSxNN5!wgK z??JPdA-yrAlr1z__-mg%o3W|zrjCT<${InTiMH(3k~9nqp^T%Zn2a~Wx=@HT`;3>$ zZ-4E&O_AiogMWlQ==2s!-*b6aX`Xg|TE%VLzO#FYs@Er)xf#DH?5zGkAR0U(#2OgJ zA(V%WGbtsdweQ+QB_}n5svSjOH0FO|SoQOonv5AUDJ}*>me53;Gd0EsNq3;qJ#`yW zN-iqr_HjH6M3U-a&^Yj%)oK-@^a&;sRNhbrz7+K$-p_N)r9<3CK>^OOdABIcH5yIP zIv1?O2i4O!Ks3Zrk&8T&uvu<4%=-jRZZ0keZ3zNKj&C?fC;F%k?Y~Z~wA8$!-+|xi zW_0O|`IGO5#+|~?ut#g)$MXm@evnyB+1ad@0I4F8C=UD!!amqL5h90yFf`__yyS4z zql|OA>;#<)-d)aO|JEU}U*d&R|xb{zL{f4jLA$^IK_ zGRnDj+x6rt*B6P$BXXGObPVqgIQf-Y&(c`>Ku?7QG|87>fM zNczD*1C1P5NN3yUP>RvJhdoF#m}Tj8t!+Q_Qu@-=&JW9r_PpPwhyThBb~zlNdoxKI zUHCCw&J-U;Lxbw86%JvGMlT+oba0ZG+DRgo`qQ-@p3YFb`5Of6ojc;055gmAYqwAi zEzgc@0j-mhmG$!S`uXLx`k&)cS^ zI{h^k3VW%W`RV#)ZH0X*>?&SN>hY;xoV;FGJMrdOdpO%at`C_9bU0jOOCh%H)HkXm zL@)wd1xyO@Y@MfUGL)(|?NMGJli`AZtF%cp5n}jM>5Dx$O>eACvXileNJgt)5){|u zz{d5|V_L~OKo0@t*t?Fh@^Zk=7;n&peglv(h-hdXa5OMy=*lY+@7w|WO>JD4FFX=-@z{|0lH$p8 z==~ssbc|L)sQm~l<=LbEuwC&_^Nb;T>|3zYtq4=;93u&2@(p*PF-BYt=(%mZ#W+1D z%)5?OIlH)EVI33`qgHl9h6dJ(pD*=9Z~ooLSd3RsNZG&0;zQHQ{a9~kT{(W8ww2~_ z>V+QaqjyUZ)@X>4fq`tF!R;wA1(K47fn=CnG{#>~#Xkc*qA&7x$<_eAUaK@|;3W@z zhsFWk5F~-wCSZ$kNt>CNG_Q)W z-Clw?7Zn#|wqZRIo%Pe)TbOz4>RO1KC_cU$q86%(cNq%4Antf+B5ZW={$Z5G@uAS+ z3yBfn_El;@!Z)tw?P+7w1SRX|zFED!V8%ms4eh_&I05JIw1FlwW8c3o;`)0vtt#}8 zeYVued;85mfB$^qZ+qi1oLm-2N@~j3m#mHWfC+#%)SDD11(13NDK|<2Gy(D#H#H3n z7s^L&1RK_guAvSiX_9lR1Kw~vKd#bPcrJ=e-9gKdNX-0W}VhSt~Nl7G~6#z8;t2!Zo z4@t=l_?8cXXGCQX+yGMeQbR8sSTK&U(!Hsx3%F)p3b`wi9FeHHG}cJH>KS|c_F%D7 zEUaEiLyo>_lU&VAR$Cv8DzD|-)IXWt@K5yL-|L5j=lN(RjL+}vX-l&m%5~}>5Vj(# zF?JACV5?`COye)$tdQp*HOhG$AM0*HY2%n1rUzhhtP2b=9v;##l|p2IDA%yO>qBmu z*4A5t<#c%!3X3v3A_ojoHdqU6<#{NNn;zKNBcjWpvsm_wH~XCvdFY8i&gLUBGJp1G zICXvgtS-c2wqWWk^_Qf?%{>8F>2Aw8dMbO|UTCaH<7h?t{y|8L<_4*CXsT6J?IG(! z!ylaIg;5Zsp(-Ft5#-X$48tRY)v$_q%r(-4N#lY*$mv+(8ZJqAI~d0G!eyO_TTGUpI7$YAS+Ok6OpwC8zLY=ROxwg-in>hTLN z3UWLS$v9ADbcPc=kfVbGL$1tunm{uZlvJc?x&^aWdj2ls(Lt+=3-a)85ttOfi(q^P zaQ^1&J86Qz-razSNk=ETq+}5%|Ef$rqIVp?x6Iuv!NS7#!Tbs|?~1fd*gQ6IaZyn~ z?O{rH;!>H~ukV^X21jDY^e}j2LvhEeGcSEZ9p+!bBRy zf0Sl*z?cXa+$}k9>Xt990=a3}(~#Yi%FT|#3pADkA&+XJ_8dv}mBE-W1fDtMn%z+j3QqH1@?0xKV>@-D7Bm4@sf{FXRZC*^l?aIE%P z->m07BECy&8Z)&?VQ;zqdE zAqm4NqHG!fJwC%d&SE$6RaASx#fPmjs`DWX|2rP52pvWu%F4+h zX+^2hXLW82$eHROoAiFfOYzOT}qylG$}V#m)f8G1co)-IJ} zmo+{wvLUvYHpm9tBEB%pjVqc|p_Y~+69^zbY4#U1>z$pp&JLwzWw5#}cpw@jhJQAS za!xRgpLP@z<8WPKY~XwE$U_d=`s<-i`U-dz0UBgwVNGV^7o}NmZEkCkj@ldFg4NM6 z%f4+}C~R`dduUNKp{8&w(DS4uAH&&#uBnRLiwHrH0%E4T5B^41-m$qVrkZU4;X!wI zHw3?6005pK7va_Z;YKG&Wbvu1+A$mzk_zSsHDr#!VTN=-r4J%JF=T$|UYa6y@Mlm# zRfdPpx2y?^#?h6${#O_eSzB8>YITb6|LNnxj-dATTQ5gl5vE08x&?Sel_a>qATykx zNI#34F%+W-0@P3mu?Uhlyq^=Ce2%6Kzk@~-8Zeb8JtvC)VstT#@cP`foHOcOcNfygQ!lnla-zEH1l(ho{Fc>O&Rn|D)F z*I_k=s|chQHX(DRD8mV?<78GYZ{3OXY2GI*T^$KukG65uMNa0cBeTgEwAtB}LPMyW6R z6&0VU{Tr5RY<8vD*?Yl!BBp8Zm6=rg)dPlcja*ugEvEiQq7tR6A|qQtko(LWQxb(} z?74MqhE^P4=MBuYGBA#Q{qSL6w>t%Ct}QGhwK6@A@|V|)EOO?itF5kcUKOHAkMO-#eO+$HiYJvtlWA?*{p zCyV+!20wCn@7!OkkyM#{#3n+CG%*)rP0=yIYCC$tZx<(2z9bI9>WL3|lPb)n;MBeD zJ%%~e^tt(GOqk049qd(i^(aao_pNTcsSAIm9+|)CqyHDQe?rusi(*T_bgFG{TZHPx zy~jSiyPI4kgC&Y0rE1VjvSGhZKHV~>NV&4xWJhJSVs;iP%2w5-(+vO+S zn~ez#42Ii9SEnLQe-ByJuKrcd!&^Ib=wDxFCo?id~*wV3%|^;NsCi+(wiGq*M_hp(Zq~;0$m$G&I$hoP9c-d`~s8CXRqMka?s8^_QziUSmz_uWRMx!*@YApE1nY~Mj=A4qc1 zM}Cu9`Pu-p2&i-a*_2gehp8~>cwV`JrLWApj2Rw_FT^6$jzPWz-Uvu5kmbJNVPwKj zegFO%K8mO}eMO72%yt*7OPS4T%IELlh>X@W#OYF*My=CU>BmBZ?%E=+WN;jwI5 z|4#MsYMA!b{A3$zEukVl8c<2959BbB75e>Ac9%m^X`j8+UUX{VV(qB)0kDdRt*)k^ z2N1P-nk@u11o*?#jP2(RBcatBI{x4KTF8t!e3&Fx#H)iEM8ngSc=&wRV~~B@=QTvh z*n_E2OMv=8qXP1rUH36?0Q_$&fR3n-g@5r7IR85j6#3-j)T z!X#}Z6mg>Bd0=G7-SX)Q6jpcvUeY&fNdsa5lmUm-_yW&9Qr$Lzc;Y)B?rItu;lY597v+4QBylG&J%4e>R$8aG4~TzzE8QckC`u5 z9p0B~l&n~$rq5>B@dO_84bohz^(nNwG)HtgKxhnSa?~-&q~ap}4czM51vCH6jib`i zOZX+=Nl>NdS000{jy(Q24$ja;<4<$fRY$WyO+R@;bpyjC?xHq}kCz1E25HtSnbJ3R zma$!~wi??>F23iwWaY-U}TDpV&*l*q0V2-0XX*p^aF@PyR~NOowz``;ITkWr#I5K zZg87|9wUfJK_@6FaML&Fz>*5HI3QX){&$3#YgP730KC>O07_{OP*20u0`stSu6t@telZafnSnN)@IT|$9|d(RByWbrj*`gn7G z3wj}}sPj>>OYM+Gx>^46*~g8yx^|Zb1yck7>Oq}{%N7DGe4*6E`ihJ*-d@)Lj#n@J z*qgHvDW|e8_Z5v{6)GI#N-Ct#qCGjE`TY68FB_(y)A2i2xLy&zG;~bCHFSmD-=jur zM(5YWMKPW0BOW3b%Y)s>HDae-27Q_QbRy;gApF8h9`AM2LS17cSAfD*)T-*fryS$0 zvn27o^u^U`37{mXrK&lRbUB3`qEAnC5c&u7Z3_Oqpk}rWpkKfM%Tphh4p9N%K^-3v zL3?_(i>W}9frB6p9J_1dbql6`@7srWLu+x8uqYRbbt}y0Q{uCspYw&|76cd$)f3qUW2?)Emb!B43(89|q@fjWHY;0M zZDPSzi;WqYnW5}>@9TG;B=&~p8+hs#iokrHm$9+QcuM_6(+1NoKewo?%2 z2qz`_DCKXz;llRzNiW9vqGjxwW7Q={CUyr02wJIi*qe)9eeUY|v$SMcemVWbe#L`` z)5LIr5vyH{_wL`H9vv-$0jDXn1F{#(+8dTuRy8Xb?wUr2Yo4etUwvtIQsL_97h!h2 zU+3R&_`U%ww*S~Mt{ZL7#vtLx`B2w!ng;o_f1y%wPbD?%>Bn}Cli_y38PQ1^5e;q) z==FoNH2Nv|M)h7i*&n-^`5noaluzSKLCFRFrP5W6U0fVT^u{Uumwm6wA4q?dT;dvZ zI2{u(`+>hVz21}W69rU=lV6(9=ODuaYf<0soo{UJIX`IQaNPiNf*275K3t3U?y*}u zrMMk13#r*YgwWSHZ$LTckTC*OMaRi02jm%4awjZ)(n_pIOt@^a}G5l$_^=iU*|RH!%gb0!SPB@r5bVp1$jM`?3O|(`RZ&RpnR3} zUA}~%#^Cz8@p*V1{ui&IywVW?DFwa>OaowAXJ=W=PI&bx$t_&1xw!9DPQNPd0Z#3Z z4l{YiKPAu7rC+86X!`CFPyT>Q<=Re)sW{RQ_V|o%=l*SzNrf;uuI`{z^Y?-^@RXV@R<8F27f5tc~b1#h~BKH(0U8D-QV2k>VWJ* zdKJ6MhCPk50aDv}xo@a8;baTQI4O}E4xYTi*F{s~(0v5k{iojA5p*~@Ml zw&}Zc-OEeXblbjNjO;|B8^$Ezh<%vO8WAOS@lI{RC6l43U12VH>n?ewcc02P7%*ug z+sf|zv)}tWA@YR9s@l`zG$J(5xwstcxP+<^@uCek`p`ilk1KS9ModHmNMWS)i}@MZ zFXS@ZER_LM@Me;H{!!yQfQE_wlm4!40g*L&3)gg!!x=}5nnDPK|K$ScIBN-fe(^h$taPBHu@8V0Rla`x@ZBu%BgEc4`bayBfGoh%{-c++NRcU+VWCt-#P=hj zPDG9OPL2I2t=H*LQWYR3V(BeAcPNysNeOZ1O56oT1{j>P>W4qYK1)n$b41O(1=|iX zGph8nIG9gn`v|thJaC$L<2bF*vb(|Y8q+2a;eX5yweO1iI%&MyLuXV+M}Plr@0`Pt zTRrdQ7L>jH7^Sj8Isy9?!x=VzSI*Y>t#$d!MW~tA-tb32O{>nymy+u!kg;l-FUQWu z^E3DTmRS<~kecDZ^Q6xLdXc&tCWzatW-wGUdf6wOEy_aNGc=^*&|Ie8QBsl zGi7A_?#Fq(Ki_|T-EP-)JFoLP>vX)1*Yo*!JnoPCu&r|-?L|VFRFK9=LBV_NE@YPI zgce?p19RGdzzUNDOSxItc2YwdvUE*&I{+0uhHSEzAtL1guD@Z~iHkd9cnAVf;4h?* zE)~z&+9j(uEZZKbz1S|2nDRltz}scu-H#**+ZC1%3qBR0mnVcYb_((6Ha2oT58=(l z3S7ABYg=1Mp)N1Z6{;v7N)YfC#4P;}Zvp!O6)!D4ecMmhVIUCb?IQ<4_5Aa|>z;U& zVt0OL<8!&uJS&fEHp;RZ!CQJJ3lT|s;_u`|GWNKOho?Bhqg8-)9^@W;xr6!606BoE z;JXEbp^2(1fh7yJheomJvMO*6f0Hhllta2+^<@nf`fYg!1VlB3;UO6v3^}2aIi|qx+9eRFcUqU&f&y%F!nk>SL0T5 zC8PN7U|o=2jo=GXI{>p|xUI(bu9LfAJX9+Qx!y9aXniawXcJs)II%%gmW9Ul(Id3~ zCMQo)o#UW|9Xq7(Mz02sa!MYx-M_eZ$8Kw(u+N%L9;pYpJ{x>3xwWqX()w_#-Ti}u zDnz21Ln@67z*${+wIW?%s?JQa*!(aRTJ$8?=hFvDm{Rv&a~D>!pJb4C8WXdpdoTNV zSC(B5hiJ`U#+#UV8TcXXKN5z3zlLr4x9vFL`Gte<-jwaW5+<%=@M5%IvuXeOv@YZk z4}V=}rnV5H1q~S^<6B2*l?rk?Mszh~Y7a@m3BYblzUZ;A|Ik(^f7QW$w`3LDf1`(= zA6eJ(UhZariw$N-lxojP(_oZ2a4|uw^F!V#+h~WN`?c#<63wqq%g&}HJ3YKf;2+Qy zu`rN+o#d=@e*K?c^Y}vMH&ZQeuSst}1%>7vcVAyPbc)qh1IGPv(_li|#3a##(xSi4 zy!;gWT){HJ^*J5*Rl{Z1kEh$LUmR~M@18u%6n(5ScY4F%V0GO|o{&>CfK+(w`XuR=;0D=Rufv+3j<^E4yKgjBc zFtvom5IP_}C7;;DAoQacU`hLVM<-JO=KHVSY5U^iVh93=)m#xRAt_ml9N4+qEnHIY zG60cHkc|s!OE4qQAW<|XFtw1QGey^gE~v_oN_!$Ay zIMN9JdFxpu&RH(eNa=Tk?bWQSu5SFF$Qxe^bJYsFz+Zfs%>>xTIE_OUDlMqE(L|AO zo-bb>78Nn_9Ug%4{NIw7y}dmwPq7%lOm(DCljC->AQeVftjsp?uB~#yz&ya;KdMW( z=wff_ITCNdL6Fy;Mr5PtCNzd$!D=OW$0%7~R_z5oL>TV2tdp0OCE>2~k;k;PsV@tm zl`lmB;5}9xCg(wF+56wR8=-YJH5CSp;#WxQ=-NikJO6|J*)K%ekV|OqaPor~2ZWfzM@$jPwg4lbrUW29=!)Q|TZ#*b2{)zUpX`1;EWywv8Ey6r{ zN(>^=QBm;3F{*3q-)zs-tP0fu$d*aFDp|Xpkd@`)>RRhQu7j5sa1iuFpk*4SNvYe2 zTKa~B(CS62ON`J;!K0@Ij17NRaUfZ>FvwFq#&XxV2tWT|p1FT~YU-p&gbgMjq(^M4 zwUgoi{DP!j@{;t53UByFgOu&|-K3;lNao#!aW!PoH{#hJje9+u>_<{~Ocp z3|oOTlM}QSrKK@FAwgm8JW!$Q;`$-WoQg3>PK)Ae*Yj3a^WAriT$-{1_u3<^)O zsVQ8{XdN3@?VQpOq6364kS_0~QAt=BW1lA_`oaFYF8{a$-v2lIPVcNkf{w9~5g<^^ z@=!aqy?=jAm(&))ZwDV3)WL+mM$x@^7cgNEeD{fpzG-fTj3lN{m^CDXU7pko8yLWi z{`*OO9oBiM^#ExAI#k!UhEYfF(~B{XB!C8LUtNs|Q(S}gW##}HG;2TjV&n?BPeu`> z=7DP!-Fy1*5Qu43m0tR>vyrh#EPSG|6p0)Fgm&(5PYn%K*U+F4arFUM4j5#@HUi7*>2j@fwRqSe5`zl_u_Qf?Q8~}J4q8PwU zij^~3sZk!vC2BBdN#ImW3{+$hM5On9f`S%`r)PuZx_hLV6K;ptm-hhyinKLEU_f*9 zE{vdK3-=%0oBb~H;F*&$cbo5bBdZ(J<0n<>Yf|*oI3D0_!(i)M(u7OAC6;p>kV|^l zOF&=v35*8dc#OKBl)_D+!zmd=UJEJ&uQzQtk>v3K@8S5(m;3jH3yzF(d*FHljRw6k zB*}Db_?GZXU5FWC{x$C;s*F!01#7Nm#LMqfc;>K+4tLt>@MTaYmz*(E;5i@$irb?{ zALk?xb%#Fy-BL%4AyQ|!t`QOMINPxZ+XT$NcfUd&aGMpqAOc0T4n)Sq@%73-zzqbD zG1j+<6jX?kck2pbdJYAy$-Z|78w^{yPHw~SCq{9NWreR!K3Uj*GC}+8UrDDEz3k_= zYN*b!rolt>!BFnjoKz3=W9zG){1y~TyHS{&hOG(q3&B6Uxz{KPvgxv|n zw+`LZISPOhX0#8ev8(cOCrRUDyZk#(4@khp!Lk|(-Q&|r6robckq1W1tK`G*z&DPh)Ud;MTpLE+Fg}s=t+?!Ap9@9} zREY$n&4Fp}Xfj91>?mnV$|c9>TwelfSO2gtM7oEMA73o*qxi{D-{+2vsKr-Ecyawz z_SE9Jla(PdFWk@mXDf;1r=~_` zCRPH$FA%DKqGJD!zJI*cf)e-cU6e*H+*NRa<8Uo}c!i4-u$ZO+&8x%LdOdP-t21+D z%K~H+ckE|fylJ*)AN3jR?9ToO3L{2pTubP#~x8N>LM>J zuWqHc;W)f)F%V#BJ@EN6mHKU**_@nVv?>nx!uwf(g61u+Q73RtMzhSv>Jt{$99`1#43-ynhG z)HGaOGUQw|%2-X8$8q3bs#ya^;eT&xH`kmnnBee7h>dQu%(K!@srj;O;(Q~hf!6ZL z!JTs4SJsTmpXvvFN;p(WWAP(P6PE;FPcWMHH)IRq znzw{bVwo2Fye{B=(EA31)&$L3)DJDPZPIR3SJ8M~x+EH}2Pd!_G6q()LA#L(;wVJP zt~B~sZYR6E&ZB!^Dn*!U9l)4!=jiD=#WT3tIx`>aBAJh_{SaoIO7Qt0kpNR z1EC;flW85r(L8hJj+zW7XL^kUyT~WBoE|RqCaUj}Hr^V$&2(D5OVQpG4&H0}Ny5bF zyj)pSk%Ep)ZI}#4EKVJ5MDW*+n@IQW?ykTlsj~7;vn|QE@XQ&Hw_r*Ds$#4#K;byxMe(;pQ)B$FZYJm`*7UUjvKMGiH@rnGq8aAp(FA-ih` zH;M+^Jt87KM;ZG{M&-{%6yE=kEN=f`rSo88uTc2YdU3fYOmk5(p8N-`_~iz}df&Ey z|7yWk0$%vrqgHtq?qi(R3r-7gg48oquF0M3K1fDa~T;*L0X7=}oKEOEBNEWxV3t^dkz z^b7@jrX>;Uw3-3=jYb8t!fj80*M999km&rv!Zw%=|Ne{%Wji7>0DH!5N`gojs#%OX zdUoG7v~1X;?FROrc?s?w)L(w9LiRqVGn!Oh$vi&UmtWI($IrK{_vP1;XND@BFUow? zT|;copKmNO=`NhOMP|NNQZn@!{RY{ym&|f8y^ANFIOLZ9D48ygO{);A#Dew^W5Aq zmsz;E#rixl$l|34r{-6>8UHRUfQb-{0zRS&qa?V%`^_!Rvo#$`gyl|Tbyk`|fvkuy zhz(HTK-8i!Ma%1_%$xnsUWx+>_s&@|tq`QEI5sl@Q@HnjVn(UUdEa#XsLe%gu&gmhL>T-N4k;8&~k4FJu!z1Rd2Q zJ2|=@0>iGP`t+XB1~h|_J&{+>8BywdmhAlaI_JqhX~V2$oycAG@k@?0!BR?xZ(lMT zDaxswGd^{y#$)0=xG#!_sNkHfqy*OQUu`*sfk&;F-(ZBjNgio`bpo{zG5}*LJDm!QgJ2HJ4+1=4I$FljHzH?nchu-rz#u>R7bJ1 z9^v={A{))MkjV(7mr$vr&N|C+M>N*I@P5gA-gjgn6GX^4Ca3{npa1T4by=Cwor*+Q z3_N<|3?K6;O4WIUwU&n1OQ(0P3sNmbV%z?GaEuf5=jSXU9do4J=mCYoCjHcF(v7V8Xh_1x5yj@CVM5&K4!|<7b;pVjkMf z(p`JFr_Xa=w#>DYi^j)&Buyh5M{n%djYu{Ftbd<`e8c)<-@c~@>FQVBbveieo% zj`D;q{LLGkAR6p_P@M^%6J5Jl5g2o%CdGfYhBch+d zNd?uzTmF1`AKo)~$(^aba!~m%iy~fWZ1KXVm6MO`YNOCc@TH9n(Uvs?7Ku+RU)M>g zg`-Qs#L0DYPk-U#&`@&TI9+n{#BYrR46#&Ly#4SYPvqtH9xzJQERWYrTsMbltmmiLE)653`B`4?q4b_SsDLfiQzQA-qxMWTDTU;k!=aLWBue zf4usvL<_Yh)(ACcEBA_vvwCV(-?*Uz(;0mEuYHfm$;*>~f3Pv`zq%tG5{9poY=@l}Kh81VX3h>_z#bvQxBdNGn_Zti?FWYe zj(EkzF~2Pwot%)=u_uuv{+* z;#D+uZOPvVY5B?ZzJy4}%7)x<0Q7iyK!9eH$An zQKeI>9|wJv4E5i4{Z1L@noE}6!McS-ubEvJHvFw)wgl9K*IUnGz)MYysFp1tVBA33 z77I&ajgq!6-lzYYByi<^|89qC1Kh=hOfI5m(8eD#j445h$rww91DCV(j%x|T?>U|c z{(FS&_{@w-TEGPcj&|D}`8R=HVZ;Lu$tx!+oHzyQ1!(=SIO%)l2x1BgmHJ81gQB88 z0NdeTQ+PaU?3Uh2Taa zh6jycDjgm6ghfo9fk=oKsjk8j1NF__MgG76q%QoO0ge)@FacJ_u9KuF2Jj&nLXdF2#AdHu9L0B zM`NQcZtG~SMY`AqUyEGl0?dpa+q%l{0D?bJXh8e@^vMM@%fu3kcrZDx2#jd|8N`+h zIcra`WQH3ZWEMDwzl_$eJrlktTalR8#UK;?d39%ndDC~=`)i&GcHBKXu%SajQ_cML zvPetS$~Cg7r6SS~1_1>oJ9G)K-a-w7A{cM6#dGKMx3BML>*|)AE(e#=-382f41TbN zVx5^@qgJas${a+&OEM3DH8&^5{Qf-}*vJ>D`uMhB=!7>H4;5Vuuo)T53)#@e`$9rmG{Aj8^ZMVU9hTRXZ(pN`nH_20%{I`4Vj5SgTaGL!*aLW{Nn_RmlEuLF z6?a6<0P&g*iojh2p2lvTOyO`!jz2qf>r9GHa%K6e9#dV&lPKZbL3@nrj7p#uHE*th zy!3{KHZr(?-~63=;d1WW0^paW)DXk`WU(?jzmA~O*x0LXt$X4^NnEY{Mvpp#|Jn8R z>+3?@L{VYulf`}_-4C8+*H)c-9{*F4aCTPn*Ve`yG)|~JKj?!i=~pnb!|qNr`5_`Q zV8DIxVmG@zRb*lf+dK~h#n!`J0Kj1{Jdcg1`5T-%SJyeZd81V0YY1BW zhPQiLs2ZGQ@q4E`%2}8~#|mGEM6^Vf&>wWImdll4N~+8=I{LsYUVNL$5#`T(vg@E~ z0b6PB@*RBT*#c8Y$#o{hDT*4&n!D(%;C%s}4yi|(1-}r?ZkE}%#`nJUIZq9meM*z1 zY)WF`xN3Hw=sQQQAj@V~ON%|$KY^nR;vM}v;lPaa;Uf+K>Q9u8*?d8l zvz(=h4~L!E?9_^3{W>OT&^DofePruHFCIz2W%t(_jmT}U+sbMNqjkJl%xZOW}&XFdrh18yn2!z3f zWzMYMh@kP9)6vIy+uL%E&eqq(PfY)gP=0L?eKgU2|3Y^X-{ASGvaZjcg*=dBHoev5 zTL?~}`lI}o&?EU)HCJDy+A}q(3J^G%#p)_NdNMQ56?|HEPJ3^aWoPDX>GQyec;R$3 z)uAkiH(T?E6oKPt>FOeu^yuovUR_{A&}9J&XxyKfpM#=={n1sBX8_Cm#QJP=(03Sk zHsZwD&Wm}IsXhHqQb9upcwVc` z`Jc;RWjE-{pk-rIS_&Q5{JdJunFIxNO6Fy@+Nj0LHz7xVvY?Z1yZs6UnGhXmA8Qjb zPvUol;mZayBBq5i2mudlgKF?qXlkSXWT?6!BqGw{3JdBnl$)k;eZ%}6ye&Jtis{@X z_b|N_$u)PjSW*h(E-`pn*^)=hTB{!%wA9flD4a`Z6tB8A^hKWW3J(XliWPAZ96n{g3KM! zaj?(Vpo^yrIUpnR+H0EG_AF5LZWy-0DLncUC;$Ccj-NOFn9wIp5K>G59`BBNvHB&d zqB55?nv|1G%D9n;9KYdMip zyv{c5HhI&C-7>9)IZ{^sH{-};UH1j`?UI^I8hIUPYKn`QG$M#}m9WG+Vw^#xh+=x> zP#Zj;`~ynK$&9K0_q~MVuQOOQT3>@ZVV8p{ zV>G3CEKQ0Zw0tCCXF5|udk&l#OGvDYW8Mz)wwuJCFBq)ZFV$vF&)+ld^muHD|n4b5dtilo*CMCX|Jghp>o(_1^x)5x>%*0e!$nOuT5rA{05Po z?c7s0kS~0+58Y>vD)8Btk|W?s8Bbot8Vq1<>3tF^USdO%N2tFrsuabCPZVSc)TkI_ zQfdSa|KkGjYgZIvu9FTI26z}(4$33A5>*~lnIyV-@@--D2sc+n-UjSHC-E%}fTRQx zD>4Qdkn~>3kpNc;bU9d1!palKK0rA@?k#^pV-mAPc})HL3mmBh_cPtoKC}0m;DQ{V zRN=~z3=gykIJ6{FL=5x_+@P}i74HPg9&BJ=FgM1$OI6Py0!gaY1{@LFd97>GLuz^F zu@BF;(tf!3_Gkfc>eb2bx?_)v&t3^|YBtUa&$;=`GD?6SsL|kEFc)zzj=9q)nR^)i z__6Z&G&}$)+jU^i!azXN08>aK223V<7Iyii0bDakm!5#g8EYo6DKQ=3a_Vd^uv!QI zVH2OG>MO7^P`NN&Ci|~Bp4T-pDr0{V#cVzV0M+)H2(x*NO7zm_Lvw|krJLM>2KnQH z*=Ig-7)6;c-2x{-GNN%5c9`(}9|OS!PF?u-;CXS~WW!DuoA}<|2YGoimp<=>M z&YVmYJ)IymNFb7^0fB#iaYl!t?jGrpSV@e37*m#tc4ynOef#(CTJ;}2Ly6W8ofX*1 zDlXkau_eEyD#qm%M^^u;LG>WFk+=N5}Zi{1FW zVNThriQBj=kJROPTZP2SG44bXUfZinky^G`yTj7f^+?$A=u!_KY

ZsXw)_aVKnl*mElP z$-?T=#{IU)R0b;b$Gh*x=-cUzxrkazbfr%!em4-KDNDU(xRg|)oC$)RBTO@ zB>e)T8SVri@NT~G5ncFb64Q2&Zdda`)|%DRdv+M*0c-eem+-qmxcCU{I-{czu7WhMdQbC-~@!-cB;UDCNHO z&8fwX!%e%yt!}(G+sAveQEcL^x!@0UW}^ou!OaBDlaic_aTTpXdPW8=_@Cgne}1=F z!^+3PQVv@rR!X2}Bx2YxAz1l157%T3Tfuq|zY))CarR!Z<&<$(qKVSa+`?beJbUQ7dG6@ia zTf+9LW7_amPt&5j6|(hr<}AMMxMz%EQLp1|7r(P~QfBwd9xVp^z_)!V|7+YM>*{B&y z4-MV*{`WC+`pGV7p>KXUZQVx#@@DdexE5nx%sH)<+<*i`-@pJsgUF=LeuS6J%y)l`BOl+#dkx_vWto702;maRf=}&|7rr+6}9C>#r3*Q3tBSub`V@U z7-{C+Wo}j}X@;dP?bYJe0iSLv#hx!D= za_83NI=gb}elnV!%pLPW6kmH@U77sl%-&_EMfp-^WA<%sdh^xsnSZSMjw={;AX@SR zjRSfID6D<)fDPk_5S9V(fdOhV1PDlGPD&c6@;8Yz;PEO|rbBd*pZs=<7vR(D2@={@z|N0JJkV^$5Qn;#DW~oF<-qN@1vNzHIlv zU{?B2QdXO9b5UMiSUGRAVIw+Uo`7h{l;i{Aav}9$_fy8YSsgxz1f8C2k-t}SUE}b- zk7M7?7gwI5+Sl6?shF9qlZP+tBAn-OeS?%^1wkmlCM?i#xEMwy%z=voH#&S}{q&hL z+n<#^eL6N6DQrX^*CMu$KZ%Z->^_^+dn&MVc|$G^I0EOOF{GgZ#BW({$LN|qhJ7xi z2ZlB(&qJwn^eNdDnmT@7Jo1H5Q~m9r%{wLg6JNS3_|5J^@j4^X%5?B*K!DQUKYPXV z=gNA?Xt)y+7M`y?u5EpvF7wbJ#ZW8o^7Z$wMw)rUoKk7b96~X=jpcp6NZwghe(^72 z9iYep07LbcmPrN;02KAa%=l*5DN429GA+5djMX zmJHR6-B1+Zrbk)Z!12K-kpnRyIxy5v*MXPdQ42fHm1^W0W28WK0{x!^rG#fkMwtLqns6^<>i1KtI5m`cZoENd>A-^z>d{Hwezn(B6|@s=G?c= zz{#)>T(~Skpu8tPd*_AGY>?ha={_XE(+Kz8 zOEnIH5gIwiUBLRKt(L3=f!<~ii3G@?tyBOnBw+`MD5}N{`^BtY z=7{rhT}!@C-M6An+Dk34TcuTa-`=CJUQ)&rujl3F2H0@y5E!INx{bJXcE2u$um`dq z+z}J@B(K-{yFYj^w+?`QTVBZ zU2Y#5vN~~sD0Rv5<42O}aDFrxPHK3YpofL&1l&$BX0eN#he-FpI-6(Lu0LSE{!W>q zr=wH2vh<*7e6p*v^JRZ9IHq_NVJ1Z{G)YMy7n^S&J4Gt|kLr$YbC&yuISEGy1VCFU z4k`*%az*?!xYQJQTyti5@sIvv2f3Ow(?-{W*bK0MruIz@#m+9vk5%}aqN3X`Iz|eg zAG+uja!l*3()`nsER~0`U1~J|{$Ms;RctN=Sd5ef^!f9Z6EPV&d5Givi+`)d*KJe{ z=*q#KjoUb}!F8ad4i`nbj6L`>+ubGO^?;-BDET;BzvlO7${VHMz8x8*gI~V9>1z<+ zE@hPSeaA4q%%)rsVzFViJQfdcHawd-r&SRTPB@xRgpV$B?%FjmI?CT~ax?{vG~O(n z)bRyB@VwvyguiaJ(tlis!=wPHci}$1Eoi#xj3ai2wAP&srKPaqAhAZF`N(JFx{29M z9(zrr>s%D%!*MVve1=Q5F#H_4^pvzTy4qRb*ZU+STHn2U1tXQZ$sHN8R8N(^y!$dS zc(9?$Jzn=f{QMjfY0(Nde-Q02;_?G^XpaT`0}{ZFji#U=$rcK*5#BPeZeF3eB}Duv zj67WjYh*;5-Q&OlJugE4s7#>fI9g!B&ll>1CgXHH*}j3}iMl}|8T!uALI*AC$_|Y( z0>8F>dzbC;4bVz|;Af<|gL3~BQGN4O#<#Snt^!wvS-6qV1l+9f=I)UTrV*tytP2zH z!KF)7h7mQcpMGX)^08c`l2`(LOv=dk`eB8_u*9d%d6$9B-j^}m2X8eQeb;{v2gCggs7n;I5BD|VM=@@PjAFg^A zB#2b;BWnqGW}L+Yv45IDd`F_*{lmuyWOeXrWVAFKstM#ipiM9JmRylkPsqsVG~xfH z23H@Q!ma?B=ERhgzi8uwRKA`AJI4;LBI*RH17@pNYm#l(pN1%c2>| zok(YV^5hbd6nhTj8vb_8X9N0(;V>=D{M0EOA^{el|1%`-{!o>6m?B02QAodP_mi#d z6*~;i?0|2|l8-+fWb=sYtqf<^&O7~7u8PL_o?UAFT=;V#j~REKJbaigba>B>FA6jq zW&V(K5B!ZLnMPX5!Qu#kh6~bg;#o6Op~ra5F7n^UX{alia`y%39>96m=)?(hRDflT zWU)p%IC+q_B^x?-{ac$-F|T*{o0bot(m7pKWi;AFP#|MG%t%t}p@nV8ku!kT0G1?g zKz?CjB9E{>vWp^5l}PtvYHDN=rS#oc~*OVoavCXbaIQyF5TNdT2J;|h_uyx9a+Q2A^qle@~suDE#7q457p1V5r=h ze@}?BRW{^sJOBD)J?(SrOH!tCDJShE7ht}m1Xtr(@Y#@AjfudYdrm(S>uI`Yqb_?= zb8_Zj?Ep*|ltL^Pu(<|w1irY!p+iXEV~ly3Oec_eR3r2A$h}987$A-RBydpoLlEPh zXDXVq=f`(BXa=oo^qv_M5D{H&$DwEQGlgd&;+XiL*ut^GwBUOA`>eMrN#|bt6GqPS zaL$(#&*4y0U}YtIzwwgHQkkskKUfoG?KZ*=w_lWmz8tP$l7_j(|8nkmt;?<>#BdXc z8SpU}r(8fu2P|0LvHr}qlU+JqspmzQj`HT)L**P@35&#zd4Ov6$Br@9Rs)~MTAQs< z)qH+&Q9~ZnkDI6G&zk(QGIubpw;pzFVN>gm8y?i|+1|1+oxG?{Bc^j;@iBAmWKYm4 z47ja$t7EUptFr}5v^7>jl#2p`3tS&m)| zs3f+N{5{n*TLCgF zT(qROSxpatxL8QPcb&stOc^9(tL%os!7Q~E!+=XxjMf-+R6ZvBXH>BJke6QipUsvc z>LVTl+R4)xM<(s6{1+n`{1^@Yv-@gyLA}_|YhTI&59ddZVr@&|1&Tjm_AHkA(Y#MT zT#$y696yT~7yG}EAt%4l#qMppPkS_?;Lg=j{Ld5VwPgRM)8jO@qf9050c@a- z#)vi6mY4tjUnmOpxtTZ7l4r|0GLOZh&jGX|hmr!(hd&Pj3bd z4n(zmX7}T9xclFJDfAB=V8i^!GQ|Z2cHrsPZl_1y0Ejl<`uDnJQ+!8x#>V)^p^qT^v-r}}13;#>s7Rl6b}J53TKJ6{ zXa|w1f><5czriaVa4!U2=a(v~Gppk4}Pr)j6f8dr^Pg?#4} z<**@0fmr-VAbyNM2NndNqpH&dZhR}y;Q+`5Wzy|A{F-myz71EwWNSCc>lz@Ef*7!; z#|JhzJjd%i2in@&uyCyi^AfFpSj9BD!V>WX{!NY2TCC@I0ZK38Q=;dDufwZXtKg-C zI~|rJ2_;ue$LGL6-gjlGBJE#Y<5ld4acHr59CbD_HMNA48C0v6L7|{@;MU>T`EzCl zNZv7{L;bXLDkTWHcEcplbbvWtkF-OT)V-Cm#mHz4XY#Ovv!o&~2T#MKV|g_3LlL#MbSkq-Wp|HOc;i zdTge*O!K4&bEMW<9T*CE9dM0r3U~$89*N-J(xRK$%5aj#iqDTYa-IDD#2R&!RO@6q zaFoDZ3Ob19fD$P6XyFwVzg;qizbZ~EFlpQ6_*t9^kk#9Ne&gikZnVGOxiFc1`r9eu zBNb#HNi6Q&GeWJ}bERYyVy{y$?h_LNgT-%c$uWvGKvGPMC2jid{rmVBLUlUK6ubo> zSHS8zFR!t#&IVGh$PchY_+!p|`5d%iP(2A5^ZnaCdI7-~qxhUJXP*HEgChah>p(SF z{ir-MI-c=!Z+BXKeviYkL(13dRaLCQ=esDWuqIKPNJrqC1T!iMzL3|nUw?zbnt%+| z*i>aa|C?L~w_lWE0eAsITYTnGVgmEL6teC?vIST}>LKuEfu*RY7s)DDJ5`9wJcLLB z)F|ojA`<2)(-s#!U`n3UF$%S9FxWduf;jx}|Aa~z`f&i5g@uLiHdKF5F`Jx}ehjyThUT`y`-E^A6^i1ZC0|nk~a!8EGNf0DCqE*6&}dSiXSLxxp9)RVA1P} z&%CMspJTxkZT#Jk7K+4oFpJP(xcQwrq7l>5$ijwThp_@9+1WG0?aN_y;Njjp?QgFuB= zGS6@fw{tx*uQrH&$~7?H7qTR!I0a(w&r0d(`5WKRP!1h^H7iND1)&OFPxFUD6ipvV ztM&0OBnL|}wO|otWu8C>AZyxQfiOCngB%06>OPZ#sp)C=H|=}(0a(5gMfJCH!CK@H zG3jjEJ~I_&SIuc=<-K#q4zB|PSuFzm2FQ`X#KgZ;9}re&M_xU*hv*Kd7H(ZS=b@(B zyf?&uu6zu7;k>+Y2(i#_ldx;BIaaQL*_o~Axu>>?^bZOjO>uiV6_IgpCNojyO(l6p z)#F63@9E9yg>1tsd#@VtqeaI&(H>iTl2&rcX->*n?(E5*nuzL|q5)$bUVp`Ut-{QR z1G;qS2dHzT^-bR3|IbEso?!u!`d;E0O!p%=?gH^Ij9nZm}jAeXJZ!a-2iiukt8L-2GdU@bVh0-tRDg^2_DB0A zqsafmL&?a-$g0EG4VEvvQGg0aLcZ3c9*i=bC16#A=9jfi=0wTm_a$d zT%t6=TDKltY1SlwG*b(GD4HH@F%U6}l*$cwOs|ec@U7$vpPhd0l9MjekxLVysaJO2 zi%GIdiayx3Ub44l8S(%P0wSVX4d2jGQ!nf<-P!`_0Z)Np&<=c+2LHDow#t07-H%;x z;X9nDq2X$LUytd2)HUjp(UElKb=uV0W#_EDeP>((KUX|jn>thXRL*OLnww3Hb(ffJ zp4qgeK(&yNzv{Q;@8?YRBp#ugT>I8KAmdps^=>ui^|^PAsd`Up(m;+tPX=e9(DO}} z5CMX9&~_AvY7Go;)BOrpz@&ws2nRgWvKFcB;B@?$n+wL$Z1&IN*C79So-yTT1izQyO*UU)9?-JC<-W5@)XSDo*t~qzyv*q8 z==kbVx2X7XA9A$bv%yGNv{o)tp#5M(q{yRvyArNsz8%1vcu|W_^$Bbk6B7j)gRktu zxd!z1t?x?gk^D`li~wFeU4HmA^#6T+DTj8V7bVXQdAAX@+}Y{z@p9MU!vYJz=c@1D z7fOkR+on0<&X25LD(#EQ3H<$5>p0_Zua5Fkd%??;)IC1l;&@EU# z!>p0C8pkyRgtXx7p&$C(e0({8p5T!G)b_b0jE7Kszt#o^zfjntF2oVd&c-tMFSLY@pZ#UGEqn|?S7=PkC~yFWeos!M{5(Sc3&k*l9R zy^7YILSDKQ`2Zo8rAWj8$1Q21fPhALahkz*Ff@c`4P3`-w>Bh?jJqM<9dRwE*91lC zB$n=xy>8d6r0>0MH5zI;wJQy83zB14DdQtt?d|L!4nTEI(#R#!;qbCEGfU(9ebSK4 z*F0<**Uac}Y5eo5kihvO!|ccIf^4)>(ZZ1LCGGJc3pv+#}d4xrKtq+q8F}MKFK*JU^fMgFtEKJ&)1r+K#*DF0gq|w4Qh&VDI@( z{s97b^^YBUTvT*UIvt7Yu*1amgXOvKC~OkYK7w};aO$iQa}>BIFC4q}08`sm+27eY z28Z1e=4`|;fJWIA$;5nBVEcMyJ8~YeWQq2Hyu<$QasPe$PzvFYT$u@SAQPGvKg+4y z5O(UlBm9HZtn=G<;y+++9)a=!8+iY0RN>f|7#11pXOABr10-lU9c@&7vO6*E@blIB z?wVVX_Tqo{aX3UzmoUZLfF_yw3U7&c%i*J$*?UIVN+g%AGLvv$94`~ce$O-1;jYH1?dSt?%Xl*O2Aym6p2bH6=NTy#PE8Jf= zkv-2cj|s82Mc$2o_(DL=`hGn}5pL6B+zR)J`wyd2qznAed$nsqCPF13h<^SMmJGAw z0Iaa%Vy*3mpV%v>9MM>MU(LsVE67i;-N{r*bo3gC@+)3mO*^&AT(%R4Fz88d=bWK? z$M!A7UY)4XVafT&kH_5ofi{J5&xx;6y+4^$_W4_04b^54<`QxjM#mgGl% z>?X5ualzvJH?BtWvuDe1P5t=MnsxxL;YKMxc2lFri!V7SFQ1wzSj`l>pJ5`mD>pWj z$hkT} zJATPJg7`80a`Wu-3gwb9wYvuQIvmiwgKB)CCu$jg4rI~h6_-rotRm{^s@4UM@3ji2 zQ|6{&iQ4L4?ywi+DmkHiEu_Pz+r;8Sq{T5|;iJBPsO#u%>g07e@FWt2b|fF!FDi=J z42Q$ge*1h3i6sga>>C|}W-T5x&q!LZvWN=+&vrj04FmXyd*$%NarJ7{#*Jx@1kB3| zQ<3gnm3Z)l=rX&7)ZracI>qLFvHzjIVtm<`>jy7c#>u3=P44+VBU=@BKDjP~m5uFQ z43$7UX^|*-_PIDee{N~%?e2@{B{GJ+B6oq7&Y0;G*Eo(8l*ww5LW_THO=Ls(=46 z04bG`abk6_62W>vD}Kjd+=g2Kj6D=@)a8x;_;Ceh@=FcBhPGkTNUDI8v94 z$}ho8LgWcAGgD>qHU^$k&n1Xwt;5PEsNe~%dv7>Hr>Xz*3lE>9BqEYPs%ID7uh>tSYS014xwh0g% z&wpTs0o^?q{_w1)c_}3;TZIEK_i^aj|KAZAxYK2mBiAhD_DG$`j#%H9B!Mq zFIwc85^?gzNALXQs$9@Y244G0Mu)<383Ie#RkhJ6lTsu>|7vP(-UT#_jtY7`EY$Ib zpXv|B!u`4iF4Yd?9KLV6OMr=4Ut8NwZ4wJ^6iwPd3&2LWFM?=nar*Q&G6X(>1`dWe zr_P@zeoTIQN3_YelWqX&ss>8xDhfdn3SJwQ{RVqp{;3%*_oAFN!2!>`tZn}EYCxO@ z*@?R43#C;|dnszbtAy|odsLoOI4ph2RsnB6V^~GzgY1^SV@Lb@*YjWDuH<(?Uvkb_ zgb7PYs=tcZHzfnqiVlg0Y(rD~pQa(CaTJOc#N(}UV%$S4&A9;Kz1i3eEa8(gIbyMnI|o=Koojl8LLh)gsxEbJn=l{`iu z4|YSiRBb8@#-pnB8|O?qX)_jv%8tGN^3}5?G(al+!Zf3#Bgq~z11<`jew`myk+M)p z9#*e5d9J+-@bSTdEn!kf-CswRkwgMvodFGmosTch;}zE{&*_&{>9g8G0&$;GA6{A94DgXG zU!f5azSdyYTy8AV4ktwE`TMD1!mkN-L|gJ(@klr#L|R}ob**Lm-31R{rF#x{<5Gc> zftdZ^@nda5lagy z@xwm9IM_NUM%BU@F9I*k_)C|Lk3MG%b!?lV$(x(LlI(Kh6XU2=dSpx)i@EL@d-__TjLn}aa zjmJ?1D{zqOy)uUSl8&2yn@ZhI>V)Ysa2xJc^bi8-g-el)40Q~nX$jb=W~sXN2O}Nk zKhNV{2iExEiyZkIAfXh6G<9=sNOj^LXi*vBaGRt73t{oPpHBSHzwTI0GI% zn0{rk)y5p{%g-wtY^2OBD^6f#n15m~1-*rLx6&!Yk2N{AnYX{B)+cK$pz~ec-93MR zdV}#!nZh2fM>%&k9vT;YMk9v}TuoI~rgu|kCn=#1J8=~;E0PlvM)q6|q*E|(NU7Ov z>V=`?zySg*h;k=Jz;e?FhiRuB{J@O(5*UTBQiApczl8MFF3-@{<)k+{UJ0-XX_|#M zmhs%kRz^FRpFx}JuL1&1q!hdkB9hqq$LHE^CFJ?;>q!>fDG*{}en0gRZ`_M}9n_K{ ztcQ=8rDPrstVA={Jc5A~ekOLCdwDsE$AD9mF70-3a%x;Wp?r(;oAKYD;XM0Ixt32K zDetu2>C6`-{XJzl;rgG4n@DxRY8!W1(#nY91CDy(e+Sm|d>(1jAA)VK^?3h!)8JT#c zhEy_?4)`f1R-0`%Fw0#8b>*ovuQtAKjg3ItiJ;4jIi^qi1%|j{ZqSwrS!pN-uCWf@ zg>FPe#Zsa!u~?j`wa-6CGk1^;*1Fr4O;m-z~EI5m*H^ z#XMx8*@c*YF_Z2sqD7+vb4vWm_4>!cBAtE}C^X;(_Z$HN9T>w9Sj2bcU2KGoZnb*O zV2>xpE4e<$8HOl35^I_nAt$f#>A@h({jBa%cCk;wQni3LY$eDKlc&+p`&y2?iiE z<2X&Yai*soFJ3$dFU@@}%75mDRgrNCF5R!;g38J($Vj)a7{JA!zo3=g0Rs_O{IgPu zCUfoDB`g!%ej2C?UeV8=6#`Tcvo%l~TpJ;G`nJl6I#Tzlbql@^sPn>=Fsq4m&YU*I z)*jA6TPq8cgO7@Yt~{{^=e?uJB=?pPk!hrc&!Zt2n)xk4>K0SE~98O0}>sbq=WscpNtKNht|Mw)(8Ad%5P z(uKz#t~^ulhK-CCpsxYYg3+6$TEKG5#_?r$SBA$sZtz*LBp+x&X8|Me70ZjRuBzY~ z$Mf}<7=HME*MMD&S6kCy&*FUI!lWw_gZDvleQLUSSD7D4D*di z!b^=f?jlULI5_ zt!EAPupF;Up?S1pYl@3koq)b1wBS!n;Nr`JSA&w*$`mqoa24$61}cYn3t91rRx`y^ zh^{<~7G77EcDV@bNX{2mVI(76Szmgt(csvzi{l0**9vd!gmD@J!#56ZeIfx}Ar6h$ zcV$)P_`}0Lzbcn#WQUD;igo)A`@9wHAxtt25b5IT4oAdJI)=q#)XS6I$}=uP*TcH{ zy_!*cH(U6R2D13z5e~)wE)ym|7IfF{{`7=^CyiH}5gh^z0|!ZwoRrigd7u|APTdtw zcO4s@O{=9_iVA#ewSI+cJDz|3SM*6!g|=v# z_s@>Q_U;RB&fBmqSldzAd8zs@hS%FfzFO`$%Aw$Pw@&gH^#j%rFX|eO|4Ic30H?YY zidQlDrcCv106yiL^^!a0fQD_p2qS%JidluL>J?`$WFD-wSOY-~cSl*kV1S=ryTda) zRY+LmFaQqlsU5nywxn;<;O6L9RIaYLr7LzRjXsIS zI2=a9$R&R{6M-1umz6zOhV&eUiy)XFd?56+woboGMwoPq!b#5@Tj}_SoPRC~dC&d7 z){{c6w+g{SS4%3#?S;M1Uw{ZR-*Hl8x#AT4Ey1Pxt~Z`aWZj+*rZx1DN0w6$poZ?% z<`D2(CXn{!_#ZSU=8nH(ND1fy5Q?PqG5oThqB z_U)%nyBq}1tJpX=tl*je#rzi6!6Pt6)Dplw3@hm+R6Yc*K3%%sbItvfvLS#GQX~yb z2_d#51#8!ZQlhHh4O6d;jnq%m)bhq>b1KFM!yYSy@I5xI3t$ z-Gc5KQrHVF%qyYZ!+Z|vTtGJ9ogh%_AV3D}@5R*A+1hGmox#-mJ~1Jz=}R=$ReM7n zE&|5$;`-K2EdjiIkU}S2P}SRcU5!|Js06PI^iSR|lm^w1!{n4%1Vm2bix>VmWF;a} zZ`S92h9clc5LjNSI%3rb!Z{q8v|rkzZv!V7j0J^TFs%TxnQiY_e1YVoWn@H7hClS( z?hm;pWpX5{vF5jJonM#uFrVAuh(^**Ex`2dh1A?P7lyU?1P7gQ>MPm zK04YOdH$s1j~xVD)1qt57rD0A4YNMI~!^`H&)u2&-{ zcql0eyzM=isg4p>w=q6tM7FCxVhQ&wy1B6rPgWKe*O6{RHk4N4b6+UUtB#(Tb1Keh zY|Sf5aJ%K{DN5P!$G{0>5oQ5PiM5xCeiX!L$h*b4rSQ`z^xFP6Hz!jvn~(9RsjY4A z^Oj^kh{5rumj}36A@Rlog*OhjWAN6=oi9Y6$6h2CzK!#v5!eNOtMrnO`M|u3hA!Z9 zXD8zQtO~Ghn0F44#3);B_XzK<^oz^|J!t7m`pG3wu!2->SzAX=8BzpVVUW4F_aGYt>QYjF@WGLjlT-OZ z&ION=ZU^D=jS^}SpONwLV?d;^4FKm7Zxx&Bdk8H>AO9wfB~Jl zRIX=yRI2=aG3~_ouyXcH!Wq@VTgoC{x%F)xaI6;g+R_5h0+x&u_QH7jW z_Z+_?@WMUrZ)gpdfkU#gJv4uwX(_fr=o|TnmSqLM%a|NMSJ%z6ohhM)^gU%MO6MaLY*&TOxcluCI ztXbQiO16XLc$yb3nfmYygZKo!87Q)KalcZlKnMVdgQl?8?&oAny!XIyx!%N0!zdzDeL&}!jrxPrFD*ZBB~7Wu*Js4CaRCP)dU}TUr-tfa0 z>pOtv2@39ZJ)x(x1pPd5vJFN=KXwhXHl7GJ@G?$f|8;Ii?1wg-(}W0LM6VXy#E0*QxTOKZNQ z%GTOi6HDbskMML99kaVO*_^>CmvMG^L7-bg+Lw>vJ2sHF0gt94AFATQ3#_2Q=RWMh zb!XST%QEiU)PMPLJLyT(1LWR8Sl`go8D-=s^zZjR^QCgp`O7kmhffhB6(|N@zNqLf zD8%WIKskoGzxZ<*Cysal?R@1zP=H@r$&MtgeO9DCjr9L@({59^It4!kR~sXn^nA=e zg?k(@RUmm9j^QN#+u^`=xH!Tgp=z1QuUZeuOgO5%zqmXRgz*=~s^}a4XDt~gc^i%2 zXV50_(Wz7jBxzlTc3$2P-74Gu{j`K!yyX+3DMb&@=XQ5>?h|Z7gsFeFU<|DRFdq0a zwO<4liz-esL7N#{b@3x?RPncpLp7$kOCW|<*qN0sCnNk)abQPW)yIcHmH)bbE|9%G z@#@i&7dXe{6_scCm$5ZRT}2lJmgJiH08i42CDO!f+HX) zV1>JfC>4$7Yu`DAiJ~ot=u79ixtd+m;^%YP57|$`$EPsckI9Er8>^_PrL#cZ4+dw@ zHkT*v8FDhREzoi~qDz1dE&l$EqEl{F6dD$WjmMOv0UcoxMH@Okf;S)?os|3YeRo*1 z5{h&ZH{y53?Qey1O+d&^41DPFz}$eVSS~#`)!5uzQh4~t%*?mY3dQfVkF~+b-^4YL zH#KkCM`M~rmao8Kt1;mfF0@9V2)k4$ruxl&p)dAgt%fP%uBf#&)LOJM$zWlEe!Got z2OHRpje9OGYiP@#J%3IVj*-l6A7ltLBfF1#9#<*GwqA8G>_L@)uLL6}C(Qj978b;c z_$cwIB;UMsYh!7gvV;~#MqZgEy$T_&Ch<)+f>26lm<{yQAyoTVQ=?ZWC5*6Lu!_b0<#REdzMWA@QLn^ALv*4fMH3yQ;+gyC z$lDhqc{MRqpuVG0DIbB0otor`dXMZ;PqvC#qobo3)$3~VDGs9GuBJBIQBQ6->A=2cDPAC*>+ zZ-MVOo}3kI-Ojg9v{rJ-RrzI7F}0YmXobX--LXTmB^8x8uxQDqbQ#t#v|w+os=-=H z!u}29=%y3p0ScMH#S8XePQs>wK)~Jh^Wh$x42x_nZXTZecklEvE~4~OZz^NXG{LiY zL|j~<2&z3ePDY2yhjV^{-l+5STO@NHjG)Z3_?pUNp)AJ)G=pp}wT#!lYyPJkAMKue zIVz=Ad&*!dZt6GfXxHK&d5Ye371{&yHOc+Y(WqlD2go{EthDSu`3^G6LCya(Fi?h3 z7pE6qpC>u~QjIoYBj>y@)Oy>SRnqLJ8$u6QL_mtK68XJb?byqoE?G0DtG;)h`+F{D z2;k)LP)4hBVY^p15erg|iHE5f#e6Ao<&c~*LaD?}NP?@eavBvP>GI>EI-&R=YY4~z ztO%Ogm`dOYKrqIij}MNLfHcK5^z&dGpa=5VG{8fk$A2!tY4xW*6DbT~ejMTsG{qBI z0>ZcFUph!&v7h7nmAZqJ0b z>!c>GrlJD3L{Dr=Hltv+iH;guMk*DJKL{vGT8S`a3dW z93&IMF1+L=d}4r%g5u7$*bG~MK*VWm6$bXv6=wRoF^v}gTi~}~890CB3Q(IDL;8)% z9CG~plk(et=-W90P(DyGnuqv=0evBBI;Ak+E?jHSZni^E1)|xO1)lja6&cJ%s(etnh!$)EExs$lwV_qWswEJ>x#?9$169S=BZG;2 zRk7Rm%r`$ruJ9o>uwM{F1}bY(d^~ba091fHGYRHIp;R^rW;~)22;ZUo*{>7?a2yfO zl0K`>K;~NmBOUZbTcA&ZMu!kv&<3D+II3UMmx+V3xVAQBMbci6h;-ykDU%(IZ^36$ z>9!2i?J9x;0H(LMpC@Z@)v%&d3E2h~i|s4X)tjTC&%u@GL}fslL2;k*to@H@a&?c{ zaWORwvWJy>x*vJZhZ3tfP^=6VW7fZX?(o3_%dc@>r}h~fuK`{meyLWoI>4AG7Aft%dI%lB*QhjLlf@&y7^v2 zeJ>4R#O+yi5nG|^4eE^-%hQHp4vl8-!1(yImx7Qw8%P-hgG=loOAwNVtpGT2V6z+d zUG!G?&fq{^787#?Rl283?21EDTG~PP5bCY%$7}<`z6!jjflFflUpnb`Syvafd5K^< zLnpoZ>(`824{sQ($zj3E&CLzuTW@C-umlV>$kbwwnSaMX#f|}GW=801+I8GK`0I&) zzV(}{x-gOi{|t6mx;s*mlK#T9me_9o?*D7_$y4LnC*{~opUaV2;b?Pz{J-ZFVq@c#X;Q*{T&RbPwOb z&i4>qGCz(Bml|8-p`8%(OaLr(A5&8+;r*KELRqX%;9zX_+u$L)LU@CCwi$~Kg( zNUJsXxZU>?R&!j5_f0*%ZyF9}~y;M_ev^|Bhh-)|^SwcW0}#~ zCtT;LN1XsG?R34o>T~NOhvboGSO`vW#DOD#@|^rY4azIgeGz%Ha(zmRO{aP=+_#A= zh?Rnpv-j)qGkNqGIFB%r-jtUrkj5mp;I&QdcsHv7pC+7iZ{dlanUMxq4e=K`<-=S1 z^3u6;yte@`BlH54bHM28{E@N3`Xq$u;Y#_#Bp{NLkdVNzV5qYbkpo+`0Sdeis?M|l z7VEO6AoVexLS=>ZAT(pfh3Y#9$czKJi=b^4Rn@z1Zx3o=pxM}X35qxz6>El0NJy-} z7X-}%LhA9*=OfYZsJVud(+cLM%o4f!^ieN1qsfV?Kb^J4zUbB}_EJZD5pt&;etW?3 zU**>F-%S^v6X+v3)Im`j>TTq?)I5pV0R|u(ls}v{0P{lq>VU-%v7=#M8+^@zv8d!B zqKkofGgqz7FV=qk{JFO`Zdjj`)DN_~ciVduGj`>f`C#h&m8>A0H@w z@KI0@vP~%oxpHrSMuB_NB-Cue+?*%$9a)AW-@o&|{|GeLd;0*vhs3WMXeGd41}b^r zNP9)D);g-3NYWxE(_)!twh+Cw2%?tHiKZr*gwxcuSYiQVK@^4=V{-4k6RbwDM{4Ok49@71nktA*_;gkroPr2&-#bEL@(_!T}2m`KMAZ@bxEo_Q72R}^_J#gfhbXI^gC z56z0#qKl#(SE4o89^i=vNY=vxpE(sN-bJv7}4WXzU$-!C*4n<3?~Ar48`rRBC0w@*G^B8 z%zE@)ZT*X-lzn@%FKJ0>YiGYdcF#CYeUyQ^`spJ^pWn;QfG>Tz4L;8U+7sQ19T4yB5 z%@cl)Ml5%!)up&u+?_4|Qu^5?tJLBwViSc5Uuje&YEk&@P}f`$Hsc*ZYv2Jdt1Dvn zKy8$(-1Z$)lC2@hxB z-aY440lumG!jFmO*l9ZaVE*JDMHK}Kwu-QO4JB2=!-~-ZDYa+$T@x%8hgnJ!C=NM4 zpCa5^w@Xuh!*bAuVQDi2Um$UA_WGAN9C%4O2`Jo0V{yQ98n8v4$)$u!zJb4cDAN+Qlyd0m_q~@|zHQolTaBzwR@JM-US`*QtFE zMu9A2h#hlr{@xgYCJVG6M%R=RLjO9H`@5u>ACF^E_gcXG^{-p8p-Pg^MqY^-sFmEM zCTORGcLb%aUyA|uhG7eAO7wY3`uc7isfu8!!A5lJC+=xjAsHneO z^$SP;Lr~wmeY@|ZTVBHvoC^d2Fo6udhA#+2_)jf-tbQLy^~gyi*s`&OEgc-i!|svG z9#T38A`d!?D{qYe2L5%DgV$8@5luL4KTG}XNe7*W>yo@_FM;d(l@W|4(3_zy?jWED z0c!%N459#TW@J6Uaw$Rj?km$wjT$PM%+hH#ALP-P?r(uWudNLm9@KkBXJ@tZ9#My} zst2j8!xn^!StJm$dwt(Q9#W-y`SOR-(&hd|-~doQDYqZg<#kmX(Z}u!`&!(y=vUAr z)3F}?{yfF=$<+H6D8~{dZ*!KkqSDYEkfX^Jsr4!l+#i^iA>k;b#-35n?CC~UW`Ess zkTD>3imJ>i3ON-poj_v;t8|2zVtBdu?CinFCPQ1SMx}10YU=^-gz_(QO`Fw4REXf~N;YAgH_+X;1OEi-M&J!G~^%mSl zhtdw>w@(l^uJXpq%-uDF6yJNO(`ab()l_iJfy#l>D$K`c4&Pc+IXV&_`y1xw4>&a= z4B%Kr{*B6}f@F8(|KJah_%Lijvx^TXB&DJg(S%$Khzo);R}68(*g?*39Kyf=gmaDa z_hY(<(}@x{b?6g{g83wqvn6s1zI0#7`X?0!+k>RV)CzJ8z0u?!4xfa$dT2#n=psU%yPnxwGO20ElS z-ip2qAWIp%-_Q#{rj5w2hlS=Da4nyjT7z53nal19nY&_W-sbF=&b4y&XkDG~bPM3@ zv(Iex66r2kt+#n*5TVT}G?ZS6k&szNN6QhX#dOPWf!-+gEPiD)0UoGkRji;V3>k^jBb{&tpsWkXLFYgGj zFC5UH^bBx1NB^_FiSg9R`{O=0)j1VK7vyU=`v0IwWHd) zx&oKI?$LMU1o!A<_s7{xpSh2nK-LNW2e0wpnbNOub=X@#cIOc6s_;Z%n8 zW58f(fFEWLqIJ2$8Iz%DJD4SrH&c=e8%BB6GB2XtCJ-%_S9gP84Ou%Ji0?+meU*Z# zz0Uu>a$-5h$h*}hbolUc;su)BDfsdEUUyxnJ290${`(N!t>VosY~J@lkLmBl@Bzs| zjsQsnDR4*07#z6K$?n%OGxb>XdrofopKjrar;o+$NVpy_6H(Q(XIoxfehr-po<*YI z3JakoIbT1ZA-L32S@6kW!c~4HmkMAHh&t9govpxE+^rh+x~Y9jTi@ZqE=g&Aa&^3u zB(#a_Oy9lDh5p!!QJuG+#K#BakRXB6`qr)7^^1CXROV$?Smz6u+T=Q2_!sfWTmJ40 zllw*5fRBB>y=WrvOy{(urD#SO1xci8ogY zu;(itfbS089x}{`Nrb=?L3YGLHUWDIlaCZX&Uqpghp~5c3r&U2J!xkU-yZt=ucS&H zlBIrm%N24bJSdZH%tE_iKa6*}Hk2QBey%y+L6%xLV^?n2F@iXg7^ADqP<=hcpxWij z%&TnS#BUls5y2ZdlfZ+Wz3bqsM#zN*s@v!)OvKO$5eOvPR>YN-^5x6F!M%j+hse+^ zFDEuEMEDwk7iblT8;c^BUCr1ulYayBW?E(daHPlCe9MOE_KEXi*quYX$Is2}`*ri7 zD!L!f&AB45jG$d!DrFd->2T5hTCA8DpXfyK%fv?VQrW_&9ta(CmB#_Kqdk+iM>f z3At#xQP-bkWx=ch#G$=ROa(KC}kUEZ^0B$3QF4NT~~|ja~_9WA_g~ z!j-Ye@Ocu&a9F@XVmA(q0l*d>3nJt1;SU`acPmO-G20(pWlev2oUYvxm{%$Lop46~ z;ng`Mx5J*-HvrkCtvp04wtH$)(74I!GBVe@KIi#yHG*Ms!lu_ASqYD$cECjj7cxA# z@5bKlf_2|%3xpZw+shj6jfp{8voWbH{Z0Js$7qWqmEL_i{;&AB z{YImyu60|FzXHRXlexY28LrFxnV-^CLvX*qqoQv44ZJ%5PMD8F|I*UdCMqmkJHCVl zI`?h1cHrTW9Rx^ufh;Y;ptLvS7$qf&iVJ|JJOo-s%g_^uipR=pr~YF*G75`iP zfIi%v`wInc2EJ8%G$)a}vik4z-A0Zb?NqG#rnkG++clQ~a{C5iuz=iYr0vFF=~D5T!7n7Pb+g*#syv7hVi8u3&vg4Na~TjC!sMVLgE7x2mkWHD1=@EioHMs zst%~a0*SG^0w75^eD)jia^-@G*1T0MI;M*=!fcDDF0kJ$%8rl9QesRb)c9CY{{>2z zVVPn?V!Ri=GaLT?S}mK`^n`fJLQ;ae4y7ktkRN4B?F`v z?yasy5N$v_Ph9--?As14_}u*T8&#~4e&*igwxb=|&mOoj-YaE5~xli>fTY3|B}`;xSPC6D5oh0z`O(bloHI29z8A*cPZHzH;sZ=Uq!0t9G; zOGC!ln4n)S$=YS!a)=S9#<62deiNKo)injyku6krk27R@<0;ac{34Zpo-q5JeF|WzK?Q-RH zAM?U&rJ1cdd3D`T#~z+irSTd~&8VRsL8`+xNS{`9d*r{kyd3iA(Rcl6Io$C0+CB~O zQ4vM}3krgYglL&1SRCtr_(=MaKZb{DF*m!9Bg!PFr^X|uiLCwD@3jF3!JNzF1PuIc z*btQ2`J(4Jqfzc>)R8I&h9_ih6%`eTQT&EK8lw^hCy)fM;xZh}**OVNK+uwvroJ;n z{ZA6$2)z$?vH%64h!6*_rE&Fcm3Dw>XWj<9xKF~fm=5w9O0n7qGiSW&h&~Vw05r4U zyyEmh=?C-*CbB3>%yV{tUi+|o!#UHlojc9@1dkTFEn`Qvz2YS8^pB|LA!(|nbZ(tX zoO7?IeU&(-!~ZQKulXqys<1L*D&+qPH5)oAh_>Lf_6nO*oHLj!VWPoA8(W{x#j*IP zia1V5OSAn|GTD=m=~HlA#4m_9lePZ7#C+!Rv`LV1oZREfkSQ*mw6L?A$Gi@MD|Gqj zc3>waDCmSQ}OVC0{^2wLIpWD-w=L<0C%th9$~Jpi32C0;Dy?;nZ%%enXOgZX9I1v3lB z@|ZtH!z;%huyY>d?;W1!JUG(d-w%gh{VVk@m3MGTK)9!?C%X&0|@VEm-F3S$FN8wosR~9Rx(XvibNUQ>@PUQnvV=XUVO#w;>f_ z!gNAR_BnGVqW=xYBlivA(57mDCmnBLgbhCX1K7_9CjXW&ru|Qb!xcVHInM2#deh?t zyX8v(zn$sHYwbB540D|FKijyBw=^K8RG$*eyl8 zkK!9+J;*?;^ReY_u9lQLc-c(flMHuUOlyVpYv1{DAsni|sF#;Hd3S zrVhbw#b?_-_)Z$|J zNNz&BX6P;r|1IJQ6fW&EheEGHgmA;uw3yusVgg)yO>;ERfKs!b?lXyrvi;menegk1 z^}@1~%OGc*!6CgUjd0GtkKrk~vw&5?ilHH5duvLbs7-zatt#pWp8Kn?v3zvO=xIU% z@IquZhHoM~;46FvB_v#Rl>j_t49B14$Byn2iRdbs|EyBw-PtQgQi>d>w2mxr(Zgs0 zh1@w!*Oe)iTGszSF14()xahn7o5jlXwwe`={G`%x5?eoG1C&*^p6xx?`{I9aF#fe( z(48TI(*(8LQrz}i0ot#|ElYTi|Ke zvXY^ zm-4;8>#vzo{{LmmkS=Q*e_=jn>rZ+Fq_xCzVQRE5lIHYze|=W%Sk$hfR>keEr^gb! z!`1=F2O239%1S%w6*6qx*mo9z5SmBlo)&SA>wepi)-JZpouT{&X zcW>O_X?Pq6YYXeyZ6hW47gXAOsxBsyVzd+XK1;}uY3M_r1a1Sje_TxNilit zy1R4h@2)yv-W{}YXDv)k({smz%|X%D72grIWVmM!PtxO1`3aeItCjVT9g$5R6tcI{ z$`&dN!!`f(`n+R5+VlIkrC9RB>I873X=0Cpn;8q&HYH?};@VfN%|1?O;5G@sVJ%7j0;OY)byJb}?#op6@ItdlSK`0%hhnapy}PV)ElrXJP?`uZkEc*L%qE^{CybZq?M zE1!DvurvgzF_@q;`iZG2Yr|f#q4Ff)nVQtiGr4*^z}KJREHuBt9;w@x_%U1W#gl21 zA!%` zfCGw%i6M5~!O00hH1j=gQ%=vj2vGUvjx9rsY}cc!r$&>z+ofv~C^4KfP$hxBw}=Ur ztqd71|MFabwzSrS!~9e-KF~ zgm{0p$g+h}c-8e*>phteT=3Use{#t&P+fQ5)H*RxlOXzKAQ}8X3al}phYi%l$m)xgaQa>J-t9SAy-Fo%IO(qp?oBm+p_yX&;5@jc!=1V0D>(Eggh~ z=g%AdrlSiKF)BNWhs1+;?unyVo@pI!KJ)m%WPl^u+DJb`p|i2IRXy!%@w}sXc}!mr zKX{VhP>p|O4-A$(iP2sZ>S`l1K zAUs6fXJlastYE;_<~JnG@$w8Ojy{c=H}1-n67(Am|8V|+w7XsZlx~wzj!_aE4 z<)Gpo>sHd^Wo9@s!~rw78ue2DqAu4vbqh8l<@nY7+e2s9O!-K{GCNBwpjEe>&x-3{ zJvt+E8IImhDTCBtt`5KZ%6wc*-#wql2ph+;bW4bIcr=w-j=_mpc+w=bcdFS;Qh7w!2e#cilDgAF5(7WNPL1# z?edo4Zwzz~U4z=SKWfH6s)Jzo2;zVZPn&gc{mmB`{X<(MWPAzq{Ryp#tQPk~1}x*x z@~&zQ|6QAVH6x|2su6^oCfHbkf%Ao`dg@Fa+jl;C^`p|gRH#A`D#6ty*yDSW2!2V`(|1V{G6E6XMM_Zc~ zb^=H?K||+gLzWvD8VWtbi4sz<8L^OHnzdBmBZ9}Gbalo!!^C08RkH3WsaTFT5uTu- zAtS&wmZ)rW_Y*)o7zX?|ubxa#Ps2PhaQUQ^Vw-$vnzybo5goyQ@W1;G{JfJs7Vyi5 zrSyc5<@2mQ&IcJb6(K(;+M{Ke7K6_%FfA%f1_=zm`kJ0>;CY*SN#@jx>mG5I5z_j< zF3J>>%P?e)VwH@G@uOoV;xH|s3^~uL-B68d1yp|@yBk(kaq!RNqhz5`!^*Rxk`EUG zgpBTEveLlXqeneFs`;FfpvNY$EywrqinOkj+%cImYO>F^>~DqY~i!cI@$;y*Lv(alqgy^Ap0US`t`T8c`z9Ed z9`VV!VIy`iVf(nAXqG~QUTN#_OC@Q#J9nnq_B;7uQxCfzcuDl(WCl`ber$dhosp;2 z|FDUbUXD#5^Y_H#BFkv&pJj6_(yy%ayxOj@2YnO`a&dO9xI4SIBo9%jWCskvdfm4V zF3bKON8e;;dw6(ceLD&J-VsQGps@mV^YH)mS}RLSutkm@QtpGr3y?fVIEfE?G6sK^{^ zoY?LyZTIGXm$Rel*dc$@>2g6Ny}fu5BFLSpr+tlGaFy=$;hY@9yf@Y^m+cK}hYXpi zg?h=!PhAP;FW-4u^2?V6^$N+5GjS^nHEy1xEv+pV4t{SbUrRJ~&tI_IQ?lGvB>8^i ze64|H%&iT2LEhaH7y9h5!UYy2wA*TE35{+pxjP3X>JXA`~VHZuqVQB_)-OeOAk9+Wo zWZLz>(G1azM2W8JBA0Wa8J*)`{R3ske{ROjrhkimC)Fuw$rpC<6zQ=Q{87AiHQ_0F zPxaK6m%BDl3Hi~tUZ|M z=a6fEm~76H8Ee(H+%{*YCpLQ;3ov-ezJvE>g=LV+7)BWgao3ZXcSdUvU!AEb_rlWR z;-aswFL8)|kvSp56baWCxCY{vJ7v0kW+f#j-V8w@7;PPv>R+YZErCGyAz6GDVT>;) zn>*9nycBl#C`yyMe2=iT&0vzdbz_f3tEGCPr)8cVutFlCEFsj!&Q10&@{HDidsX_1}_Hqtpyzy%*;#7t=A}Blc-e8N;hBe%v(LRfvZ?ru@o8(vf=wI*ij zJ;lxQ^w12Wq985Q9T$xFVDbYq3yZzGcXxI_T*Pb!UgeotqdUr3I>Y7e0kZH;DUZDW z)>#WA`b$F0H^U}Y$YiX2t(R_R94kEjqRf*0Dpdr%?RojRA*D#S3Z9Isgs)$HXRVL2 z&`h@s_9^U!g%v@;0U z%?7?PlyvWw++I|iZllaEYR|c_>)$NhgLEsr=)ZseX6dZ;!nhmL6*eEZB59{mVe? zr=QH3hp~^~;pT>17Zp>R33hIAP%vRv^8I>WPC(OIN6^cuJtFdx%YQiCld^R6(&W6X za^mfH7W5AxzA|!SncAeJHAC=Q->Y~3&&}2C7ZO&8xlv6`Hvwv4+Z5SNUpVIX-wD&! z2J;Q*`}a>nQXn%B+kZSTQtEt`xbN{5_1@@hN;@6z$N7P;QDAe#@Ram;K>EtWtLj&` zUKT%F+1_u0WKBFd!us!2gbrDubp$gThX_7;FD|_TM=(GCm`}$A`LLbwQdE%vjh8T+ z>gn~O?Zgg_fegR^YKUIN{XgD2NNX!B&{cq7b?cZf7uY^n$?HL69)C7QYasX* z9&F&YZ?@;8O!D+#N{KT_@ma|}`vY|m zS6f_ispQ{S!yK>f#bA^gH7 z#l#Z-C&(;VFK&ZP!+lx7CcC)U6{{5(myGi=Qu%^BgZ{<_kL@SJtTD*5Fk=dPGV_3j zj_iOsqo{-1hD)S2LOqYq&%J7Y&c_?-Gvs>1b6t^MBfsS-o5oTTd2l*rsRmA>A;--@ zttH~R5}#$Z*Yrv3za@|ofGQ%w%WDR~FkaX%`tx>NKE$jKrb|jnzEwv6zC9uZ#Pci@5fD;uIzh8`qXtZ-r7wY{~v6p}Ipsl5)Hkop^05g8DESI==?*7e7Jv}`z ztty1A-5OJ56W*XadKcAl{*XEdO@)NU?9MdCBqf!bH8Dnz+R`)a;u8|O1+ESNd!X8z z>q{9`vG{QC{*7snnOWjEMYn1FXCYX!>z2_m(ZRP1x)sOfQbG#;mCeLmGrPDGB zIUh8Hz1@9?P=zbw#j9&N_pySS-25JxotgO^-!*;$cK_fB_F%WFI%xRy!hd%}>Wv#m z<6*)F>KK}(D`=AHZ?Dk>-0rSc{gM9(M22k;(rlByLJWvLV3sGHpJoRs_5PL$$Ngrn zR;`X0g>uRB?$D_0Rg?jD2Rk9V**8cgzFqm3zumQ%L*BEjpn&N{6-tR}`6QnHJnO>{ zNU!6oNjJLE)|MgwHZ zVf#irTUTp9Eq|Avj|M*TekB_oWH^BMA3%&Ltfo6Usw`F2)G2o&&(fRjCn%Qke^(-l ziq=4uK-Yt4o*$Ew&Ui{!A8Shc-&E(-p)91kg=Yri_SE3i4@BYOYXrf{VgJ5ECRJ%~ zxKeB`ckAYi(})~M7%J#iuke~`TLv)B%lHFbCtAI-=U6D?3j9_voDO93BWF1L9CWUD zbDc)~)TR1@474B!DE#u(VeR7C)2CTLp;eoYefsq9;#gT&$#;3?+qYLeKKi$pmn zZ!)1T=HUt$y_>GDIZa^mhaZZU7;5+~3mLngq5AP9KKxPSFczF5s3yY-yNm zeN)pJx#|KQCRO0na&TkBZ337E#)K$iSfXNvd|y~%lGc-)>0w zJt&U3cK>hl_JQu3yB>vToIk&SG70?`-VvJlv;3doJch@xx%u_}eeL->mur?xk(Ob z-TA}J)_?n?)?G0cW1hk*5!vQuW)R*&AO+M88;W=I=p?{n_=CfS?w6@>{Q=~%@GCR0 zL^K@H9lS7`2MGeGKA^Os=G}hnV@_G)GFz&EBMEsz(igv**Z=E{r^CTdsd`%Oh-IEN z`VVx*F_x!wBpt?T@sFnWO<{Bg0&%$I>AA+<-gOxJM|9R@w+89AOG+C2RMp<{Qoq3Q z)n?BjF&1?ZYlDkf4y?yAw~eupiW6hT)J9hEjCt83Okg^sj0*Im6xSN z(qO)a6{sGJQ>Frwk_?TFQ}53sw_M>5mGA)(XOEk8CWtYxAFX-cmM)0;*QWJV;WRI| zNFVVQO8Zg%sYv-+gZ|0Ty&*}$*Y<&G0>J7e1=aUzNF9W3T-{?)Qh~;h+wfvCz$ZUh z?`q?M!X~1j5J}N0!W~H5y%Tl6Je`rqW>1-%(`$2)YHSwUIF+$KZzmOMkOUOuA^>1w?*U)Io6`3f-W$+eGt!wVEn^}6hFCjsC+>Uf21~kvG&Cc1gSQ| zc*M2mAbjp17vB8yr%?0K{s)U^e9?Zv3y|t-4^`m+Ig_5y-b>5bk^JN%OFBuJq<4-$ z()Du(j(j?QKOA1_jJD5mN8I=DP%U{TbNTX4BZ;AI77!>AsAgIQeVa3iVU7R6c8+9k zOD#@4771a4q*}`#if&0WZS1m~o?jxm?UrzKDjKAu?i(7SJzmIkJVxfWII?4vAQZjv zy$QK;aoE)(FY$!5^al7YxZ!c#fFlC0XUi<+ptCPuyfF4!C{zV%Hd9?7c1So4LnBD2 z_u;2xU@pQ!L$SH37ood{SSl3I+x2BXJOb?ld?8SZ|M>IrxXO6q>3{(W{(BSb1q8Ao zw=q@G4=53j^Fo1^>bh+a+6}WjJ%^>yb3%r!GxAZFEv;7CQ{zr?ZRx%sQGIV*?TeAa zSi*_n#?8E}EOX3Q2#_!!_1ymJ0%+%g*kQ^4HG(7!1$S@Z;|CZ9n)`^Xxv44a0Nh4n z$(!6%Jq|RpY5F~kTpG;()OhXrG|fPtK>dN`OO~`vpGRW9hxp45w(hf(Drb7lOSLtu z0w1K00eGCo2g8YppgH@FS$7NHtm8RV`ESD-TdU!P^7ojvLP~1Ymd+$p0dI!n6&I~; zTs25y5sSo}Ljtio94KY|qm%IJ1|G2b=`UGaSRG+lsuP{Ig>@ag_YQ79Rq4WR5OoD* z=lPVDF2-vzdQ zK3dyEzi9eCH`pI+MF0S068{%cM_ zCJs6m5=R1fa`+rP<5DkO&P`3?%ON&Na{E@_13Xt`%1-fZ%4W%w-8=>LbVibO(BO}@uFZvy+hgyD9`Bfs; zocU{yA`=+n@wm&xXU-Sr-utVeG0 z7e4!?3;nLNJEi?YUPY_wnC`l{9-F-jvqd}ilYJuGhULLrr{^-%ogR37>*~9|xoQjQ zGY+ls!b3jBp!xZEtco37T=xCig`@rR&70o=Rmi}=yGGj&(+IfIm45gjqL)j^xK!-B z4#F!O5yj>BHrCgvK6IjIErZXQp&{|rKG{y+{c8%H_;0{C*ghxnV4Dw%{M|PXs|*#1 z3XGNNURZxar*@&6CAO6po>d_~*!6kOnLV!9L|};El)cBx z#|JkjZmOejhepSR%%K#+YTr6j@C1lGHWUukR{EWJXluVw^Db(fuOa(~O$~4sfXdnQ zczRG$i4F*CJA}e8Tm^ozGM{{K=FtRN)Zw0 zTGQuezdx-y{0>h5=mIz!xkbfS_4PyXUI2NR9c8_lK`HPQ>?81jj|eq2M^&YK#=W&< z_$MTN8bWiG8NZGWrISyMqpwwY<$IU^So<*aA>o!1vknnw|1YxvYG52O^zV~~Nu3G! zUH8$FOS^V}7Ryp9aWY7Saa~hDT$~{zFN7O<60GkK&BxorNQw^?Y=<8+Gw|*?J>q42 z`*sSDBA_q8(DK6Iq$vTS6ozTy{%iBJqa)FL4rX&`UZOJ$vwbUFlu6#!a{1`qd&0X2 ztw9oQ!iyL8EF6L(8Rl)|4xM33;r_Ea$L>C{Z#W+`XgJ%|ynP)-YJP5n+|wDV7J!)H zTWX%3o&cQdS?qt$T!sb6`?labwY7To5R|EFl%?!n#SSDXR&B2xAuzgOy`_v{QRF&XC*_T{B%@>dY5gHUC29|>Z1E|vvJjkzKAAYRU z`uHtCM4Vu_l=DaSWgAGs$ylrV<^7#ynXkV=`WJDa|K`b)C%LF<`WXGV0$~!1;i*37 zuD~b&V8WtmMkj0{K1sT(Gr(#IrZENCFPrH;b#yFZKDqytvA?$$z7B^jt>)BUq0#}h_r9YGa`#{7sE}b;z29eoBZdKu`qj_K8;rIAAT5{5Ex2;D~rF(5I!=Z zqB(>4E}3&F-8jG|Wx;i(CiEi@(gTZb{CSn~`BA|inM+v`yXgmK9mYeY{F=OIFQ8|J z=k@H*{fgl@!Ju}-BzWzDZ*cG@)FgwoOxPwymOUB<4Px{6Y{S|YC;`NiZSFX&X#D_d z)&Nu`jJiY<1wgnHamVaJGF5*{NJy};dG^xO|BJZMlRJuFFEz5iU(jMO^y2|69&-JF zf=s+>8|UTrt6~bl)(|eMfE&^8g`@+>n1jvIv-2rA5)-p#a0QS?^^liOQQ#uxV6q-n z$^7I9Y6gmS?+wV6!Lk-H;Yo>#Vrps#yn2{AfE$>t%dnGR_TSNA-h+c3N^c!H9iJ> zC+Yu>t@jS+@^AmgCCVt-WTkA$3fWCtR*KAw%#4%~%1(u>R74b&l9iP$vKnL*l1)m8 zWUt@j>izlrzTZE-j{822d%Vl*bzRSKo{x2I#?3?1iTeQS)fZO;?ycvBFVN;=2Ox@Q zApAW7I^wkJfBpFJ4OcoEJNPG%0SPz&T4ek=B344uwh6^BxrG(Bk@Wy)Q(^`s?5yjM zjF}w1f>1Tw@gTAu89Yz+kesya&CWWBB^$FZC~KtK=8i}ZLQan#=fUEZm3>{g^`{Rq zWC%upOX=&kZy)4fR4KjcxU>|u_0K8xG&k$5Rn*jMqDw)F zA{$Wt#Kn#;hw~VzR0hB6$)}+4Z54gbhcI|KZ)3+p>t6#>Jzbt&9N#2IkC&^Uv)J@| zpfc$aQtrFV3htX>AH%tliQhuKJ0w(25s4IeC@RURGYy?=Y|`;+#$EjJY#;={8SMJ2 z2qztJL#}=~(!y(g3~_7G+)Yr2%T-HXlm&#$nV<=LW3N4HIeq%RlD8PMLK9_fvYXwF zh3}JNn?oUr=RJx(d7cZmxz$myW4L;#*oMI9wh`?68*F=7tnPYaOtFR!OI2ji1C|{h zhhC_iv`JIr>iHr=d;X#tcO33o8#m2O=)HV>%f1aeS_1N8?f6|A9ZO)Oc=(vzo&EA9 zv`DJaT%5ai3oUSo>genrW!OH+?Arb9Le`f^E$OZ?2B(8N1NOD7{E2YA+^}h{o4rUq zSAS0Y^_ebe-h{EgpngzXWbdhk^dF*yXW8Ry_@4mfMT?YOBi$V<6=Z+!3A}X?7^?m3 z@(^xPIx+~xI9K}~RaE!`h^Gh^tbNKxLZYXMYnimM=AnDdMKlJHa?Q9HB7N1fQ9w~A zOTsxMjr`05%3RRHu$m8dcOyZB-sX1Jvnze9_j1j)|6;q@IDFy9nv><0EA)1L^$!N@Rzv|xhSj9(CnUAj? zzXT|GdwZPH)@s0klx_eZ1H~XT46>2`EUFi{Gd->#W~(e_4F)UK3=CNQsV_s6Aif;y zRv4l&0)S`q^V_B&wQ~O{=hJnb;w2UDi@Nka<)l!?t2IAzgUjTD?&0;(-@mId5D?H9 z;n71f3NP=8`!gBpxQGVRMHRW+E_~>-I4TS_1|xzSyo-#W_D7G$x7?LiTx`ekx%SgD z-960@&d|@kY~D)ELi6#AfP_!$-7lF_Rbw;qrn>i^Ukln~afwx-aYIf7ocd76Z6ab8 zkG>CO4DO1D%2$Qg_64MI^PU`}BSR?M2W(Av9~zc}AXLKngX;?63n*(Q!~JpM5ILWG z)top?EHHQRptN*7D`HIGkQONM3ET&89Y3{PJlbtM#TYwa^)jy@FYjE5!d){U&Zc2u z`i$sVa{=%hx^^}kh&g-wk9J`xyON^D!HP{9Vg6zPt74-jUzTyS44A=TinqVQ9r6Ya z-gbQ4(ZsqeOqNeR>3Qi=e4Fo20*AemB`7MYeECNVZ&xaegAKvdl8KWeBRtLXrkC--0ln4}DxmEE!#8K)>1`_9AH0`&*3$XP5fl(+Jr`t+$cwy1E2Z64eg z`x*xzM)rK6wt+Ka4k~&mzhL@d?8U}y0^3QGQxx>B}l0!tqvYKvq-;u;oH z3zEO&)=vn=+kPD92*%XCbLY61PpO<8ok>eSp8x(DNfo{s{}vl0O;_ zS8KPNv6fZ@2QwMzGEaQ7k78Bv-SYXum}xjHVP40*Q>2{v?qP@w5U@b)_Ke!rYJ~mSFAd;O3c?ht~cAl;Ex|WTiZNi5lA*rpMmk9yV))_hiYU2 ztqI5v{MD!&0bAtX`w=laBwMPt+H~CXdvq%4<>n6^D%JNbi%TML$aFCjPLEi+`VAV{>-XNCkyfbN) zM@V!3@@iufI$pRCdHXgYUO^X(t`z5l)WzWw62228&rc*{V)?@lCUI6a}%uB@q6Ak8PKk+=}cv8V%H^uBNAmOu@g2)m+qk>d$cxeA{nq&(EyJY;L-6?kK#^{w&~k$w@BHmMw(O z0GEwWJHiQHWj+CTjEjT2PhG^KTw`%k|+CHUx6kM zeoXpw8~i32_bYjZHz*>GnuZi#xUA~`qHX>V^A7&SIN$3}S+XPI?LNC+{Y(#;1QPU{ zty_~qqlSapX%7S)zBo*_8Ub~7ewL;CZ3;*D==MbsY*Zj4{?>}Ct6z|5psO40TtXg> zlt)B>jB*(J(eZ3KqHkMlZ*ex;$uT=An{uqRRLW(i@t-d(DASP5h>|D^{SqRS0jR@$ zm192E#&hJ2ROxe?F~f@a zMZ4*-mCMQ3vWFhRF_>tvr(Jo zDU*W5&Xs#|7U++qdQ?bH&8Bc%2BJ(ta%T?|9jLhB9``Bm=AZ!!fEX4TsLX&NAYm%M zKw5cF%Jl?P^3h}% znhD{mOV(Mj(R%=!^WEyJ|P6>fmC=(S~q`$yQ;(TQdI!P9fPHilZBSfA!VzH(RfX zjJV4piaNb*>6*{&=xEqr29<8N@4xBkeO6etqHpjlMVzUQ&Vlv`E6q0UHkBwfA4n}G zOSnHVGph8MRwruPtriEqsc|*n;q4yUM!cL-Ov;TE?YRIN*c=Rv|FFKcIOVRlPai*~ zXJ*C>uL>mE;^;yL07(cAFr;h7t7k0S*3r?_(t=J8?o=QXz^D#GDvh`3(E_}D9+Fx> zDEObuAS$(Gqx3T{xplY&RKLqZ8<`h()^57_w7xRdcyj6R1HsJB?knl`X?|}=*f*Gt zKOucOtib-0cLx0@*jx}vcp?Pe!Lc|uhg1uov7?Zw*sfRXBo>!HriW2+bgZO%JtLP> zj5z_0QC=gz>7e)M$e?b`FD$%p)eF4vq>3c!^9NA<$5Wac01_a%QczODBKs5- zgvX7H5F{x3p$>%5yT{b(=jGkg4&<8LhYtrJfChIJqLa`O!{G?~3m&D@@7Eb_(3Qi) zPdk6wg=sCGuKAJ=T8SVVjQFGQu^UVaw!CgX+xK^4s(j+1DNX+GkH#X2MK=+DOx5X4 z8pl5anB=_uZyZ6JKvV7roia)7%d-%RPo<8-w69)mF*A$3caK{lhZxRz{pup;{y4ri2j#OmJhWG$lH)(8BP!nXEDD136q}UM;E8hu**w){t{ZN5ZNcF zJgF1?RkeqC;W~#!DJToeQV;T@F=%TEK)^-%t!t1haNMQ=tTwesnGsVcMX9k=NoxxDK-NR;E z*RO>_%E}fS`pr$iqTl-Mji`?cP!rI&+fiO#j-ZnwPiB=i5GTdTkF$@O%gFQ8WXHJe zDiwQ@WST2q`LT^jjCJoD4_`ihN7B@X4{uYaC%Q)p|JFWN2me$VY6l{YeA>tIHvD zaX$Y5f!FSjazs<_utzuQCd;<9wA}tBOQUjKK0%B<h13umN8Dm zTE*~2J!^Bos1WcM-;uuwxDc7SIA?acxH1K0oc__{W}loc8G^y+&u-k0R~ZEos((Tj37`A9Dz&Z$34D$6gC(*>Rbs4O5)Ja>ITMjoDY zsCGXjNx!eD3G{XcH+ba85gi?xfnNxuYOJppYFu>R&iC_G6taHzQh1;N|I)|v8kE~S z1nd;SKEA%1K7qTdwrCQ*Q!U^%$A#3``uEDKGO^6LB$+LzGV}TsEs?fMH zX_~agy-zsNR>8fSRbRUbBr7^PIz2rda>}qU@|!1w1qCrf;1Wcbexo?V$QSa6wWHcj~ zfbpFJ&$1j+R=Bb7-5K4;GF%Z$fivn*0|{EfNZ;?AE%4d_eOOW+XFF)84M+!&A65#y zYHjJ^s9&vflmQ^omvg78y9+vN570Z?yi0s`rfBCkm!nCJOA)Oi2dkZ+B^m71uuw#6 zgxcV{d{fI1Xm2D*;G>{y4{IFhc?O6P^K%xY;jXYSFnBB#{aBvEP`H5bM_}6L0a4NK zerMFw?7@5j^t-pFO7$3-+OhUQm~oY;4ZO@wGI5HNI!2N-2)Wx)+<BdEXrto&}zOA0CQhkMsc1eO2J#?gp9K&FL=3 zaK?Wpo0J2=#Hd858|Ch!Fj)OTXCAye0&BG7bOsW`M*%eAu~=Jj+&GD0#eHJCSC5|q zo{7`W^sv7pw7YOzz5o3A^cnr)?b|{wLPP=lfPh-!D{rhWj{>CER}r)ds_$M{P?JZtq`bpr{pO)a{l=0X5)>T! z^3&4JK>_BH0{#yuO?Kflxh;{7fP&3`yc+^@NX74nfXN|?Zfs4G-j5Ov2O_j^_-)9l zf(hxzksgI`)TaKf8Bc5P|4LBkJ*b<2Vphv>pQ>_U<$)WWV>^ftG#gG~qhW1bBIowT?3wVMVXY%ioWS4cnPIIkCZ%0~C^ZdtQlCR~d^iKl{va>oL+#2!Tn159BiEzf!gjsUHa19C}Pf z>PJtA#c6v{2IP5jA7qULmxkoo(l9c4_LlMQZ{MDX4Ex(|a<{qsbOLomJ*K43;}m$} zp}@@p;uUlP-mIUer*w)=S4YRl1@UdS_(ersv3$*@3PFIO3CxAp^jG<>*ylj4`d4k~ zSNre08MP?*bflv!etoX4Yt!Vp#jg8OEvSEDEC;_`E71zGHSQ=;* zz|Mhdi+p+qO7V=sX$llTrB;RcLr4jUJI*Eyehq#sGN5ef=b5dv{`SS|B=7Hg z)H)tK>>K9ty6pWa@{PauGw4V##|G6rqsq=5J1}>}jPxEV_q4`x{eQRFrGDBM=Vu=9(Q(%)YK`FlnUeh5j_)3D-4BI|$_9SI4tf zR1)G1vT}0yek~e0_e&+Q#PPWUb#mavMv|b*>1_CCEFqSMTsic^MPA#dy{~=ER&omN zIsSY+d%S!JSaDyaUkRw6ODBwsydm^JOFMa(kgT9f z*}2o-(?_?SvU;v4+BY^%I@NadIq6r9*~A`=GO#Cf^KMi|DIj`vY=rH3JPw| zS`ijTH;uh|zS#W45Gk+%n2dxX2)91)-u?YwW-$Z}&W8Kz(gPYxa87B|t*7D^^;r2` z`~-sM_A*YAlpd^ZoV}3AVVf!_^dhNldEk#nqEnh-*Av%Mr!P54oNYB2x>9g#Hp=8w ziFuZp;)gu}Z3 zLECNzUtf8*g_c=ddytAPbm8{JJd2<3{ruVj?H0s~fdA_=yOF(sw4m)6;|=7Sfg%3( z{mS?DTf&kx)rrdIXQCMY0CfX*?4WgA0g;2A@O8 zeUN0J02dh$oP;lxP^X3p3Fx0a+q|5VQukhTZ-$=Wq?n#v$h$7i(BBsiG-Mf{*qURt zgP(1+|L@g@w^vHayICS5BCx-00$f~OtH2b1B0~9#{vW&ru!Mhkyy+P zo5T}zNjWdhipO$weWfT<=uprR<8m(-J-tu3V0%*i;a=n9;5f0qv_BFx8kjN!zTL~( z7K-T_wzjm8m*J5gNR z`X(=2bBr>y=fh$!aHGrem7dPxSiJb592s4kH?{vG#Wsb*6f5bwVJhL)AP9lPgHM)j zoLcI>^WX%f|MBBnS4$!aZ{?EWdu9IwnT*su(9QTGIoa9g|H;BII|J(6^Rdc7UPqr8 z;A#eU#g|-2_nJ!_xItIfA!w9ya#}F2@#Dt>va-fao*WomgI0So_xz#+ok|Gg}C`N`kmyD*Lb8S`*G&SWnZBG8XBMtiQQLF5TAEX zVchbFrR8C$fKX>=w_@@f4jhb{Spc}W zWVax}1u>k!Br{Bes$7BC5y%^{Ul}a`}cS03b!b!eK+ua7j8OXr$%PKfU zK=o5ZsX99c!sd$SDIuJrwciso@eXS0I^*`%TIW+y_YO)`_R8yKmY!VmVmfv9|5#sa#zcj{i z@zN#KQKx=yqiz&R5H+mEXe?fx?ArUI5@yP>XLPChh!<-9@(2QVZdFznS$;=$V1PL_Q z?g{EKy-un?onX~;Bm?_nv=$_7z;{rr5i??7{Lpp-v0s3fP}~xyo`DO;YEcWvVBEXa z8puuZ4vnTqniw>HR~{|+I^kcQ_4sm1>Vs@Caj8m^J$&)alg}D}GAZ~ih!{0rWsaB! zvH^ZvEwbd}7gS(!MES^d_!uqW$EY3eh1v|aeRcuxt{W$YQ8VY7m)~7H97pz&jCXy< zW#|fsI}fl0F>oCJMhBBYk9S_-ufIh@V#C+5ZsvCXoe`92QOX5^8?na`ryh10Fu z#$EPXC?$g)<7t7mai8xSos|={2j3@cQ$E?pYTIfTb?xmRimRh? zM6B?^tbb*bH%d$7dgfwm@`VdH@gN*z1t9V}{HGUY`iUh-n1SR*nm2!Y=kD!By)q<$ z-8cY4XRlvEAC{RZxX{I#RW1iu454f4>P?VeFs+RnMw-voj;euj&Wb4)j+OXac`nSd zEZ>V^;2xvl&-E)Ge>SjR(hM0)dLGxQ!u<43r8v{qP@w^>M|!+hY9C8M!yxqke@w{p zpw4J7dq|7nELZWpaCVRFVY004oMq0v_YTq*2zmymr~6mZ#KU&Mj#&SilO(VU$YtJk zxTBKS!_-fG!8Y%Ebv~k7zd1@>t^yjZny2hg^RGp-e|EbcBlDuwNbz>7f^f)9Wp$b7 zox5yaEY?<4`Rr2a;o#)V-<~EY?7m~)w{j`azQ|@(eOiG}_-|`)BeN|~zcxzq3E)(X zhqLE?d@ahVkpO%-Z2s-do4t@2;MF70lE8(Ck{UC6ChuYHGYE}a-U=i~oEfRcurHu? zgQu#0>A*zj1OglIEZ^?Zu?S7QrKW!wI@xX;@ols-A1Yn7?OF&ZbTbHcdYDw;;JO$A4iY&s{44`P?K;__!z-m1SS*u ztzDR8>vHj8zJKtWF9r6xL3?%s<`Zg0u8#=x5&%p=E~A3NfY?w8AKVdf{-NaW5Nm}G z>VsDgThm$CtD!AB$M-xYROr|n>-_He*3c_=yV(9Eygs@g+nf?3R{_@&>LyeB?K|0c z-9yR}T}LKTJJz=|zMy4YYe~O6h10$Dpj7zm!-D*LbZ2z@Eyb99@FctXIX*y4{ZX8{ zh-uDiJa<^=hhoOv8Wu*z(CgPB;lMz+!C9Yuu{Vgr4S^3##tOtcA&Fz?Rsg1a)9A&? z2|Y$|OPmcP=ogSPqV>zmM{xrUI(m8k)(woW0eW@kOJyKEQX6Og{spyw<^LLY6QNtd zm?oT!FrE~7J8%Z#m5SGOo3o?x-8(T~pLx6Oc4*=)0a^;YJuE=+E=H-FC;rUMJ-`q~ z@k7V-?887xRCh6S|BFdr?czi>&b#GUzPbvQqGKUi~Uzpt=j90~3zJY+Xp+rQQ4 z^iaH`Z2;YSb-NS7$XdOG5CXdPn*IjqPJoQ`MHc;Y`Nl-|jiruT zKfk=5`1V9)>P`Q2INu*3i})r;l8Icr0|_)5GR#P1bhCGK+`VTHAx_2}!$deIOBe+9=YOFRGCDDCl14k@M zWsqB8)m7q5QjAeGr1OYS15t52oCed?@lU-SatHp5X$JV>$NFJmCX#E~4Aq2b&O6XJ zOHdu9D66Proe({FSKvm1{f*D}{$4IZRB3Z_8DCJ{5UMf!pu5B!in8l%w~?E*wInD% zJomYU&j&%u9u818;;Ysn+H4|-@j`da##e0aH*bb;xg{6aN+uqAbOA)lu}7$Kw66Vw zk!LXV)WparTuJqjW|2#G-kXmf37J27#q;-GBB(zZ6O!Sy$oP{O7lDTd5Y&6JJ2olF z#L^O}0FWK-;)^}vEW-Q?+MGt?1AExmCPqeVoScMPGv$+^GC+C2?nknUk@fD#X2AVO zU0tp=Il(%mb>CtZZ4%(aVe?IpVabaDYm1FeJKY?vNBsC|LmO(}A$$A8!5tIrp9A6+ zji?W9s7%&B&B+n<(z-%+6gvS)2niTfgc+8nPXjXs6b`WbAX>l3=H-@c2{U`o;Ax{q zIx7MTY#+LOY$G}{D+4xw?! z4#LYosbFLOyP^%l&^{xrwAmImE8YJnwzLB%AiGcPfj;Y04W!hxKxMXX-;Pm&G)a|P zpTr`cz&&!f(8kahs~a!_3Zsf=_-dH)#gtR@3EVj-x+Qo~v0Txj2VNuwwyG=n-Mfo# zhLc(6pP!U7mq?jNxDOSKI5}$&DIGs@76}qE?t5eJRl`HCLFdJ2dMPZhJt>NM0aw6%a(g=SIn)f5{}TI?!stQH!z< zi&r?o$;zq?S82VO+^)dK%RdE_Pu;PO+!9A*WY5kD9XN0m9t>!~kZXho3|}(S!Gs%; zk#CL9gQUl#J;JM0A|3eKP%%n%6^kCOsYAUC*AY-=X2zkKAc|!yv9)a|N2tr8Pk) z1u7DGR%q}bgRS~i(t~Cn?gNq57-*GpT!~W`0`f=gje5i#{iTa;6`#^Os1U17`W@xXx2R|B(BL^`Fs{VspU-h8o-D zUglQ=Q`7fn#|Q4>P{LtIJsEF*{=6st2%sLs9(ru7ARa(j`5F#?LWLHx8~YVC<&`cW zp!JwBEiWf`@wPGh=iJm7`L?3h*`NQwRA-tiH?V1Y%>G8{M38Da>`1VFL3R%9b@EjJ z_ZVzji6?=F30=k~aV^ET;#g+~hdj)25f$a9rNChVqYyZd-Or*pBI+U2{Q~L-4I`>o zq;@9QbkP>ZZk;0k+9agp!1L_w=qFX0LLU4lZ8ZF7r;-yBdsfmgIS^485Kl2KA3vwI zIR6Xihf$Dx1Z)#3qV(j&XMJ4eHmKC1kv zYB(p(g#!RhA(BB`jv`!CO|21?HrDt>8pPp&4}s+G^io8`(dDmAkTvj7{J|>#u6Xg5 zmx-}4BNNkJ3Q70D8o>Sw3@nT)=vM{va_!W%P%1iz#nkLqQXfoU<(+xAlir69*}a(L zoP7Vjv4us>lP6=-(_FN)X(&|&_mC=-VNIeaw2qcT_zbij8Ge@e3`_9;B8Pf!H6L<_ z{$Rl2A0?G%9Z=!bC)$lasMAf7qD;SD%^OEulw0w`LHr$T*jnUWW>CjJBok8})Io17G}&6Szmo@dPXRfjrOCIe`i*XSoM$XWh~e-bCnb!Zyd62aTUXSq&^rX@KNn1fIt8O zcZbRUmFgrUDWOm>)=1p?Vrc{I1=cMR4(Vk76B|@%$%*qT5N_q1%zNYvDNo1J5B87# zu=G2x!MnZmLqqPbQFFH>9#k7t#~`R;8S8V0dUa4> zX=?)wW!QhDElp6e=BbC)ky}QsZi3aH|A;XE`4h2mS8!b5`E`*myIMJ`0yahaPonhd z&YcRywb7F>PEM1RlLKLQ4`p(l9hQHc;K zAd^<8BV1A@dP{O2J=(kQerjr}hjV1?NXpy$l9}h$mkOt^uNl2Zs+d^yWbuezC8vD z0#Hj{xBx*lF_6N0n$a%a-!BmYQtSc9FPi+Q!s`gtC+_napJhZzA&VMHp|^hTYHNp~ zgGiQh@}fz-cTXTHlf359jqs~s5$8`{j$3{&woUt?^gP~)u-4|OpqBepeEqjG6B16l zy5?khLk7BwM&Q|%^L*SMq`J>Ka59wA{NWnfFDR(q`AY<+rrN%9zeL&CobJ9?q?rSW)aacfT?C@#BwDY~EKD zc0e0KggIK|z1uaW*h6n{@!~AhH?jfWie1=)xltr`=kBAWKR2A}D!birWml&L7~Hv{E+gN%@C_rI6HD?LNQ%Qz~4 ziQi2~fTaO4t&@P3fi(Y#CZqQm+eTU85${SmAUc}Z&~=ExwL&5wq269a=>b)cRqxpD ztVuJMkB4y80}_B>6ml%I!ZMhRhr7GpdN&&zN_HAn@j&&_j$EBvP`}?R+_i@KXWtOh zzrFO<9rOVhSjc1xHjOc<>A?ebPEL&c^TuRksHGNmA{TB{wPpW=Jx%lC317 z+%Z5XCIHh@Kix(nN+VFUYJ(Mc|NzkXH(-C z>504C$7A;%-LiOsZu{^Fx<{fJw_g}PaWX&ceD$7*QIScu-{8Z{8|*BMWK0Jh3rfDY zK_yHYJV~eiXO$<~?V3Ng93`*Z?uv&2pI6P~#)WxC<;SaXSKHDdtD_0;fXV>8tT=1r z(=gltfnSH`mWg4!&6@cHZ(bc>c{fL&>G(!j!-*##za?wd=2tjpp~P8gWMB# zh%r%eZ0FVYUcnedfCd&V>+A4K>`&r1YDF`K15jX1Ls~{g=ida6D=-KE006GU&Q9o+ zCqyJ9W>FE3N}vEcv1Qk%PatvZKPG{JP-|27^6G}QL$yw+)fClZ+=BRwy_Hm?tqD~zQ^l)PUOu~Suw){W3E_Fen>p=;izdSUtU zmDC9tZ>rZHi!mAwG7wx#RafRzWf9ILi4dPMzxREmml~11(|iwADwN$wvAUHJ2;mXWdqkBdzc?(prGkFwt-Q^sNGE0Ej8^%<_(1T3SMMu$0qQ zalWCs=3RwAjlluk=kY`VxWMha0 z_YM4N==G!*)=&l@k{Z=)1G*r-`V0i@3kU$>Tf>0i+VbmgonUm2oj5BXLX7)}q9SrG zrH#&>6_SQxJUCdJMCv{2Xmz%W0tjD&0^prL8`5#XR(yr(7l}oEvoKi$&qFfFV)yyy z`gkd7XLswS(_NJ%uRf{G)pH=cnReij@-MB3>YQ?pn_hy#_WJP&3$Z1EEN6b>3!K!| zwS-RHU0hKynfnGl=ZDn817JBlz(#glM|$?rG+aUa`DHhH*o`C&|WY%fZh{UXoN6(|oMAr~JZ0BeFQAvC2TA12V-b!TFV$ zanID)7@81s4a;$KN>P}SiUs1iUFG1yvcGawweb(oj9L>q;NRSxJHhXK&;#H1v`rg>cq{4^4)g7IA>Jw|4IAg;OY9;lDhMcP!|NW&X7TH7>IU+L*0amu389Ulilc+t zO81pw01yF#hCT1T7YLmO_!ioc$sYE846lqB80NVh#2KwYUt-HtX;X6)w|x! z?fNicaB^wbHK4Lty4$~}zVC_8u}#HOTgexN7}r}65$Mo3zW<65C&hph%pNK{wXT=u zeOsX1qb0Mlw-*>6drR;2zO$<<_mJqC4{uqQpbabbQ|2esjW}!7Gw1YVZ(=i;+ zoulRCT<_35T!idh*Fa3r#e7siM|bY@WA8ykbd;W!nfdyYzMW7~J{)y`02H^Fkk-?l ziBFG0I@wKO?M>(3op0;Ek$A#YyX}sw_h@J*%UM%fjmCp5W#!`Ek2y^^znDbGb%y^t|Uzy6(A;~6v;^zSOf0syf63B-Sax$s<+t2s^yoEZGkH^DiN?=li$){>2| zNQu8wkEzPUYyBx0^2QkU0;t&l15xEN&;xO=_*;c0RkUj8T4e2XN zz;bGD560nh2*X(3+I_#CH!jr>_SdlAvVVPkIdobsXnn7;>NEPkZghsJm>fzzj5MSk-_8U*_aI zZF2xj6hG%-jST=m>2t3W+`U6L9Ks^8y>Pa;Vwdb}ME)J@P-CrT8vpsBuxgWf{q!z@ zhv)I%^&&g_^uL1&di!l5L2fx`tP6T-Nnr`r>~JP|vTrj|@YZhR1N}$^AMtqe%tCIo z$bmH6Jz)dGWwy_0ag!OEnTa?tJ#s}899mrssEchqke8c#5c+^pfJNQuP!NE>PjL$H zeR9_ryL#v0*7rA?ZNb>!>N-^SjHmXbQbtt)t`m**W?fCqxbwB1Mh{v=8U9RH<(17n z_AJ5xx3KdcLcCq3l@FzS5_|vVSpRR&vu6{5&mN^!>*kVV*K)oH%;SLijm-BZ9zaVXT=@@ghS4fD+UVO*XLZ zKi7DAHnyxeS>$)wX#BGYYssZ_KYx>hL-j|-{mVidC*9^uE|gBZTGUxxi&JGR`4~jH zQ3FxlAg($(Iyw}UI5i>NdD*+S?(0`rtRAAQs>C>YIVlkc&4>IL~C47T0kNQMQn}A#o@rqSff(jNAV1kK=d5&45b8xdEPe z)6U)=p(Buz0$4oB>6+GLkc^3M`1LXuoXI`t&m52As(=4yq^*0;-gsu|EnE9b6~@Dr zUVU7;z%9cs_nvn?WS0A$;_ruhddh5n@BJ8VJxz<_2%US@&}&3&XgoNha?#VX5=S&H zAHbF>9lO9-1Dgc!;c!Ude;)VB!jvE4#Qv~?jCP81Y(kV7X1(!lxgbLfqq#GdPKO*T zu)>&`dXoMiiidZ9klcxB?w@Bma@{WpdT8?(=+8wx(&wFG8gSn~eH||F2kt86XU4P| zGx+S1EHv|kL>La5hBrP_d1lOCA;I1;H-dMu%{-(lPcU@icVTlb*jtFxabloeem3*n z6(=Nez(Cb(0~_t6v;V)t7txhQ;9=BBzm~XJx=C^-Y{PrAeoGM-_`7PAW{)r%6%7r) zP#M%ghRRpiJAok{9@SMn?i6_5vf}0llif=F?0y3CZ?K7lTkm#weSD6@2L+>Fq zbxVq^?ZK&~)we7RtLJ}8)E~AJ%W9Wf{Ny@S-=aH^Br_#!a$M`$3M>Ln7cOwHuq;lM z4CEN+55t9j73Oh#FtDLLq2gG>dQ5<8Qxv>4O{72C6?jj5t+&19XsMluz68*jWqX@j z)$;Xswo)os2rys>d&P@G`G*G2`AwvQa%w7Q2Gjva0C{e{cvJ-N&GSnVfc~{lN-~bj zEu-ilb`N?|P(XN9au@{}MtwM7L;I>E=)5eW26iNQ`uN0DWPqkKI3&dTtd7>ltHu1F zL}_&giw5<`+^zXzk7avZWve&a{eQ=|vwc=SC1o#yF}zF4TFMbGAEBi?BwUpPiNk+! z>7U-cdok1oN7ZVF7T5O^u)GAtlA#bxll+jG33V8d$NcpccFQs7o3Bd2P-? zOjvg6Rc9F8J9$j3C~TL*KA8sx)-J(=b4&EEL49MRm`Pz~zqStQXFM+9=K`+jGd>kq z4TMn{9|Fbp0h7Ylb{7;!I|PEcZ|&o8F84g;8SEqss};n$;Fqspt`78O-TCQw8sI?w z{{3s1lEnB}^lzLp*+aQYb~v6r@7*qY{Tg2JhK`Q-GLfQMgi(gma3%qqT5!M%z+~k| zGp0VZqJKe|znD1II_6QmI$e$)K}Hd_7B5g74bwe2f}R7R%l;cUC=i##cD)GmVi8vH zsxa$LTllesdNrA!sc*miVR+njqo0O+#5X|v;GI`UPD`!!k zBk@EqJ^aZ#>LnEVzq|8~x9h`wkF}KPG!{_F{v2%sguVEc=0K5BbTFz65fcHB-?N!A zz1xS=X3g?Js|vl_%un&9hbezly;`jbc(0A<)uaasP%zG<$qNn^aZ&jkxK3(;sWx4% zyyX5qK1+~^@>Ry@JOl1ng6l_9SHIl7^c!*uajPP@TryD`?ITEKkPSlVn!JYQH8=tB zu3|RL2?rCYOM3u zAPHYzKb=Cs1YAC&|1%WwhAvwya}|_QblfJ{MxQ?FAmiekTajn}rs=ePLn9|EkexT@tck5p#wEsr|74hpno&uf&vB4GG$~*W<15d!%34s4a z%dyAccr>G$TUwrSGkC;#-A@lxju;PqPmoTaL>Ee`H)i& z=-*w+xc&72FVRtxe4>B}&cFsu9oPXO^=%VqqTwWirV(B0MR#`x*kPf=Lm2P#iHf%| zWlHQvX{jc63GB*O_@Lj=8K}^~GdF(mIj4!%%hrJa$64>tj@u7(ddLm6Y4vV4CcZQ!5FYek- zQ@<>fYE4C`-~sJ6LlzRSxti+ED=+U0{Nu6o93WRzniWVkJ|;?t$CHN9t`oxyqNBwG z1+gQ3e9r2^is`i4FH5rA)6)Y<4uG}Tw=g_~x%q7yMTmk$iEr*NZ^Ye@WP3yq@_i|(JG`Lwwqh4zr9Q`$MR#{`jT-QtkT)GYt1M|S zb=fzV`-jw;aq(R*1BXFY#H&Y$SKa*>5QnI-a z0%1rP48LzhEC~0&@6xAFRr_AhLmY}`tmCJ(CgCVX-y!5Cfx(3Dh%6P@(CqEU0dZ|E zjYJb+^0P(4xkHq}=YGzpUH*7hLFh`_C9V*Q&DEUuqvSquCu7=9;A7WLR07Pw8${j8 zKm)FhflLC<9Gtz#+$KEM=-0`Po}-3PF3|2Vbjkj46Zjn{Ax@rECegG;{t^HY9Iw~I z5jTbyp+Kbv8Ne`6;-TN&E$e;`?Fqk5@@o*lz-*qT95{IJlvAX`aNY_r{SycjK$px{C`+WUu78?7=PJZ0Bp93Qz9RF0Z&h2KGy_ATPmP7GB1KR_NF+Sils5gR>f2HsCb zM#dO2+>7vUfD8(Lb%*3m1|B3ziNi3u15E_7|NfjfCVGhDCIdwHV`Ackyn?5Zv9T;n zl9+ta)&vz04AGD|`$5`>Z`AM*kydB+N_75$b_6C2O2YK~D9x=FDzXivh+fC*Czjp? znN=cOdrVQ-a+jF3m6{9l9IVoBv)yWN-4`UtxAcR*bKii5{ zs@p$!{BWx3g*^3>n3BM8cUiKd7+)BnDr#A!O?#s9dUEZ6HkPWK7;#jwy+MZLUI~)4 zdel%&TXCu)*MZ%$1rM7j)QJ2@f*H{t?^J%J9T&&D1(NFdaD?Mrx_J{e&1;&?DFHgb1z`yp<9!bkPs3R1O50Kk~-Yrl);1l z+xG%Hm;x#T7h#ktp^YFlAl_=x_~fLvvPKaOhyMQlJ7Zf(oYe1nN}V)zwn6m-5eFnl zC>U>T1J#Adr>hWM!E{f2f!)@U}1E29SnDT7(X&()v`$AEweWUhnyMI^bl zY_3HU1_h(S#Kp8a5`Fl8PISD%2rSRl)zx1=)>6&ga3;X*g4mG9FW!|mcJrg!yE&i`n$fux^z3(`E}FC{QI`S8Vhv&-#; zcI|9|ois;DK>-@FkYl0*70=d)&@p@tWc&gk#Y#RXBQuQ=-I1>LQmelUqO$aPnkS zM&O=nOF=qDH4JJF4tQ9|Vnngw>eEzPyAPpv8@UxGE@IE51y`;L9yl;RH&@qxAAkEt z2Z!#eR~MH`ILK9$ z4mV!%2}{omB=Y4!4unQ#J;@V=LH_oJsmoL9maDbc^mkl!E zU-px7oX7N9l;6AuNei{TycW;P8}^RhK&ZKzP{?YKqY#>0}l;w_+b!mFJ556fj7owa&w=9eMg%={+(1N z(zK;u$-yOYJsf>1?gTqGx5K#WCK$GQU>l*t#EJnGbBE6dG^mFKL9icrzU04wFfCNJ zXS{cfLbD5A1;e+V0F4&@u=B_e8R;89W;F0JdW-Y$*kDC~#e(w)>2d-AS0I7Jufk}( z-eMP2TbKgd6)FYS79w;AZBl60I}L7Hf{4NY$rLrSyawbDq9ODTm|Jfw=2-r_c&dmYCiQ;O4cu+Dzq6n~h2{U+wGF&*is1Xw&dd?@fTpe@kkY^)4$1rA zL+}W51Md(o_KqDQm{3E%I3!3*L5w$3n}W;}h`a$f>6FZQ@E znE-K!qo+2p_!yK`;Py6f1tQwQp#5|(5S7mC{$HBf+Q~|OUOqmusLh&MT4*pK5L4lV zgd`3f^7i&lMdVq2{zV2IzL#Is(TQHex^nDYk`86F(8m@ItDfPMzpSpVE-opF40Je# zP!t3F;F7Q=J4#C$bPmo#VE#lhJgVc-R^kLXqJc(dAkUWtunsYJ09?RxZAvLEG)~Cn zg{T2xdMHAOu6tx8z1S}r103+c6L>K+ckjM^)&N>}?n+U-;(LkxJ!Q%(g0+-mrm2K<6OeiSOXMqU9C2nakm3EFD|}Y z!h@8ZGgSNB7|Q?AlaTs{eFjg5zm%6^824&z0Bm9?RODr4FZ7koW6S-|D!YQj98E5F ztXR=|S|=sb&O*)vECf@LiKh=K2ds%=5NQhvHud$bqs@NNqEi7gIfh33xsOkCJp^d1 z1y0$@iOOj$WQ1l0uH6yCI4w*^R{RbKuao!qG%@M|nG|)~{IF>eDt!CaEvL>NjNQy| zvoxPy>22P%b81w;ZHw5q@0I9XAJaj$7R(LIl8>#eqr()jzIk0K{}nlU53#D^w?k|N zQ>#Jz4u`uSX`$`SwR$s$Iu$f@XNrA}GMroj(yEg@9XJ}|OPmG@?4xU)51)_e3@y*W zM$?O-EXA0|xI|I}d4l|pDl0(_7KR@`xsG0-`I^q|N7wJgSCISThMS0@sOH0$%uzrR zK0X#0gs}>O)ero`$jq!6B_t@A_W!l_=21QN-`n>mV?~NGg$5#-(j*d6rVJ^W5=uhK zOp~Gz36Vl*5Gu-8giIMiA%zlY9&|}m(xlY$I?MIF?`N&&x!1kc{rj!;{PFb1Z@9{5 zIM4UF_py(C>|-m*ri~DWriE_BfRSoy7OX`*-jFoo#G30i7~R<T0#5Eqy*Ol*0eo)I~xAIr{oK<`en zlpXSCdn%$te*JO$SYExKyUL zZRG=(Dnt9%BrVVc;5guZ5yOmNaosX6-`(;LljY1GG4^13bLT#j3v9L99M8S4IPioH zHQTeVU-zrtBE03x_vm4N3L-<4`NAFW!}V)#qUkyk6Qg6r8h~5-u|r=C`7XDyI9Hni zz!O+RWte!Q833|j6V97gLVOvTN-dYvo;7;varwJe&p444 zb?45>-LvJNJ$hsfFRvm-nTQN@-P6qlTKYY@b~56c1f4wDp<~CR9k!LF8<#Kgw1GI8 zxAJu5<(nQY&A3Su3VP+NNA}ddQ&+*|6yB^~$f}~V`!=?7?NSd3G3S)#UZwqTNSNlD zkL@ETmuNj2!W3Z_j}0qC)!o}ASU+yphU&ufxh%|*1Z+#k`h{v$@pyx0q+i5C|H0FY zp`)oQu-~Fj^liWr{Pn^^LV2CmYot3iD#*xf`*z8|G=B`#rKP0)04z`^_3zbd$ShgO zy_WG?N`x^)1)|;2Up>PXgMlKRV0`etx+6dn^66b||fXGkE$91uJ@HO5wA(Q7zxI(VGc#EB1c?;y1$u@IZ5|6HPQM3=A1y*W5R4~hYu{fs#VyH3uIBy-Xo zrojN)5tQPzX_KjU=L*MXiHYv)$hPr#&LfPAK>7FYYIA3n%d zQGc=wG8c>ZEfF7$=tjdE_^p~5-wt-mSq27C15bq-wgyii}@u@dp#2zCMFHoIe-(m>o{R(t;O1Bt%bV+drmdH`klGxVv0tejv48nzxR@!^`4`d7R4>%YT{{Hm{78TEO( znD$G|mSKv>DTErPd|)@UTq>>UXO?Lhqb|Pty$L)}G9o`H5`0TJH|PimMk4UlvyFB} z?5u`lN57rnGqj_oZj*fma;{Y?O zG!N)&ET~Tf2%#>%3K$@EQBE#ezd>?WJ7zVs+ee!3E~iNq{`}&4-9e&;Kq6X`!oY1ITi2s6NUewf-!N%yX|!VQa*Pi;)h#gHw&_ zLA-*GJQ+4u*b5K5gEGb6f2i~BVUef%ZRE>n3IpFr?Z@>$%=hL8!%;AitA1#7b-TDB zue@iGaV0gyOeLVIi8O-V;kjwR>8 zG3=1C|0(8MR8Y`eLE)iovcCY~2MFE@KYy~J<`i9b49%k7wGW%dl`#n(D|k(rnual9 zXlol@cBmNzmGHA*jTmJHXA!8ueMCNjk}fK}UhvlQTX0@J%V)#v8G_N2L25I#|FI z!r1=Zj6Io#U;~icv12dWz6J+lkk0cDA5QF^ZSWq1$*?g=@!$mdYr3S#ma{9@6lf*w+Y;IdD}2A>9X?TtbR=!CrPO2}+tL)km!^ExfW5eU6)35R=}xHkx{Q-yw11u1;ekx=3U{Z0y*2 zo=i@vlyn^XA5li>>D3SK^o|j%S-#0BDG^Gt@Ma7g_KwnE8WWs~T#_=dJm+2=TKf5S zHhY#!VX9K@)p&^hMZt5gCGT}REAF6PofEV8G6fe6y>jLsZ!VJxN(t3o`wrsZy4mQY z8Sl0y-DO~KXi^7}!Ih-gD`9bQHE0LbW=xyro3+?v_*o%A)Ud>Y$!Q+e``ETH*aLON zjYjoVcHbai8^g;$<6;d6y@(-w)9mgasuLo&W|T}s*RD!ucxuiJh$ zR||4cr2x1yUB5g5rz@WTqA35aoV`JS7jA-}1 zq~U`YErI4QUk-*;(CSkwY|NXu;6kUgDTp#j@XAL{X|6i(vq%1xcwpl<9(CHcoU9Kh zZJ>jp!o1z@-a9nlYg|uB7lM1*YOoULJaF5wY3J8x-!VI}wl*yoAT@_YWT>=r#|FNV zLN&1VwnW$$Mv~J|{~Awckn-~Vo)r|f;I3u@Etz}D9;!%aw<_@d&AJPwTdx+F30vGf zPf*Lgg{6OOJ-W;n$s?;Ya)L|x=)%v19d;kD+p&+WYEaLc+Jv8NHBz_*yM8x zQMw4UDSoBV=ItGO_v|_K;oQljI7(-%y=Ga=6iKFYQAoAuwWqZL;@w)fWnKqN$a6Gf&K+(BrM z?3k6_7q_d555$g`>Lxcg7qwFK%tI!D%e}{}TRL#zR?DtOgy_K~8%TiLo9KCnp;=b< z;n_MJ<Z zx?`O#OURT2U4{lQXYM2m#bWFXL}4+j_A;V{hw?7R|rR!a`*YB~6@_f97OS z<&^st9%JtofnLqlYWo$df6s(y{%gFo`O`vn?#aj)^bm%v-Hmm+wVrvJK^oY|M7;`y z)0{a+bID4En*D3X2D8f%Gg9N_uS%=gc&@#DgFcocMSq!MN0089{O13{0i_wQJ+ZQC#M9@G>yS{~IezlKt=UpV;MGadcY zA6sd2&oVmsU&$fRl2XzZOO_~%cbYx#v4o19_Gv00B$kt9IR3DdDvu!yGp#)Eb~DIf z()}3!$ch|A9tQW$OzktHpw%yjlo?9uM*blb?6;Fx7|O<0pvudgk*67Q?cZM?5Wu;G zm=J_bV5^xA2G%59a>hN5z7nnT;W(Njd1<%HK*CjR@2!bm7uKfL8SEh9U#!lY^KUin zms)yBuea%F018uqyOofhq3K-^(rqa3ue|5+&|$;oISveSSvMvqWwmSvGt@xSUS_=* zJ#>cdh(k*I&m|=-DL233C`cJUue#LWZE(fR+&mySxQT4ZI1m{}JWu~P9w%r^x8aKe z*YEgZt#%fDeQ3_0>#FfX(1riQXbxs(#z50G`=k|3EN0elZ4#e7d*E8VZ`yg*P_cRf zCnLWEFOv&h)<`jv$RfBb)#B-qY#8#8!XZ)!IOfG;!p*1Q%RUT6?uGXsL zi>6Ggy9zCTt}V?2L}UmEFydufbqDztfHbv z!IO?}=kMi@m`)NVSjiJa+4<>`4dLP8yx@iKa6j+k$BtcIcCVJhAy8REZm5V~-qre` zd#)a?sp;=tvV@6bh@_#frtfvp4^2PGXZv7jr}PV^SLoVET3Gi`RIK>^ePrDB-Wcyv zAw)N2X2=PMo}aK&GbvT&1L$l|9-^pI(+TUKzcy=)`2bQ2A?lqvobHbv7o% zMi7OTI_il3ef;bqu}6^WVYCa3r#^ag8lLq8X2=Ufw;%$OxpNn#3);8K?9xi@OPh7X znr?LS`NDSPm)NUB{i;?Pq0{j{FGqS8NLjA5BJ~b=af-9-u;If&@OqTPQ|BmQ=+%u) zJ*8dwPySloT)Z&_3*0BRkZrasUt-=?Nh2??hXs}NF^h&41lk@5S-gDNvH@~(;TMgY zQL^^eT7BrFQLOgGqAl@ThNKniWwY((%`6AW)~X)}GMo0ndU|5S2)%86#%)nq)v!N~ z74!aCCtsB`;}Rno@5kO5g7)q8pTGR`&ro@74UJPkGb@ijgKJ7?WAU;#^|C=S2(*P) zUN@-q#)(ogX&_JYl?Mc5RQmb&Btroq(5|uYN&oPH2RTrG2-VN4lGw$Ur-d}&Sp!)5 z&42+s5cvw>=d26wd2ZlY>7%oErV&LN5!%ho4Qnb)Ay?l>{w&rNy{(yqb~>Ggw6wJ6 z5A87-+OmAnp8UT-Mcax%MKkgwD+TsEmXV?@a4-x z%S&g^n$?fia$sO42kRl}h|AMZU(bN%SPcy`xs??9?1n@|+Z2nxsqicm2SZsAKaWr7 z90OkexX$VPa)eqxpGr?ka$P31``^a|#qmLC82AC&)WT>gk$gJ|oB&XqZ82v8#emSQ zA)wYE1bqL(w_jcU3SwAXliQe;grFy<=}XW#fv+1?)*xjf=%~el;bT|=KZR9#)wXT^gd0;)dYL(q|Xnm-qGA-F*eD1G~4GMu$+EsPWj0RZnq4S7T;Js=RxESNIrNGWKBu0 zUqgyhM|}S5_VM}(=v?Lh@yvRJ>aGg4LzuIBc-w-1* zwSxMiUuLstJBxR{y}TeGCOLp#xESaclTC=ttdo8^Ml>H3@mb(3E4cAb zjgTf6U)#Y2B+wrZ=*?d(nmY9vB|Uu0d_-qGCq8W*3%h$ZpD+uvIOLJcG?Tp zD0hcre*cwmi3}glLWzX<4wJEPnt0|~**1eJuRJUFt#SVU)CH!N79CN4MumY7l##+# zVg?fTtI2_3bI+KJ-?~ppyg8voa(nH%pRNWI;ByMrOmcttZswD^HTTCkoFMFQq^3=o zqOGruZ3i4IFh{&4*?P2iO>^al*QV3vtvA1iE4t9cGZfn6T?3-Vt zxAYH!3MK^$8BR@Dhx%kLq(chLT1x91gw!GOKEA#ah;_Uo?Am(TJx{WyP%RC19A!CW z$`q75QOVvj?QDd6zU0lvkM&4U$tW^z+elQCn(GHW;}l;!i>4lt^xcemNqp}1?b@Z= z_WDh62fXoVJFKq`akH7`L(ILoj)eb8RCpZDTgAALa|Y~Fw|^ZMcgpRT(}U0vPY z|7@S;4Xt=lr0tBNYu-v1{pGH%<2ok$v4sfVe8knr2let>Phq8$`G>qLyN@V}l3v3^8HDB{jVkBm`Pfd-y=) zMrGm0y3K7vydqB|G9QR2g9l(V4>%0hRP4(X*p{)uUrZm!w#GOvkf)OPfB_*)6pg?z z5aZ(?cj#u)h5`;>j7~J@@Gq#~?`Y5bVZU3KUL*D&IKZxA#{H)~9m!Am_SX9pt;XwlPE z&xf|<1OCnY5z5Ld81bQ0kP{wJZZug0M=xe8XT`-wN$a=O2O`r5n%S^OLsV4o0^%F; z^kjbie9t090WBuW)-cps@ze;(6IYc3s;FZxSK|}a@85(zOtyRX7z(Gmao>pbJLxqF z{QfVmOidc2GL{bxuFJmDy`%mvwO@RyGTM;@5+hK(Qi5mSFn%^_9W!>H{a5d z5^N-NIH-dy%qn1VipA(rp{Kquq_5+?RwQ`SYW3V9di|+zv-#q<81i`|s=8w+A|b>k}+-dxg+tOV)+-O96cS2hHFM5tA*5Dd=d2!4+ z4#Jb}gg@vM#Zj%O%P*?9Qb&G*8s)g7J>DM+fX+0%GUYG|02kUCTTN;be zG38009~r)owiC&O5pZXO&}IpGOesK#te^|`(bIfzTSD(dhXcxIJtWwJDkuzO#w6wS z7(PTNbrEUz2}owYTq7)^ilcen^%Z*CQExlqMT@ zmaX|Vx%HrxjT$$ufm2hgK?^yZxu~D?EkC?{Yj(!TAE+S6K53;y%bK0zMX=1^M$gmU zf?f%#7Ox7#9To(b1wIp8f7+5cK_iZxDG5Db4(OUdA!wYMy`Us=Ut7XVUxq(b`bnXS z<0m0XDuPENPXo;N5UW7`gbF$))z#GtLIP`FB_~(a)LdblfVMvoKQ(0hqQMs3JD|N8 zgEVJ5K#rUs*dQJ-pSQKG8p?_Jv@S}cta_-lC{YsQ{$IcJoqq(|8K!Xcc?g7>0{SQ8 zOQc{PFnvp4HOdDL#sy8qqr3xo@n{G7f!AfcAQG9CPhXQUn+dsP@mu!le*vDStC-Ja37M+_-7l6&=p@^9Xv>5@D64_o zvlXQ0GwjD=9$%lM~C7ua~rk#({8!z&kVGoPz)#`yMr}Dn5WBJFo z$n2W>-org=RYSTC<278kfDR0!)c*5!&wnm-S|5NZb5Z<6n-G>BKYtFzd^EF^=Z}>q zvBysL>~&CwJ5P!?mSiO`gl44X;G>ieX!;PD8=pNnmum6qv*i+AI59tS6Rlvm+n*Sw6h3o9O}=NG6$b!-FLka7}&eUB1-Eo z_zGK!U5}DQ*^|{bdXHQ(W!1zK+QkoDs?H@OBz(Letj2NLy7ivpw_Y_q>O*Y^6zU$V3%-r+gJa4 z_r}909wsSpr>0GviimM`T)d7VA~y6%GHx@JWZ>u$+#CE0kA<0~CAOK^T}%VHaGL^; z9kX4tMypR(_)H+&0@aK|;vII=!txh}sf7Ri!qfiWw=Bc>1j{Dl3=8e)d}MmP#Tsz@ z*mBs(|Jw;j+esdqw^E2BmX@<7Yo=-ci}7zN2Bn;kKaW4!`8{j1%DVh5Ts&)8$IJcK zk0hE9q2~O{=o>Wlm6sQ`HR`XXfBHZFCd@*-TemS98b`O?1Z83~5vHkVH{xF;owA!q zV`q0UF3$0(5vfL4un~|PK5@9;fZyl|gdgqRApg5SH&{>Vs7BVg0)*-9Pnt9dKWx1L zsm>V#{;ic(<1~{mSP>9u8GqH5-w@OGDk3}4zwarM7ybP@BF|231QdT0CiZXX@n7|) zl`V13r3DL)cW!=^7t|rvKxss~VFy?Ad|Wbl>2>qEsNr^s+d4e!7#KZZRsZkp_nK|9 zKee!LoWbYr)4NB9t;n9bV}6Ig1L@~>Cxyw09S@r^d&Xj;6OD~UZ*1%L_7PjT;Y~_u zb#K?yZv~fLbSZU99akYH+Ar!Tv=9dx2xX3^xT#RpDYcUma@l|7uQdGyGfB$QJ9k`| zHbEWa-G9rBY5UGC(QR4AZ)Tikss`QhD&_~OT=c!tkhz^{{&hhZwW2hMJ+CuvgV2#x z8iy2m68%(qG()o7#8;5ykLdqQGFA=wMb$7w*HSiIAg=s6&=%fa`MC49Y*a1!_URX4 z?#FBiA7UbW&#)K>lsTdL@u3n{44#ru`wchI9x4bFwQuptM7WsdaTw`sDf04>6fThG z^V(;^^R! zPNZdM>?G4X3B@%CfBK)TZ^o4dKbMg0DT$KMZ#TU`+}RupeN=_nM7kuPyaAfFNn|3d z9|H#X${6l{W`pa!+XPv`sUmrBp!Sl`8N$u-oNvB-xiFPv)l}G^WMu{3d(P!zCn(D=vVott=V@rlRN9*^eYcKd&pLxYwTul1A-t$Cdg8T z-bPJ+{;*#3+ks|Bz)CDNyaaSaMbD6ZWbzHwMZyO@_VeZNYfM9BPAZKETy7scx;*0M z&6^mS*j3b+xBfva+)$@e?dSMf3ath^5jTrSW`#-~EfO*H@WkJCm(p}b2sdVi8V4!K z`3?MeOTiv(bud=M`503)@^*Z@HZ*f6!LHU=8=9HDrDkITqU@0u0mp`C2xr1zCR&0QeAXqYUPxF5xE3Gv zJ)v4M(jrzsOnJ9zaGj$`VfR{JZN$_KXZb(tZ}pzq^unX*#pBM3ORI}e04VPG^_CuF z;PK;7E8i}jKYTZTcNg64`VD7^QRSW>q)Qa{R&L+pCg=`u&faVuIeTr>47GA;k9wm& znIBosGlsVGv{wO7<`qjeEwb7Xr~4kv0Q#xR-kQ1tv_`xZJn1-n>u=}WLeQY7rwox` zhxncwzBO-0-2kVLD|Do->zKUDYyO@W>iXprAWBtt`2p7=U){1Z*X=W+IrFibpM>9% zi*I*kXeF;b7f5Hn9s%CvhMFC9Iky4MD73S;yc!9B%tq1!`kwgvpYz@d+y99S+F+la z2oEETf4I=UU^0MSqtGu0wc`>SYZMU%(5*=6_?9>N`KZ10IxqdGkr7uP0oF%4NbBU? z-hqc7H+v(qJZNfw!F>$J{u8!`A?1^yp${2Ix3^QgmN~>sTZQZC~ z%t2l2HCj!*r(_d~M(WP$pFe@rWv3XRJSX#nk#V4{LnmMw4k#@y`apm}Mg5`NVteDc zb1SI4|7?ZOzkmDMUugQp3zuNs=X z^?^IJS%QhyJubiAZKr?IR*(&S`>QR8Fxh3*HX4k|j{f8gp{`>0CQ?CUI7HD|v$?F6 z;w$PJ@#2_e3WnH`Izi}zIF8y-R~#^R%%ACYz>mOk@g`4>fiS9CE~kAzF?N73ALb;p z(}19O>-Xj|pFb7HBaqp2QY<)Tej{=oNGc%6OVNav4;Y}FwR}fS22_B$MQr#77y3T3 zbM-g#E~Z{9f-<>!j?xhp8WOzdaPSY^xRGae)PCZ>_2=M$G`cA>FX$zM znX|*6BA*O7R#9`nc(}383@w7d((yQ~YcXe%a$bN@@RR=8>0jz2Z?SQ(e_?t_brAod zLco1gr@|gzbR96mMLYxaaOuu&f?eM{4i_qtu8O!Eo5-q5LURmpNRBz+hNrn3d z^@1QRtw*iNpXIsdWluT@%fts|nvjft&?=nw#gdFB@{4B&DJ4gs2{pCQbeB@4oHVSc> zpm_Wc$rFcf%ZgkQR)C3KRLnrK>Z6GV-FF>%W>Xrx z)kM6&IiYb`;gap*D|j_3ik&6L7a=p)i0*uxFq5e3`*Zg8UM|$TLVa=T^M+S=1;2Td%St+Zh18Uk2Mu3>oIO@Fa#Qqq zs7bHi9@OQ216rQeaUdo-rcLh5);&F+23{|Je1zdHWK@cREA+1Rr6fkYx(Gyql8)$m z?%*hUtVw=oN$XcW5~gs`Yx8QB54HNIB5wQ+=rVx)hv=mfC@^{uUSxQw+Wk{ zq~*8$XS2nN>qEBccT!v?AZ~*L;DKk(Z>lE7|1%HBDVjHho^`@j69hr>$`X@02*^@t zYB0J49ENIU1HMVO4mb6+TQR57)SDagnon46h+6Z6o+fnPM>|)$#jUSgcBkrjziaHL zT|DAeY2?<_3C>W!zKTBkTI+%E!;44MUb6aA_G!(T2_!!*Mju1F_mL@T7lJkEvw17- z{3z*k^u*C}o^Fx$b>=y`_SIDRq-JM*Rj4NnI1m?vfhz`dQ(~_&aKAVW6P-l)Z4^^&VT3xOI!+Jtux? zYdiK~)EXd~PJ)xWxqm?Ee2$K+YO31SojqqYrAkhDf)j%JgJ17to>;62aV!mS9x}e$ zbxeNqcXd{9QSus%y_MFRv4cKs_S~`Q)2hHfbsjCw;svC}*A$9Q{jE1*1>I7tI!Qvg ztGxEms@t2=#+D4=moU)Ml~~7cz573KStsdw@kSh#TJPgtx>)D zEP71uZS2UDj-&S<0t`w|tXJ~#3kv!SzPEj`R`mDAZIt05|9_@6l4dxGtQAKry;E5d zh%?rPWvGn6xL8tkoA4{m*1O$9BO1GtCqEW|0c{*-n#c&m@ZqAqTp7DnEYBXz0}!SK z!70Wkv85kiwS|(1QM6I$DDdMln?AttamU^~sk%E&!cP32bf2o(?aQe(ARD~Wzfk-# zh=q!%;O&x-<-5G?E=EV+#d|N$wKPP=aKnZlNU3uXRq^etkwjbwaat1lo;PLy9D@I9 zbo5J%NM60Nq(i?3%>BII#_Y{620%8h>V*okpvrihVuW@&2X)2wRN9ZB}D0?v_%I);1$yns^=bM%K-G9yrA$jx4ACqpU z8ENZ-!7J`po3J%fi15=DciapM%RlXK)#pVK*Te&ol27VL33!SQIV%TNn$Vb2fvA?LK}A}k)k0brI`j@qgOND&zR*}I+Lz-YsXxVlX~{0?_x(aco4;AL zuq!;5=+x_=)BwF-(T}6dS zQbY@2;$)EDLZT5|PB4gS&`Q;>UcYrB*96%(h4XeQIiJoey6OEBCh#v8E(nv}w9b7` z_O4fSt1h6fT7)rX28T6hPgi?1@e#&0x%`@Z`we8ZliN`)lYR5iksH8z4RLWHyfB)!F_hPWZp(AAA zfl8ZC{qStxZ84wUa^nMZ;)3=VEp#)X#Y_~Y)>w7KqY0NT_9WLnTiI(u-oT@MjI+13*PaZ5cL*u+`DQCfM6$;=&gCo4a6eL? zta=6^fBNO^HJr6nszWaOq>^Li{-?XuFN9-3kNKN;S4Tfr5Z7MoEBtb2bM+aI&+B&@ z1mG@rOXf-Fr4&B2p4WBmsETd7+Dy(;sQb@knJ05Se!sU}^T|>;iRW&%e4XndkKGd7 z(&;m2td=enzD@$=BWDEP@6^!S?ZxIKj<2|XV@t_P8KU=h2$6cOEW}<3Z3indX3PtP zpz>{x9#XW4D?{~X%BLnLOSClB>7@O_>zoaw`Zek1WQ@S2TauwjL(8YQ%@V%s(n!Je z>>5vX;*)-z72PWxGnb*gzNMS%vXb60rO+IwX<^+q!UICIP*S0d8jCP9F`ucpmP+qQ zO@oNC-$8XwftygUuU~7HP|Z@j`pBrmuOB(%y(+ms8S=QW znu`~N?ddj86ejWV%^MoUT^t_-M*>K^`~m`so_2Zr?mxA$ue#-}5nha;pYfXgX!%Ea z+Suwg3q%D7lqhI51)J=A^Txxz%*x$82b7w~jC zx>2(minA$pXU**yPLCe+B=jY}5xL)n?mB{qkHUj-PfjGn1xJC$P&a$io{Gk^YC*_Q z@SGoTsm8#qg_l3JIdKgbdimL%M-qYL|L`;rg-MdL1|lwuJT;U-Sl% zYfm>lJFq%OGyGEZQ_BSlbZDqMPj#eXZceePgXH4jlIZhq#cY$VXDsS_L5@wfClQ&LkCDxY+bbuOA9YR|SlOzM9r7}Y-6zS~%(UI%lWKCkbdGfAYq z>VFH~dJ!AwnYg0=0InpZq)hmkG)Sm)=1y!V{`^IVmBCxzfR1Jn&OuOdnac%Ab9*gb zF}q2dKVT$(@LS-_3hx19=t+Q8ZqXl@Tq`X~nLI+_i0b(EBEQ)fJo5Vgzyvw?zOad5 zzoM_=q@8t`2fnmw{uwBMg)7OlCJ6}5pHg=&1k`+^-vLze5!R+~cbkZbm#S}1{C4?9 zD6ABR;ZH7KQxW(q5~*-Qf=njVq{FDmJek^i*)}T4FC_wz{xjP$?2qjX984{^Yq;Jn*T_B{4c&jgJIXRJpiw zxM^Kt?vpV~{ed>Y$D_H_Be&vDdxPo%uDG@Xpyt$=^-HErdoD1le1nWb*DP=Uc&(M% z#I=GaMVu*U!(^Tu=sEoG*uwoVfN;PRM%Q=;pJal%ZqBy%MCTrpe(c=a-Now66Y(Dbf9zBP-5S(xREg*9xide$4X)6?+I*T|sS?Co54jO10lDv?~N zPHP5qddrwV+ZG)jfAvE#^>brLr3BAi|7;b0z!c5ms9!eu|6di<}(6vMzod6?ofx_P^?BD&?-zvuD8Tq&6 zgXKo5aC@W}HQt|&@R_vEKH~Pqks=TDX%K?y`PE;VzblGPOT$E*zJ?$up}FQ7WPk;Xt+NRe-fIA@ zFN!Eh)`rM(#phpI#wu=W8g$BDXvdm`)ZCcR(s=rWf}snzE1~p1x1kKZjQ9$4=$LE2 z`IhT5yc7h?APA)j4H==OBRpn$b*yuGw`36B0$l}If#gS+N{_q6*Z9#~w6mNK*Yi>u zU)J&0+v(miEYzu|6ZJhlj*$%l9!&t$zOxSnZ+mB~>?L49zYo z?RhUDVS?8tGNte_KQzl$Y-wTCg4pye=Y?R8&e0ii^`h#ipA~t+budogjQNL%iDtmZ zjA1%}CIt|FCCYALuNO`;51EGB zu<_&dv-Gsdfdbf}Vaq5ABrfY6w?Qz6a>#}HJDLG$;#c7E?NLBNo?Ah6_9MP@)V=c9 zMax|y7@?w4=bW*`${ik?7pZgPDZQLnSmhFn{yg~?yw);$)tt$==Ro}CD#ez~2;uHY z(+a8P{03utc_kTk2ZVV>cwb>37U%Op^_%gsMZyg*lAdt0G}NQ&pcP|g^@_~}iaiDi zIoD>+y&Xat5C}WZFF$U+H?c(B!R3&~c!aZ6{N+nGdF_7=48K}m`Bd5=u1>~~2^FD8 zv1+NYB8WRt{V@;kN}RNE`m_p@pm=g!U3SAB3Rdm|r}QhB?bYko`o(@mR{?@>d$|BM zI%o+rzl1IwO`+T>Hm~ssp8m~xLbv$;rD*@}k}3Qzc++M@*>A$wV~@4K>wP?SOlA!N_KrKu#@ni#SS zO|tL1u{?*me$Tu8{l4#fx?OkDG;^NkaU9?6oCpmyg~N1gbW~JShm{m%Z&FbmxJE^_ z|2={lzT-GRB&rHSXL z&G_E()G5lDD^K}YlJfA-#~0{G{`f@XQ$?OmMNFL~a-NEsmo?(xVASx)Wdtv(nUj2L=Vl6LCuj49Y)NV<{>kCOg{bZ*im}Ps&5Z!{)m*LaoP>TO z((dlL*K-sa83b<#a_>vw<;gr@s{ek2lyPL*@AdBwkTT=6@2R-{=TB<(Vec#a&tGz& zVi-R1-&3TsQ~iJcS4;~xsU2Q>)Xq?LbWA=adZjXj%A}|@FV*EY9AAEMo`E@9{!kEB zRZH_}egntydZ-LNSCHI5}A*ZQAsGDq+jy2(X(&=tQc$eRRTwa&U z)C@CwcyIR<@+w<`#mOg%MMPJQvAm)KS1nO;pUBQZJa+xFYm{65S8{Hgj%SfN;rajX zLj1qBL-(sE>Aig6VM6&yoE@wsPOTh`kWJTE|7IoWN?DzWATZ$9Ya1!GL}OojEUVzT zb62;Q32EEYRyIii?+Aa-7JNy+H(GOWes{BIcauMGk-u>2D9sbK9ElXQ0$tzj6=LAd zSl|vz-~x+6PPsvW)OxT~@8IAm1mDq!w?%soQnl+?Wgw;UdU_{5HSB+$)aWu%JhXu{ zw>y!xlRH(zy)z%a`^RzTPtnd~QNz}#aNw+K+DXK(R+F8@!CFrRtAG)D6L?<##TNd* zuf%b8)p7Ti@Q%5IgM+>O%ng&x@9X=G=SBYa!LOyBKSJs+7X@8WOX62ztWM? zu>12~(bXR||5J6Hm)r{Wdo?@9wfvr*p8n{ZU~wqu{s*rhp0A@9q>&xCrEec?oM;^C z*Z(hnBe{2bc5Y`jw|RGlv=hzqFe~fSIw>>rWDpO}*#HiXD>&T$;|1o_xQ?~oYFIoL z#1k+(7Qh(uCQljpu|;$-4t<0s-R9@@6wz5Y5{;|(8a)=*;Rl~ti)=EcezbV_$^4f8 zp>d;+OSop|TmHw!7fve0@jR5}bM9sd8j_1cH>GijSSZG!Xrz%Lf9tJD*eZzU)mi2w zYO(dN2Pr-&%^jYVL8nZ zUsxQnA(4}TmOoYtb!qczfW6V~S=l*c!zV2U(!fO6+#Cvj*>iH_Hty4WTZ#{1;W+69 z)lMyGd-i$5a+YrXF$7J(=&gX!Pb?-JgDARCpZe6oDQ3?Hsw-UylmqJQ%}aigX;R(; zOLdwDb}q@rq2)AF$2J-QyNN+u7rk5$1}P}+q$)bLMXbl-K{al!5a5Pj)zv_DeWJfAC@R&F|yze|L<`TR=C1?MU@b+yB63u z=ny!4hnw<&rNPN|Sq%wYga`4f?K0`5Sio32XAsZvS9zT}q zJ9{f|<(AnhC0BC2i3w_?e$L+!chVWl3UwDtu1edPNDKJCmzZ$l7L-KV&T>xu#rHPq zS66;aPTE%XZ!byhx{eE)C;j2x?&9vN*xp*|I2ha%E`B&&;ZKc2Bgs)Txj^@ZCTd#x z{=a79^XSXH{&2keV29tIi(?_zstsp_q3}l;W@^e`w74-diCq{PGx zveXWFVRexOH)CJkKXZ>#bHwpd$&{No>osFG(%RIDPg&nGu1H&;rBnq;gU7=2EigXf zyi{^gl{vXr^^~3Y47b2jbnHM&+L_zkp^$cWR#!c6T)Um&lFRgs^YrsN6K3ky$J5sv8Y?R=vocgv zR-RH)&LIps+#KToG4L=lYZ89y^z&LSu>fAcerq<5psu+jHV+*Hz zQWZ2`%m@9q>29p=)pOt{%gUC9n}SWTFIw*EC6wD!=I1qZbowh;SXdkll~%jDG|T!1 zhK6Ef`8NDg(MqkQ0?#6Ck}B+lg@x0O$u#y`C!I$8dKng#I`#w|(IxQ@FpYD5pbDV# zPQ6v2d-?L^i-{^wdYrMceA@wmuCDPGecj#NQye#I3MDugIh%QvZX#(&Ysqbv)rP6b z$?O(+Q5mcevXd*DKYy}K<4sz!TsRa6?+T}KW=oQ@C&bivkX3Q_uK$}Ds>}?-Ii051 zV!<16uNTHSW%-_rI9cl_WMKFm>ltw!`Q5g#rGDzQ{WG(3b1YGxBE((e&=(UQ<>l2I zJ6c*=W`qxn@+e(68sU{nv=%Atn_gFKn7hn&SU-V#4)Y&O?2P4yf8}vr9upT15suFp zVq*-yk#$qxSxwl!x-oAF35mSC57*pd$bKZEh`p6nbH$9-TCY+Z18r~v>@OExsL*cG zp`b68WqVcn^JfxStVHjTMW1mI(V;TAEt@RH(VRuF89(WD>UsFT?MY%})l}gnx<^#n zmZ=Ako!Z^C^1HQl21z7t?l-B5XrKBa82h&i63|NgcvCUzw%>&`t))>>Q7E|+VI>U> zjLyCVy2*)&Fw6R9MA@PpDsKxOceJKl`&R*-?)Ud?p@NjB%VgZd0uIv;U+uV82{XH& z+$AB6tgzQY$;JKN+^pe2Z1@HIib2+x%cRmIOom9Kwb4=O7`Ez3>w1uN;k!N0gh^GYtvfu4af7UnAC33OQdDnq>dd3Zqmfe z);N^)aWK$EX8f31(ZFa6JvSn%<`6O~oEqlx^XTelxkkb_8%VH&dqb;m>Vw^ewt)Mj z#@f;ov`vy_4&jM~cO7f0MW4#)>zY4;4>IvR`7$staMF`YrK7*pm(fx8e;lSXJD>2M8BXOP+_Wh?n)8MeznM#uy!AM>xTYpaEr+}yhQ~6k@GVpP zWo2k3$?2^BS`dF@81qJIQwXB;HZkyjTRI6TVE^WwXY6?9EaK8t|-gDJv+u%o> z0t2NIRpc|f^aTHS4=r^_rL~T7jqt;3+#WtCg`lB^7ZAkr{VH!4V5v2 zVPH z48Vq5ZGq%AU4dgs+37{KQ#G+3-q07sI2LhImoFcTHBI_6GGdl>^StU(^yQ&(H}TG^ z#tEY;r!Su8n?;k>B3zT{->W*Y{kOqa1@|hmaB9$DZGF9W&A+u21})!{hdhW33@k1HDy}b=5&`q2(TE00JUaxtHUJ;Qb>ftXa7DG=PoM7QD&iN&rMec~hXd>_o7LUhg4L3JG?__1A5ce8344_tQ zvz4W#UBA%tRvPJf9Cy^GcJFInDl6^#*S58YD8W{~!kRv=|61gq4|?W5Ik>skeCn06 zGV&%doc`|a(A}HK3-M!6W(S$LKAM*-jHmD*5-gTBwpLd~RS9qgTqZ}BHtGte*xA_| z=H{lSUlVMI?uYTcB$B6*r=_KQ96E@HM!Hz=EC(Zf(EFt=D8Z1QE_m$2%8KnnLE|ev zG319Ch@zt+CBbPj1h-u6Ut+UcRH-}F+U78`Cf+3Y4r>PBnIPCg~fBj1Q5X`2VMMU;!`K+4{W~?JKIGP_^wI!|D zB!xX%c8<(I(l}ojMk9jEST#{b#BPzpd}E%;JP3MvdXyZ{BG{wgV35Xv${7*>4>K!Sa|#TCTF}^ zDD~FSVUMPL{VUDggtP|m1sdcWMPr4hb+N1K2%37lW@v8hTx*7nczla&X4eu6b>|hR z?Rw+z5JV7-&Ur^l_MtYJ3g1{}@NLH0&O z1)@C8*8a-CV5#847HBz2F3aNYwYchaonmZ~#tzPBVA|W;kJ4xgJo`E0!Gq*c`i^BF zh?rFjTxpvZc&6M)5`NwaThMdFpg;QUdxAeqEus zv5_?4rkr&XpoCca67B`hUK7mXbnw_kXsVqfN@D4-Lw;$;*R!auR!MW02n+beppourxV-o~xh&hoWmK zHO%i;(_ODE%%2jM(~QO5mVBZ(j}wmMb0hBuSoFL#MZAUy+Gs!{AhcV8#}(AkKt=E) zM3X=xooL-H`s;FBgQ5F6c&CK*trl$Elb?(6zZSgy z4krdY`skqq3x86$|GIAe0V(r$F8dBF@!yhHJEipf>sP>H8ebVD>c>b~gARcHs;jFb zEFLzQA{oP(7#ZPhq`PpLomKwtQwudHI1GyqRP)uxh1d zXO3o@%KiyApDp7Ai)XDCt);J+sF%;U8Lb7C9r_QpJ;L5k<0`%#&=Vl|F{5xwjU!e* zvsCbwz%gm$X^)?j?FO5qARaihd3jScBC2V)89oL)6n(bMQJN-aLop6XsauJAwXQ9A z9JrLx+EBeOS_u>axy-K7(NR4?+D}_a+1<96^b`1l3Zq`x_yhzDE!9CYVxZmMUvWxF z;5oocCkF?$xYwGdZ*7tar#PCg{*a+dxvEO& zv-5Cub^YPaRDVvD@Jf9om;QW--dk;frk>4l9uY0W+qdJvw|=$=TJ7jcF>U6w^t zUwW5=5#Wjicuzm;h4&JDBhJP7)Zz*UW7>dIDl$SgsL3>ka41wJT0XPemXnjSX;C`A z`vSvtqWi<4juthka7<(=fXN?oYyKose?Ro1bPde$sECZ-84up)0kDD#ADJ_EJYqTD z@rrHSgqC7k4xD=*3AfuK0U#(BB_7X$N|;Jq!f2oKTOQ;*J;ukWm}RapMOqFN(#i6 z3=Hy4Jo-@b#@VxHE9^lv3eUi3qM*OVEVs6{1~-{{dvCn$@gz%m!b6N>c6u5euOy9B zj1y6Hb#!D3^D21z_GM#Q2UcYd&JX}AZU^kHud`Mx>}z(0Ei$i39`k1DI5I5e5D>sc zy<#YI3xnz*66Z*b>T!1qbX_?>dt?fj4-PZK$z0t!&~)>QtV>AY)HCHQ*vc1F9ZSRB z=gys5z%gymi>Oi>=4yo66B-{bv{2`Wduuh4!b_jV^8%u5GVQFGDf_Da-+`W<_uXAa zgvtc*jMo_Fcf?#caoP$bnpUk@|W(o=lW@hZ;(CH&RPGZm&a&uAzP;_GhoFB+tyLovA zMZ~Keu12u^ETa6p#T}Mq6bdCW!#auf$RGVzmv5(Qy!cYduXG{41!hKxpsyO0V}Au% zOhh%-YG(--cp*|!T-;VP8BS#eX58zb{b!IpK79CaplsWScvVtz)=j)alJXW4S^Rk4 z2BJWBYG<2*>i{BX@;jXiz|muiYJ&opU^h_*QochcZFVjR8I_7O;zrW&Bz?U?)2E=TCcH4nS92 z$5c%r=Ih5+>gaI`eXd>p`HE~`f11Bc+~_*g%(2ulsDJa47xw+wg8*ghL;;7mRuA-B z*2PYF)RJ~qE0yAa#fH^8bS!Z+CnhJucY}CvUh_QhEiakhQyPk<#PQgi)qr4fh5hXW z_tFcEgbAS3niV*0HjpZ{T*PuZ`EEu`QcV<%r`5~qMl zM97}zyS9h>QIEw*yGnN6J~$Mu#|>(=o~fkrx@4^ZbEER@i&i4mO$c zw7T#;xi30#@7_JZ)-e2t%4xFqP*c-`Y?}m&V^N=gZ1f7R+v*5B1Fl|K`Mh=XFVZf3 z3k+~>&4_4ZY%Do-=gP&4car`9M6BzYcfOzsr}2Y?gl5dXG!=q~`Zj~q4?F6A#Bb;d z9H+z0&VaifTpJ!9rYg-1ZW_Mcttb)W>gTt$IaPEkUx(<<96@9Er`i0xoMul?kBI7x z90CjpJG+;J(0+F#(ppE~wq*G#pjvoe$@#dBiwtD%R5Mm+On~G8KAWHTuvBMI;Nc?r zf(HS_10;4J5crXKzLT{&I#;b2xu^RW!||Rc@AE6UK(jfz4l)4~6BG11JQkW6egw

_5_s?tGyG$G~#oizH z2eEs3;+MB%d^ULwdIAuC@%7H+QqU@}u)UJg$RK()I1isFY#!Kg9s z-os(D;|UgkWngx?Pm8D?q<*k)?Z{$B`lrp@;p_+mwAd=r+}zB}F}l#MiX5_-hL<`) zMC3EKChC*>pa#axo{S_Aa@E#&$e{o(t@vnNg zXldui6;ucySv)@G$V%H<+L_&6VIM<=w}WL3G4>fYs9z%(nTNBH>9F8f24{U;&&G z*rA>1lvqp#X4Ivx0*=w8hdBCB84)(stecP57$kZ|E()tWc!yNwcOvJsDN*CCo z6O^;OaFSf_uY1;)eJHL>;Sg0r(LF6hZsS_GvaVYId7Ih0Z1)GB3La|0UKJPCxT znDajzYYTnbHxJZ38beDD@HEVM)*8ua!fXO*R*VDw20w|>OJC@PugjA**VM7}YR-3x z_k%Mq*@TJkNw0qjRHsDvKHTP!-uAJ2Zrc9bVIlv#Tf3LYNapwMDbfk2Mb;3_O^dgcI)Wkw{I#%#7r9>8yh7g zO@9S9&dXH)xHM8k^>#veNr|)WF>zJGUlk)Q0~13Y&T-=4Z*|G+5?c`}9&l4QEe?9 zaHv%Gf7#l?Rz;I-GdnvgQz2KN3zd_XCnO|98!U|>v8EhyN5)qENi%x^R!GO#xzMU=-b%EV0-q914qdm>CKwAm^Qq^OMj}67_wcVBv}FB^W%%NomY6u< zQJaDJv$SDb&W4~V?XxTEL(%Xe5h%I?q%|1J#Gal#f&X}vT<^E=K1Ysbkg@tb0PCz# zMx4CN9SLjOYB^d(M2VF4WXA??FE7jshJ; zKwvE*pmbD~(Ai<~S2+Uu(R#*~f-$}=62W^|)@#!&2pZsPUMkd-$cDM=6i;ANwnoGi<030o`NIui`~N2kAjT0U zIS*?3Qk|V>|6f6Gjsj=i^a?A3b<%Mf-si10NxB8PAUj8W$}nSv?IuoT-2|x!BoRQM z+>GJyN4)c^{=37&uSj#;oSdhQMl4K^`_xOaGMF-fTzBS~GPn@|jq1n{Gu8z!KO39e zo4I$(`noJZWQvvtfd8hxad;|TIqTJE!B22v`PY3gK{nOp5(#1ZQ~l_&+2xw6kRIFG_9wy+V(j_kc)&o{dH1w};)d{01v zMACFD0j!2@xZq`|ql3r7@j@ScFmdR{jT_KLemDpJr;YAu@9ac(kh}|Y@0A-g%+UuS z;T5Jo9`gk5J-|wDsjS%=LOIWRtE8y{Y@aRC7>sUhj~zRT_T)} z;bnc(<6o8HzKt!Vs9E{@UrkgII(M#VVZ=#{l_4f3hDKUXU;n|#QXCpI50GZy*jSeV zZNHHf$AiGKs}S8gmQsBtbK}dJ+MlbOP9MI)7X9JkVcOs>>*d8eGMXsZD)M!do*j>%T& zW-f}ujP-PK+lMOYARZtgs)UeJ>7%0-ig|(IQYhXKq4+WH0$uv!U(F7ql48w!n81dQ z2dXHLmj}vX92z{5yu8k@Hxfpj#O(Sj3a9=`C16`4X}au0d4H7(-U|pw|Z1@c=;ZzBTASaGy=a++ngRlrX@CdD60QNNF0lUS60HVwm z9fmjiRls#;JD{=K_8i~}Ln%2;;Jfw4MFs^jJcs!~q`NlE#z3ne0UGM4OEm~b2^Nl| zhCzqQD>1?MP9uV{C-ejpTJE;9(JLTBEc9y%V>6aDAGViHV+`wDfW?!psG~lGh93B` z%58BNNmKGyYZm5Bf>&N!TMJ5{Q?AD0^r;#P{k%Mx#x(_6i?Plfe>aUiT~a@F>@Z$T zObkiGo7{F2^-K{xEH$*?3hQ;lT)(HiopE{nl}%CxrrFt#)aX9d16W+v_ShaD1@#Nd zaL3bgttt56f>)iMph3c@SWMv*obM-!vIG&L``Fl+!gi%8vo8o_0Rat!iH~GwM1*}m zAhgJ4a+kF>N-l;B&b^#wr-v_8C|fiaH+OROp}y8!ZDqnck6QbFj{;pS9UaZ5mSswD zzrTHB&^{Sk6LkIlj5lNpay;0gn#n-f$yLf(M;U1K69)VH!KdiBy2kN(G&b!UR)q&y zY~Nq{_AV64X|sVQ6*bjAR+_N*RC<3rupOZ=g)5{t9cOW zQrm6-5l+W<+jdvjBf4~SQqt1GRj2Xz>&?!l$A-ZqF0#;XGM!&v7h{W-(Yb=tZX`Xo z(1%86Dy4HF@hSQY2jg{{s|@d2?_PlD!Ce)}q^GnbBcYrA1(>gZqd$M9^*bNLc}G$2 z{?MPx=fnOACng5f6vf&>4-S5|Xf?MkdKzjlUwugwE)~AspFjB!G6@!Xm=?=2mbdrr z>u`;q3p}cF8T>u5uEV@;%;o*|>#jgXE^Zbm65McHIW|77uFSU0YC}hA0+xO1yEesI zOIz+96|XiNV!j5;IRQ0$6scV%=zAe#$=@XIwQV_F?JMS2)`kQT(%MK-0C1xq5Kc@} zUlvZS&5^>rjf#_#R89j_$RRus`2z;Z)XFPz(wO%=cMLg1Cf&At^LM;DE%m-VBf6$= zDu`zu*Vx#|bc4YubUVOAN9Q5IprB`RGEcCTqxnkA^|-s$hFq$$X;c#LSV%wIjVcWa zfasv(TNa34ojKmTk&={bA6sJa6A@u$fJ6AyROPRl2I`6i>cIBc*gE6Q2la~qi;a(+j8Z)ZV8wX&{@6S zfkt0bm~F#yHLIlojyUnu$BgoO^PQf&yzw)s0T@o@Wov{I_y_AxmS zi(%$N2jGguqou545IXGO*aU4*x7>BHu&{vk0e+HS7RY9nWoKGlE+qOr>KJb}tQ~X^ zVaqf=N+bO+Lo6>;8Ua?2g>-PQmSgDg*C6KX#)Kxmotm10xdo{bbNBU&1{f5~FH__h zD8O9kU{CL(Yqaoc>r;%HYq@Lg90zCV)5RDp$HW-FgI41ED}o=bWME+Mb8s+p%OffK zlv1g^M50QVOgfAuFC0jFrV?-{l;S`P&LQaQ>nEnA#Ws^OFdvMi3v^E^mFfw?qU?nX zU_czB;f-$*ivg2nh%&Us7Pjyw+0mnR5UeW>##2f^fBuZK@b-Is#crbL?OU*RqO2Gg zX@f5hd7b2n1=9Tx2a=%R;Z6~V`uLLo@4SffmqsgXHb^OxSRbf`{B?{Ml3BxAMqPl; zAQ6VR`|wl1tHHJfJxnxwPow`@`m*INw!+U)zHy%^j#tI?zHuxN@aHD49(4X#!p*&G zG;tzW*Bl&Qqd*2QL#!+FDY*(Dd}}8ljUPf6q3vf=fj3FLqa8b!9F1kTuKCnLpV@@^ z{+{ViAJjPkDn4jD?Jy>+i~5)9EX%xiceeS{{D80s2?{<{KJ_Kv(}=jX4XKtw(i}8d zKS`3Er~>;0jkKV!Fen8z4uGP^Q_wAQ{&T)gQ`6ISK%EY60ggpbYij{zxO<^xX{+9M zO)(CXVft`cpJon;&6GbMk)K8h$mhR0ebg~bkh+`)A$Jw7ItmoCPw6bB1eZV;V;=~zvB%OLry}>jV9kzB?mW9G0QVnC^kC_}aDacHHCSQZt_t5eT;w^Y;C zJ##S1U^S#;nN210=Rj^V>>x$MGX7OsXtbLqYG%dSTl_2)>2K+{o9Fyks`IHAYIVVJ z0qh4Q6Rgy&T54_K+QNH#j@zSVa%bmIg*|J1g34(yu%=eTTT4HgYwC1svO^r@RV?R6 z7pyU`6uhlWem9`iAfDHR34kV50@BE%5j1j|2M-PU~(=J zY|SjE?XLjWVvaku69kxz6@B(LOM8+LFksd7Y=d$JS`r1I2^$Ity{N_$pJs;vPPNT zG9p5p?AI^8*QX?6PDcL9B^`o-gT_)=zr*NuT4UA$O4dq=B zPY8Yl)ErnLS-z6u;^Dm@4zgQ2zq`J^UY4(E2`8t?fG-xLXLg3Thh!Q&AcH&Nw4Uyg zbFcj8Hf7E12M78HlBNm!2ou?9#3Zol%+_~3;*&W9tcWWR?a~%Fkj5Q{J{T;WL-1bh zvr-Q@d#b%)UF@JLfmrvhX{jzHg;PhTb<_oe`g-?5>KG>%Fl@X*0qqK#Q#K|tS9|hp z&!gu|w2RVzwpwmyc3IaB!Vf$TG()IXLJ|TP9XKVvJhh@6j5q9$nYYLM#R6;tB&ES3 zp>7DoGF;r;*>~emw{1C;SO1L4>HWmx47BNT97=Jy+Av^l6Wx=t6-qcBJs%Sj;$XzT zT-EHkk5&R*5z000b;N^t$JV7fU}FR~$uuk0KkMr+$YQ-1OMTJfQIIF);Np@|_XX`C zZPzQ1$4wv(ZMJ>jE37) zItEJyoJ-)@cad}PE!QM`Qpe0Lr+QiCuQ1?2>cFqX1~f8}q`;@m)rKh?n(nsY#}(Ei zV{qyBw~GuX5kVIEVP=n3zbniv9}03ZVxj)f)j>xa468+W7hbPO5V_hB{5BwU>_k|# z@7nB}lRr(dZ@O&@rz9bA97BHprT*EoXJDUJRXr@Y-`-sMR5)#Dcy#<&3=A23O15}k4vVA}$c zvTcAu?8Oz*)N+cZGe{R~-MxDb@l#NIAzV=!n0KY6d`fW{n9RUnT*sag9;hxe@_lH? z7_f#ONn|g6?k5>|;T9urNav6DQ~`M!s7n_wf}e{BvKCkU!F$Pot_e2~cEQ4#>EG)|v$H}2EFT>4Skn+zJQml%6n-5- zFndX>zjP}vkB)b3ohc~VrKw#R$wdV)G&JMXazIR0 zxTpSC0|J`2$3T8RvpV6#0TB@hu+dIt+k6oDdbV0LB-@w=si&vsWJJU=kk-tQ-}L!` z7yycrk}}EF2L8LH8vbltH^02Jl=`Z^@WLW!QAPqF-Xj?t!6Y5`9lGN`edkZ$hVZI_ z)MQ$+27e@9vvX2*3Pg{Ayxfsm7^@=#(|LjLy+tt<8*`a!N23i(y z1m_m5%aX`dQR*C3evi#0OD<&Wg+TzI&TnvYJ5illNF4(=d$fF;0T1Fgup?*tE$~kv z{vp^(lsZJ6&VE=v(fIc_nRM__K*&gUI@BW$vngpqmT$qqL;%p@SwM?F%!j;!r&rbk zw-k1`ce|dWr#`W?sryg9RFq6^lSx~>djUj7UePl9+AeEQtq?TrU%hucrJkDc$gr!v z3^I}cd%K#`?RA-8tGf}xCZo%m?@4c8-x0aEh+8PhvC)Qo_AR-ot>QlyLfo$65WaJ=>q#Qbob&} z1=<3|wY7D1c1frGzQ5|&8h4h}e3_Cm2=-Xpy(FZwZ^iED!^7# zLPD}5J{v^eD;$d^8+5zRiq_-q`frhY_$AHi=Yw|V)(B8;H0%K6x^1P4t@Mw-!|Utm zRhb?TMCZp+L+l==7b7DhPsr)d--naiPQPmopIysrQ+jwV{nXt0$+MAQX>fTjdkQ>* z5sFlgVHDqs@y$^J(luUTzE;?`mdaO071KJq`g+26E&MCixrtx(p`exM!ttXniRczZ z^kRi~7tA{1)C`C3{?^8-X z^TX16Y25~G0nl~g(?k+1PALV!D%LV_AZQfheu%WK`NPtO1uo}?%~BDo%OEuM0!Tbp z$X}Bc3SV6vNmDhE2f5zZ!SkS8tOxHPO4> zMT;ie0!`S}gHqOes~9C*o}csdy!f zTp@8v;{sK66J!j`%y>a+cm;A^U1v z1o#p%1oAB-NVUt!ZIm_0kyjNLJM|3q&#eCWbNbP2u(_Al98YZ%mcd%L2m_Mc{AODD zD;@-O$Qlzx+>q^sOU_>_Mcy3)qG7k~fne#@Qo7I&vI5~|te}Lab==0F42+EI%MCh> zU`k=mohTCeXW-pJ>|eL}6E5?|O6p#~YT4@yC*k^!yGv4KyJNf8(CT80l*#<*{36<2 zN}wkTO96|?JINhq3V#3}D}xMmDp?FAclARmyPPH#bA#yqrAQ5ZbY3HM4EmZ!EhmB| z)qhoADGuBt`6GktR2$Ep9kYH7J9*dP`pfu^F@-a;Oi}0-uzi3=Dx#?i7U@E%RS7{n z>kUBJ;LU$DdX-OFi74WtV;F%5VosPbhVX3Thf&&mooy z%4tGSu~6p$EglOFRC1f~N+{2sm6fh#N+nfp%Cr?uNSA-I<@CjW>h|>I#uk4vyLSEo ztM3vLA6ObOehX0nX!GrF9eTnI)-Y|pNhoTABZmEL>EUslx=~N?ICR4od;cCCIN=&% z<=m2R7|hI?MA}B2UZ~~pegn~&(_#N2j+-vj(#ndnSt;u#_UkOL1cL&Qr763aPMqKC zNEN=M@&i{;R_@8+GGPm;wmCrvKR@aw zU#?hV2iC=fvsuHstRa`{wK~*vUEJ7Y?EdTU&k*Bn*|w zjP3z_4$#Q^t>h>i(4^Q(FpI{xxVU1*qMOOiq%|lJe-aDLK0afD2zzvxg+9=WAM-1l z!Nv1GkeuSHkd2hjJQ6K`^2rzds56-h`*MahE3~%dS5TQ3n^{ounpf|};cK-Dbkz%g z=p}$zawf7yH@TY`niZT*5L8j=FcJGJl;ZqA>|l$Q&+j(4ef#Y3s6FQm6B3K8dHC0fGCR)(Hx?2T6I~Np0f7vPff)77qt@Tc3&A;ri3j~kR_c?@#yBEB#SbU2iL)eTU0`ocAGlmQzZtbA1&dU5e z2&EtBLAXk4JH2(8VVli;j#;im17rB1yMg@`N=B!9p=GEuGyuyAx-L9JQZ`K1yC)uf zKlQmw$f!$&J$o3)wlq0U zAPZe*pI5 zkal+fi$1nUG<#tvv}PU6endt}67Z>+AtaM=9ea5b5bKk&Aro+~e}@^cGaljwKF~Db z0YL*;a6_Sk(c>UdN=oXYLU|s7^`up~Sl6ddc1^n|xpw6yq4$>Y1AFhuf*_|n!iE`1 zA`WCH<0+|aez*W+bt|ExkrhbQ_bQMln-QAJnJa0&;4VW{-?9vxTI(4q`Oc1S-{4N; z5gIf7Xj4WX&2f+fLO*qq0dLq(BbQ(S*$f8i5J``Q zImlj3))?n%E5`Xj?LkO%3}U#xd*R^nx;os#p$F42Fq}$>B~vv?*_tT#_8~PKmx+-P zAPsO(K!16r3Boa3&HyjVc{)GAse)O-P*e&cMwpSP>hW7Lm43pFU}(+2gT(B%seII=KB2 zLzb^?vpRLIw(xd-cg^4|#_=V&3OK&*o51qLy}&m-0F(qT>*ni#ve7gQx4kYTh8X>V z`SQTOtncN+qwy`jCnqO+dX9H2kspYEOaR*viu)yv;|r-d$_{*=rUZx|R`-3y3`lINEKYpu-jm zwqhB2M7*k9^uXevR#Y(WbXW~A7;z11+jN2;dV1_;{KC2oCC;k z4dCnOBE*E`G#^~MpKYVK0TFR5t07*xkE6M1z+IIv+aUU;JLCI;?apM zcR}HAc4poOxcB~nS2uGZUTV#V6MTpWny;AodNGkf@S#`g+Glo0L=e>t$l1RimA)+< zLk8ugvL9geoOg$>S1PEVOE@TPIVfEabBNvtBhX4Q`(B^Q0UqFPLf^_}Fxp(*Ax9z>A7$=J@Q$$C*>iqNxR-MlWu7G8>GXM`IOQx>qu z|Mv`keg#KruscC ziB7rNk!GyW6y(yh{wE7y-_PY}g^c>e2*}I?qh5a2jdI z-$A|s<^xF@QmzN#{#XndIy?Ax_txoRuQ4|m6daFj1~er72r}kK1l;fdW79LDXYTXWL6HsgFcl2f=<11p>SwWZ!-o)F8z*g zk5{*CT)Dm6a~#aM%WI3R(^Eyvk5wG>2hJ8b71haX{c-%+A$f1RdDlAd_euEaqp`vz z9N#OzKfxVQB@Bbd;s$4@-7H1zU=Tju6MP19?bcGEswerFuaHpV^KLB#=EsAmHgv$< zhI_Vtl5pQhDNZGa@Lc2fZZT*T=~*PGY%sU3y0(@A$rVku7h!X{`vbG{TMOXU_X)SmE+C+1p0@&B z1lXm45sSH#bh@>44jjF98xmrMs$+9r10_dTzB0H2L#jPMOn7xbYJqr8ngL4pB%Ufj z`C6}Q4;NUqphbONzT;^jXQJP=+aGw+_v-BKj>#-LX&7#im-e56D#5L;5c`NG{5!); zbt<1XzbH%tINF>K-}cmHn5%K9HVpHD+$Z8dKZwc=bD;IRi65RBhm3$#+CGJWR#A;5csHeh9C zRp%y^q6RbRD9w>raP}k`vp~N6n`nSbP;hX8e#AOJivnwYE^wDZYB@N)#fc6xE8Jx~ z`g;q{4EYhkRtOMI)^No(Lx2Ig>6N06jr|*@UBAUWhZPV;yzA7jrZ(5VJvl-UF(Ufc zUDV$bWq3i9f#3&6Gw9bgKU>5=cl%Px5x`>mW83=2)^bjpdSH?h$7=Vjjol5Y>fM#b zH<>4^p5+k(UznoUnN-i#HqCAk6jL+b5$?)HoRsDa3#ooK7`%Q*@xYq`O>=dImSEAgQuj%Mi? zPZ2hMLw3$K%QEAl+Cqt;8?Z=HKTPNMax$_aY!kSG{$G5=tGI8mOh3gNMjxVMH6!a9=X8sT1lEC(KcF{owUYJ2%!L-0GWSnKQ0wO)V( zZ=MXgqf}7Eb=plFlw#DIzhNz0#~oJrxYwpwxQqI2OJd`T6Nf}EZ;0A~MtS(Ki4`Aa z=IbC*iYAu|roBYN71i;uJv?-`On8xM5cRvawvfL63!o1X z)yjT*gv5xAOaKH>AOsF-JKXqxT#sAe*~_i$8yy(itpWlEsvz7{Z@DX9d!j^7Fi{22 z`-cF^__0<0#{L=jP0!Q{KsJZUvytWk&yrXdwu?co_&Ku*H^%AERAIw1GuE6Ty0*!pF~&H1P{D5}WMSx} z#N7x)pgIm`IA zhK{`1nx&C)-=B7I8M4Y5zc-t>-{x7C)YR7K&+YmTjg|CuW`lQL2o5cIVJPfe7(O;S zdPO%iIb+XX$;9MU`h*K>59sD!0;@MgZEGek51O&cGq|b|DzlH=1|CbtSieA7jtOgH zy7M5E<>(>^EX1zEK6T4o-x*pVe+Q?4Mw;qA7^%ux^9N3_vW`23E#XME<)9aeCVw&! zP`X*xXJ}+})o1w)VPas1Q5dQ+gAx`F_rWh*a2fsj%udvIez>XNC8`o+5MZsXE^s}g zcCfw{)YWIol;U7*$VP=y3yJ@*Ex(!jLp7K*ub4VUn0VJrKF@G6x$RetiU`}MR}`=m zJZi6sii(Phi(kGR9;H<($R5Uvkb!%4Cr&JQ;XGxe@0gn}nwpjy#J8ZOky=_>-L}s% zFdX$j{pJ?P+xLDleY+z#tM=f9Nv z{c__WD(%yFzja>MKMa%|ifnxh(|A%ZJ4X&~<>}UB{^Hr9aesHmqEELP2U&VC2ag9b-}Qnf(JJe}juR zvc7-(D7$MMX6BWemYgi%G2N>gJX%35p$KW1$c$wV$PwMF9jq`YpyVB>FD->=BbIod zT;)=|)n}EqfCHZl$3>d|JTfW}XQQci@flnyEY;sq9r&)|GktoTtY?A*ooejOuNhw zY|-bx`26+_^t-u$%B8`%pu7t#LfE;+j=J4|TX)nIkNW;$fL~h+-1$sWf@!!jX}Da; zEiB#i!kOXwB0GU|Z?F!{lh1h`UgLQTVaN1NaPHU6=W2f)ae@$4GUI#4OZ<*-au^jv z*y{Z@N->dCopz${QBwmxwr}Xd z$&)AdY(OTeAfCtQ2`8~l^;k33{O&xAa_yk8v2kir(xOj&{ddo_4#=|?=W(;MyHWUm*Y?0l;^3G*c7Iq7ayhC5_)HS1Q%z$_ zhk{<^O?Gx7H|Y~vEg)R9Ls^wQeERfhlS`~&aKosd#(1w9Uf`%+9M}pzB&T^i>VWd8 z*`gigt1hxv{d#-fvejMgeCIO#!eyFuD>?A`58LU)i_^JU@O7{P=f5K0zmhj2ydx9) z>32MT7HP-6e*{l;-{PVwfkt|HbLNf|2fgB63{e$*6vzuqW{XL|)*8b?)v1xT_SwtZ zTZh5ZhOjxPGM|2d4E6U@07kq6oSZsmJl5#yuEe;CrzB+qN{AsRBqTtXz{`*7%iRm` z5+v}}*6`s8F&tNZdDMDlw1IPtRx%=1DhqsY9U6TR);bDNXi8mh2${A1$qJQei5_S= zC3>&UsnCovoff?KS6nc*RS z2N7%Ye-D?&JICjlE-Z)AuL48d_rGX5?|3Zx_y3yUfB{-S=oCF*?X^w z5Q^+gcF4|NNs<+^ce3~1zvJrj`(BUh(I59+y1LHue7}$P>v+Ci2lD9IldKQz^vVpr zI`CD~F$A6cCu{m;;#XC}EhrAs@_)87l;tRt<;W|AhJK0F(XBW=Y>#2Mh+8!!I|&h({N(x*x`2cqa0V`lg^b|SgU)#_v2~)XvJA z+QTm_yy{X5zRr3*fRfinm-Yg(z_UGKwST;~0+Op)nV}f87?9Z_xBiu6;C7U4xqzwG8LCf1A0itvhOV`Px#tiyVg5>auI(rFg&G%lYMvg9)1bIc| z>Gg=TJFad^Gi9e zK}yYyzq&tgdwt;c@vM~ih*u`(_W8-Rrm)nrx72id^kSks9G?~0sgrHvlD=A}NRicQG*IfY*lJK~Y(3(!v_}YjVK+Cp z3Cd7os%)Q80PF)~(``F|i-#9MC*-p9>sC-}pY})advwl!#(*pwSGV%Q+@X~bE6PyG z@yN$n4%Ip+$}s~Q*W#ujJIVME0$(s7u(Lzb$mvIPhRTDiXIJUyz-+;KT}jospHRBL z9K@fTq1*q=niBTsYpSEAD0VhBc{w@wgw4&(Ht(93m+yQ7a_zajGN`$_y5MU-dU+Ey zw6%9m&Zx=lY!z%T=cyIIXK16F2#aGasV{gPEXy8fr~;HiRsb7^`D*FXXgO>b!5t#) zsA&e1#m-p%33+@>$9)vM_sw?|@xA8;W$2Z{8TgMwq-m?ZiF2XS`Q&fn&tl)TMW;ZFN4i75mhzmgA*&?qk9n>MI^|lFa1gz0um@y? zmX>xr>zxo;u<+?-t9r4Xu9g;jL2+2@Ax4>f)HF2E6LC{`DZ+-TKDi9|LD5RGd{9O% zgcG#5B|X4Hc#42%g&dM4r=r3_K%C%ZSpmB?WT`OX!)-X?kA>%PWjk)MV5MegrH#v> zVA{!Q+I8 zj6gvu?nXH%YjRV5A>$C~AEtq$I z-xKZuBoNwViCvZH{jc+;Sxvw%rSV9aVo=-G5sgVO$%4a@^wr+p-uw6eoz~YBflB?U zuu!+w#oELK+j(y>tC;miFgXkSK+#l%tY-kw^+$qOz3Vgf`HXLQpAB0AlElabk{ZFY zdv@%6c;j$-CWt}QX|b2hG0<5T1nA`Wc-X2Zkp$hO zC4q&dqy#z(0J&$=7$uI*ZNafitI(`!jDNS{Ul}-leST+jR11P2a{ApQFvS5|aT0{= zw9LNqPp=Alo#9?d6EeP-gj?45+CilsaJU()aH`nVA^=}nM0;6zIgfzA_nlLpP^LO! zqE-!E-L@|w>kBx>GOI2^zc+#Ka}wvNz6}y?EW18bjX-6w0}TUho$+y6m$?H~%s1%g zHW*gk&+lGi#&=F^N95h{Ub_bG(>;AGzvi9(s3<}`+s&Dv`u6Z8{c&caDe8^?MCf~x z)kdz;vNUc6oVE~d>Ystp~b|pFAX5TYc@i})tnvacM zNa1$r`}xrVLM=Y`FB#B<+gPIa8zT8pfWvgysEBZD3Gp&mjs5~+sj)Wg0$ei7RDISr z57nD+TfDQcz0rbL5p&(6%><_FsOOV2IE=<4SV+GV#wGL4$ z+-!k{HXYI`s)O=5FZWAM+W%|)`t|D{i56IZHFEFm?o_?{W&S4BYZiF~3o1sMOy=^} zSA3l5@=xuIjeQzHzd7-0sO4vtAzhwnh4-e6??bgaKgVp*<;_MtRNr4xb+pS)*QT`2 z_ic$|R27om>AOq$%wJh^xl%?MYMOX{CHu7nsDRt6tEhH+jfjrYq{mrxdbZFwV=1xMTj1aUke0hkdF52Ig>0-sq;X+M%W>2N#*mZ!9%J*3FR)3#*r?&Qg>%Dn_o2 znJ*D486^q^B(X?7CrUo2>Y2i{t3&NXLoJJ`!-W#~^OttB!wH~pv#H9IS&}!>ff5;> zbZ|`B7;5rSz&fF-jxKueh|2tY4UWQIPOy<8NE3#i?{G&2uZuNtcM=Bj(h!xIx%cSd zJ<2>=FUc{@9Yxham)fxYX*X`~u?2`}{k3tHvg_H1m;b}-`1a1E=c?yMUo5*XJ&L{a zr{@OeM*Z`PnadTy1V@AFS?c<#5w!jyVbw;Ol+LR}txkl_fc^rB{1w!@vA0C60?FOb zBmO6sa+t`+%tPlEPM3xCje^c#ZivWHubK+&S!fkBF*AcZ*QrY3=~Lj(Pu5ci7WS)Z zm_9d6eoOKVq6lr%VdLlK?w^1Se*5V3UcC`pEa8SLaE~EvH@fNXhQNOp2pXls1_V_K?A8Z6z)05$4!!d4meBw%p|=Rl?UFECnu4l>R?gp zZ1!SJLwWgt6(1!pOcHK*Q zx-MD6Nu0R8rd2;)?q|z$4J_jQ{rv)huPllIf&@zd>H536@93wfpySLN&$yI$H|t5Q z7{1z*#7RQ(kQRA4PG#lsc;O3WfUaH@W|W{7 z&Y&L7Ky|U!cpxod8d&y$O_r$iQC#P;V^7O~uZO5LgRf`i9 zSEw;T9x&1TX5T!SGk0*({_Pt82ML37tAYriq3Q*L1{|!ikwYuMABDHiofTtAkdEY z*gd-TH<<_mng)Xk>$dotINpMgW2#BfcK*0l51P>p^>-(ak0H2GM^6u`vsJyUK*JA@ zv-0w8hh%(fZ+9hUj!^&3M<|kz{U3Ip=XJw){}6pR5H&jey&BlO*dTW>d!zI0P{hC? zwplf0js3)@r<<5H1de&xIXRFCP&^6dFccdbreBxYSe9%Edgqd*LO($1Y&yed5}U`0 zmBXRYl#|yZ+irL+Q@|TRr1J7U93Rdt_htStj<7H`j?92BQ@_zCIfJ!!LcYH|gB7g8 zZ{PAHcJ=l3)z|d#)J^uhoaYU@@0;R%V!dBjmCHU_Xj1+2>}<->_u`<5-F21oW4bPJigC0>V*>b$4i zyTD%#;c;+!=ef2v_y^D_qY~&%H-tT}$hOFOX5r%_8vk^^h>8^ZKYVNz)wZR;iSflU zRA_0eTrAV*T4jFz#2sCVHt1}=J&?4M_gN_NIUrqqlOZc}Q4y3HoBTaRu3>gMt_Iba zC}=+WxL5AEwjDUv5H?%4Y^xHs{Q z%+1Zcz3FnsYXkQ|8-l*_${x6FpgUeuGdk6yqFOOx1sy)2kHwR=o5DS%pU{3x=T;&x zhQc?ji`bkT4l}q^>zo-WIbj0P)AE`Sc0b9Fm8~Bu#?5(fadG!0S2H?9+n1bXe^~gYK{jon8sKBeiwhVA${Ux%=RTqnLXu^L z7MHvR(S`g6wI}ZTn#aFx8MXHpCO*J&Lsa}|#s75j*5NB+3LtjM>Lt>d*L}BxX&8?# z&KXDn=gz|;$t5QrZGPEj;&4AvifVo0)MALI5R#e_$Ur-H#*_mm9Qf07Gp z2yCnHF!Ik@@^pajGjZKibANTD3@UQ^2*5q;XoH-WfOH36P7xG_>pLMup-i$6)iWnB zKmtII?$C>hgt4`6oc<7@0=-}o8K};)o>gi6HQY!x9ho$AgIyDpfX2QJy~)J&wl!_y z;SE}zh_44ELoa%_pqmVfNgDY_R43$^fX#{G(%u~ulWa@weK@OJoNR&xcEUy=viSS!)^WeW5+T*%lEoM2%bx|BGLcveLBs}u zczSaT9t>t=7U3^+qCu1qrPCn8cOxiR6IMaS@dye8;qohggQ4%1)LG?v98gTmQA!l1 zl5>!T1mD{3q&u}RJBaUv#oqVIz6{@YwV7eKcz?diouPs4CyU64ikp^JN^5Ht2T zlBwPP;7P?u=!6Z!)vL{{rFv0N{liV|l9?Km81DmAExc~ZghSxoy7VW9vXM`g&TVi1 zj|E^2iGDoq^WHDxz)ij1pBYZTg!%a{IQU&=a}4 zDbhW%ZWfk(q8%6%1WAORYwIpQ1Dp7a0boc;+4rcY`Fm3!T(XTFqL~|gQ+?lPGc?Cyw@wG+S$gw2e)2Do|nL5(buj>xkj(-7D_&rL(Z+Wn1{$qJvxH2FCmCte8 zbFYsNmO)MlSO)zAnV=-IHo`m~5yL_rP%L%EE`?IX!(}6+a)~4BLEd6%Aj=5CfrB7X z2#+|e0SgXsc<;gF#0p~Scg=6qCY0aikL~#PB+)h8P39={&i4K${JPxy^7G4X=-}w- z=p?12{B@_N$8o*xgDG5CJ!?kT7d z#SnKETou~*yitdBu|8#ynTdWv*&9F63ROn!R1@EchJK*i-wBeyYzu);wXKOMAh$qk zX5vXCQ(wb*!^-5CRb_B6K@#2K==NF%DMkYY^ekS~IqQN;jY)Ptwp1VmLc{puICvAg zz&{%%1fTI_tX8aNqO3U@0FT|DGMTpn7`KnWGLN=rd;FbpNp(3%YV)xhbt$mo9&cdL z^x%<$L_A<66j@&}TmpI8p}Hn-z`U+8Zx^|;7Z+=PfXQV`m5_~xi`#;ZF#yLSlWby_ zOVBpH96dN}pWKO_b*Enww!hg~3Se1KK@6+rvXfwfk%zN~e2#J1hz~b|5TA5d*bx*Tj!RCa?(Xxyvi`87I=!6F ztG>T7p0wwCdbxEiM&CuT^G&G-o*s+lzE-Adku0TFKm=V#d41sNIu_bd=>W$r&6*hY=s}HxvPB7OU zL3nDPkaNLm<$wb?EW(jYa{U@H6T#Wpp&(slJv;kGjwlvGYQ?vnbG_6Gs0BOJDa!mV zmNR5-Y!5ZEK`b|dBuFbL^i#3*ruzKQse9Db{XpOE^Ofm+iugliOysw80n(4C`3WGz zikQ^6o0uqs2+IVcmmEA_7b1__+13fdoM&F*>F*Fafpo&cBtq+R1`@9BYMz@8V@g$4vo8aM@&uS~U2#bgAM*lcGblWhGL>KTKY@CE{ zKl~<)R|r0GH4TRpa}(CU`{J$d>USw;ERv*HV!|KBj!{z|^~5|5zR^=|y#%0mzC3?4bjo;A6bBjyQz z1>|E)+c>84az5mw1c;p}TbjOhU%9uwYjM1)iHWle1?48jPBY# zQ`nrj=npw7Q7GM-Y#f@g>*WbEol&d6{_6mu1u+T9{%>a{S%~qF12!DutXu^hP8<9f z--oHeO{l3Gb_oKIgfjC8*++0@)9^_w1kpAn4Xrf}kDekR|=IhPiDdo2r z|2(#)EoTjU{HG%fsO}9OK}0iDiD$g<)1+D4BbhW~c!?k?R^^Ur!60m6RYQ-Wn3fJs zoOR)$h3K1uX|T&`70S!YPZqfQ09%+3?p`=vL+Cr9h3*hQ2K`G$ksFAS5 zu;1hXO-Ul1Ng`tycKvOUfp`82pg`QaB?%k?qPk<7k}qO{s5@PdAhp%(1XW z4;qG!CJ)}Ig?b<8!nrK2YKr;pmGMvu_sWZ7{XNA;piLdMQAIDL^1BH0ga5>kdhBZ* zH_^+%IW@UawSue_!I&5`&N;ntrYb)>cmUb ziE-mB4=tSI9v6VZR9?EF|7`2z4B|e~o~_@WVQ|sHlxYw^Gi|EiS^cMO@s)$SN187& zIWe)7R^arus_Iq}h5JZdwBJzWzSNf7bc`VJB2;#FVDk*64|9Yq*Gag7?ZjOG>I+em@uPiJj%m=ZNtN z$ioriC|do)Lh4Xt$661=-JprMgN%c7HFtH-=*~Sx38fFp3a1RzNbmZ{* zkLbHZt-H+Mf-~M|zBs($DoD3Wup$QID)eueBi(bRTU(Q#^gY&*J{6wfkv@cjM#J>4)t z;?iLQ9U9u+J4bdD50pLtt5c}P!p!`%tvI-&5PFtj76eLxBkI5_ z46R+GUna`vua#0PEys;x#EnaQ_M#$VMAEQO7(`y_tuogTQ#nt8DB081=d0*evIi=gR)}x2 zSMnK(4}ecxTn}eJ>i+DwKUJDMBFrGZTm@k|`v;8*DtFL4#Zo`~`jC$Nz)wpfjgk^2 zc3#qK|D#`_v$!s!?zD7&{#zz=^@%byP)3dwv7oN-@m1DW^ZYi}eYr~f&^87wXTCOo;rR)$k?2>{nV)7;;y5Pk0r&d(iF%(=TnT0oKi)K5^HVmjt&ZYFZiPr{GKkKFIXs74Pv z4*StA(Lz)~!8ncW*C{ti9J^sF<(Dsi2NV3A399Jp-Q6O zM_;6|{*+-TdEU*j(eOk;&fgHJoafXykGME=oT@GMmh;|KLT5|w_DWucew|!DPw`Ob zUlUmUvU6h|cboi=Fv&E)I-P2e0i^+}vjob+MYh>7O!g`J}_pYl>@vGIFT zj=j|#CwJ1-*V2L{+eLjTr4JdbfritI%?;6+}2 z2RwLH-}-kClVba4h<=+O;9x%1 zRhydg=R(hM&qWe+VO^(8eU6@h)LdhIG<7&Bbt6uS-(iNx=$(7-%J#P-Af zg+E=!#+1(?FX#e+A4Pdfw#MSpL?Jk#^Hd&WvbS<@jG;*J$0e1^wJ{g|^H5!{H>e$4 zbFsbk6(1WDI5B9tp*r^~O;lBNwY4EL3>blW95D$}Fz@!4LzZna+~47UH?bwYmwsZs z6h4auk(OVl#m6fKuNpnxS!+OCUqPQ8V7$6I+KBcoQ%<7H5v%T=9xSAlLwkg0Rnkcp zm}M#{dmkVAvkRhDQtb2zn?{?0g*q7rBARLBUU8fHf>#87k|H z;fE_ufjCV>%I_@k?0us_(r!g9ml*%}_tv_DQ%lV_B$?h_)i`mqUnQX$uOMnT<&!Al zeazqBTAeh{B35$xheaN2soIUvzQ+~^#u33TLI_-P$k^R-bKzm-@6oj+B=Dz-JZx1S5$Uz1s zrFLO;&m*zxFEseVnO5yEz{3w0*U%q&MYJT!LAL)xs7jywyBcZK8W-Cdp6tVeR(1oMaX^T8|wG7PWBY`FT%K}-6ftUv(M?*_(c0Sj48v<2QUO$NCh0{Fnwh9k2` zCLl}RgO76QkF2%1`9jd;pjI%3%{u^`=A>DsRj5}?6Ujw$`xo^ZN3qgT_ zHI6Ny^8&89_v^%Wa&q1Qyw_0hm5uOyXod$GkXfhEtMj<1PM0A$2vU$P4r-k_r%GCI zUtKVsYJjA3!DNSORLE>o6Z9GDbNZ~?jJqHep|g8K*b zGcvEh%$hDUM^FABZ_I}8=y1P5p;;$EQ_U0*oQ}MNu3m!Fgn|MnU0tGi^HlQx)$TTN zF8^CsKt;cAhGFYK2q_AxsweG*7)Vt=Pd)i^a zV>tCgQI@du)Sa+h4?&O`dHtG)`ZXpe3Kz08)QWl@vOZf<^YPDJ$WTCbmuT1KrJtoh zfUnK?ml=m@kM?bg1jr4gkdjkS*bz>x({z{=0qDlxA49GmoH_u-wazfgKI<=sN_xqO znT3Ts`0Kt*6E8}Kjgx4u19T0+WKbv)V?`)KAvUzXoJkgz9Jo^E=B(62`FECYP!6Y=egKyY(pZC_5`Ft!t- zir}m(7XfWefTw>gmG>_Z1-0hZ0e%RrKyX(@L`?ZRqT3blI(qy$VjWX%UraQWJ^Jy? z#}~HMM%2=xslbblr7zbK%0|+R*Aa)}%&%C(*_G?+@%a6}EjY)g?#IW@!-6em@{;9a zKZ||ZPM6gYgr|^R@FT5Iw(!wMU^eZwxl244dyl$Z1*eWk{-H3d+O{ROjdDewruE<~ zdfcIa5<3cRE?tIJ(-Za%P*TIfCU!r&%I5-UU_YPb8{0kyNET$W-Syn}mQt61_-|X+ z0kbk>1A`?F0xt)^7$J{(NEV9x2yHpYsoiqp zt5bvirxFFU!y-*sDP{$V`plswg2c?l_%&80w0oDV3wD~ffF3OcfgL zz83 zzD*o#L^FYjXpMiUzObp&vp@n;xQSZ7Ed7$L&>D0Gmi<5<%0r}o3A`ca`paDZyIn_u z(4;VtQr@_pqgy8y*;h!$=Szf6@uWdKFh!pCKCNR1c4a3Cq$de%xjRB?siT>VFZktAsPy(uq74 zNH+Iym3i@Tt@aZQeWg0cRcx`~RL@}jA`Pd91IrKBbbq_7<3ivpP=SDNKot3)Wm^~w zEU>KjZOI#w5f~WQGQ;7bk0a5`W9{Tr-k7?v=K<;?SA0@xDkSMJK&TvWO+eI-tw~4i zJV^IbvxMxdiN`%lPGE#>Ym-7CZzdHRdp7^;j~|zg7Y^22MqYu;HB`FjO3*-;!D^$G z3+X8cKW_#(HYjqof}s+m*a_DlyY)bh!Bi6h=Sop9Vx&T=HvI}S^8tHJ5ims(q)xi+ zACi19KA^QMtUxqLMH&|9>NO5?EaC?uWxY)v(p>G6mZ^CEpEs4Nh-@T4V=y1*!S(Vq zV*pi-YJFc8g}pVudGl9QBQf$Y6WrK;VHIh?F~XC~ug$^YxZH~ohuP#zNNm8BSlDoW z+`CfjiR_xI+_!%KR|g(|+T{Z;QHUG|CWav3-?*QD;tq(UOk@*dBqF5m8qTbj#-?!P zjM?-|CVdjU7wC?cRXK=o4Dy~?oSrTyi(TCBEe8V!m?w^MQns_70mo24LnQ@9qHsfM z+V%SAZ2Dg|HzVny+D0T3$Widx+S+=M z&e+K%*AM=4+Hi+zVP0O-5)Ek?8GhOzv@90iIgcM8&hOdE0c-$Rn&D4(hX9lhMo@r< ziM_P~4LPhytO++-$QvOr71nN-+T@-E_?-u@u1G3Wquf{*8;R3@AzS;$f^ z6oiX5Ak);c!lg6r41l@Rf?f>q{>8l8$59G#3Sy?BM<0b$8>-BaG9(p400~4scjY6W zuv9Rd{0NYh(Q5}gsg7^~kVSt#huMeg?`19pf33?8d~h8gD4aS*e1P{rYKO@Q8KK#% z^NULG-UhKa}_AjMbUQ=$zmUzdM=Ue@XsY3&0R-qLe69bXwMJr*_ts4i9 zv_T5_{Y$JNFd&WZ9wr!hq?GDy7wd6e-%rSf^IYMerDma;&Izx?#3JmoDG0i({N#x)#=fnKYJpS5WBs}>hPBQ1aG~3cJb3ck zj64|AWNv8u*~qr=tx9L5$Z$QMZ^TBpVvW0#GkcQJzZUC`-KD9+^dp+aesf@Dg0vt! zP0k35xa~$XiZb5!FlbclwDnpOb`N)iXg*X0qT6po1s3fDP?Vi5EttsR*}1iv^sa{0 z(F^?*;fp$B7d{@b%V4kZ+9v2TAI1=_X>d9_Uff&RoVuvxr;mj$f}s1e`}P@k@S)!f z;x4Ka0G|Lx6HUn5D@DN!%+NNM^ACVogW@ij%q&}4bpRYCj17RJg(Ti9V6{Xd$I6UXQI&O4&o?x9ZtJ=)>9bHjcMX znP0}kXv#jG!u)*n06^e9S)w{bF5;#=?smUaq=1xe`j6=Za{W-aKu`=wwd#m@i3UJq zV15T*GMe>wZ@7#Oz+r%KgFjj2$fI;Y)4q)QLCF57M+6UfSTBF?o)RJ9z-e8I zJk8F|cnfB2{P(1HOqPcJS{jQ}ro(GmTzM=}9!wd;MCNmIhYH41LNQD4-|PxC-aPBx zKoI-~E3KEcpZDCMVt+PNtc~4_Gkx&@@qMC#k&Q_6jm=}_B0NYrJHyqgO=MphOZ3q1 zY#Iycb=UL$^WWZknbVs$VZ%~Sp8(quwF0l8VE!!_A~u(1vHLu=r1AKQ_rBE^ofJ$v zj4x%Hoe{oPM_UnN@(bhdZ-%zE&P*NOYsgW9y8MftLD`7QP|Qsght+5x~~3+_qORT?P0V%H$ms`fc34&g6_<8W&`jO_q{cRZYs!S$M4KTPnE zQaan=U2Ndw<^~vUgFX7|8GbkiB#pGqZ54$Du!gWULS$2$?NB|W4v3__XZSxB0APOW z-WW$(h?GBw_E@jX8(PWFH+r=Ys2jHx9DZ5I^*(2{BcuZ8umueYIe2o3!#d9fw!>-T zFFHTcC9BQLc{s1bRAifSCqWF^O9Yt7U6BO^hYS^^4=67s)-?YYAU^d4gWtw#xCrm1 zM#qbek13DLw*)M=4KMZ_DWo*J=U+Wy@?IpR6~qpdC@hrYyLMMuIgf__u%bd+Pz%ow zcX(Hp476Y@am>%&M>5$6-&ez^Fx-=wpw%D-TnsIFmb0(qF+eb-_-H-J;ycPp4$rn= zRXVS$$zkn`zJ$nv@eBr3^s{hb~$*4jL zU?;)kzXCQaz7o#5EHIl8zj){c@RTl|wiK0JW)O-SXbAq@v?x+Ra6~tZ(G*8Bb#S~b zjQoY7gab}}6{c&Djdn$WXcL((y4wV1Pzh4{h#*rm}=N>uQfk?(KJ zyVDc%Za^rm>3h>^K&g9rU@@3fDDN@@><5g_2&C`sTXqo+xhrXdGnzHznd+5_Cm|WI zvxy?S!dg-`w{8H=0XHo*Q3B4XNDdfw3kzq?r1@*`P5qMPSsYfHMS!$1pxo5QfgYx$%`9~&)(drF6Ri9Y@91B)dN*5IYZy4YCegp;g2pfCUyu(Fv#{+*9#q{YB zyY(%65$XXv+;WYl5$zRjIt?ZU#Fq$%OIG5xHk=QE zMvK#hA=D*h^<4`8VV9`(4kfp)>_J5cBL-mO)$^td1*cc~%qdJaWRj(iz#FRsN^!&r z7t{Yd#X7UE*BMxF8$p_lEjPF|ZoYrhK6jOd1`J4R(IQxW`S}8$?P788>%o&c2paby zuNRmFH9|BBeAF&#h<(kPcOkm@nw1AH~Vl|n} z-F$h2uVepn;qO)x1@KY@8p7stZo5%5kPERFFPkSW*pjePlat}7Q9mUnjCO@CEkTaX zv&4I(Q~JA?(vCUVSG{4qfp|%@WD`a5h3-NF9Da`P+rIwcLo;-#R(yByA3%M<95s<3 z5i<`0C$yBHle;P>WK8XCAUn0OD5kb^*Rcv-md^rlIA zQ~ee$M9&~;?Q`fxhJx5V29Znp ztqM9h<~%S`zE7uq!X}dkK-)=6qx+OJAsJRRFj-y2eCijcYs7?&OmQ(}$^(m1HUg0> ztsLOMy4te?7ZSom^@@$T9j&d2``;e-D96k@3D!sJ`?VRt(jLk5`awDniuf&X*lwSj zftioMiV1RY0T;BMeh4GX!JK`NXgebSlF>Jv*0sw4grVw1INb8tw-A^LvJO^ZwyB2 z6sm!>1AQj9fcaRYuUu;Hh0NARZ?4kUnO7aZ_);JCrb9PVk#%~imN<%pm8bRoO*9Z& zP5jfg3Xc}052>WRf9h%hEYv_%e)%H6!$U!Y>v|)XJ4xQzfsC1D=4ipQD(Xl$y2DGa zr}&fN-Mc1yPl`TSJsZY)*LFh_)iU3Si^Q~{kYTIQUQ+3C-~&b%bNK` z4W^Z)U0|}Aqa-$R!E^+(KIrd&Bq~)mv1QgeAF1ziwVfDWHiKQ)Nc21ouJzyX`?H}9 zS1%ht!~S?JQ3@ew8dYzao5~gR^DQfFyu@+TX3QsURyIC$Mt9)qyMSm!v=2SIz4w~x zO*{Ph2-n#Ww2~vZS?-9Z`e84ojvO7Sr(47sw3{_Q1H+A<_&-QM=_m!5G6c5z2q52xz6WwKo1uzvOihihxWRe)>k08)cd* z)4qB$&$&#PZwAj^6R($f)*WiJd+fZjx1uj-g$j(W;}ibWHaA>ui(!C!*=G*0pT?=i z!LaWT7*ws3l9~#x)P!tj!Q_AAUB}icvn`;643!LEmis&(=|w+@?#Fp7zI)oA`)R$95{`d7#7}PjgMpg&4;p05xK@jOq#~wgGtz~i%y_~ZwMa4e8wR$}>2$qkt zLbDHnvp6mVxO@KM29W#oZ+^`FZ+~!9>#!MH9^a$0Q}~xAf9NG@MF-(SErjgQy+PyF zT_#)zj7Xv-kttN0bNA^#zuZ}xOE$Hu?u18`~Vo;36f#lvxcDOK4TEW3F8d*l5XN-%7ktZ#x~fL zdc!Caj$g(3cbLbfTJ7H!Q=>kN4eOKfAXSaNSnx=xJy)b%O$IMvXhSva)v! zY5MKD-JvE_d}jB_-J?^8Xl@&TtalH*qEk#JonWb?{s&KbefW-VfEt1VdG<1 z<=fIDiwF}&HpVJK52%V8FSJ@9+d>Mo!aL{6lZ7x z!OsQ-C9KLrqwsKV6o`_IUUgBhO$@RwtEw$3x9EG&&(jWL&S7{kc1(7LGClkt5ea-@4$2(GtYnrB1KAsL_4?y}vsdH&HsUqVSmm>xz;fVXSJ z3XbkS{UJsPG?}L`l!t&@ay>jiEgNoNn4j_f(e&Ug{1)g5E_>Ux+0nFKI~6ht--NC# z?!j5?mk#e&OtR2US<>ltJ^b80x0L@H8jeR#vn@)V{wQ^Hk55X>eEvMIO=|J>sTxK| zAZKb1%eMPM7!8vjNiV|sj)?*Pjih9=%3~VZfxy7s_y0MYU~g2zP!mdoM{cDi+*idd z1%gh`+&tS0Z3lTeo&VsAa7r}pCotlhq>JlU&(=G%`K)OPM~&pCN@09N91sd|*9t#m z6Z5Nw$M%??%rtbzl=ZEW2FiO+z1+?($`1ZETTdQ&Uo70;nr@IFWo)JqcJjQ}S!yC1 zWBR0Wb>ds16`$N#7oSkS1xwV&GH$uC-8d#W-zAr^rKj9W6p-ehH!TkY@&i zm=@KmUVoU!-GqUD;M0jN(W(BaO4kJWH4fEa6@!i(IIWH@D<&7I+==fptDOjs!W<)y zF*VgJ%6oSi5$*y0VSA*!6j43OOSmg0*Z(6U_%N0_>XQU=kpi=#e`2X=`KBk{{2}S& z>}-9Z@!f!;KM<23G$1JhZ1`h8ae9cp_q zP?;&!Djd&#(+WwtyA683N;K8g+e=qBPwRFz4V7OMU@~I(p`xOqOqd=#efoWFj{EEk z@)Vs7{p)GE-yDqlQEZeyw;^=a2M3qj{cF|cjIIW^SOS`3Qmf!9uuBxC3ej_UNSO4%?9SSw(T!<54_bVaI*RsHoal5QZ&e@ z*|`z@7{hODO|P0KY|u)B^F?6&)S$%qz<>(ONJ&ZgW`U#P0mG-^n@4pfz*L=~+HY6| z@MppzB4Df{`;lO80%2D4#$AN1*ht;{?gT!#H9}tQ5S9Dpeq zxvG}XwQwWJsOnbR2<;YBZeX5Xvwh)errYbA`2qu{pwfeV9V2`AY9O4H;JB$D3AR^= z+uC1)xQawa43J<$X&6}A+p8nQzHQw8&XF-Cw(bx=I@U!;$6T8X zbGiosK!Lxl)xf|zyx+*blJD^O1rfsd-tS55^sLkuI}DpCw%Y#xkh|*QT!UK3>R+fO*j0i>g&sW8(pUTW_quCde`?X6eRBh zC9wRJU|V}?wpj0VFu@lG9Ggk(rwNR50h;ju!~WDJkn9L!Dx1qj4TyPENxLEl8}Y z`3f;B!PypYy5$~)$ei4m#!6euCzPbxlQr9Kno6y@eh$D7=i}#pUNzQ9Ndu|k^^@Q> z+*`g8!$dIu6@W<&A)!#g_o&WDrrY=}5K-KhDFahPBsq^uJoqkx!dC9WC{|etmU{j| z%2GOLHxEBl+j$0x84C*ww7&qns?=j9BLFTgHG&a8_+f_1owX@+cA|If{lMjV8htCf zzcvL2Ms&SchZSgI&T$*e!yugii@xF<$>c4n4~eY0y1Mrj7u-eZBlvlF-!o~lQYePH zNxnC||Naqvfa1uIdN6u+kfn`H(Xpi{H@D;2@g6i`okTCQQGL;g&fI&(yrZO_+PA{{ z*J0pLfLHh_F>#-=GQv0!9l-zS*~GvHK3-lZx@g7!6R#K<5EsuYww-EBC6oHKpsk}b z{_ZB=Qf|iA7#Z|7Bwi+GcD4~Iyrfv)%60g@G}H(+#VtH!xG0O#i&94Vz454 z8L)TOU_3<%kO211w@p(QA{=jb59fZB7{4}d|0Cj=Py7e*TR4&moJn#2 z=5)-X#LB^M(;LgqJycAd^$Zg+8S&Y>qf>wBVp*S4|2T3cnB|v^D@;t$*VmUP>nH^> z4Qe`NWpdc3?>z|!x<*kR`tSxU1<`q&|1g$-W=8agBcs=@X{?tz(^+SXIjHdifZT#$ zr;OY^%XEDWjX0R`a_!m;S+X?*20#V1!hEP)hsMe(P^Vzk$zYwVaV8Ay5Qqwp!v@|6 z#K%(-9=SO@7!`EaGvT4q+cu+n_wMn?si#Il{4%6KvA$Q_u`ZeO))n4|Qcy4%LMo~^ zGBi*b6fMhB{U%&9%N((t(W+Zc4Ub@a)~-dt5$Z8_Ok&6u_EYAlm5RN8L@l`16pJNd zOn-7?B0rj8UMS4*;yne11{NLaPqV%6CTx5MvSaB;@buQeM)^k86^HKfv5@HgTTHFF z^bvN`h`wRc&4{-YzQ_G;d@E0wzHiyzx#ry6Q-$5HzR)e@_c7u1@U8w z{w95kR!vYSI-KM_ty+trweE|?g#OzNn*oO{goyaZen3Dt)QePbcdq)$`Uy1QA@+!n zIKLl};$?BHhZuI>i;2@Pn()Pu4+t~z7`Y^Vuw8hVDj6B~VhG+(FQzVX?kCUoD?DkB z2yG9~yV8i=IMuUry12+XS{2eB9^4-8&uG$T1vw5&Qp$IuCFx`}hCfA|xxx zUP%a9A=$FBvR7szGkfnsLI~L_gzQZ=DdIM=_e!^sy*K|;&-ZuyJFeq7dY4gylIiR@r_4 z^dApFL`%`DYd!W=6+K!1#V|bikwo!OMm=8-joiyhr@dSVh=f`KYBpf_NZ?D~5yn^@?(E7XdMgP`(znaq6nhTXaEF5e|W3He@_pHiFNCKk9!}~F9 z(3)ghX4@#+)1{0^K{%F@QHFMGH0F<6Z@2jWg(L|UH ztgnM_-@~J}%>3&s z8qXX8?59TV#u#PdKv|rB8Du3T@6iQ?dau7xHZ*KT=7eW2-(U7Bp8!xQz=h?C9T;NdU4xB7K|b)Wr7Nbs`d*c&t3 z{fW)XDW>@J+u}*~Pwn?%KV~Ou1TW0UVAXJ0{ov{Ghg$HXe%)Xmx(<5cfR2DOOaG*h z-R7t0j4oPllO|^*Nf?o%qoyBE^OAmR4G#kE!$rNm5ZWvj8HUlis9$kFh~)docUu={ zqG6^erZgUro%d_aXamy?sFJGw^JgB%7R$>yb4}-3$K}2MIX47=(hd2w*HqEKxd>g(b3Tne!|m`!Pq(n*1-P$H+LM(FTzuwYttOK z39ayc0dyS5X+YqrEE2~cD;ousE#SdG3vXqmTSTlBWdiYay^A2*M%lsgabLxaM2ZWZ zE%3p}m9RmBLuKAff8X~JX9yof81Jo|K77Kdk>UDan3i^agf~3KP$pfOjGX+nhTH6O z3OK!I5>GmOb2ixl*^o@CKPDV21 zE^zWOwrs3)W-@m|&MO#lvOZpWRsb?%a8bW~K0Ntz=R?#J24X3g8Ov)@V~7t94W+-P z9XGKVqOrLGs!`)o2(gW5Ujb|#=}XwQpfcm-U5=BXP6?ABn5Dh1Oy!whWuT=sGBm`? z&yS4&t-I|}Vm2J6CF%Rd#%lCNxQcH5!>i^Go~RIm!74Pvyz*Io>m%!5-yFni8W&-q z#Fv3sbc<&e7Anu4&7$Hq>cxnc`&3wn(%-)Ql78F6EuMn>b!S-O5cRA0#M9$C@T}x7j6ExE2rhM^#UBSjUD)cKQ4Nc#S3!LxkvZ zU7U*(LnniCoQ1Q26RX5KddFoV$K@#UPc0i9G=iG^UfKd)@rA{PwQ_f`-Fs==ds8nJ zcaL~Y-4?0AoArL9$(MFkS&7(UgDWNDgg+w1cdc@EF?*0I3XmN5< zk1uJ6r!X_~1xPA{TT8scT>R$jMi+PPFN!vK5K9G1X9CI;I@u1Db6ajukEAO@P)gXX zO!6V9NLDq!ToXWLptNfuB?l@%t_*Wtyj#c?t`U@EjNPAewDuB6@$Qp0?|2>Gy#TfD zlgs(Dii7XflBZug?;Eq*T3Y7SE(Q6Fv&UIcue^plg~g*M4D?8cu@+sz0NAWRujk;m zQh7gxLkOnz(Kiz9ZN4*>uv3KouuQ$GP1?YLmb2ZEd#nN0ucS7|nn{m@QBmT5z!TM- zMlnJRALS!2pF8aMW7a0uu0$XZbO>2Vadj|L8q;GoT&q_8)=*liLKx84D3ZGPZ-DU6 z_mjF%g2J5h?8W|g_t1EJ9s>wq#>PzGe54#WR zE1Ac~OXofgFSECA{rOGre#Gr~w4HKsGoXKxZDZ`t#`OJ-@w=;|k)~we)2;kw!hQcC z7r@Hw>`EOJF6-xZ+Bh2DNF@1uIKS!3r4DxObmEbwzEg^0J&Qnz900&cGJUKa;Tc=v~U%em! zze&2X*i80cv(gW#y^ABR%9Ah4?Wth+${DBSVTm{?mG9R`FN1qH}3fusxF z$R*)mYI^gcqGDxdO@BIU7|A9mWDCta=Su>XW^L$g7-z(qUJv{RdNxzXuxtxZ0todc zDP*5;zi#&&aCr6z?3Ef!G`R>G&)nFRE@Lvt8WVDJaKHAi+xe+Y{HVo_A7p5djS{Q( zPCFKIwSh6rED3BTJKy)xFpr$y=L#C=J9?afwJDHB}~#AKfHAwzNySgS|m>`pp*X_3ymj96Ff zxCwcCdqdTxF_fL1y=@sxhg~<-V?PP*v~vW__cDOk%Fst9<~>Dqg2mD>DenlBA<(0a z+Qm>D;GdnEnThD8vzj{a^b5{IS+0JO-lAJZ2M4pFE<3d}AqKK6F&i3^;rgOqmeQH! z;2;JIP*OL{lcNCI09_oY7|hMJi(lP_K8-aW9Q^gznPiE?372x$UF!Ch^v!sI^A9`{ zW}N83C1F5_Z{*&zZ-Q9R$;krdPLQaGq=E1VPFM;b7-WTo0WYg~u=kckE1>Vdj%p&p$s)NjL;hV=kLQre32{(Ptp};LsnH(z%d!# z(7P|W6Lx>;%b4B#h3=Np{nm7>txbBc4GWQ&t)=rR)1tPtl#2|PBveW#mi#RjMOae( z+u`J=%bU-aH|GQ|v@}>KvM@1WSE+4ETVKnPmeJ6l#{7vciC_cu*=fDUp5={Ch~{zY zwiLmXll=~1;g~$PulQh9Hs?_#{;}hQ!br)>!w@G6YXb#xYATJD5&@ME^F^kwde>s^ zlYsL-H<#xlew_Q1GrS64po~U)HFL==yq*qTMeavire1#fAjN50sA$ z8FGx#@p6Ehol)Z|QdP>Qs7Q=v2!0-4Rx@tNytobX3R8AK4Gd{1xffu;X~EOWY0N$4 zM2cAI{WS2{vnI9J<68M3*JU`~&;S$o6n%Xy_Ed7i&-Dja_KLdaaMAlvdX<_*QobrJ zp||k+)J0)oEx~CB*G*1JT3K7G9J7vjCBs|;T6%a|fMPiOL(uURYoPd3lq;8(0PidqFQ#4Nnbsv$RUL!$*+$&XM{(jvpOGG{}3Ug@)3k4)e~W%e%5@To&pwBD<`Bg zK)beS+(S#N6ew4JqF>?RwFL(Dx6?iV<3qLW2v35culn9o+tZ8FG}q2;rl(KZBebke z;IV*Re`{ifF((Jlwy7JKkB(~qXGDliS5~&R-XNg)h)=C5ar2wY4FPfx*PV=x2E zCnLuxo_D>3u|aA|N}>A%JWVmi^AXqpQ!g)fbaMk0GsiVOKu_nYe+#bJ8&A&5`$sQG z>#hDn6hM$M{*wfA6S4`CB50admL{m(r=6qJ<3dNoA2m<%}r^#@j0t%_hce%N_L)F2?-(iw%HJtG< zBepCc@s_oe3S^`{doT;e6BuH`-^=iM9uoDKl&1n+GSWA7QA0!ORs+`Z&i6T(enWOm z{)8V0RCpBg&((pm18vILS-Rskh~-saR5`#ti`Ht|%wo2rL~T1cSw@0NDZ1?V9&R4A z4EECtPO_m>ZYphk6+pDDoHcqqP|!R|iT+1ympaCp>}FBH#!;xAhGLF*V7L-Pf0Uc?m-L~&+0OUcbL=vv)1`8Kx+AA4q_cn}9L z)T7rT0%gKX?L*FclS?(OwGw2cZ4MTnsXAc$ot$SBGP@M_T55Nz#x z?hT>RFZAW*f36g6ECFf*nph07#-5MZaqP2eRgsF0H37w5Qiq*d2tNv1AY7Pm7?=R$ zqJO#j@U!}@a-!@FFPS~J&o`OA!}X%QqL<^GCrIL?duDKdP2T5pOOJl8);;=s7Tv*z zChe}-OB`UKy+mY=Dd;!#P>Hf{OyqFkBFq!3U^JKd#&j8D@chR;|Ahsh12=T?W+73K zDhss+47Fqn`IEY1fqxM~A;S7$NvoZzH*Dx1lEv zVZAdW&qM(U(fu;IL)~C5@-hZtxS&fbcxGc`d3kwbLyPza%3;nGGCBazy0`-|6WSTQ z#TFEn+dx_E{N02^L1Z784$Nhv34G<;tmCJKza2)gziVKp^Aztkt+k9q`?N93JdhFzWS2@6L$jnBG30wowImM>8I zRE67zGe^|Q#K#MY`@f~YT?5>}=LrdIdx3g-JoWpDbCn~0*;!1fgi6VTX`WA)|FT@X zp4s5o+Xbm;=gGc~&&2_3q%|&KjV|{Exy!Ii2>k95zXZ80AXkm}q%fClwfZ6;FU)d{rD;$!qKD5Zsh+`wjvK!D}6Bx=JN}5L8J$ zNJREl{H}`%F^GNLY0$byb)P+p{Uhm61K3EIcGWu1ths<3Mw}2P9<{E-#fZe-xo|Xy zGl8{_I&8^_#uPj_^Y06%BeAY@)7k&Y;r4ySNd~v>t;cg4R>*WtOVhecj#SP4v*iZL z1$}+$TF7pEQTYsMb7uvc(KYsZAFpC7SN`7Am+bL)tu4oIfoj zkW^1VT0F9L$&N$AKye@z7dOA<6B%wuj?%m@B_osLLz~qmdx_KC0Rm6Yc8qjtBgChx z2ojR6>(|d&wcaD{BL+kak<$&%LHHd|0D114ALxN2|MYNvdp@GIx=HbmLstyzYT)&* z8ppx!-_d>e^B>119L$(a`_7!^_~r#X?sx1B?iJ;r7BDFv`^AOtS^p?W(ewPMe?Te! z`gOsDg>MgS7;GlVG(PGeeAAo%4O3Y;aVPq2^Y9Sr>&M!;bzsw1)$PO#BMvgCGB`>X z0R;oo00JT;aG)RzfSX&DJl`rYRxS&+RX9K!Q|jzeF_qo4l146BKLS{kq%J4K|ItG1_j2ORg_SA0L4x1Gd1tU7G-hU%W^6D z8|o9!4$cZX9C{S^6Vr=>ooT2pXYvN@-@maA35@et128cwKOdal@CU1>Kpd8?{0+jjV&2~=6s2(CNXlvJs&mB%oWK&e!mFEaM*bg`O`XMb@ zj}SwKE%u!>$T(Fr-2EW^&@VZSv^SY6?GZXcY`{S)uHLt4_xnw#A^$c6bo1tGc+Fki z3M57NCB_@|q?vK(8L=BOI@DBpi5*A2vJ73R7B5wOBD z+6Sw-#l=iv((RLaCj`FyhYLwHuhBvoR1l$2yY{{pJ?B0fo*P#^JqB~qV)1D;H;OXW z?}ZuQi4!s}!p*R|^2SsLwltSITF!uSZMMUFU`fI{8gDi0ZlFSJEnH~u0^(m@Ag8+iGlcPg?-jl9Pe4=@BA>N1Lx*@?IXILxHO;)N)^%C0m>gn%dH0?mCnrCj^o|#DkeK(;y|}Ce z(*!uAczV`o8D2&3l6}Od`f#ujhfhUVR~wa}0G;7g!Xl>!s)X;h8J-zSlmwLyX*YlmM&)PO@&;3O?z1FOjwcnp_ zN*s6Inh&E?NT);N$!8gxxZcpvcCq98ao=V6=Z&qOH~LUl5b9O{Xui6!!h(WlCxlP~2&P}PEZ6}nz9U}Mt_#Yr)5ZM-J&5ZvU@ujJ!{ z0vgg<{98U*0R10EegC4sDk>{uP}g9g-rOw7wg6z>yWV%Orn*QI%)*+AHm<{=#gJRo zfroKrYHA7^!5Pc~RN>nVeDJ+Ld^jIJiIXHDWm7%|_;o1TeD*L}M_o2Z(9zPf?#}#b zCcynDS^DAW0IhEqc*)2^V=g|t|DjCSh{0*feXFka`0q;0ux3`4)cjXF{`!)VU;X`M z6{qq8{n1KtN+LR^2N$Ud4DmaQV>^opJBuBi-lKFpVU5m6pOx6Nx*3f#pBt2`05p6r z4WiKh9e7>W)gi=LjJRXOFwJA-K5G9Jcf$9FpQNRsBeq_AAuu)ib?5uF>6a_WMdWMx zo;IlbUdc9$Tk};{RzClUhhRe%aWd$HGsJzlO^@oik~2UaED1Kb)?3Xln$94&fRjeP(4rE=DYS*z`5QP zMBDG}{fU`K3}e=%)covEG$%mt7!qu4!mFzm9^dA7&O7@ViLzPCo49{^TznnE@<5Ec zHUVv5*af@7D3j>CWqP{pMGw&q{Atapn5ZAorwZK@xv2kp5Y3=7oP|sg$`v|4oc&`W z!Dm(L5?137n4HjuAVHL=seOk)dqZz$Au^MLjS+aY(O<)xGd-OO)a~){D!H|Uj4wlM zpY5pM&WGD+HGX+dhdt^R(GiDYSg*bhz4M%7h*`*0m&+LdEjEyK6&S?{m2n*)VC!Xh zBtuPlST00oT@Gn1eeOYw>GOCL=5rces26pzk;bKLDk;BenBuD)_^A>UFne{Z2U(KL zm#lTcb86}?OJ9l0^3ynCTH2qn3{IkOu2|WNVo2y+ga!o6tM`h3n)ARDB&EWg@P5VS zW*WRcq}PP~M*3>7v~RbNEd2%LZ5o!}-6}39j>^j)#K^&rPMq*b)E|EQTk{(=kKRve z$5uWAgCTUfswecP*%b$%PV4UWUY0k^TMbuR`5O>tNOB3;c=!1A`BLWC!E~MTa+H;q zkaFsMEsd4YcvEXO%;vK_LwSQ@khm=Wx(%J4tn!%_iUGCb9)~pLOF~W^>Q-eU5Y0PYmqb(uj(_{yPSPc?A%mHP5F7Y({QU7q6y&6P zdxL5H3;N9H=+eOnXpvyljQ~MQ*mc{y9UFOO*1w{id-;#kIYEPpeT9)8M#11ls50XG zB5yK93JFzLAXfL&rC~E-JL2!$729^?-pmb**RFpQk-MdAx{Vu3ii%V9?v6E*IUOdC z6@Mv?vcl}ITjsw-4_U@P+*ncqC_~nb0dw~$Kk$+@75r)aezWb_00Ib%Y#Dde#;W)=`N`j?vNTwj5Il?fZm+@hVcHX&cg8?9tYBj z!h40pdnI-mGS*&M6Dy?>KTWmv-0pB=*<-!XEhfdM;v~b(ny5~AIE_8osHmhkm)|j_ zvm<&c!PNYvHJ#=W{rQ4z84%80G{S!K12kQk7`U*sTS5_?SDA~Tj)X1(%0&@+~~=J<Y@-X3T~qoYp-ph*)Voq1?2lIHt2HwXIq ziHV6Nhlapyfy_2CTn0tfSFhxBlMZ8w5r{{kN(cL@XJ>{(A!_T(k)9rMO&2GZZ&&@h79sM8;*p>dsy~Co2Mrtc zGbgDp%g55(-}=r4cBv@^OW!FH2V92~V&h>`f~!DBhwT1ejfHJfOE)smR=NrZA0Mxz zgIT3c54`lD91RTAg4wT{NMOt^tvCR+7Kh$fh@S>|B!I`W0pbc1S(iFqMW896_}Kxi zzqdD+56FsEPAH#~?%ag@FtFl`j>eCy@Fpl=h-1HjS0*s?gjL2BJVyXyAqrj{uY{;{ zhy8S_`}1P~9iezv+6g(OR8wp~&<_ATi+uOb%EYFYmX_w`UqJm~QyoX^TB8R@@#5l$ z`LE!5zCS6E!uvo}R1_4FJUo(w7_w33HWc_lVEI*38{m`Wvc758iOFF#v@Aq*e~jf8 zx&r%?DD{DnY_^)RvAV3x%<_9nXduLB0BcNPA>NB+hmISC-(awE?2-!@9iY+wYgMXr z=WDZpI7K!}QUy#b)YK4OwyOQ8JiO-UZ&v)@onUyfx8}Wg61Ps&0^e-;6U4J>#V0+S zTNmT4DKP@oK5o{Dtf8iyok8q zB9C~WRm2&`L3w;4t|5h>Pxxct8Rogh+igt(Z)@YJ>GGIa<(_^aBFm<1ir-J80WG$+Rv>lJu|}_ZGN^}-DM0~Fk5DTbw_eBGgnANwJ-qes z0H7YYdPkb-5W;Mwvz8_aH$>-m1o?Vxh5CXRBn0tOjjmLD=MalEt%w=RyX^?bdi)?z z>f}dPjTVqXvHzelCo^-0^KybEkpInyGobbPU__*80v$Gdr0R*0sc)ow}YhNV;a(F9#%)3jhqF80wl z{Ht}O{oZ$x+SH2*z|907K+afX_#ol3JqJ6sQu42=_K$m;sh!JedLo;ZD=@Y zXnf4hVP=82uA!lr6DCM^s>K5GedV)Vsy$4x6*oHU4?wc?l&3d544zCP_wGdXueHB@p~QeSI)U=X<8(A*jYo41Zep)-y=@ zj0PQ*2japGk_%wS3hD=#y4P6C69$Y~FYx2PaDz~qD=%ycPNb zytonVYK=sei4bz%hg?vxxzpcwWSn_<;}2dBSxyC*Hb4vb<_Mg1O{5T$V`JpFm|AL} zeHb_A2?2E>Nj~K%Y!i^%SmWMp{xO^;CY9Wgi}4(vB5&Y}-T{ zaxeDW5F$WGmcF}*k=Q~fyz_puU;cNl+W4YXgzlU6`BLqMU%}Gz->5X^57t-uiXQ@mdnpe#Y2tEIsvuXc6K#Td@XwBTq3sQpFAK?@P2e!^7mLp*G zWn=rSdJp%!FR6KPr|@|SkgH(N6{2C1Rn-_OdrGM|0QG3Z*Vj}F=dsB2Up&;Ho_v}v zX66qK)-pB-fr^6Y&c|!lpugLvV#pYs0C`0e6yHvW@n`A43_*r#vow4|Cl(rIFqZ+c z7dVR4)gg-@IayK$`jGhbJbgT2`*&fVAqjo%OPGBGt@4G{SBjfBjIx(BzklOR7=9vA zCOXrlFWQCg+d>>e^C;SyBh$dq_pA_v9?Hz0yA%qK-aZ`P~*u2+lU zyUmo>%LM)vnoA2yHoMM%+D8zBSNQsFMO?%uCp@3=jssxxLVuQns?j53L^YZo0#$tn z(S>02yN94LqG>kVW5H_X5u<44dgz){VN))9*-#buzA+Iemjz7P*12EWnup^f0ma^7 zKNlfKX%tB6!k#3q!Gsw5Yt=x(8P?Vma8dBul7fw3?>q*3%`ZYsTAzbp{5=l6jJA%w8Y3Vh=m6_18m2|4G@C2wts&^Y>uCu3Liubod%eI zbf}&HW2~lo_TQx?>;H{OKtBxLE2rA}FT9r>cH8+_3O1z3ld#KxflhtEf8fi$FNQ2> zek#!A8EPa1nnM5kL#o>qbQ?>PfEtgO8oSpG4uMZ{wv>JzxwismB9cB!Vgu z76E+fevvdQWpuQ2%9+`wExb3239MS9uG5!y`~8o+>f9@z(U|@InlfH0;t-s}II}u_ z0th@KvQPNUIIw@i=Kd|=fo$xQ_pIO9A6W_J&r{v?<|Lt;ovhzjiwU!c9QO<6;+jl) zlW&*l019p^JeXQa7Iu%u!wkFQit$mm4JGT==9nTjBrCC~{g0~Tug4y*Z&KyuX=2vG zLk$_0v8Y~=lP-Y2hDle@0g{k+e(vpCOmRZ!#zB9j!vwO}V^L-G?t64a|G4T64Gplg zLW>}R`084pOStJ+<=#v`&)K^r+x)zcJMFlw1@&LswISAZ5LX3;m;=iN_foRTQ^fUy zQQK-snZl(dC14X=a;S+-E`-x%VzMTi>t2h4|#@dAS$QxCb@5-&}tw zje)r3mp{ZnfM7%5HKUs&hIp3{i1khc;+h!xPXvotHFGVyp$)+L4x>dQ@u`Unyi}mE zyJxc|^?>3>oB@%cM=;^#*rj!)xZJiWEK-OW=jqM(ivi!LgSDGa(@2!kG^=_PXmVzv zk<8a82d2IBo5$TCtAaK8ZgdA|!_0X)%L-bIfE@^T795I&g<*^CgMW0l8HuGTs{tdk zW$2D}1=7AD2HnSZ?>4N{;)HfFh6dk&0$e^;lIhuvcADu&hYb$KG3zQS=Xix|(5Rt= zt^*nfTDZWB8?!bbYBl3dFfIjdt%$+NuNF=Pek$pWHcLA;)65r5fJ{R0+KNFy9#hl0 z7H#C>5op79gcx%m+XC`@#HrB*T{kri&e*E(=jvVsi%t^3R!koWC-<+Spje&XVmm@q z%UxBLkul2$l?Zi;=O^aN5CmV}CU}lMhJXVIT0scql)M=cQ164a1YA~Jkn03MZTwK8 zkf^5JyGQbdZ+v%b-|2-zv!(&2$9AtNs2g^$GTueGWs6=ocF%plr@eeXQ@u5hPSsPP zty=GBwq}Q&BAV`VzEB4y#H9tlKlOHu5!6$?=^nN&+Q?%8h z;;)m!H9K>zdsNyUKx#+~_h+5L*n*7}I!LKP!6&wEJBpwXSs$IZpg8Mbg28zF#cJ=L zbsOA6RB9^L8N8aJchXTzkHfDgWaAUAhkli zEyRgJM;oSOm3|K%N0|VQe`aIR-5}N!6f}qSAg_7C&<`SmGc5QjVUC=0_z6TL;Dvz@ zN#v1?I3cJMsK0lT{N^4tfWifCCt$ggx<~nvfd%u!7;bSl$78dk7p2R2`7{I6c4+a=yDa z&iZ5)AlU*$sr=s0yq52}w}%TtxY=&kgZ>A-&AunLaMwN+(>&r0RO&}Z-);6=Zn|*I z%C$HjEv;cn{psusw!VRiAI8w-rgXh5e5u+Y@&Kx(&$D_gF(Ao-rjj&i27E9`!p+O8 zww>W4!(9>wGzXkDIms^DX|oU^UR(@uPU*}zOkGxul;VW>7H#Y&LPK6v*3`vVoAQKG zH!@wJKD|dC-@9nPi`c`?Gt@rs1e9##)114q#$?&Kx!211JT6XKv0FLez7-bUrw9X0 zNL)KJWL3jBgBU02S6f*kCF-wjHk4z_P9E0QK>touU>t0PquAp|O3CfHK10I#&y*Kl zAT?-!Gy~#MFoVIvcJ!Xr^PCI!CN@Tu3xRVZ0@S2X^A5P9u=<{8T)ci|_OEoJftleG z2Gs%T5hKoc1xB6N&>tDo$~Xwi7k4funz}FcZT<5=nDc;?y(ErffY#@o@diRHEL=4+ zb27j9iY%syZaYx#TU z0fAwowlL#6~b9UPMQa zH610rZaSjmOd6sV3~2C-NfB%nbm8IQv7RI|1I;&c2n_TAr+EpL$Yhp-i0PaGIJm=1 zi*ianI3+poaf@*&a|l59cmOBe=nB%=#hsXu8EtitUO`T#bY`UK7_a>I!k53DqH|Pf zaXRm`%lmvdl$tHD?M6WRP;me>n+OEfTTuL`r0lr~WvN0-17;e_`gH`<{}jJKlo(D0 zr=2z%OGrQbo-ku*Ofc8ba8K3JsGOYdE-T1jM)G#-KvAEs;0N!$lYlT6*A1M&&b!{R zrf{T&2wcz%Bz5!JPU5!0OlPp6cv=(GhQIsE?i$6qczFpyX`f959u*0RR%ldS;;Ljs zv7BiFpg}1jA_A?i@-b*SZSKM@8$S&buj}3<|M$MObVk2+JCT`MRh%k(g)iIbxetxl zkLR-l*y5i=Pd|YB8UilXH=1^^^5kY}rDkePk7+L?90h*7X#YOno@JJ%(O~eEHC+_q zvJb;%I8UQ}AG5Rfj}&nMzHg@XR@~=x9OvV`z{GgYbCe;)#Wu&#vB%b~1>E4}*%k)} zw1_W2%C zg&i!gdHMOetv_XtB=dCw+K=m}x3%!XsYclH;qCEnY2K-44v{ai&C7!-6%1;Pjg9c1 z74K%L%0@B7nr8Mf_wHbbgOSH(qUTNucN9ZeTGRBM9 zcNzQ-AI3e+L0a&}ntF?*wa#G&wU%lZ2yg;>8C;#+3mWUvEHNSASQ7hGdwXVa2lCJr z7~wJPehks;;P3z#r~Kf!JJ3neU~Z~w!w@VXVNhJ{abb}N3>W6Pnm$sm6b?Rkrrqc(0xJ|O#iM+UB0(F-#NpVS&JaEW^xp6J;cdIL-JM=iJ$7@87VaDE_K!uw+20LSo4BGt(KOSKnk46_|+`A6FPA^DCJ=KY{Ctn9|WtY z*BXFB`}-GOH1ou^U?+rF>prwCn`Qvkppt}>uPf9$Q@oq`5A6ml$RR~1 zVOBX`2^SD}jPNNC+OdFa1JNCH9v63@Reh(J3K$G^{2t!`JN#883>1m9Ug%IlVg+cq%H-wKl|ftv!2u8% zA};b83#+N}*4wwBpNTaiANFIAb?fc-#HvbG&HcVp57zdSMkQz?}I#-A&E+&yxs?O zp7qnC=@M;Ibw>@Jm37a?taWwi2szKEH|`P#9?hcvJ6%p^Ffu)~3FoZFG<@+eogQSl`6*L6y+6!HCzNA){QZ$5s2+ZWu(_EfYl;8v^XS?>=xqQb%tH}3 z$qVP7TyITSZ=*UAWPkDD#G$F__OW|Px7;I3J3s54gEDj9L&e`(H#gl)4Y21YQm9RpP3lQ zGRG$;Xh!gS&_ujQuY{v4{3Z@HZ(m)NmwSHX1zR*M+DHfIm@dmokUy-i+kDk!7#w@6 z0Q0w6XQVj~s0iYkB*h6c`plV$Lw*=jF8b6aud=q=GoQ$*sKd&{62naqwlw_Ke+5{( zjd^8&S`K+LfHu@?tZEc!zQs+ymmK6%74P*}C)gp}#b=M9Vg{>qa z0&-Ry1g`zK0Rtqkoa*XMFz$vgtNZ8XqZr3GCADu~%`UH8T6`bgqYB!8#^@S7{5mD% ztwR_+I3OWE0ox%eJ-b6yOzg8{8ws{%ki9BvPf5_1B>L4546_ zoXjxsK0Mv&pKBeTD#EJCky&59=W{Y)!q(P!Ry7A9Vh1xpro?Y)sp#V#K#<2m+UfVM zvRI}x^$6^0U=;_UO|;^G2y5YVeI?lG_x zq5;;FC+*{OLTO%P7?pe!aj+z(U$Kwx={$>N-%(8e+hn+~jidSX zE>3)sCH&}(=RM6uEKV*jr2_GVBP-rwCmO3^mm2#VQ5K{z`bDShW0k@2A{t6Od_0K6 zgn{ne;K%=_>Jw|zsh$RkAjDYQ0XB#Ei`N95WkLWE9#DcuQMWEAg7GqSYYwKciM_w~ ze5sweoQ6p+NAO2fywtonqi+L2xbh-0GTmT4F2&GgUYX*ybg?Bj4 zuYxaP+9UMrsCUeP!O#ZjDiAo36R2eX?Tj~TD*HO*r~Qz4v;B2u11bF+{20H&3TJCGhCNw4DghfG4` zv?$+db#yG$sxIisbtA#d%c1&;o74}qw8ZWXVyU@$E50P}=0o>Kn-9w;ZP95B<1jw7 z&tLn89x#8U?W3nL1m)lUKDclz6+4%$nxP~p)KnpcgE3gTk62i+AD>>BZFKoh^7rnZ z?@fK}B}bqet+#xjch<>yMV-wa3S~p}-5TS#;jPjR#;n0{6oY~7Z<7Yu;aqD=q=CF< zje1B$tU@Obhy2Gcp=I}1=iR{jw5493QCEyhjb^f5Ek-q4BBe{KA+ z6OsWuNC}xNpF7rLRn^rTUZz+zyh}u+Dy9}Lb#@0+-=vPBha(7GBA~tP(iw9+xkwKOPMaA1hpB9V6mpYon zQcq+IcO%)b07TGQax8`xK5rz>Alnap7|4wvCr7h7#-rrJxbnIN{R3{RpAx^xh z>=nQ&ax|Sfwa0`TmS}EbJ1Q*lqa#nQ$L{rF4s!fd28~>{hn*6me=H;8Evp@K1ZVV~lxjgqWF=~ke}hVb8p0|n93 z^m_YDw-No{!-dko0kW)mf_!IZ{>>W)@wl*1Et!f_%wA0e6mk!~v8ghnDsxDKzj=Y>RA&m;OhJa*;(vbKn(b-kL)W0M;R(XDLraG~voY-Gx zK&}DvD3LS(H$NwfXovExStQRQY0#PvG-QRE0FvM&doP^{1f|CMygYyv`L}@J6lknP2wexogEvj)>FnAT14_Uu@_8(8``F@l_IU=Q{$` z6L@^lq{qEHfSzt>xU}$mseK8dS=AF$6{fX(ucIg7b~ljrU`#2#s5A$8Q@#66b8|CD zYk>s2*z8C(GBZPqjp5|^hBx%QWoaoH^V=8j8(}hY^2lWhZQ@+l>2yP%1Q91}C5Bl82fGhcR6OS!7loKtep9=?tDZSu{vsrs z8eVp?710qP`Vyb!GXV{Qv<#^?1IFVi?0eWLl3(6^xOV%>ZM1ZX$CQL+A;ya<#V?AR zib@NdRtmp`Q~PRm2&SBBHFf&#<-4)VY|QkoPAfKCh%jH@G$%fr7tH`luNfz^^#mg< z9ERS!&*T@AMpmXOECxEFnM`$He!mw%MiC6QImT(gx;WXlQ0HxtL;6uREO_1;jWWMH z0r(jWQH?-*sseU~=nf3k2Iqt?5Mv2Nn!+jHG`Nf5{rB~~m}I$1q7Wlz8XLf$ z)(f2yn1@PRz-TD&@pCsfvhgH&hjVkD`_mrzZYzaLzGocUODYSfIOxX|k^XVx={(<# zTjlW0EiI@p4TXK=cZ#d!FPk5nN1d!F*5ZQmS*-7yoa)dZbOq6X==v^z5|j_)arFO@xfjp7RqH+^39rW zgm(wT8{mFxQ%Ziyv}@}Q#_OHRXRme^x;F!#J(pDZ<4#kby*Le7Do~l0Y6mC+9-HnG zQ0G_|XeX#RV6|q9jSoRNe788Q5;5D7)5g^81yah`UXbw#39*I1u_2&s8Ma&SFg<)V z4t|kghmdIsrnKH2AzK~_%Ia#dX{dEaS(BB}2=4A49zw!T${tro8Dz*$+8k`_R5u^u zw%Y^D1BP&oB1p@Vkom(&x)tZPXLW2;3-w{&4 zdMz_T)U#1YO}Bj6J)YkZo7a!}teOj%gNTsHnv1KQlmUdjJ7HJ7pf560EL|zY5DT(- zNGEX;h;wrwXh&HUMHbg&AGgvH&2gS>BfF3s(e2^la z|BT_vM)6tDg_wfU02cl)EPQ2|hz!T0cjN&cH==Ij-Tq83dD}!tt+w~dy!%2k8eH8* zgd1NaMr+h+*Q#n=8^(v*yiX=3tDC}P=!YeO-p!n1o@}-%u^y$J4{i>m<%y(~c-MV> z5#+R18Cvv5O65JI4K1QqL*7tG2H+ige6DtJD){>Pf?Qx??G2p~SzB2__e-nfcWw6d zb#;{O_D?d3W@vB%wPV*-SO4&b&+}_&+zWYD8b0=I|Cv#+R$Sij{W35o(P1n9;>Lx_ z5%h0gere6d_g=$oWg`jAUd}5EHfI7* zC>eFc$lRt zYb!0MTuQ>h{I=XCfYGV`_BjwPtgKe(70O3MgnA`<>uJ~nDY93?X+={zOcI~sb#-G0 zo^k@dqo)=o?ocPQ#KiV`ELQlRHC-IIu}DE3KrN!sv`3=JekXua{1cRl5I-H3ouzB@ zsL(=mN1SzSZPM`k?m?VyFcZ=4hEF?{(37({f~A6aCE0+UY2@{J{+AmDaCMsyZPcq> z-d_~ST9@%NJj@uTR59PPk*sK@1az$Une+XDR4*Z$|5S5PS4Hr*l(I4d;2J*CyD1=({A&4uu5Jfz|aHn`^ZSO0^{^zFo+2@Hi8bS z>~;Q|{xA~@c$xv{C643%sWIlM_`(jxYY$Hmv{M}-YzzijP$Kw|d&U#RF>gANy=A;c;JbNkgRQytA%Q{~@&j8qxqBQv)7_+l!=Uo#+C8FH|Xb-FJ_$$)@-L-fk#Y%~dA8D%V$oKLJWpH@B~SdzMoldKX*JU2N7c zyj8>r!IFM*g45mAc5$`3Yh)B{ZoTun49t&CGeL$d5_0VdWPNrudPB*c!|JYbS`jr< zCNm}nuXjP4d3f`qk#FUTa6>= z8uD;TJt9!+%x4`)hk)1+B6@zg$5VY0Ih@^1_Ts*VekBii*JgszdWL<uj(Bh5S-lB4(l9SJN16`!288)doGOR>NxXL$g_ zSqhOx=A5mOCTXTL6SK3>bD_faxI!mv;Ldkdut7A1WhV@>3=?=~``k(EhY~FW>NJBU z2=FJALTs}dKka?mc!WY1jcBh6d{5-|I%o1}=~(2AkVEa~cLw4x)JFZ|b2VLDkFTGf zHS3h*x~q7u1ow!M`1)eRNsZ#=fM7k|VnJf2kQ;}rw!z6_4$eZn(-ny`pM^| z%3${(x$m2MtwohC;3kwwC#giyc5cGiHJr4je&RelFNc-`#OJC5`{CGs{s-tSudXyp z_$A;9H08$aI@YgXi)9fyXAZZze{Vg5!oDV04j1xa;H}V0m8u}Rrd}SPE?fc%D+o!a ziW{hP3*)9pLZqp)hb$iJbK^axV5N$SfBqb_^QR^_BIaz#wiXspbJqCIPk0?${V7oY zP-?tr|G4vYp<905Rl)jK0>V;b_(Bj0k<$4vW#D2$HD08d2Ntj}z=@KEA4~?yS@ZAI zeEq%d1>zI?%2rrPLwW8%_Z+(pM+yXt#P#r&8xTBBNJ2X5qG>X?%-XCH$HC|G*Txb9U%Pw6c+K8%oZ&Ebi)ZSOEqFmuG~-w4 zyxmIEJ5t&DXnRhr{gBpkg0eDnm|yxqIH`0PE;B$A4_PQA-}LFF$kRYY{LcQE9TO8k z4)DwV{z;qM)-upPt_;e)I-T4#On}8TJ>cxkEjiVr-^mJxt0hw-pzh{=vsOO7R-J*}Co{rz`{?=?$*CNMoW*M5mT zPbO_u^MC>$nxh)yIF6&42|kPjGFlO}7;pb%Ego9FcI}>CDhw&#q@g$sf{bhNA=mgE zC;J|)N?biW#DOB36l*hHFrR0nnS8Rgnm0B#4?S598obz(fOCA|biIfxP^0bCZqy=l zOy+wP{9Ie~S=%v#$NY3SKjN+rR=!zy0`o%_3z;`W%#``;(v;!wScNaSQFa$l^O3O}W)v$w?%cw-+UP;+_ew*i?Pu=~%AnP~T)dT8pt+FR|IOYC*FI1wNQumgL?5 zt03w4>#sKPdnxX@H6ll+OyBn(giw)@Huck;DfG+`)dl#ot!*jebl2*~1E1qR;@|Wj zrK7BDwxDIW)1{@nTuFQUafvD{4XKvQ=OhA2uT+0xP$FnUV*f!(S-c2oeifO( zW5o+gYa%ImL4XgOWe$2J*b*5_V9yRb&~`9odQO@+tX^d!>K-lRF3(HzB}?$BL49id zv(+CBFPU)TEqgYn;fF^m&p0T1syPjQ(Oa{%23104V&?18A=m>g*I?Q1#x=v8BDHgr zH+Gp_-U1 zHpXg}+3^ml`ayj-Th`B*d+tVR;M7V}v zzVkSd38Oj>ovbgKumrUa62MS!+5%fjgOS!>WHJEn0^a|9Js@upR@#QNzeOK$0R5jo z2mNDaF{LaNI94NJf3Je@fqPWB%R~u_@KsbJNg&l0>Z*zTivT3~GpfWD(ZL+n$!)SS zf@C89wBY<-zoiBRGXjLTkPT6LiEWb# z9r3kaILtK9(#1D{o`Q{({Ks@f{S4cTZ~5A;GaYqeZ&Xwi;9T4^$P`5;x6SQsfH{=J z`7lbCBm@|Izku7p#di$ zSSRgj$3-NwQo%7*2sT(%@Fk(y5fF^*heMUj3)XB7AY9!ff=irT5#Uq z-v?2~yO*^T5JrIj-FgZ-x~vAYJHpGH@d6C(Spy)X0;m(71F}UsP~%lh08m&txsJ+r znDn2uwNJLIrLELbbgW-qi29Q)GX9S9b(uG>0!J)mzKd+t^F+wftcBXxZ!y>9HNL%j zH@549C=Hi}JA7~MB*A~m61O{A{xyffjd1Vq%q@=*TuU-nmTy8?IZ`&X`MA<};pDg} zWGtka9+zZ%eESRC;N^LBz9R#jH*z?3FS>24YR(&n@DjzpNF1iG9W6#+C(s?i{%;M=-DhOVNQZpwf+73Q+d4y(y@}OThi$0m=rXUjbICiP2F| zi^HuzN25EoTIFnyUpRsrvrZuK3`{s6-A+t|44p_oP2kf9t_ISbK@phN--+cWR?C_{ z0Ba;jLs2c29LaspAvaU82tL*LM+!**OvDxdp;mk1hu%$WGr)y02_221@V`n-^b=*M zoFuq|$FBm$qmC{s4>j*lCf(Es3WiVIRNI$)ag42*X~#r5 zN#HN>`MPo1YBt1y4D`9YLMR9&Kn!qPr!$l$!1$vyq9LRS>H!-DvNnYI$Lr`UO$42!$6s(Cj=p zSXDu9+6)G(vcke^O~W9fTHd=6{|S`arCN|cc=M(Vt{F|;+rEUmG2?bcwoUpKORf)O zHGnLKq$Si=3!ZK$=9Xl7p;!beG=5s6pz^r;7@u!LcjDJYFz?msLk&AVA!bZLx@t-9 zr%ykor`L&?L0hg<-f0TIf7pC??Thrh!kWWIdFmBm>puV0Y=B=^-QNv}{oTXqejis; z3P8x^bj+Z4#enZ!{z8qG6RX{&tRBOy!bxLDvZ}qjJkqU*B<-@h5Az5704kB?NM7%7 zz1|VaviVc>Un8$^foJT>Dtc_U`yl0Q){n&g&F^uE$v!m}EomFNeB$u65>u>v4VV}C zrT6fPd2*}|H=iDEj%|3t+_w;d^Li+#jYmOsb+uG%7t{9_-c<+M)%o7w#aUF6!j1eF zWx{INENa=Kfx84Jnf9-_0u)ZWs3GSU?yPY;l|{V4sJc3VH!EEW&TPpcH#=GKTU#%X zz5F`ZbiIHfKQ5(^B8{JMg?x^qvnQV}3w4pw6rX>_-9xodK<*3J^QazWK!9szCZuc8 z5qICqSC1}W2P}h%*hvKz1aKffgNYF(8vgME-}*mrF=GOT+&(8EER5gu{=h}=6F1?f zTBvyjRte-7_V(9htJK+}3%>tzKjDSaFfz*F)_(Z#mTY{w5#-=`%aDW*?|3K^&}wwO zJcMC)r$5EtG%KoqTWQRZ!j#cq`?#{3myY6EcFV~coc!6`5G<;TLq>(1w z2}8Dsef7)T@~fq}--euPuyD&A=5{`@s}{d)<0Co7g(7lk+++l7Vy`ccAwH{! z%fAzj-h4?(ik_l-^UQytpfPk%R)Zq580xY><{m~(wGsrxk}KWqSQdHL!Al}^6Boj6 zD*A3>#r6}98>yDm@~4Ih|H{^YO5mp1!5q=__JbSxkS?zJa>qA1&VS5}ILEo-JLJm%#v$MMPIEY{@XQU%$#GJ=7 z;zn!;qq^65-#(GEet_DjYp}ZC7a4t7UwNxyYT3Q#|CkwjXb+wzOFft(D-6o(XLJqt6L1BGt+AYo4jiSAAc_ZBmzSfSmEmvy_B{$Yz(5 zzx_Tnjr+Nm*F8394wkaMFjj500S`XJq0g^!%}peHcz3aPGUHAwm@LjNpz?67yb^d>2$dv^{G?BR*=iM~wcNFL z{x8Lb+cw&a#->340+R@_Clk&QSp%^JHoO^tF0Z8#Cn1={QJH)eya)UH$T@W6s{y?F z${K%j`s_b4S5lDnHgduTcq%&uAd&U@6*XnV3Q1r@g6f!+3-C;Uww(W-vWCsH!2TaD zr?PRn?bgYov$>j8ereo0_y>p6`So);ch(ByZzh`@hn`Fr*w*N2k7u$kK`!l9%k^&V z^Tos>F+T`;myP8$!TA_GJbxauOCTBE{i*%RZxPb>M#rBJkccvE{VWyE#$|@Y00BHLSDCHV|$(5jA@yUg*zuK)9>WQYTYVO2> zX2IPO31gcSDYWKfV*gPz@&hLlJaRqeAOeKu`ZCa33DLngw|ue{Q=nU_Wub?C^P9F8 zr6moFJF#CZwhCtoLukE#97CB zYJ4mqnN+93imkb+eOlb&mh!;+V+4n!YHVm(S4Min}>!w1V zCqy}>QVdfmA;@8Ahjj)JFe@u;qz~kBH$s&3fGKYeu6aSB%w_%6g!_iwBnt{VfoxK0RHOIX%s|ONsS9&9^0|yV~XB-l9-day_vZa$$-zrK~Z2b7BLTCCb1Er1#kc zbUQv1=njVJD;O0mrzR$Jk`P0q5g?6A0`tdf;G=3cQY{~(C`uiUuBkFo;71h7CBl7P zoXeZA2pU}YAlBa|i!xd-N}H6ALk)we7aKz&A7MB5^I}`TFbp|Ct8z2`QSMOGA{5bR zXak;6R)${{QC9X>lnWQ*)y-TV$O#4n_#rCD+{s+Y;}@Z zdhu;#*za`8L6>v)`k1%sSC4#<3;xqy=MFvbs{QEl6D6V$7ZY=+(w+ExE-%UeWS&Yd z4~p9OeUfK=D8iU)o;nPelDAa8=c{~oxErkO0F0$5g4!42+0AY}|6JmE7WfZWdS~>`1ArwYzzBT#O zz&Oz06lBo0B^-~Kl7B5rN{H)YF(tt_c5!)@b-5EY=s&xA%dr| zq~L9Y=N<^e@^>QuF4qj(qqz`FXi9*G7B=g5ggm_3xmJ#=xo^-LTW%$4M)nRXJv$v z$-flGy-ha2AHUlfwmHy$W{Q4PnD@IfXg{_93j7ilL2aoc=qANA4_|&|@FeR#{0rfl zPHs?H@#PL>4Om4_bi2@nzcn4t>i^Rr@oa+Q`m-UpHNZM*Z+}Z(^Jlf}&+4Mn~wc^lPr#n?Hf3a zIJK3^vS5YlFXJVf&}kJ_gXsOu6XTPQj=7CXwCA60j+>I=_g`KHf|lLA@%Vq_OJYxY zt6zpu^Jg`2DO_fi!r6c{-y@^3qjoMpJVkeckBhjNGoi!)9`b*@?KhE6wfaQAs=;gz zuD((FOZ|rwvQngw;jK>%=@tJj!J$h$9zy6209%)-X`X&XH4?n{2nExRrZD}7hSBpg zEKeuCuxz}fq33#|O+P6}090}(R$;6|V zz=R1!#abNT0>6KcY;pHE=K5{8A@=tcAQ4%QGYygfoaqF!2JV{N<|BMsKMl=y85yvx zc#MBQ_V-zU+BL4nRiEm^5}7O+x##jM*0g74aZEu26++(hUMaic7}wLWjTF`r7@;V7 zAe%lW2JiDqisg-;%7RX_KWAs#-d4UVtjU3)24Ed%eWxQ{dGgh0U#na@Tz%|@>adz! z<|h}!3v|FVy=GWvJ*ag!?m&mu#%u+&Nn<)RDPxQ6ePtaI9UC24XgipYS5y1XEbo3v zUHu-EBvCR33c>pv5EeFgOK#<%Io_2dO2hD*o#Jn0YcWJ+*ueDmJm!re+bo~$rv-cHqeRLDa^ zsH&>!>FFt*Y>k%~RDoWQenQm=+P4`G)ggs3{%>nwQZPo0@z4DD(e#K8sxY2{M)@I& zN|s-WA}a;H5&OaS*oC7r+e|iGX;PHk2O_>T{_C^of?c@pAq#WAtCyD`0yk5+7})Et z{ym-lrv;Ela5nxNc007$4IEntVWa)lf?PGK4L)n$Vw zDVbthwWPw;k@9!6{ImlmS50T%?(6|c6B1HZMttkFib^B6hU`gy`T9vreTX^kqTZ>i z8{3??>4d0ryng|q41lmK3AX1SZ8>O7=92JB)8p3OLNLEpQ65$kix9i`;NDHt6-I(T zU2h*`>~#00pbj|O${{`s3O1YVsRMSHbjq2--y5qM#>8o5K(t%t3)n#QWiH(=bmB;z_^J{B8Kr;z>TbNS( zfs79l;(DP|*GBxLi3t}R{1c^s3jyLpweUcW^dS=|?2n5=#G-qI*xeC-V_=h@pZKYk z39!T94`wKe)GUQ$xl`Ct*+|5{=-WBbhb#FA$-4`K4VcH^c?-+iwjx%LZz8fy~x zYAo8bZ_`NUzT?qO5q1q1cKx{Dx*Y>=x#<22@4bOHRf5u_qpA1cN4HjyQS|fqVg3HJ z(_Vp4^otVB{G-jnqs_-+47UALyQv2MZ8?5J(khaMgBT!T5yr?1l=}=BH0oRejE@&Uk=n8y-~s<)X4%A0%de50D1z41MB;DLt&V!G)o^< zg^k-eKm|>OptCrL?J`J?=>bB6p7rl8HvYXG`&-rhoMF+>#0dnO=vPqUAwj$N<KA>v7RYU~^1v&uTYNCr^2_pzDJ zSn($u8@A+~VVN!&60;ujKRwicmUDX}qh1y;h3{A-`7B@oUHWW^i7IS0 zC_v7smMz><{T3c+c17)REej)#yEJQ-N4O|?Pm@+9JoiEC!K!2gqS(_$3WpsSY-^%wah&IsDRlDTm1^1WJ@1- zjbMVccZ&`~xu(t70~`gbHA`(Wt+;6*ikx2>GKr+DRmb@ItLJ-p)`L3tzAmevVJ!Vw z@&B~AtHpt}>ZQ)wRYd;qFWhN04DGRj$ICE+L1$&cVtkH2sb00DfuA;7B0OW?zN_L` z%8hZA7TeB$flK-3kv8-+^Ja+p{6%zg_tVnD!OF+jL~vma6R?L4!AwM84-DHNk9+nE zNs0@P8>%f84G*&Jpit{s0Wk1SOXv;%!;)Ir+{`xU0{j;2u?m`FOV<{hQ9MuknbA@E zxrmS=FN$5K4?$@>kq<&ziLQc-ax9vo1EK4}8Y<#>+d9F;(pu?^XC39zo z+T9DBskP63zR}b|kUt1Khll_OR~vp7ewYAqrOZronx(GsQJEf?82MGgk_ed*xYE2C zfGI+D2;eEh$HF(MPqm?OmYX|D64D$2|1B6{k2F&m+px_9ZUEU20av+0)P&gZp)rx_ zE{Gez=x@Ob8mbVHHU}C7l^>D=VEQ42bTy!)CO44yBm@hQs5alx417s#P$u0+xPm8h7Dr z(58x>AgKsGLiF9iMH2U9L=F>fq?vpY6mWte1WHoN#{ny1r-1BExDfQmt^-r$E)23% zSg)W!7PyOp!J`>rvtU#@WOucsd@OIK3w#K9B{ z4?t_M2@iyK$uS0i?|bPJSq+llhdcoO@sFfT;c9|ai!GV1*I~A$5s=`C-8`|#E8X&O z5T-KWs!%J_L_)$hpqN9JX(^ShsStGAbI;&KXRw-zne%`Kg}M8GQ}si@tbhETZY5CO zIlrpm7ADp93xDCI+_4;^wt>N}JFQwt+PPRK-;L9XdK9M^xP#v1Qrmnp`wqYafM4$V z&w6jx{sqXL-pj^QBxk_9heewGo$b9TX#~W? zX24X9{Wxz3TmJfMTVe8;-+Ml~=wP~f_wF66axh^ZM;I?+wG^cvs>_ne7ko%fmd09Tu-*1fi$zpcxEP3Tb~m&;?8M zTrLR#-Fv+*D5)UvQ&br#T%V95Y{&_#wz_2S9L+N}IO(AS0hp<;O=YB*8l_sWIj`NF z6s|_zCXa!m7XDyG*~2**87IG!)qs_MI|E6_aGyeI<;SvsrM)+0_!>SSp3p_&hoa>K zDS5w%Gj&8K5rjj=c@SD%-kVY2VnSgLZB@oAf^gifiEa!MrINAUL`JXX88=plNG~m; zMe)>gO=R8cSm(l47nD2H7I89g99lPqu>SB@x(-Qz?!x&_Z_DfopMn3e1}Orm-g9Ol zORuLlBe7Qe-AdlCTzx18MQ^4($E0D{<#bTttWVTbP1FN#(z_|7(z>M|FV~)IR0bBE z`okNKMN_YVb-J#dcnfW7s{3>ek>$ndh_An^GGQuX-qhu4l)MJ~yd_Q^$5P#y`rx#xDVNf15TEHFGEo23mr zee5&Fwy+Qtaklk%2e-nmZsRJ;GgTo_zrWxc>@BIVs%rS+(cg+a6^f`nSheJ>J z1=o(|xO9gq)V6v&rQA(=GvgXNgp_l}C8OrKf zrg0mp=T3He8M~Vr+vFo$PC>>10nPQ(QtkMjV+U6NH-StclISLtx{)2>Eif)@d=L4v z_jR`Q>(-BoF#V>yGIfwbgRWN(nF?828ynv|H`sSuj(^y%*;n3(ihN!s z970N#cqDd)k_jrZBW45rHjA@{MX@i1??$r6&L0o&8?!S_nxd1KydenigwXzhOr@v~ zvcpyY@4+!A5|&vE93v=$n?~jhzgq3VU*+#f%Yao_3&ez(2?vn%LMR(NtsNa`AExq~ zu$vEnQ=XZLr+O|XadWu^a3J)9_&Pgod6Ezx2#+4oAYLX}!4N=J+=zt1p66}yqkyK{LP{Ai$_H(?rTAp*gJKcJ z#D09e8{HEmm2D=(Ud8u3=;ns5P=9~WcQ=EC6y*M3+Xg?}JQXGz`0CWze;=Io|^@;0o3<4U*{H&0AznL>t}>C_|a6` zUal}w;!-1~#}4-f>1dak0Np#WlhdZAb@fg2cJg z6fFXb{tzsl48%N?8o#}-0%K)VHvq_Pl&?W7OYIK-c5@R5V=WHmaLI7IfpfS8ivvdp z@-V|{Z|A%LW|fEkikW1)937OUM3;$PHx%sNQEkqZL z$mt5-W6}EWPdN^@aQjuj5@Z0moOxaX!wU<8{iC8gv7nO&`F$)7Xpv@Dqa)({zWV0C2V% zkMdVsegGWjGTl;^G+eV3Dr^EI-X;7aXy1y-Loy@{X-7N^J~76?MyGOS z0Qotv{ebDds{!pF%ommg_?CK{6!-`Q0iA6?^C3|Jgou>th7FQkul}XE&8MS{Cc>aQ zw9I_lRVdmd!VGH%VlQY^Kd zsGPXv%9JT8tD09oXF}il&U2VyZTif3b7goini)zj+Ae)BcYA?dykGb-`r-Scx`b|y zl=I!ijQY7l2C>-kvL6$XHnhx`TWHYQ>g%ij`c1>Qe#2H%hNP)tYKGnTt$wTUw*~UV zgzwug?}KO5o42&KuB@U$$lY&CDaN676KG6=xG z_PBW!#4Rz`;rH&cCb}dcpix+V>_cObR;@ln{sguM#ea_(z-SYPFcq4}@u%lP3BUr; z^@6$Y4<8$ZB$CIx9$Pi!JnF<@gy;Y=OsIZhN}u=7fmnEmwd3QHNkWKfw_-!DY=&~A zG&7BqNvOorK#)lMGg+4A(f024_4R=ni?ACkLlrvLO52NVMZtC12ZvYM0G1+ndR+Hc zG-{@Px=VyEp8$S>%E;yIb#dnSWX=PKwt{|0wVuX*{^BI5$8Ot2>>Rm6U|(qba}hz{ zT`l?c5x5QixJF2aEH;3LRZ?@&j&WYIpn16RsXMhV3LT9Lg_vyB66l{s_^GL?eyN7y zMyMEs^AQZ%kji#p9c-xwffhTdQ*ZtBQjL7?bIHblc4gKDM~9OShnSnIMY8p5YnA!r zY46wGgnWoyf-8L?KPtS!U?k)I8~@d!zeQ;%1Z}l`&I*o35{8edj)~;PGB@b>iHYqb z&N2XQgSkF$C}42=2o&H@-KSX!Lo9CS%IRp@j)5c33yb}3l8W1Eqi~vHJc7#41#1bu z^9}32#VTD-+E_qF(?q+z2sDFg2~4rfx1h5EcWX&VHT4e=-YKi{GCeH)f8WlBnQ}LT zS zHlR8jw+h+(Gi9%9u$U%tK`1c)rt@IW`a#z_%-5olv54^ZZx8cVR}5QLuv$kAx_7ifc5)+;|wWn<^EyLr35DPtZSTi|2^FzX-1)r ztsk-%mq*JI2qzhvThe2Ip@zq>{2nU3cP}H$(bdouR6$_J0H$$RAM&FyrFM+B<=Yn_`CHS!bT5d6CIr;-g(aw+ z;he2Sl4Dm?!kP6S*Nf_~jX&q(8+&Aly=Fo%3K-m=`*<~UrP17U9L30ab^+@kO(YCV zdnfKdTO9WZZq59g(BUf7`IJt7=(1$5+O;_!@O^sP07=y;VKT;_YI%>Uf2!qbcpEF~ zr5;J-r9^*q&Bqf{HbEhwH@2B@Na#Fv{~quHQMzhrsIC3RDQz1~he099)co*0jKgj&NCtY3ycsR~qe|d7_;Bi#ZqMeQR2hzuoF<5AU=H}m6lIhk%@vItu!T+qGLpEeet4S z4x;d*;ICu-t|xDL^PNsPn9(u}r~c7Ca5W|&=pVRZc5~NH-|Oe?uikO>Y!=H9@kGj+Z)K3lq(DnXG~c9 zUNiKoH?eTBw-jXR4$~hi3_$-n)czHg=9>b~g8QM}4yEV7hI&qcx-=yW@1$Pys$y{r zfXDB9V{$rDz`a>M&Vj1K+4mNWkMM=c`5QMH|ALf-EB~Lu8L*H3KaUk*LzUmS2?g6{wsU{zT}3$ z{kwnTm=ZF7Z1^*WmaSP^nZp4?rN9S?6`aoTdRuV7BU9xOFi7<-#(=c0f5L#LR{tJD zA{-Miu0eL#PC1t&_9b5j_k9|Q?S`;b6?sYKfFa%+b^3?N&*szhnV@E zUWI&76?(|O9+SI?5}d%3&~}qPejN8=;wi2k84Fpa^qXLHqI?c%z3@+D=45Le6rpm7 z5FkW4@&>RQ29hrBaHx!h=+8%H_p?+^&zB)sRpw_kmIeh64?2%GO|OPrV)c-y45Lu+ zxSgF}v*(18H7Y7a86dbpKQdIQj?i9a@WdB?Z& z&&3C&fxVCfoz@Tkky$K@O4g@|ghJKNKY=X)cY_T-rvnbaPgw&KFnc%)!5uca4izZW zVU9W)|JgvF<)cJ;5eR`o{R4q4q~w?o>GxF(=gS}0e05UU5frKs=ehmqmrFQlaoO+T z7rWz6;!9k41XE`I)K5jLQ;`-rda35kd(@gwYNIZ!Szz+iUJ@5wO}ITj=P z0R#e!;!{8LKK5BuS5|V-5OOx&?!oVN`3aj6Bv!*G248ZDB7``C)TGyiu6MbH#t;Xd z8i4Kuul;|ZJ9G;@)gn!BYdaQ}>LOu^ALEDk5bN407qEI0u`Oh)F2g+zS6o^@;701~ zfIa;yB{|Mu8MVAKzfKxXj*mwo&JGNTRqd}4c4H(<_=_^~>({?tUPPK)CPhEet~YR4 zp(-=31RMU(`ZiV*7px?NxhuH{^)&%<=G)S$;mYvzR5Mw~MN7-e+FX+sl1@infBF=b z($OfAr{iU7doGw}+%#4PqT1~yEsMmL26LLHXS;R>V`9 zA&vlo8K6WLKsi`AL0!a<2%&xK6mNCx$Nt^|{8_WKvDz4_&Vhuk)t4BwPOEN)`3oL>5_F>m?gsf=}Gn*GZ$3@4brjS|?)@Gf7$~{zw<42{W_nRf7Mqlt zj(fQzIIAezxUcDOviU0wY`>@$Emu1`#W8*%Rti~&vW{1>YSFA-wW7{P25pb02JDJmmN`^N5K_tr8Uy{9Rvsdq)`5$k z;+aySp7TK06d^Vk&3X$(LTn{;Tb) zm+cq#y7%aNja37HUW&X(W-=ojZ z)t}ZzX>$Nm@HI!Q=yAzg{>`RySKqDe8wwmZ1@TG5Kcm#|p4WGUa{8IW;iFGZ{@NM# z@6qhhN|bZ3O6H9H1=MKi;}V3zU*A?zN$B(e3=>ifWHm_NimeC1Yxs}_cGfH^G&nrK z@0dMUvDMv9^W_*^oF0;OW2A1yS;t zjyL{e0tcv47m$I%ga@PooQC4O-&KDJ5kLG^lldZ)3BY%l-Z=<2rmU-6Z;(A)&9HuN zN2#K^#D9;ezYWS5bA2F=@pnI$9JLi5X6w--wZ9;$uFyFpl!JdcjTWz=!X3GCw7s=s)pZ6-7a zzq*O>(OM{bP_q=%P5XWO@YK}muJ?K1mGDk3jx4z$!}^?g!_qLn*nFZngYBEkJw127$!KTMC;v!U=?MyWl!0C2Ym4pDtj4AiZ zuJ@&cp9ur~lK`ue*4D#TMQx5!E!Msyhi5pSC3Qz->e$?a5u{1O;mGiNZcFvku`M;<*ruadrVS#%90>pUnK+H7OeznbF!wf$gTd zw1l754j!@X)xG1w;Qr&f>D68{6V!gNqVay}+e@+)f89cj#^2-%htoY-P7@9S952D1 za^Ha{7=0ei1`Yn}Gn#v1AAXbZ*X1Y^AIs^&M9tL?O9ytX&nrF3wHtxS7!)ajKBF1a z74~yHP%ty_i=K0zaa~D&uBMIYND9kUEg@kLU2zx2!NwLI04D821)n_=j*Ju}Ujszd)AChrGF+Hwg#@@Dk~iFVIp(P?oezW`&7|NF=&kk{!3j z7%>LykMz1iI-Jp@QqgF2ig15*{G)610ZnQ2AoEpLcK;pG@J&R<&mUi1+e7@Njfwv* zAog&WWmmQjw(M(iytF}MPonTY)Vrz~vg_{da;V3vpDnw$i~YE__XOqSy4uf8pSzmf z`FLF@uI*EN6S^zfy7*;3WBrj=evykj8_e+q_z6-h`t

1#tGBX~A*M4$ilzl0TbW=T0V&|AS zO^TlikqmElIALB8`!iY-To9jUpj)-yCdd15_K4vfJIn{R{IoE)fu3RN{fDx$sb>>^ zT+QT|HjKFAi%H3@{TY1`>+K(=r$L`^8*s{vDaC2_>rz1xS%Uwz|Can~4&#ybblOv&Q z;%>^@o>4?}&gFMN@o0%QD#(N;%WjH#Dp`3)Qi-zO)3#CJ>n^blf3^B0@2?guprO!?YuY2!@LY>h~1_on&uVFEUhEux(zFa-` zMp44WE*Gy?d{^U@&;5=xcN?~xkq)1)^>aYZdC+<9uP5zg)0>P!zbnvaJJ3xrOrht6 z6HQQ(h6!`{sW*M;@$TYJwIDkv6N%ARA&A&FMk)zrr6dL@H|(hbu_`%Pdg3FkffoE` zGG@}GQsRIj=)57jxYqRj^g3~Et&nisr%3?!tZHD)hji%wu0e)mGBbHhbb(Ek zE*){N!bSb0?7X&i5qp_tscAobJAI@XTnxpw5csvc2ksq1%iaWfa5;SSPKqmtZXM1+ zrkT-vxJI|~N6I+?hz5W0L_RXHD>Mh(rafGn%tuA_SqN$dzqc6byT0~*hj608cc&Uz zw{#F&|C7bUhgD2a&WaaJGF9>Cm|D%*VQKygD&pK`Yo28R|D#o1(nmZ7Zd zP>ayv!TdRpGEn0^_5s#@etzK1-aoJ1=Nd`qbgcJE8z0{1VMyd!Jh$(Rkesj5gl1FU z)O@fBgX-h#V*Q>bK&9~Y!@#_-V1`sI*uC9fz3WXUM=ro4_4MiYQB31Wk5`9XyO?MV zq~tOa3F0B!*XCcfdmiDP`#guI;i+T<;>QSBMq$i_@Oy{px_~oJC^vhw*wrO%{Q;=^ z#Q1nvn-UcMM!H1ei4N_78iF)D$Kv^Y+BiBCfjM2@PK14pGQL1Qhg9}-n7Ml~(XIWI zk{K7yi?)X?71Nu4!DVsu^A-e>p-bN5B(HAS$Yu?uk;IVno$FPFN*Ed}A=_J#HvH+6 z#(Y~d{VgYK++U-9qcNV7cz(PKft$alMTaKs?i)=4?4g&MV)=kP29+k$YFt09qM^m|QdjA8 zzX{j>b}aN<>T;RcAC!nFl>?t9u6)O zbBm2YMOn5g#VGVrEOO-Ae0Acq%MW*FuDJ{@G-_EXd^= zW`Ddw_JjCBr`%)teO@!Vv4oo3-?^su9(ba~R$zgH=LO0$Kn|Z|(Q3TyL*L8|M?wJF ztG)mCd>}_C6y*7uqW^8Kf;nPZ70i?GWWBldy8Sxcz&kXB7v=KSe znMz3BfL>elH8dZz>yktrSnt{TD&IY>qB+{A`GmuW7_${49rnfl{6Mww*c>&Xa`}gF zXJqc}m3mI&cJ%Rj{K7oTntOkC7{b0LBXeKDj-U2(_}jVcWN0AW_B-4_-7tgM zA_3wi^@~4jBi^k;^1Wv1KJwK4>#aI-9EMqm4H*0usiW1k@56Z+9}j&|DXDsxQVmM1 z%OpW7*zb*9u=f6NResk(;Ch%#A5YYOb5766WLft>%Ol5w_hbyhKob(V23!mYAnzOK zn%vypq!9RkX$ZYTpp;w4vugZ$3#$Uu=K?^KH2`-M;6#c=?nWRUKUP_7nuSuBMnfi2 z7#diM>QS0Q2Y4pc=9|sI?4Gi$Jnpb@Xmo$4U>{r)R_D)0-ZomC6-Zy{Y{MOC|S1m-`t}G&SAN50@Ak5bF zH{F8o#0szfXeYXMg;e; zAj^A9rK_Tz15A(pJ8V`p&Jbx>QLhQ#baJk8+00Umh}_d zhehT;ns| z0i$M4$j{21Zv84ooOliSfJi>+qpqz#=43;|(sfMcw0;=3&$-x$i3tgxDG$I_!qWmE zQ}J_KA2c-Q)uOah|294+MC80s0?L`?{Ly!+X29z4*oT@~k z$hihOqpFGrVop4ppZHyzJ-ziq|MwK)PT)Z~aN{=^d_L|6U6N!BV4$6iDs5~B-Zl;r zyK3Doy?)*P=O$eCA|f|&F;idO%`Cna(y_6D?5{Qu{{7at64trZRa=zfd)y;?`2_9; zLBXh7H$mBD1g`Tg8-9SiVWQltcrW^cn&t=-<#@+LOQ074T>v5WH7l84Az-`w8N5I@ zYob%|(wj(1Vo-d7-~;xntSrb}Q(`rRLIzzV=x^NU>fzY0ZO?zV?mhN^NMyR#s$ec; z4tH?(mwo%SAcn%Z5Q!4WB!sL+mS4F@H@&xV$Cu?jG0HmF&0Jhw7TaoTyR;D-O{s|I zo>nE|&0W^*XAGhBYK*Wm;|{-^kT|3{iZgi;A1TaRz@?{YdhCDLZ!#DmE!`~kY9L7o z9|sXknTKtP;q3IL31SO22)Jlq>@?OLp4lQ9SZ*g7w9yKc`de0R#o6>`VNU@TAI-jN zTKo>y0wSl=bJ&4@uUBaHWesQt4{Bf-UPq|IH~AaZsST9j?mn=F~SdBF$}`) zZwxuXXXx9S12l6C6ruuj;j{fiWG7nHE)C|&4`pD($?4kQ!!w%HOI0b-%wD=JP0^#w zRs$aply%-yeBta#+iUU9&E4}%euET(e#V2giwosqOwKXTeyas)ULN;Oeo%{ADayU()i|BKjSD^HzvlQCIsU;1Hk_P+gUfJ1(>9B@(2h};bNY$d5U#% zKL?u|s-P2SuLAq0pwWwvzS+DHT>wf&*cOMdAtD+uQfKEKL{ZgPV#W86UdhMW+RX<9 zY{__ujRRI9r4N3Bphg^v17$V2nu6V@2p?i7&E+SK1X+Awo$dD;96pITBVo4CLF zX0S~yp;Nn&-|1@CLbqztx2VWqGxpdnWn1X_?01Dnf`(=V_cK%mK)1Ut65Ljvo)e3^ zaH)anZGTw07x}6M&fs;{9W;odtLB3H-L=s<;b~!%wOg=~OyNjFLqoJM#fAnThr7Ej zAFzd*{k%COyWJ>E;i`r~tYqu~KR;+mRecqB=!GOjkLb|kCyh!BJ*R~06vw_;rr~-0 zM1OQE;Fy~^HgA3Z+kXq4IDLw;7oX+!Qzii)0RYptwJnM5)v^y9EU={5XtSm$(hIwP zhUlD`ts-d}eqsQlrt2JT($f=RVyKoRTk4@Q|DbIc(!&=BO;{8(*^JkNO?=iYPg z>5lxq-_Pg$eoeU840-e~o({hb%v-KSRQKN*Kam6%d}~c>?Vo&LN)oGIERdiSYR=UQG+YL zay@2tYdtOTYNTHiU|pz%tpp&Ab~pd#-Xa(5xjj8LYn`W)a)_K*ob;M9#~{P~BG1`< z*jPoFK3F1%FN_r%B_>R?nk?PGJfM>e6&>M4bab`MN@Jl{>}|r+YpgkvMMT7&ls+tI zwuv{Tf1h?I7cXHoUp9(W&kAlA%&8PZ@V+Cyw-PZ}?NJV%q;`*yxB_ce# z?B>c^8@YB$N-~+$apmxi${q;&(Ot>BO15x9$t1S&`kESMS@hIpFTaiS;3x21syS`3 zyx5?}4WmP87ZWZN(R;b-SCrtofBg6{s#;pj^xu61wE|jSfU(=l#w=)OF+kMwW%2RA zMa!XA#FP(X4E}qSJO*6#dXgY(I*CRE5EBq5b>|m24bB{LDvQfv%?dTTMDrL8vzZ1t z>Emm7CX$nrQD42=7hJ8}3Dao#)6Xbs^vHYdJRb6T&xcgqpFDG82a?)z0(_56F&f)B z_4+PAViF_dD19PyKJh^rg~|JG^KK&t!&q^|Iet3gl1?P9;2$DCOfB^&0oUW>13&~S zd(PF*ElqYtZk?BF0lkgu7llIs)o!M%iTAag+7Vkrpb>B9pWK89m<>CBgT!S z-LI!2=^)C+tgNZ?Q(F4>@}HK9dHLbY!Z*fosD}R{$66Tn5#m3Ln}26=RtmDo3%h>h z?vYH)UZy)3QwMWS6%K4r zO4M-gX0(PGp&4^juV%be+DinZ0e~v|+7CozTIz*|cry)a$(zx9z;n&@-Ami#yAn zs_TY@tX3ksS$X%J5i&)k+B|awdXPHxdEi9?^PZnQOnM%vfywfytq^~3MG6gFicZEz*ECXE6%Yt>8*Fxo7fQPt^WLVX@7%R%2&^gY znz~hX6$ImxPgN~w3V_)vbLw{yP4A`3o0pvImx*A>`k-3(gZOBK$x;8y>rY~r3q%{a z){dT)0s?IOIv#1kd`J<{KmYGWul6(GY2$KaL zeIDmNpYP3u_z5+N3$5`3)_P@jhI%g&4AYXSy)$Hy)HA>Oy%n8Sw2y0NXJ@Be#bm+| zJ*?o7R9!Z__%&|p9pWzjO3@x{IDO=?ch)_ECVxiRn%P=X6)q0kYufXE*|g|dm!o~YM$nblZU4n%g{>3g>aqP_4t36$twFziQs+0jdM*P3UuaHL7S7t`yC$7NZkM5gb`fClr}yo0 zaiAfP#TqY94tOl_c1@}l-VZp%iA(_{YWyTkqkq}Eo2CKPBKOI`h;p`MFUr%@Is4D0 zjxhf;!^b$a=u-Ol>ge47-eYv94ftQG=}+U4(AP&i;W1$+?$B!=4bE@OA`k*j?LCx-UiApe@aqNkq6C~A`Kb?^j*GH)`ahth0tDKq@MHKnn$Sj^|&?ar>q4<*UbCVvc`XI2xHErV{(0xs#;)G zR6S}1qSHv7F{~u_L*$QD)&0V z<4CZ#weQGL@99Jmo|gqZc86DoUruipYTfO2u3Pyoi8(=#?_HmrW7pX89cB6NdudLu z0;P$(-nJHv#NP4TymyvLv99iv4D@v-+{nYYFO{f7z}4=giL)2%>Akir)Y_lD&O+`3 zi3Mz_V^-Jq2z=_Fbs|2qXF9Xl0uB)9y0CX#rYadIns9Js)5sY)LA9TA*JU)&RnIbV zo`OKlkmnH->G<}-$N}{T5EqPfz__#9I%fwaRtvI@{S!Hy<>JD6)%#X7cpME15k}}a z{%ys@pwQjy;l|hU7c>c@E zWn(Hl3wy-ls+O&nzO&7AQIQheDiyiWSv>7))PYYsDYkD!;Fm=2KELX%&2^ARc?YDz z-r#oB(t-{G+?c*Tyj{P?>~Q!7>?Eb0|9}>=*L-&2=?J<5TXV)f$SD@|IMmk~M_x0O zWMTK>Y+^QevB4&$Q8AiOl3NzJd1eY zVfYNa_N}QYK;n2}^TReB#*yP>{h5W`Aj5#O7$NN&G%7~vA3^sqT_83lI@wf^J}5ms zu!Mxu4>qsK&cdrFLR-7`C`A{BNwPJ~19m%{T5SJs=KOa^9KeIIKXwF?BlbX%Q-)4W zD9eLA_1kpk?i?E8I0Q~ceM91{f_o{e4CsJXvtuGIKY_bXCfs=$lRT!*dAC4QEw79i zZsTWPShEaD<1k0k-S@bu3W5Ym89sW<))n4Fo$W7%TH+jZTrDK1MGAgPWSk;a=F2=3 zbp2fUyY=t!mwi9jk0mkl{JBeK)W$XYzVqYD`@5e#($r$r%xt|_LOCjUB*;cV%wnZE z?+eqOcY5ch0+^2o|9P6_103Q>us+x2-CzR807YP$r6P0{ekhq1Y zP)fh}7dY3KH!j_mB0fL><+4*ZVl5o6nt?eR2_9sm)qOKE3YQoc)YD$v%v3!eqBpKe zIQaiN5Tp+7vN`i;5U6T0JcUC*zS-PSy8oYcyX2}!2k-Mym+ zAFSO29jW|4s3Wm2xf+@t_sUZ*V_sJ`80BOpKDuqN>{@VAz zG%{TpBIu#D?DVd$FKIftRBP@++q>yT9b!Jz#Bb{=}hlHU$F~FaoIah8(~fCCd>m zapC^5Q)8O1Gjl3uuX6=n(!GAbP%m97{x9y}KoOe86cT*A_W|}YPA{ePM%2Q;aG3BP zWjPO>e?9xr$P2eODu5<(kp7Cs&gRsXG4StJR^R)qtQd{+JJjuE}r-b&=oWerd zhBF2B6K`=A>b=h8-8hj7ShxS%$x+BvpV&Hxz#~qYO^@xrCpOM{@9-9{6?)eNTt^SD z#DYSF=Q2g=@Q-ypZYNQh(KF%KxgwDbEi!g-x80rK=IbI$V1Rj}&V;vK3O-Ew!G!PA z0K977i8UjP7z=8p=4IqE&nu~_v|6$qe^ql%>F38T#{-)kan8g6 zr6uk{9VUvi0*T{{gxhJX=uY2WZSsqXLNb+I%>Ba9a;QjHkK-yE;r^~?0C_{J8En^> zx#!WeA)C?y?EP)Yx=I9MKp$Q>xA%)nOcxBKiOeW^o@ggxcwNexHqjkZIhLHBHO|Yc zD&wMXV{RhfF#dIL(AZsGxfW>m2WH<=Q+jeB*mTy(&A~xcMdgVx%#p2T7s9VM^EKp6 zB-=XSRK7Jt^LW>GpF=5Zo0<)AYwMoKF0)~5Yj3C9yNJ*Dp9T-?Ppq0U#X2a4du%h& z$zvrItr{(3yJKzYIe$TDnAohi(j@(-8NV6(CFC`X;hi9u{DV&i(NldGhd&L7gASMOpI$3BsH-HT*U}!I8>_0m?DnIHIsO@~>ES@MD8e_gSd{k^_ok@A&!N zIG5kh&A83^^@ti7!V^GU#j|6;%XNPKqSqPQqkQ+%l$|$j7V2Tka+Sgk&PNaObsP!p zd<{{uE-+zQZEsl@x~|OC%Xx^E^;~-Zsx1JE_0n_?`dL9sHJ6az&gQJgQyF1|k;NuB zC4IPZ_2r`FLzBWN$SaVh8#a_z;$B+eLG#+VppIbu|K|dV5)Zn<-NJ@ed$Og+9oJ(NWMxjLsj~+UjBAZ6)D? z-3;RYh%BTqraXNy;v75T2-h7&nd?DzG6_za+i5m9Ga>x19}*lRK4vQk5ds(^bUE;$9lMNg9A4Q^l4)xa zEzf!gk`=6(I~lmh#z$Zo{-S4EtaH7HeCLxV;DZmz55QYa9$}3Lzs)_K{g2BmoUUNVDymKz_kH}BN$Mzp z&Wzvvex(JHtngq|>9Me#rt>9QBlXBf&J1b*DDGsWm*nc3ODVyTj{+1tluI_j1K+?>qeXs zDr0x*K99s^m_@s{aVfPxMF2@aWW5hd4ySA2KtI^7M@EHJ$OM#9;?|qvE7l2ReUzpB z(p6^qqxGVeR=J2vyuq zpd%2B0g?wCS`flskZxE7UQL#FGVTm*1l-+q9W}dd^q!KzyaCKQvL1p~bZB^(uW;5` zv(E?D0=PgrC=%RIyu-tTApn+M8qKx0epT4>?hNO%%Cxgxy}?GnfI#?uRwT7;y#1i& zjeBsN2h@0f5JR$?S%E|LWovn&$=50>Qsp89P(a+Wu=F|KhTI`j^~|A1oYN1iUfGN# zRToyC)wMs;Y}vAJpTIbT#D8p?jxxJE{5JGXTzuO~56c|Lstu>1D z>k4v5ncbcWI>_z|C@3f>BlD@s^Q-CmzJK>nUi~0ccL}WtG&JIE_wrr|di+`YV`~et z(+JliS7Z&f3_&0~e%7XVW2$tzL@O)&`30=h;B@cRHu6&3;)*=)Z`-k%pqXiqcK*<# z-qvi_gV$R4-hWj}_Fmkj-4^-)q-Lgv_!T8#kBt>?l0DE}K`WxHA{8IdG*a`6U9Lss z4KuB>nng;|3x+QOk+N~ z-R11@A71+dUU=&VCi?L7j7Hea^jXjM znVHda(`r11$DwBL+R{ILkAFbG`42BxkVN6VbmNBmOYDLO3c`@HcoNOw=*3972}whj zV^6J*M6njK1WovU@C7|f!gi>kcD-%UoL}f4^WW}zF{fb5?;KfSPgbY7GT-%|<6hMR zo9jUk;a04iP<&ou!QfUDle)SIY2{wWp3I=&L$&?G{!Qg=Pdx_@+JsX$6ZABUnwUUU zCox!lzZ4u;OBQ>dnAJ&i>-W8m9aYSIk6ZtR4~kb6y|MmTw;PK_x661YUc9EJrhC!; z2d@L40dhF-SmE!_9N0xObg~oo8!qFSPdJ&pTvL0JgX!YN=+%@p8G?A*ScgW<$q?@Q ziX2%`GyDc@p;gB`?GL7F9hy_)tZgjs5FHnKkB@`_*&W)z`^@7$3^Z*%mjX@pcE zpuda4ZFnEB{RAJe6U#`4F;h4FZO5Ui*G?#v?c*5)v8yg$m>k)?*+k+6*Z%t7ZEjML$|fOX8P-rnO2^J31mq#2mz-KX(2_Vi{qNW{6#?VRRHSk(0@Swe zmyMqNe|A1v7H_OUutS2gfv8O)8*3hYQ0iHDtYXgJf9{P0MXWgUtJp9~TAz%F{<_vH zwB{hpf)kC70xtpR8S~;h>XZ)mtuEinZhKsd@|BN5g!DHKD zj_5;mop|=Icofw*La(vJ)zN;RMmC-Sp$8N1Elcm$DToo@;+tN&^?T!&X zn@4O$dY%_uVTo$G_u+MgtXvg0h_C*(iqjrj^Htmn)x_3$k|hpQnKalCK9#$UId(TU z+`Vu}+$^>K6fPtt6uFVbKLb$rBwqu8)v;N1^}MG%7yb3<&L47Ez$X$)?{P z9fs(x{hh)t@md3awm8G($(C30_HJ(BqfXDhJXkeLVDB%0d5}Zg&hB|vK}KxTG*@H; zfwhVEeue2u*EEGFbD`~s0iPK+9bU&zTp_|uP{jTG;wW~8Od`L7@#s;&n>&f7?^Qk% zbhs}CkAJjAD~*)^2u}nu)1P=N(K{P$&P|6O@jq~aDTIxYav-Yss{<`9?Ez*{&U&62 z?hkrTjWmJ>kOd>9gabwY1%mE0GjXq|ddBTLOf7XOM!swv8^YsSpU`1o!zLys8mB13 z4X{qoQDpV+gmU6`v`@v#X=>7IppQ5S095_6PsVe#0&`p?=a<3N`LUT!IU05 zradjd6?Oe+tdo!HhBXJx?X@De)uHOPN-ne?xtzOs`QeH63|$Ba9ym{4XrIU^q#?tp z#P!FclwY8I{s8XI6QM8S;+T_7r!%q-HHq%?^C5joVnVF7H^*W`ewLvJqr6dVga>oE z)!^q)w4I@a`5J590>w}Ja&=B(bY*@Viqx%Gsz_oFgh>c5)El*BhR4KeTGq7yO;8Nb zHXfKj@S0t0^YvVf^zgD@SZkxOH%QoI^E}};cH@juBd$^>VJ?{;6BFhmmm$*?6GQmg z@MG!yA;J<0a`v%5q@@#dHxkDE8Bq4hz?+Kq79iB4D+VhymqQ*Za{!MGl7<dWDfuN^JinDEIpl$vSgv-X4(TT zgCQG;r>48hOGjMO(@Rv+SyK+ARwz;X>C?%C_0I}$(C1M5R6hlpfHhVS5afdg`gEmT z9t)!|KnV#6-B6;gKrA$D1dnSE;hL%|W)N;F?6kmv6)kGqK##GZnN1@C_Cq`q-RhBj zCY2*=M>T%&U`vBpoKO96cqt$%|1g2~nd!agqgCqc z0?6@n+TL8K_L-VBIg??rt{!;uYH-=cTs;t?s0fBmBWTYwGc9{6+$ZO|`Q%WssLUZ1 zHkfxJGJ%~g9m!{SNlK?H9=k*!Jxaie#eS5ET#r<}=i4Sdw2%|?O$@P4#O&9*it}H7 z%IEBS!w2xbZHo_Z*Nuk^JS${)t2N zc`u@OYoATTk2|D}h$XJcapD>*ktaf5vwt-!h+Su7D!4H^R=^p2Z;^6?=WXuo+iA*_ zi~?RKm4Hr0E%>s2u@juMDaPpHt}&9HIxa{#2_PFf2X<#61%vs{jueEBw>Y7eTBL{Q2C9fQkSGgZyq+FmPc@vGr=MZLLU};2;-}2V zfY>1nI00U98FnpBno~RdFC)<_vm4`85L`-Q<^T8KkOEu*JtGt5!U4B5=$mVDO&b+4 zr_H&%ufDz~0-;SR0Z2Hut*|$-4!S!PV@G6NPmmEOZH;aXLEYw2S!fNk$m*EaHii3rP45F{Dd~X)k zO5GJ-v8VUTLi5xU#@?m0+7M9%N-$qC09`qyR!OX)Quj$OhRK|kT3H1}({ikbK-P9y zoDXAFO5_8Q#N{V{^*L8PPovbCK)W$ITEwCUmh5WmnW*L{`MF zDE+VN*=^JuIGpzuRU8u^s|wP(EU(_Y2vWFAekc83R!O;K$e?0Pg^nT7;CzB+I1zp8 z-}fnT4$OjYrrP5(Z@ob4R)_hg-UADn%G7>4X4!}Sw6Lo0-@m%)!P$<(Lq!F{&oBD- zS(MJ&q#i-3t!9s|AnI^N823knwtVw$u>LY(gNrUg-a6^&nA@LUPeM|!YK979NOkqI zWK)ssFSPUm!4Qq(nVDWbKuL+B9f*P<#4Pzw8mV(OgP*^D|Ni5OoxeW(dz>`LwFi9V zb2gMyGE?=omX@%?1YHx#$T1rIWRD-|zfLajkN)~!%EK!Dpwla(Bc%FC<475i_FdpD zyOVMt#kVSsQm@c0DLXl(3&uAAhRTT$2wET_jE$usMK|BzHQbs50h^*uqMd> zO8pDzwwig^rN!J{5FQc>5S0kom9(Z?_Q((0Fs#2hRz`blyVut+GZ~+)XHlqncH5oY z_CJ4K)eXQCFWhveUprSFTQ#nAhiRJoMVA>E&6^tMgvE&T;^Hpiw|ap$5hvImDFYR5 ziaYroSZ}`=LT1@;_u0rQ3XHYez#+08()d02k(y75dY0{bKD{dk1}X@yx`yHKA-t_G zwwe?;2IylI0(39CzF2X4up#2h>;z(QF=tGkx6`r z$?m0)i?VI;J4KVIBJIM?A+Z(TC6Q(J_NO7W{F%qI(-#)r_0@@~#(7qpu0I>sWKwwU z zmyeXNgd-C}YgEV;oxEqyo{{0< zUq&Pz(t6EH$vU@*WoHF+}qrf=!AZjr@ zJr61{iZK6ic^ZEPO&A@8(O|OW-3Ek9YCC+z;iYTf)+OoZ9xHZY_hQ`hV~BCRtd& z;L2+}la=E!B7`EW(ymWhGS3wfAEMC&HwV=NIB)6(f}|x|-q{JB9TRjMiJ5fl?%N*l zbW?bhVEX5of?#%0^~UD(KQN9Y z_1ia-RU-oUDc-@97KHn2W`50kBH9WdF0Sd^eD2j=YwR$gBH>zEy1Qkt>+n&hMU~g4&Q^-2$OxZd zm9%OfU*yWvHL0mVM+zA#oYvixPt3+Hzu;^MIKTiR8~=zz*t=#Wcisfj_k1&V)!3eGVI_$C761KS z)xhk6`Td0Q9W9=&RHaU8x>>F|#28J|>`n78LY(CPt7)Q{TXo}#oOcq&2mdczSdras z>eYi0-8~fwy%&9U05kJGiIXz~yemh-io?2MSLr{KS9%7S48Y6omru`y zw@2#mbUQL%5Xlr`?6M`IrL;mJ)kcRjv~v zod{&%=($#Vk+>#!@pd3|;~T+2L@lUUz1sBb=}s1wKGIMA^DcO~^FaJBJ6c2_2TvmK z1EzLBBmZ(zVV*wR+h$+hd8l22G&X_#%`dRJG>-wVL+!IuCeu*LJ68XT=E9V#4Fknie$?i+2gTstDW%6yfnumdX_t z$=n>T)CsGXs@69%kZ67feu$F>-j&4W74dXADou9QE~mtm%=@M!B+C3ZXdbWhjSbZ8 zR}lTOxiRv9-R#btHRt8q>ih8Qc@0%np_DmIYtqHr~uM-1qr%MNZ*xO3ph)qU(eLi4XJr zkH0ZcR{rSvKP|xhQHN4~zAHDMx0=;1U^Q@<`s3UzMZ0Jh@arrMG+DJTEl=29ay;cOz$-R+8A@Mc>`Nvn(~jacg-df5#Q`So_^W-{KmiNlGklj`#f%ejOFFL zXk=^kn@qTZ_cs?DYtO^=ol8=DUbmVdJ`iqz`E*RZ|HI5V7PY7n)o}C4C2GXrU-(l_ zSp{gCa1-J?E!I?w9{Y?q+sRI7G@`==d)4%EoKV!v2(vfad#bwi$@`w`P1_qyp4-cw zJ>)+|dmpjII!)x(xm5g(+Zv0D*y<*|?6lB)wZ~~72zo$%eg|AwJvQ}c$L%%L+hm8M z_E26%Q>E}bWlB@ocZ~tN7oB3c9 z9jQ&uTy9%L0;UO{p~k0d#4b9hM&Qv|WVCXEi z9r?keeANeX>hADduAEP*3>qBPA);nTKYuRb$fE0!atVa|7+){AA zMq8EFZ{M~v5xX^9pw*MqX?cec>O8gh^plocgooWV-uZ&&t;@3RR^wVhb}KI3DoU?o zgsyjKn<<{Z*S40`JdJ%u_J@ev-Kg_~*<=62i``aqy>#NF1W#8OBVm5}ks`W_I=tcT zriUjB6`&9{_cL%$&g*VpnE!Dj=IYN!kA5vzuxWd4$|z(ae6@02 z<<7_VZXzLt{W>QN12eO(L&L#U;|Fc`&=U zTp(xeh{6v618uB`>uEN&reCPEV3ql~1-Nc}>BFUqIayZ*Gk%ZH|j6;xE-dg0}N7F;drKwPYdcf2{1ZdJxHC zPWQi@)>nMTqC^8vFC^@H4lv<3qsxG7OTLnt6ZeW|u?_kxw zUJ@(ZbfiR#1Xgh(mS*$DW5U-Wu^maex^)_v`KlYI{ zdqX=WT>A{$pKgyS6vu5&5SxD@PZ zk6yAltL>UOmm3l@n0Zusb@XbdV|SW=&BBK8>4R^Nk$O>95q%`cVkB0|I1hVl*@}S@ zb-ly7I1ANYzh84C%^Mz&xJG1`1jfd(wU|~#xBZVlxi5#GC-3XM^ZY(W8qWtIn1q4{ z*883D29Qw>aHjP_-{9Tqks8v6z&+j=x*jf6_MQUXxf3BG?#EWbUymbk1J&M$WP`5x zW*Xe~ZldP`AvT6Y%#g>v;+7IM^hKNey-HR}W z5#3I`8a+CcH2HqW0giTi?_qQYk|SUM2?{Kk@Q@!n28ruSp|7r=SY&=+jW`iHTETM? zgyiSX4>4*LXadR`vrFiQLGFoNH_j<|s0GKp{>9$sR<`LABSuS+9eqJB8{Xd(vOMy% z<1JF*_KU3@jQZj>!(JcQrh5)g1)%>k9~e@1hyNv1XaNuiEr!LCZUqZX;h<4K>M}?7A+RAmn^TSmG(6xji?BGl8& zX91?+o}={Sj#P;hLF|D*EC@dmu?r0(;}PZ#ezK z_fnzNmwK<9ynMoDd!9X^J`Y(7^B+`H(5{E5dyVMS2f!0hkXh3gbms06Ki4g1B&cv_ zSFFVcI8Gj#s&F+;?c|~Ise=i?qxdpQwk6M59p|Kx_np$BvyYx} z`IE(t#JYTiX9(IBE_bbC%(NA=`}+XvT|DPjdO*9axgmJOIibVObLfmTf!V9DzJjv3 zy;NyqH%~cxO#~!PFcK~kNQSAq?bX(^N`E=>n9##!6SY;h zy&`TSK?T-pu4g?~P_*L5V}ybTGi`5A#5me%4Rwup7WRzEwXg>9{f%It+hZlcet!3% zXm3U0^Zf6zv-2ZI`%qQlm9&Xm#VmdB-U&5nkK+d3TQ?*SSHN{0=w+$b67U8zT>3-{0Rq zJv}`%-Sw#!7ed1DQY&4duCxB<&~bM!|6-W__U#ojju`oMw+aM@&dtrmUnJFtKme66 zQ%L;~hx&0b)5bin5rL_}FVA-6KX;BrB0Ie~bs$~wCnZA(io-K4@~}z=)TFNLgSG_J zvwX_@D^+Z5NMpy&vP0qg8ehZ&PdR+8QH)5e?bc|I^GFO*f8t+RJ?9qY@zbGtfOiD4`B#fk1 zgeR{)=qHfH#C#BOO&49ecAxKSYwMjwk`#8+v745Ynti|TT~>Ltv~+7Aq;}M?r`7!T zmG=c{@EhsqP<&Q6s1YF~CdQ&bx=V zD|HGwKA*g*m?DBFr{R`DpSRaL!$*Ssf$07P*pitE`Q#25&p;tJ^Riy2WX zh^|jgK8>sfRn@zE^r4||bh43r%Pz$%M|{*j)adA`*}#NUcBJoq-c>Wc_}8u^^i=o-?5nLa5 z>+-0#TfbOY3K+DRe2hJHhthE z?MZ4UfnP4zvSc+R7eJh>d=R!SN8CuhG_BF73sHBr7s*H)nE|O6!w( z4lfx4I~#gj&Unr@IPu?j|Grw_=dN8<#N33FDL-DY-;DG4YS}IOK*C1SSFq8*)aPl$ zxsj<-cw&TIs1K7WQqQ%YcNkX{j(W~jMDTw@hAuf}4va*f3;6x@pI#jNJWTlzp{Lha zuPDK{EjbOfES{LgM)?RM1V_1iG2u&K7vZT!m&K7IM=;Hr6{xDJ%9lPBs3#Vs55l7u z@%%Y8=YSe@?eubFczAqrye;>zbK`kiV$m3RgrgP~79t2evfcw(faczbx2+4G}M5zPFg7~F)c*fGQ8WQ8*ZaYNB8;>VD&@x?TzX3WgP)V zuK)f^OHW@zWr>Eiwn))!blp*ZRS>`J;_7;p=~C#mjd9&=`r^%m$6V33%8&YcPc8Dv z(c(F}Gjlv>U}f-C?&EJ4u7zD$qv=vn{OLYJ>B}*sc(nU1rEQq9s_I^!@4tTeFRb>W z8v|6ag-gA|2Iknh#>gJcb{$2|q_$x8Huy22t z{OC>cbGYH>R2O&hNfwvgAraY+-Y0g@Fzq$nZrlDLy7a;hnH3}lK1XWv|BAdI@I*l@ z>AmGCT^I6Q@{g7ry3p^kzL=ea2w1IBRn1}>39cR~Fw{TdeAlQ(1PFQr4#IB&p=v+( z!~?`2ynuxJ3(oiFTT4HZs*~k@WP9ucNdH`#yfyoZgz#jfBlC7gN*v8}kt8ya!maPJ z@I2W-Pq+K%@inpSXWj3}1t-Nn@3>5uppX!(vmb6C%-znx zA(-<4!mZk1wbjtLG>6>QL{;IU%oI>GNgFdKAKkn^d2+)F&9Cmo$N)i=`(Kye!Kkrnd|$jN`~~k&K@0kMw^?P zlC-*ewqqLZYDB={XuBPIiwelvK#^*Og{7r*+%Cf0Y8iWAeZ<*}w{ICu&t0VVVd1>} zo|BQ1Rx3$9rG>K|cE7!Tz+TeRO==-N?lgb@A;6KFj?@cX5`Oz=DPxkzeR`MIp=n8A z*EQ*N>$I@K_X0Z-2cWu-q9F9j$xVcKQf$vM=Xi*?ZLcfdx}{eHn>oHi$;`X$NX-T8~9l4@k z8OzgB$7iLEl18W8Muc*#Pd=&9eoIDp(}Fs~X@^oV&+5RGzYULCa+g0o4BkCh;g0Vd zLvpui*POfiWrxQ8w3B&m@d9b6n)cY^xpr7K_r|0!t;Y;` zG`KC!F@;>@=Wi_V&pHhD9*u(tHmtpH;R60M_=0d25WI|}WX(#e5P>D`l5+jUiBl>n zcXD5JmI;b|fE zbRE0t)K5M-=~u@bAoW<@LYB2Rx9)WXlVu5cw^O2(yNwL_M&b7E%*>hJ_pIg{PS$kY zCG2G(r(&M{<>4jl@I(u zo@h@j*?IN0m-Ic0#M;8T=!V(tZd(a3rv5V5(K$E5Fn^r5(yTRos6J9nS(zfaZrrW}N&Kks zgD__LPx1VS*!Cp?`sA;iIG<-jUfaDds}3Nz{rIn-Kfz@(DXVv6nMr{|iRdz$j$HEn zB34Vkvibm6!N|O5T=u(n)FQ)DO3Er1FjpAh2H=S>8krLrdGeH1LrLj)V1KXjZk09J z1<9in{$Ia-1$186De__$TRozz(Sbu5aFXURXs-_|bY=r6h>=oyo0T=}Ec)yV6={6> z-_KIF0}~82f~6A^qnDJZ&D#kK{JrbT&+t~wem%od|C&9=@!UjL20!05bl{-v+;1R5 zO@~}fM`oArV8mJEdwG59BqAf6^CJCD`gHeqlBa|d;(NVF)G2z8tutJHOjfyFUS<}) z@m+GRpsl*y@A+fenmZvM5=n z!%Jbyf3MdR^}@p8*CDYC69_iW@30eeuSl{opz}YiW?Q`5L*lOF{N*Y&6_q0k zTjf(FTQ3sHwhPzTq=H})Y$mZ_``b!uKHz`b!oAJLy z>`Kd+xv6Qh3ExiDZ&=gFDH*7aVXk@sSR(1on>WS99pj59M7$iBCfBb-stCr2N{Yn~ z)$7mSElatYZ+~X}8!w%io#PzqBAh*y8>bwXyZ(F%+Ep5SPn!$nJAILr-^A8AS3e&9 z=}kh=BTe1&n#jrPa_OWr;g}b#p0e@Jc=o-pW_)D0|2aJT&)VW2k>yllb7!aVOkl}~ zj-D89_%^oJxh#!*`-{S7-3=ez^61;8swFG^vm3MXdo?01?Nqn;UewwlifbKQCQiKseOj_?-K!?Us-TC+|_kc znhy}8GM23qIJ~m8iFouMb3?_j%ZSerUtp=DpgeegNHQVIg&qNG41m zI3pti0t}qtyeYDZ0ZIh)xEQmE_uC2HGc()KvII%Po)(P!JXirsN}wb~*4yJ2FH_PB z)Z$GKO@%pK`VmFrZ^!NzP2*)*z@J4;pni{-tm|~J3Vw@dK zPQFsy?dQQ>>M+UC?&rbBP0@)$-KKfRZf7=s{XLY72sxqEwrkG$9fDQv7$EmAVW)O@ zU4g4Sb!;uQTnqCr3~1M!QLv7T+6W^)Hpyfj5IULi!4WQwOg{R!X;4QE3&f%e=#Br4 z*M~wG2G0jKWx|jeff$4qkQNOpje^osJnvYZ7fS@0Mi}e50Nj*e0aB{mM-HGL@Ev#Zse?-%Cr0i2F}i+KCnj zLxgZb0l|onbXeD*?wQP5`7)n^sEnQC8Kw}MHpUv^#e9E~kH8Fjq8#*Lq3vijNXly;!ho@2dLFo^w<4tHmEOx@2W# zvJ5rbd%sd$MEd6SF*WHGGuroh-EBENH>y;7_ZG()wz2uER6oK_q4Uk=&dKJEN3?HA zqsW}NKTrIYs$2sZ{&{h6;AnXNqRn#mnTvdiS3~|Hj;BhDo27Dz{@2fsrCmn@>FMaM zrL+VE1p(yPC6qw|Kn+U{6&XI?=;Tm(HR@BL*A|wS+ge-u1mLPf5uptc0-aJ*Fz{Uw zwf#k2{72zI{vSUk0+|og4ykj@T?=p&A~C*m65Cd7<9tg!g?&65*@^J$i;IiRd?I=7 zzmYHccNgzjzYc-m<>loA6cp&n2^G;&(nRqAj+d749D(I1PwmkrXChe7bv!p0v80uh zl<21<_Dp+@XBMK(@*~bW6@oESKW>~mR?<1&B*u&=qT=Cb{9^0iH|)KSztKn$ ziQT6nJ^l|T$4UfA4CA@~cD|r=lTK8Ea-(Z1EG(>_+JcVGABYe%#jt(e&Buga+7+0< zDC*X3$dk+YvVI7>^p|IBXe)!x6hqw=;>B0z&YqRxZ$ACZ)bNQ&WIc$*K`jw)BBkec zA9mqn={Jh(i~9CozNN}3H_;_OTC}u#u?+g}e$7tz!xhF2jff+L8im%0{SME(y-puG zPoTpSc8fe%FYF4F$XClw>GEySQ9B#ChNE+THB>b#UUlYN#)B(M{V14HHiC!{a%Hrz z=NAB<6}Q0pq@u1{bU$f(okbZb_rO^w098%%YBu|IknDy$!c7ALqR~|^wb=s?k$M|- z#KtlylS@>tb2T@Il8o+3-DO3f5ORI~*UYjZ`op%$qRVVv{T!+s&gwi#xp~ELIqh(A zc}!RFvyO5GWtFV#I71x~|1bOZ|M^{jlgmlrfYN6jV~Ji866EfqZ7^M)?VP%m|6%g| zdLM`_H(kDt@iB{}H{4w$bh*24Fx(&9^q5A+>qY)pYbA(R^EjcJfQTGFTArvYrXhGx zkka?;%L+1M>v;Ko1P>H_&_g~guDz6&2F1v+{BylT=t0361+lC2$+fE}t^S}V&_mj; zp*L(ksCeOug2Dlw=a(yE64=>~107OTR+fDn#CY9&Y;y8!kvhCWC@E+gk13YQx^zRS zs_FEuUBWV9JL!yjnBAZ;<^JZYKhhY3;*>M0Z;Mv?9}{^cq!uEfhABiBkE1WIFC>E> z4=X&~=~LXY+E`_kA_A<)zIVmhD?J@roqvoOgx`R692^}X9{pnYFRtctVNrq|GsDjb z66Z?b2`GH#OG7jQ?tgY3i29MRiRsLcCxIP)UjVQzWAK6I9L?dZXWxcLM~*$nf+{J& zr*ep9Dy!5h`OAC$Cj$gRi1gUS?(gQE{wX(Y{n=(*1?|hZL?cjV%pY+@{sUqisDa)kFUO^59A zJ@4g0;1xer#jSnnta??Cb=^#2Z;_U6Q;+o?&-KX~g%>-|?R$&u(Erl{boeYUpSf`1 z?;u3~FSN89dTc|SR)?GfWbGW}|N2rMHRt?PwnRT)y|0RUuG-I7l!#11^Sx|WPW(rc zcZ`?%`--lsSd30)c9*v8_i`V*aVIWNAQ%ZXhV;gK^mv)k6@;(URPhYqJkF4BA3y#N zP&jN~Yp&$brC%~A6TP8JCpl5C*p1s#N(ubI-hWj!VHZF&i8GXKGVnXmhtmoFM zi0cvtb+DAi*Jf}(fhgWh?2X<@gWA2%{T2cF2vYBLpS-7A3adb!*#AS;cgIuxzx^Ll z*()nM2_Y+)C!_4_y*Hr{$zG|*&fYug2-(>rDv_{}yV~s9f?%-35Ro8Dpq3~sw3k70xy!K=~gc(B- zh%Ofn6sE`+N((NE}~53Vds|K^>0`rJiLZD54rEKD=x=A7=5<7E8+xBCd^^g+*(NUN31By-A0qooCKe2$K zoa;)WefhcZB80_oad8#aDS=7}kw>gW(%0(+8^d6)o6*1=~F$YWW6TLax) zLt}2|5E7nl-8uyhig?biI6FbHq*mcz3&KnHxv98>D$)Ypu!cIdAP1q0OfnA8U+lMu zA-f=}A(r8^ZWjpdQ$s`i0v9P>Eov2yj_H{}4a!hpwRL%erqAUN5*EJR_yJO+D=RB= zq#<|;G|fs69so%Xc)aihuqfPmj*bjJ3R_xc9BL915>y^A&NGjmou;y9X3zTW5J>NJ z$vMq;{aLFkv7#XkXW3aP`IC5S^uV#XE5vQ9^YC~B?cC&&uJ~OaIUsTT&UVKZNqXSR zC5>C6>#{%1{?6FzclF9h5$gMo9~d(&7*DNhAxK(JPfuPRvh#ow33viyv^?zgQDS_2 zU>C^KwE1yMuP(!nLUss@27FEqXw0y{!YXC<%su_`TZyCB)78t`d5t4IV`DHf`~c0y zD>hDO8&MNE5AJz4GuG=7I$cxE96dYR2e7llO>jw5NogCffjWy9VlA06o+9r~ft3pY zxyUrV(aoE^us%PmdBm>GO-guaHsIW^Zp!4zKo|HeckpN+9IsSG4#w;J(YoBema}*G)Z8Qrh*t zi@%%GG3AKO7e~Qm$bk_M|Hk+FZuyD?KI3 zI?w@OQt2|p`8DEKSIp_3U4|1z9{SH6Dg;bwM z9)`ck7KV8d`=Q+1wW8X4-mt1WG;;2|PPV-t@6)+3376wg(?{X6u`C`kUX)B zvW5n4@A;Cr?E3mca8SPvj63zKe}gU($oDEUV!HVBUf% zNl8g@tdk=n^IM)&JjNniWVgA~?);fiaRyv0I-rHJ8x~RhlAD2^os?G1!Wp)i0j4mx z^RqrOr_Htp?0N@+17QLbnU$`tt5Un$DRGVz7`$J^-3L3OI;RXl);_`Cm_MnT4i;GJ-qn;;WTxH;r5O?JH@Pd&EgOF{D@?YxK z9?9(<)~JXrWYr_;{KBQrf4s;GC5`s27JD{(7R#Jhz1wVy-vHGv&XrM|4M!$H&KGo;6i+Lx}`@Wo%+Xtt_(hDt}skSZ;M~?ce?Vy4qTn zyS$3zgFDdZf@kpLeE+8`9)bJJ-FI|!G&CY6A7?J(`o|&sQdpG}+OzLIMitnDws=|2VS8T+-(dECe!s6CWq4>u%9WMgwF(e`s6)N71&F9AD}&R5qY=CS8<{uib@X>pRA6D>Y0Yx2w2Ns=KRDgCJyB6@@@2&Ml!QHQ@|IenTT#nOy{VK(lh2c z8xZe&zU+F2gi*@KlkgbMQhN3+!Be< z=6rP|M9EGXhv?uNefu3K$MnR43G$&dh&Re?(1AXCw#Qw&DQa^ay=Uv(#P4yuCZ%Eh zXtnt7d<<^0bJp+T!cA+ujAnh-=u)Wdt7ww^oV{vbrJo!B~ znm?j+k~zp79ShUZA1#g|g$2`u=X2it+C!Nc7s1$w(SF|LxCs=IfPhxrk{gOJ!&V;% za6A`@f`J%n|5IHGi{@jS;9`J7%P!Ql0QU+e1{r(on$sJ?ZHGtD5Et(F?d5cwkY5THMlV^q45laE&n99c3OhTg%bG~XJ^u7Wq?~03oj1Obf* zkE*0(6&T&iZib{UAskYHHK;vXwGhb0vPmt6@)~W_STOamRKa)A(q?96@X1WAF^UF! zbV;8VX*QKy-Ggjyf5B*7Sq<<}_~GOsE8Cgw*Y?FlKe3bVU0q$0MY8mA8HzJ(S4dD0 z_O}C;@*O!6o4KkUs8dgat8@EV+mHLu#nF=E$V1klAMYBBKQCKvTNKIVL2>=@g5^*my0xMi5ot9T42D>f!%O{L9H3gbY zQVYp^&82pdS|gfCT5TgwI^B_R_wUerjV{yH{q-C%Gn;iuAuRXXki~R!nw`Cd3R~wI z;~zaWQW$iouODdA{p|;13xL&{#DY=)V z>UV*~YUAJkgXTAFEbB8jH`r`|n=0Tn>(%gZd*-cj843o#QW}J%N?~1&3WFFu~2#SloF_Z9JH)2vLI#IIMC0(`fHVt7F*QGbkUd*I4<8)>^W9l5A zc206-!$FM-n7FHYA*OEV@MNe0rUma{aPTF-FB&U;k;+ z*Vq1yAnJnR+ps_m0A?p8*Lz?8ub(qFk5i@_CmF=w`gmrwi)pFbC@spU2u9j{;E zZB38v9?8fs&>6!bZEoH*as~zvE@7UwHVB_lwBem^^k!2?9%%H4tKYnJ!_aW^=J@N+ z0$zWTZC7U$Zur@%nWsO6k~zjAwoZZ-g%J74Lyb=i62Nq;gbX2EavW3h+TL) zq7IvSh?ZlVUSa}1C<^7kV{J)Ix`|7u)ns~>HoMSzs6rTM=O}v@z4as++$Jy`L`LH3 ziX4FgXMR4WNn9N-X1juUw9G5aGG2Yh=$c`Ngp3U7c2)e&d9w0Wi4VSBFVVMhNKsb64_bLavNU1Zv3=;KsHj8% zLo2)b?R%uduc%$=grTfh8_|7!ob{2Eva(pQ%8|}x`>m!?Nkr*uJHwL|J)n+BkrvH& zODFOx=1QFD@9d6bb8N@n$gA(q==a@&(DI21NH8bB_q6`7w&zXY-jkKYN{*+k1s156 zCi3_Rtqj1;14tI2uLSh9z7`>DSji~h1f>X8P{7og#zJ3#dlDxb1L86Qh+yOnwpA2aS9&Z$2+eQ@2OJcrdnND36smq z^81@IyTPvL8a5CB?+v!+t{KpIY7EgIA3xT{3ZNacB-1VZCFG>dK%853MU54K=vyp` zmKesA-0vuD?TEz5GKZR9Nv-JtKe4>#?)jPr(l|^>Tzv1AdWMz+f)y0k{M=uJ0)&yD z%t?7$k>_m}wu3HaMav}iCQ|jAov#4SpOCxsieOJDO}9ig@={-4pN#>$YtVP5C<8hP zuF6m$8|XP( zT3QklsWQ<}?%T~F#2k|6Es~9S9#-hHF*HkG{jP=gTTT2S#b%*7js2mk)4ZJhqyUoY z`iVaRA$u(?ZE|f2u1wuh-Fg&0zW;3z9$~>vkJ(#4o?K8MANn4q5^{r_t#6^i>QAjB zYza|A9227yXRG(G;nr8gw4xd33eu!>LTiPTDX;=x%RFZC{RysiS}YbtC?E(M15l!) z1FJHK(Ce7n^hAPLMQ*O;y1YQ|poEpF-?Kk{t{~y1cBe`vRv&pBz|1^0jsh1f9{s=@ zafjybsRQ-mj|K)-GQKE=k8kKKJ)+>Pv@SLAq7q3%Hpag&QUF-#-q_sK zo6;bS&87;#CjZsC#(CXfR%!S*s8f@1D zAUqBhZFxi10?T_x?FXA)H-5q{2P!x$BfY#tQI<9aRHEnCjMx^K`KCJ3g}S(YlF_hD zjBa|&^p=}O-ozjJ?yZD4KK=55m%q{Df=VCs;{~57LheI^1H9Hc;jcCiH?ClCt`fJ?ysrP%^C^3%p7=BY{-;D^y0ioP@`S%Bc3;fO!!Cjsq*6 z{5S$KJy~A7SXsIKH{=`}e(Z6~PR-PppA1*|Zt087!*8(RlQ@*w@}!7<7;#spF{5=& z$YP9>g%lnq;>L@nGqIhz*5VsCT>VZ{lHL^1#r4Jyf`5MiON_aJ`=)&?qz&e%J35vE zu(&6dQKiUAE^YJZV!7_F2;hbzTt78BRhUVo#E?|sp}DUasUG^4qfjuM&=cn=;|E&= zOEks=Zmg|=apTi#2IW11n*Zz8vl2)FsD@U85oFpxom|}W2HF;EKV~eyLt`*8LH*Ah z7*HdjG=`IB1s~zjK{5cSK)~?geXUv%)euEZa^u&d>M zbVX7@17nrtjo)Xxcyy!@39i84?_YnskwnGYWyPP{=wm2>3lJ=XbWJv0B?(DbS;;9d z3u4a3pPSpUx3+2ZZ-%^x=iFBq7&z|0HbZiMu%uLH@aE}#SWxY?UxvqISbDe-5FpnL zsVJ8SM1=);JmTY;Y{I3i~?(d(%AU;_s2qYQ+`6-w^yOXYiR+FsNQ=iP$#MS%wB!l z9L*$|3Fc6f+)5KG>+4{)Z_XFdEX5Ql2kR4-7~IMz5cO1Y=i%M{j@7*dmw2Qc7boX$ zg-X+yWy>=>&v!*zY|?_X8GW+=zFm3&YfH+~w`eBttc#NQ|3EHuyPxJ=qUPZ$!}#w( zWT8FbQZb4a7YC$306$lz$AJ4YJPPlsNu=y`%NOmCw+9|qWkUlta7DrwfYb#3R?nrf zo0^&c@t7Hn2RFyvm#}b(1I1fV+n?{9XNQ9ep;zp}ahQjyJ^OBLgM{vuq2S-CP`J>5 zAu*8AQ%Qi(Mvx&cFk`WqlrX(_y&6)wb%&TR zgXO|=^YdMPW89x4NAFxALS#19# z{9ut6?Y~8^75kt-B4W#2C`~aI;@fI!fajELqidb0tEp+3uI|v$#7q^w2O;*r0FKlr zA(tK6*q@k~;5DqaYhY}F>_?l&qV!Si%9nv9PW$;+XE+@#t=zE@tbUeaN=KHVbzED! z>$UwBg@XM#pcoJMhK4e&|Lab9ItOZF~vK8Eh6+ux{>5^;7S8# zVgT9ASm&#nw2|BcI`R5`YjnV-^x1C5>q~ql-o@a0{#K`?Yk;RKRuM?&W9(UfHkK8! zv(Y$M=9ivaP-f9*!>-1%Mxmli+^@PEE{gO4F&OvW|7bbrpD8}jDGoTfzw_zJ?vyi0 zLK5^bhkL7s;v4BXf1O8OoyEw1Lub-iU0%)&CqMq1QL`0+HMdh?RQrDLZU~Xr6OP5j z!^@06$ICK4?JH-B7b!w{W-VGs;)ty{o?LK!@I0IU{U9_4MTr7bOZ2KQ4G>|zq)q~2q3QY z(3QBI)&uGWP8@(rMiXj7HUTV!4SOSeuWOzG%kAAe!p^B1iujjafH)Q~&K{!7+#;Z< z!h#ia+k(%t0=`IMnJMRF5q44>u~f;>p@MaC^0BmpIQ zJ0*Ja%Yu{N#bmEWhur&8X0rRJ{3cvij%!5%j2#PIa_cR}6iMMocS2D%at4M!T53>q zVIoKM3MN=Y5GiGbjKoP1c08e%bOv6iIgKqJ4XnPFm*FAr=`D3N(xaym1AECZCQcsvGw(JnAKtB)NaiKS{#=a=uMx!IVvXP!<>80nS{|L_HDwCdp0@6cB`kcalxbX~OHk$nVuF*rEpYz?@L zu-dID?XUH$IIW#>(=)cvh>u-&dSfGrz%#!<6L4HWA%)9Kr2c$+(<>9{9&tD|yYxig z$Y}Keo5teiH-;STa9QJ;u*P%${OWjI9Q8bLWzwGeA%aG=>M%@x4iXp$`iAj-Q8s+j{LRwZMc}j-U%31Y28}Wvz|&F`dbDdMU&7+v zxs{=Bu_rOH`18S;zwN%$?*u*VaGQ5R&w9%JPrb+N-bOKWYrh!4|#|kuls>I*5pZRAUM&-UG=G&> zglA%62Z9=5sQ{ZP28L`@GIv~ebk$Uy*75!YSA2Sp=DzL~*qeL^(}_M0`z;gvk!f)&Q+&^V z8Rnn~w-yLue#0s{w7!ZXovh3TQ7l4fw=h5ouq{VS?*mT@Y@WgR;Z_u2cYtpYran6GS;vCmG4)Mf+uQa$4LC~4NoKlx-d^oN8aBud3^qOc zlq9kD4ZCV!u6eEkgGe^)_nsKHY<{%=@*URs5|G#D?hfp1pgI8SM~i|oR7OSvqR6ih zWm?h5#j>i5-1g`OMl=Yve^ycU`dG`0{kb8lp`O$@)IbPF4szmL>v4ksP(D<`Aj`=+ z`|I#Xx?zld*Rj(yyYY~w!2Bf$puxNqcm*+df9Dr4hsj(Z1-3hKdCTkTU=RErK|5#&4W?tjh@+@$I5ayN2LU$?#k@s5<*}hgA>j{TStc<)`KR;o5{N*sv zv;WSoFiLnrardE`l?POMAmhjttt(rXSYDVABj;JkpC?n{r;{i0Rzi)K}w~7?g5*{>ZF{ z81Wu21%6F!Ed=C%S>~ntoC(kqaQE3(8N_Gap0YZjk7b2@CWx^(HR=9xt}s8Uo09KB zyU@$~?_HFP;Ru5mk7uo1!0=N3&qwp(BgWQY;jxs?*b@Q1LZ=0GyFj)Y z@KobZmt5;Pxwv2y2SD>J9o7K;KSl_=E7k(NJ4jiL>(@0#Sbjn|p4|Xq>&1&u{$LRd z6?yb4Gr$%egLh%8^YnJt4noS!<4U9Z4KPJkjBN-G4sylq%u}M`O?3M3+^kU-&PA<| zwS<``65)@a$~JFt#m>gh#*qqlC_Uff?T=G~5`>z%Ys%#s^oEZ1pmBrBsfmo@m7U{V z8)hc_q4MT}$y%c5&Uh5(-k&7HBGkHY>($1UwAL*^SSqW8a*MMa1c$>Yp~r*2{#pt_ z@(OWko#l^$KE%#GrA_TpHUMP_dajQquvOyNRn4{1_~%1$Km+ZU=6GPyrCFiXBf4*ybOU1K#KV)A|Lw}Abpo~2346CiUeMeCB8? zqb0R|NNBRUoC&ZdQ(T|{?oS_4L4Di7ZEyzS6a6dPEPmx zYHDPhdC8x3v|&97lt7H&vU_1MgHKx#;sA+7n|}ds0 z((8c%Ex*wnua!783^f^6E2;gJ6XLfj#+XrxsrkJoIJ-j~hZl7!3iK z>$jzpy(-v~%m-kZ&_8tJ8D*jpl+|ohHV25e|5ObQ19w9pLeorgrpYZ*uIa=TnnI~O zsF?4Ir^h$7!~Exo+|jBD77McBa&#{&>vrm9I8FUUCx?Ru^qb0~{nkZu>kUjB-0W_@ z4i(74@#UjA0Rc-fic>%VoYuiN+1wmhov8&tjs}VK)Y{V(iHHHf_<@Lr3W3`N;sDWy zvf)%ZdV0~dPGDx`LJz9p`$@VmQv-6p=nC6>SoIYJKXSha0jY<+nHcl@!P33e`oWVc zo3cy?z3RKqF{)g@pJ;5@(7U;T#|B80z$=wG$ zdN3Z#vxm9=Henu$v)g6Mv#Fq<%US?bzwH@?OBaA-3#9XWO?YJ?im#yogs{XJRVdWT z{xKv?!G2Z&Eu>6}nS()E(o$O+jb#k#Y5-%)S~CGB>YPI$Sh4lq>CbI>$`J=1EnNA_ z8(?ATN7uOn*Idk;>UqjxeCx84j#od8Y1q(54owe1~a2b};`#=7ytghOp{`GFw za%Pn~IQ?@)4Ku!dCuNS0C10QM0lbZUG#Jrm{f#|q^yF~RQ&6l^11nI|Fg4)70{&db z)@|gzj*Y3e;{K}H{PVWrTY^x#TYjkd=Vq40{}ut#oMNmD1i}`VFFYVp+k$ zCDBIyk&UXeg)!Ri@Vd;$3|~ zef7m5`ojO3734u+0&NRzB(cP@Vk|`T0r!c?WA%3s+^_YrW@fVhfjK*G@HL7n#$rDY zoLDUd1?1zml9X6LOmA##9Kr#A0&uE?O-pAuHAX7z70Qe|_e2Ez{>)mMU@#xOa5HT8 zGuL#$!TqVZ4q^lWep(#seogts@@&Wree?UFS=Y?$H%i)g;~j{-guvdn1zOC)2F8(H9`RObaizVOR9VVY!PDE1K8rA8?iN@ z>Xm%U2ov0;r#b_-tPQ}PbiXjmzrl0smjx45eyqJVg07%{y`joPv$`D zYizg_V&4n1P(o9Li(^+Lm|#G$+K4+}_ZYhxo&&r>n0bL0XkY+*pEp=EC^_lkA@AlH zfmab*gQ9DUye6L4U`+9sM5KQ%30N0BDy`GbaB9jYrMO|@%MVHfhq}1_{%@m+ITgym z{%8i+3?VRUrJU@<>x%ZB`2PL0+*$0=OqXTbJx!0gB^%t=k+DiQh%PB60u4WG^%6D~ zeK(xXuTOXyj=(EKN9S3+v3p~N1x+j~SQf+_WmIu`2*Q8?%tb-kXVE=5Qgu-<^uxp- z78a%`{4~X0z3cd;*o+ko2wZPb5vk5`W zGLN`c_%LwJOfyjanQ>kH?nbaXXR+ol_SHwyQ6_~ywr|%gz8T4tlsD^_1jt9*`yuNl z)EIt=?pBH3m3HQt@$pMfxZ_+HC5$JBKaP(LnU(|j0@9)8Uf38wa*;(c3I$eB5J3xy z0N{23C$DHMg}V~X!|2P8v^19TYIg`%1?D6FtwFSl&1V)y$OcYOcL(oj|b^c%g_AVjr0 zx+97eoq7vcZb^N2+{8Qh{&CCTvKj4A1Z7h|ro2Wx6hA#ZI#6c8AmdazKJ!D_m7bY> z)1+~!*+-|@)X9$Kf$V?D4nUu<)1S;rR$BUjm25t|A-esh%E3fy5I3x&+CJ>Gsa@>> zX~O4986&!FPw>P5rW;i9pL6elBy~MKHv}U0FhLrY7`hM+#W>FgcCSt5ozGlW(d_%q z=R(aTm+s@ex(A*`=99$1V7#{E)-dz~zaYq=3J++{biyd&%R@shs5Emi6%2h8z&)IW z&!1fu8AxANKQ;hJr*r-qkS&TAYb@*OPiK7ojHtm3^B|F;x*Vc`&&G|c`jWa;(|@wW zXd+-OGwT~?XCG5i(ryW>zj|Ygpu|lqY96cs;kFB5@(0oj1b*-&&7Vp7Jfvln_xgRv z9{o9Q{dm1hVsu)Jj4Gs_`}!q9At9PCHcpDk6&;z=p`nu|0pF5O-&f2fCr3sabeDC| z=_~xAv1$*z!`wl`NAsNj-sRYaG0m(olYKvH1~0U~r)=Z0kzY|hTR_&^vXysrsFKR< zbBV#7^PQ$4yLeVS#GBp7PD{qYS#5irQev zWlX6n+Xk6;BZX>UIkenQY{zn`nJ&qO>UUoR&(CKFH>~n1?xl|=k0B)Epx@rsm}9w?c|D@oe-U*lVf z)Xecz-Hw`MsT|9v9$Z(I4xIKUCnE62fL^2e@>N$$k}$dNH^@T)ug26Dq^gE?j=I#c z)`*83Aya^I^YOazDjyB47o~xyQfNN)4b){>MCfMZt zy=;4JSv?`gkGHR~FkVIgRS4)re#bp(l4I}2y;4O$_h#mDvGq~X_i?#&@es9b0eu|( zDn-9dEVwt4b9>T+2M-GR`Mfke1y)3xZ513lFfC}r`reGvEpe(l zPJL9CQc+<^Y{|l|FY>g64z#SeVl4jS+!7cc~|x6*acU z^n^XuG^eIQVX4?qXP7_Zmo!~RQZg1#L|0v3&c{~yX`=M{FBfE-!54uRT(+=atL|@i zeO}*wIBLF$J=}zMZ>I9qY|Vp)-?UAp>~eBaBT^%;W5~e8Yx%|HcJt(=68X5I?r0{c zfd7sWJPq)>QOdVVrNXgj0Md29EZ74)MYgOw5e(Rl>qMeoX>cY0S{DIIaCp%GvH<~? z#_w2G$Tu1F2RJ6Scj4zx^SmK|>IgfGpPbQ0aZOKu>>vrRn~mB+ii+TdVcU7mjp;34 zxXdT3A>@?qvwxXEex@k}e#+$~=F68hEw`}8`H0?43ern_fzFVvZ~J$@mY4{bhq1)G ze>|Bx^EBGFiVQtq5rjyUBP7u(Z!H^Ny;!dI@x8SGh)J#ngV%P&rmq+b$oE(atxv1%6x_g=wyUU1w*27NEKNEAA-)_G4LG-!^uWM1 zXV6*zQlGojT&gCm4aS}7c<*ZbdJy%0Pb6Ung{%b)8>~xj4lBh%1jKl$QHUVoXzmvd z@-xqG5vQ)79t*{*?v3!ea8uoP9E0o*ow1u#Dg>{X7y8o-ntPqJa6V3<9+VeZ>uFHPA$e5ZQft>#GVTZCsdJZy=P7(CW!agDKfBzDVBmwS~C4Ufef!U9|WJ2gL@L#bJT&Pyt0?jX^iU{iW z?Z7B1A4M|)WPwEpfpx;?!Ez<6Af-E$ONpEsJDAy7`KFNdRdBkQ>-L}=jQ~nA+WWHFGX2_ zk0lJl)F z7PU%61fA6dTvy9TohKWs6@rJwvw3KOD5{42K22~6QYswvDTvwa*)tV;dN{&%SuFI# zV3FtDoT<#lPk4VrQ<_w>m_lhpKYgplRzOjB`V%;K4-ZMd)$|l2Qcz$L{dl&bXKj|X zvQ@OBs%w>8X>s9vAr9W)Pd}M6`)*m@2oR+iq?0EZQUDZKm7ExxkJLN0gfbvcdg zTF2qFI;(y*egVxu9W%DRQ&}f92-Ye6euM z^G7rUP8i&E!)pCKbn#^IVz31SAFI&9Y64;=qd-stRa_#=`SYs@YpiIV@`tM~8HCcL z@CsV;8zdHf8+D-sLTPS&w@%7TQm0f1iRK06vq|Wo z`u_Ih$S;)l{P~<9z!i!UF0e>r!Q@mHb)P~uYF;2Ef*IGS_Hha$2TgeA(J|z;Jpo4~ zZO&!4@8}(X5hx@eV*vPXHHNb1CcZCeq&d=rccSmIt$%w?jURB;l!nIK)I0QOdZW!; z-P_yT3GGg(u{>>~YFsrC0}EnG&uqPv@EFh~+;+798Y>{u1F))a0i6$3;Q!c$H7k5r^ohj_{<* z<$)VSNN_L&BTcMAayZNuwpA6};&4zFjy@qTM$Hq4+{gGKzFrT##G^j)_1m{^DYqZ8 zD&7kLZmwLO%ddFwl}OT418a}IMX(-&3(&Tz(=rC_6>Py%S$B@Y^$fOH*#oCr2yFoZ zi}2e5dkDae>xF~#s>7l=z<>Gw)QvxFEwX3TO zF1%vx&maiYwC|Ez!h19P8k2mgqN8JwsIln-=`tzGkcTNP1~f@RcCN*$san zEH!M*vz0bW!RV)*$FcoGGy;v~)!BL`_Vg#hE_Hb1cC_9J+Ta(QNl$@dwzwOCEQrg@ zSTqQ#Yk_>ye7@UwkShl-iUVt|s)KtnbxoWpMfZ*lO^6ckzVj zb#lD1`IKaerO6{$k#ZaA>Cr&k1~SgGY_%)k~iZ%Jo(zg;;v} zPdHfW9BoF<{KtRi#!!_`)5tX5qALqq-HWA0p)q9I!)AiX%rs}a>?2PH$yh@jr^Qm0 z9a5q33bu%41rf1w)#Mpio{nLJmKldgtU#Cay(J9?Ut}jAvdZTY7FTw5uGMs=f(=jLI zOk(ZwkdNk_E|*yT8`k;=H3QO@kXo*kKRi1d{TI3>Wh7%aUqo(Ec(I9I3AQsP{=>$= z-Oa7qm`9J3a+G0YdK&&o-a9_8`Y24=RuS;dJly+w@g!BAdNb+fQZA6UKeNe25Rf=pu%%Gb??No6?Vk!JmQ&UqJs_ZL%8BVfMJOPj) zKu_HLi*ThdFQtF@@7f8t8Vt%45@igMl;{@k&sb&oQ4QLT4X8Rgp&jUx8XM&yB=AXJ zqEeNYr7sd?e<_eV5Z~Ou_$(b2>*x2S#V;6|awMZoYV(QlV2^EFt+TVlp>?7K=W=zP zHa0?8sx zf=pgdHt{1NA}~5@d`QAChN`Z6^i+~6_~z>PRCa66&}JU-*S1)X2+|xu~9NbTL(<2 zO2M21Qty_h==)?rk({8U_3INEh3qx0j%6qGlFW0q6Bl|tojZ)ta6PGW2ri1y1cP%P zGJ$qr_J6nl$j3E?(*&V-#t0OOn1~3BK=6aWh8u)9AOeVTf|M$AzHHrd8?Sd>2Dh-H z8(=k5Ikg5501O|eXW-2UYSjnm>1XwM1fC2CcvIdnHUygOz<}s@8)6J6CeTkrnoP?f zpAM7I0nQ8X-Kc=rl%9w*Dcmzob+-wx5QhLp2>(&PEu`~uaCvr_-Aqv8NqSTt|ILf= zlGjx2&Y?vw>vQAvH+m;kgXDgGh8%)vdQAl&La5f}B+}(PArek*-6A58*6!|(i#L*DJrbnGC3E4$W+qUXu1wOFN4Gm zJ(I-)OM<({0cRwpJcBO!%a6?BoLamp27hBqU3&sO>tmt8S}z=gNL1dENL;Trgg*}a zSP;*~dssKs?~*>|kWpz-q0OOm_E~Qr1Up_yMi4(WSjg-f42)OUuo~JwzRMWhZ)?7ndP zgdR<$%voDpHf`A&f4Q&U2Px@k6(fYag3e%Bxinr@d~>)2e- zcLBc1-s&i$0UsNH6mw6q>mv8>$&pjF;MO#oeAtkf^O@}sj1=*qinBp5%gF&~DCm1q zv9eRVv!~9nw)XLQw8DhxgNSG_Y0sUwhtQWD^7til@Kc(-gAZsfP6Akvxtdy#Q~UHL zIa%ut!`K|@Kn7PBOS!#X_q<;7UZQN`qT|%>t911rfcgRX;c0;|`t}U^uDkeYPyoc$ zY+Cn4;JbRU_8<4-c$ZjNNH`xz7rkxJtk%Xy7&h}nEQ7k+()>9#qlsT{WyHLQHyQZA zgH3I|W{PrwJ~x~;yv8dTHkTFC2>gzh|6^7#>j1+6V;*Y4OJME&>z-OH{0uS|4_}!b z7Ng)oiRt{lYb2||ozz#v|Lm%++y3_LEKssJXhnZdY9h&M$x-Dn_r#+S~3b7vc?l!pZbn`IcxxWU;B(27V-$Z=( zWtab@2MC763OS-?y&m??frISy80rF;I>5j%dDo|B#&m318!R^@kFS35%HjRtRoLV> zHJsHa5Hv5M2r##1BFF?H2!XG6SOLvVbax)g0lFkzVy-&!{y9?TW*sm;?6+e*Iv&!+ z<(C-9X2eg;JgH3~gH8hSIKYHHbjyW>(d@G&p9VZ!{zhk}@y9HMK)5)-26nk~N|Cv}dDZ}^WOaQ#4YK;$Eu~kE<3&Z_QvCJ^xfcn5FLhk_U z5I4-4O6W0q~?SDfUKZ-`t(;9kvBiR)H z8|A5bIF?9thctOF(@gmapfO|KcR%b+84iqNRbmogGI~UudoZDNeVGU0%0k1sE-Y@h>oUcMf@i0+PEbhrz!c z&_m+Ole5udtAXAeGv49wAe2etGZ`HRY>HxDZ=P;E5S~%^WGTa48{erMv&ELw2XPFi z{-a|*VEMG&yis$0(Ct=(U#R-Lz@ndR@9)$uopaIL`{Bv@_z+Vn_(5pc()v}S5i%xQ zaKEN`6wvlhgD?J7wVPvLYg__)NA8KoLYxMJwL0466TlPdnEN1-hyRqolVS)uobc4l zfA}Gs1h~UOWmqWi!CMe$d394a!vJT41V*tajfePPePV6B0J2xuq0fs{>vi%e*Bir$ zC79eEzt}_^2)K?eiAh_z7ff}*HP0xRJly?Zsa*;>Jdx=2rRkcK3zT@n6kv5Q~#5>h|t$M zePj0DZ~XXz1Y7zII5^d5@=~Gw^ylV6crTg=U)0V4wJ%`@^Q?30Y%~&WkoeDQ3CtY6 z`pz%);mP(+7x}o=t?pBOVAF6ta4+A>Z*NaU9D>(!QccKBU;e&Nv zTyM7bfg2Xwy09W(CjF32Adxr3fe93c97pSPlt1@T5uo2~Jlu!KXLw&MdQDzRVwG6#T5ya<`;>_%aE0 z2gmBf;J2K}h;m0EIsxkR10!H*Ra;#?AJuZ;koh#flQ@eN2*4*%NK(rmo683M*Sp^- zu)^2}PT2K!K+cBcV2r}TFUKQgsn~5wy-jhC&mf~kyK>}`#Mx|D4Pvm~7Kvx>Pi0)O!QsPiN~6^O)@W;%jUEWcQiHYXL&qWaKa<}bR!Emk)L>m+Y!Ixny*WrgcXqwM)V+m&{6(nSiM`Jk)8V9XE0bwoqx;Rzsm zs)a-T?XuxPSt@N@VX+FV>i0($vLM+8ESf-UuuWY^f(<5DQp|it9Wev<)OEmi0|sex zK9T7btY#Q`-QZQ4&1_Ej|8ui zg(XvGpyW{z7_WO)C`3f@ba?vaxtONeR5^I;H}QCAwGmuAGCO~^ek=&4;SV1ResGhb zu7Mg4QF zYx2DYURq@eqAcH!>$A~#*nbns5gjLsETkCB;n1W}5TpZMjEFi40R2M8M zGZ$MZeh=LFb12@umnx!LUSaOEdM zB3jcMimnFanTgc>YgDa!w|=!>u6MX2A*g+S&SF^*Ohrz>6~?-L`AKzkZE(k&C{=lF zH7+E&z`h}w`wDs>2d6SWP%(Dyz{P!#(ejD9<0CEVKcy=Ef3Kc)(LJ60e`LLPJeGgo zKYrjevd5VnDoG`jk?drIWJUJM&fa^Ky+WBGgb+Jg8_x=0c z-^b&+uRreV@fjWGalGHJ*K_8t4`lXa@w(CmnU}q~CFfH2H7jfLPuT2DEKXU``#U%Y z2H6hoa7N-Ya6oZKM$w^`o>EMm9!pT7fEl(ee{o4393^|8e|C5!>Pnoz4!Zw}-edp> zHD122r{?aJzCqf;8DRog%IHfH8IZKuRbxZ)rmf1fp#J9{vdUMhU&8GCa4OFI=Znn> zHlhWW)I2LybR5pij5D2rwat?!0}b;@LG1FuQpN|75_e#nWx5adM+z%;xu*R;%Qe|! zUV4=R=1Zj7#hRflR75CY5s`~=Uy?q*AF&n~cVluLv*nU$3kmraq(Wf%LLp83*yVV% z!Zt4KgK6+aBq9L<-W^cKeG+!6(iui$Pt^=pZ{SlGd5PY#*aCr5LhI`i`7 z*k|U=oQ{9PIOe0D7*#B|SYChL>&t-$M&0+ef1;$@piqnlV_$=>oEz5Hcd7W<-1PBo z3Oo~408&q+$VHWaE+T;hoa}o$J0=l9@cXn-q!^y+@TCCe&J$c&qewHjxw`HF^9UFq z4v!7q@BWTG?c$hnWQIm_h_z6NKG(ua3O;%udftYb{pL^_C?B?U_N=Q%fNqkCNHZ$(rWM%w^UJurN(Vi z95QBy=F~67jr!@55%hNMxp;-&WWjj0$g!4zP*6U;-mKG<;XPEc6<0@4hz3~PoT+g} z0*0&ySN)Y)Mc*DAD?Cd2l+VXR9|AmMM7HLN>02wEGA&Tg0Z4sm6BuOAGp(0m~R2yPOmU&z1iT9~-u?;ZPvioDbZyPSx(HzG$?B93JD>a(Ik0yW!>);ZVN=y}LJV22CWuY0WBnui^Al|EQ;xIn6sy zX;o$x7H--|UtixZnG)#_KsOLBA9!1DKCan7lqGZT7SM{nATO|+1KVM#7~i_-^Dn_x zwAX&3z6JtqIxG0Rp~>Rb&6|M97Y_Y}PMmx3Q12ek4vpCh>1zZ}!HWtt?7;u>18fD& zf1gFnCtf#KU7ot3kGUQsmE~}y(T-n9mn#w0o@3@W&NWYkyAerBl-+HomoD4_u*Kb> zoOSZ7qRXy0qK}r{BI|bib;+BoOxTif`%hZC|B1y$Yk1>Pm-VdsvbFf})@SD$z??=P zTpKjQS{oim`vN02M+wS;nSMIQCc**xt0ys@C;PYkR3~byL^G8ddit9qWz2h7;6LcO z5S5=}X%Z)8Yg12uzOo$wAAh_5!R5c>?n$3WyBBPZ=H-B#~N`j05{M^0;mmxB&UA89(N~Sx)@~V z?(OY?03vQ`m|qEN;Ha&uV+f%_8B5U_L5f-q_XD3}Gr2M?a7h7I$<+z2LS`s~nh`3g zs7Npyg_OO8Iu=+8UMj#p?X@sGUD009tV7q?&!5(YlE3j{FqZ9i;@>FbmS0e|`KtGP z;VJhN9sHlGCdq&8SHPOp(}TQVZ!=SQ<-st$tjFH;pIHBQl^?j**rd7Ik2aDZ!pda( zp!}Ue4(D_rA*eUY%I(e_gwGb_Lm%DT-dU@|oo_yZ+rpjr?VDSQJY|i0Z8O=mf1TDv z++k(yZosLGx@q7d%vb0B2;S4j+NpU^C%C_Fp^;0$%zKQH_`SZjUq_8PU2BPMJoOf! z*E_)c?NWqLhJP9s=wmBbhn?C*xB*aKAPl?DLnJ1;?LLQkv1Z>nfMg+&G`7Qtmooy= zOHH+9wX?jYeFddeMWLMnivFOc$<$jyMimefMa9UmW%6LD0slD6M;GDoy7Y_BZ0uD>eD+tS3*){f==df?jq)x;oTsO{H{g zaFKMhiL6+j%v|ml7#?BqXj+@_cK-DUx*n+Sdc63Py3WPFi5VLjy7;Rnep^ zv{XI$2@1L5M{9SJ;LfPY`}KxX0TRyt{{8vU5o0652G;Qf)zmy5%Oum~GakMKemCa% zfME|7#{+iN0v5Le(j#0|Je=ve$+Ih;n4a)|ah{XZxTEov&jN_Tub;$oi$ubg7xXT-)5SkZ!12u2^1E7p*_qN zo4-UDb4^SPE3z2Y52YjKyhW~#hUpV~Weg~5RC|923vAT-b=_LfkCctXfmRaNAw0XH zv2nkhslX}a@6tPx&z`$Z@h{#tB>EpY-q-l5p3f`OjBaySqOWl0fe}!*`m@Zg{^2>}uk_FEwdLhaR{R#=2Bxz@ zTkU=DiZpvKKQCs7yIQyt+CkL_TVGnfeTK$C;pyub(svg#U4i zgfw2!laJ>7)SyJ_=0K+QMYn(Gc5U`P<+=uE1--L__$|NYn|{nw?2<%A5r3L+?g#OL zJ)i`t)^0?VTMaxD8h)n<1lTh|*49*|@@hJMGK?pvWq{=Gzl(VkgtdX^TaYXP91QYQ zN}}ZMKLTu1_;;pY6K4-%r<#}h#wD8aD}W-n(K+8-FyZ)E zD+dRW7JbmTK@3+vh{WLPm!kfl0aBkuZa9^BH7@mJw6R+S({fGx1B!{yF(VH(&M`9n zU0yyba|5zGerL5zL%KevJ#?1!{0KS7mHN+Mm+7ToYjs{$E>2tQhouUuPt(d+=+NS~ zJf)xaXT{kux#vW}q)qG?BnVVcL|ra4I4XFh0%?KnlL8G}@v^Gl{&dr{`FESs*f;9K zSr={^PtQVtL}9S9Ct;U+WGD`1nny{1HvOZ~ITEg*iJ`6IRR{M)m^@fnGuKI>Zb3W~ z(lVzVJU-CZ0NR(uD<}w2KJXU+12^j=+H0tm=LMKi+&w6p!HfbTIJ&$e$yT~V^1tE2 zSg4`0w1l+kba7u{(DsAy0-^h;{HVqO>GV}M0?;y>YXDbB$QFD9JPS~5Hb}K z4MF`fw9Kh`N}`2Hi~$cvA;EVk~ZMH9y57{j`yAxj*mEg?Xxa;+w=eD!IFL zv|?ngr@b=_%75T_b^48*0hv*a9%%MHUnE1YX6BIWx0d`7zsoi4aFQ6hF!fHOhUnAjAH%r+8ykb9)fJ7qqD1q`5yaUZ_8d#@)`gK(b{yhVh}J!gai z&NksoIx++5(Pi(KQ}(Xj5o2gtKX(0>_j^E_Zu398oPY$(ZGyL671}+dFIcme-{)z@ z&#}^hBrlExz<9pRI<=Wlbw4qp&$IezO0urVik@JJZ2N9untjx{3Gn>ir6p1nE_7pV zoLx)JgYI7&!7<>>`xjId9{^|W_{;QWI)${BtpjrhwmC+dEAh%W4(Km1AA!K?CH4^h z-|Gh<&_E%fq0rdrk+Hk)^N(tR{J#hJm~|l;Rq*IKZBf>8p+sx%1GZ&rWd(Xca6^y+ zY}IAHxwj|O!pqfJ;>7x_na$8u!+F=PDmPfjot!5L2jM}_-wmBlG9(C65wz3$&UT{{ zj*BLV?H7!s)OYXhmCH&HQApHhpB)4k9bzyZ|KOKVg=iWZL1^0(3qK%vEgwP1LTO(| z#)AfO{5${sc+!rTGVdMAix;isI-)|>?zIoNPlR`vtjR=*kg}0ICrtiZaD4j`A`-xg z9A8q2PKOnVH)V#5iNmy>k$jUvg3JEby`9}0K^(9g`fW0`)C!Y7?XQG+tOc#~nvG81-JDj~# z;i#*D+~-cdUZ$HVtJZp6w8Lzm0+Jt-vU&Y2zH9>A&tkholl$ZbMR9m|bC1an4w8W^ z#sJXf(B23djA)5{_Fqns{QUgWAz?TVk>6lwS+JeGDM{NzL5WJP$Amp98f-ij0no^( z>hs>-W!7h(kGGKUJh$li!gR}eAii3Y91E0=K$AQ>wXrs> zE#09}<$q}blCw9ezM4Xu8)*xdKFzoCSDmvkF@nHo)(J$Ss%Xf&m9p;Vw}nd(G>GyL zggbwYgP!!@*bn*Wga40@--2-yLQV+W1|4YDDUswq4Z7nXqcdnSZVY5M4{%L3j)J=JOxqWfK3wSeS24t)p zvJebX@DO0E;l+lB!fXzDqaWko5AL~Xeu1_{{R#rA&z9+y{|L}*MqXc^DL-qKFUR`w zgMCM&jERejV3G*gYtrZVU+`Xl>zdf;K$`Hhg|)=;r11gzd`!hxC_k=WIDtpNHRs z0J47utT7wGy73rc5{`_|v)87;TPvP9=Q(j>z`F&KlA@x3RZ}#aS zspD8TuI|Q~czg#?RFHC{Yy2O*cw}~1f2sMaDh~N_wF0f;ABy+xawjVqHYvtKzSfhf zRM$LDBSi8Rj7W-|A;^DeN7L*+gXJgfNAb-EbB) zz@x`|i;ExxuaQAS4N-#9aJPWl#NRv$q`}+;_giX9*4Eam$(w9MScorOB+v{yI^RK* zE*>6?_#Up6-7p*A=(aQLOUl*a$`JL05xHmnQGVfH7+!ek^|sid(-Cs}f%uDKzd}!1 zJ8n0)myT8FLA45`#9bTQh(4&XOwHI>fNurZB@p*R>GoUXOc1DkV9>o}-bn}1m!(+Q zStr!0!nD%&G23wdiE`8X6QO6Iw26u7LERheS=WcUmOQHif?0)tlH|FMelq^)ii!=& zQnk||f1y(Sq=og_svn&a9f(&qmnvf3`wea6u*Mx9lZeLj52zpR_eOTa2>5T%EIWty zqv(-6QX^(4ZYQV2`GWfj{~j*;Cy!?@SKL166vM9GX5x6D^yM=|7&RPya(I|uv7UMA zyxtmq(Ce4yGa;cI6_tG2>F)@o-V6Rm6ru?!C%XMgw=@j=8=$}br`K}TE#w{E7bFTd z3VDMFBPICr83lJ93%5?ao`wH?ef#|YVB>51gerU~jL_xXmLr$uzj=$X_G6M6utLnk zhV~~5%Ih|6DH+G4uM?VVs2S5UlP_=YPd!#&qt^Zt- z)>Xo@u6MHx;VE0bdo&mHJ*xeWy7J2y=4rou#r=qD-zmz}!jI?t-5{Lzblb3{scCC6 z{)7GdbHX#i4zD*0i`)=BLWgrr!#K4#wHAy~nRvgKv^!VEcOZuCZYW2H5PxV6{OhO) zdsV`QZEdM88xQ?R%)@$*k4AgHzdb7F>$}E}DW0E;6cilh2RG1^koaSjpbktk?>n^u zu9Yc6sqdQOHqqX1pJ+|?=supmz7=`LK5JO}`WEehK2b`iD}OuM{$$1)XWU!X8STr_H9@a-FIxQFL5h%8XjBkmv#Im zxck_pGFLOrN#slbjxlBNCRLpa@8P)7MP5r zhjmM41UEH77P0{O2x?~-E`XdlT?nUf5C4_;^{VQkfhD}59k=a1x#&lR%M9mS^VI|c z@MAWwB7f-?tvtBpPIsyYb?poMPNfqAL3LjJ>w@S8QCN0XH60p1fxV@JwSuQ!C1Li> za2lkK?gLP$fyVcZ<=QuEf@>2bV*M1kRyu-d%P?jVJdGrImc)J~tsCO680OwMFv~e+ zvBb`q*bN$dy1oUxS?8?ug+N(6j>$Jzpmt$?9-_+>Z*YD5rR{xv3#b56tn&N%f0W;% z2qnsxm;U#<&_+-Co+sE|K;EUV54Uk7_eof`*4390ZD32FLItvgMG9W_(I)c9>C*yh z+B&FRA(MfPNJ9gXG=$TkViIyZDl56nw95J{qrl}1$l5$8DT2)nRa^NZM0DDX?{%BR zxh+j)df;j$E-kirusn|fyDMC`sRIQrZl7^kVxI6vuqYqrr6m{ZuHPrV+{@21bA!O0rLApT8zbT{Ipecb%U{r+Xgxs8F;Vnt4a>M zZp<95?seFD`**w0)>hq5#>#$<)%W4VhiH0+=7ELVg{Hs4vB{`AOD2|UqHah8KYE1hVT zM12gRdu$K^^Zt;M5Bpge`CK*8-kgT|wsU%kvo#HZg+oxc4=a95G3neZi7qy z;$Oia?t0bXpz;cH4}J8yG%#ps-5*{k z7qyw(xz1ww9=e{v5!N{iF2|r|Bk23h?oFYG;;tGWaS2R{-aw^P)|6Y_vES*2bq}PC z#C9lWh^Aoc@|b_}Lz`6#FDU4>Njy^X;HdKFL3e5XGs?o86|e=-J!e}52ur*^PO$4TwOb=#uL{j$NGoyi`&$aQ{S$M$;I3Ygf`M^ z_d&x)v|Rmog7s2d90pO{QwfnX(IZP(KfV-0?=Ir0Ta2GG6WL;JdLq zce;n!$Wv-mJ_;tx*xheplMBr`6Rx`9Yj0iQm~;EwIyjbZHh`jg#dRFtnzS_mTA2rih{Uu zMJsgu;CFmc+?Udz90w`_y2iV}MnNmq1_l&R+VeBQX9#K@G^|i<j1ACSfZK27~qU%;}#q-A? z9sH?j;ZxAZe)*e(ZjZ%H{M5vfx|02;te{GrnPM~G!bJ?Y)a*aWLq#t-*XAd`eme~+ zt`~}uAu}{{WWI07ZU5&Jfym&)`5Xetv8NQmz^oXx9j6mnO02Kdw*NNSF3XFl0l{U*1|x(7}Kra?vuqXu7LhnifPr@91mnN9v{E! zcsyBYb>%nNHU>@({v60^32J8hsjt6vg9^)^ISvvC>@&T>d;~mZXlMw$${%qK8K`97 zyYcbx_?Vm928AcvIbtT@Ne~wP#!H$?-ROfaioE_n0#A7N&{rI)E_D_>K6K*$x1V9p ziP%Fs5iBkT2M4G-L@3<1`#(&|UN>pQvoE_Hrj8o@fVcx*QsD6|`Lk_PbM?XiHh|79 z(4oj!XQu~EPa9W^)<=CZtkJWxv4OIQYCZ0p=M#XPgMwwRIM0esuBoW-DyT87I@PdY z4K6N_Sp=mtpj`oNSMMB6I4TBH&ebc}Bg}AzQswT6jW@_Uzb?3xybF*6>e!PHuut%< z-4Kl;e&bQ4&;UOJ&uNfNmr=YQ8&S~Qz7`ipXZcst)FVx__;IDf(H=)Ylh|(Qt%4>Bl+&&WS7iM+6=nDUC-bYRP)q{*6-uJ}mCHa5 z3c|w#6FU@Mcs4FQq5>k1612K{+`Vr}9hsr#@$I;awp$P=ZMkSc!Uuq)U*qII{rv1i@1@E4HrEr2xSIKA#?ynjZwj9_6ij@Wl{s*bq9LrnGQ*$6RC~1YjQHd_D9bEcD>aKC zda1LVjR+2lqxFt7LPA|+o{;s;2ipPsBONoTrp!hn>7nfomITNt`eGh#iH3+0erB<6 z;)h%r_pdGvKS}s}6RmO1BzgXNHFJq3-$ErDkv4)Sc{U*Zh2Su%6j$g^XXZs&IYs+= z)v&f#`udE26FPW-f!gbFACwHBXSDvY$bndJ{qb0rDSxj#QF^ED#XB+qrMp(I|M||~ zegjiO^%z*^o;+FH5bVX1%u*3@{rdt^vdaqJTm6LH_8(yg-$CmCXpKL;!iA`7Xv~69 zWml%f`{NO0Vy=+xG<01agF%O*w{ml3<5R+La--; zfebV!wl!7j!52E6Zl(Yz3WzBLXbtcy4Ro11bE2irxm}z79QHs2UjOz!Uu*$2gib+G zA2|HuK~lh@=JpRP_^qO$fo=#AA$C>s%OOX=;}AAL%l@s}@0TFO=Z3JmZ_Rhf7SN;V0-b=jV8UHpBl=2>i`4V@jvE)DI5p6 zmK1%u7YlqbzyDSa?7OPw&M-q&jKVUM%}I@FF1MlV=rfP1)jSArp$)8ey;g0Z{MaVy zxQ%C?&Y($}3YPDEGnfQh$LwR5f2HJsk7Ih<%S_vjKkc)?Fqr0_+;)2AalDE#YZy#*VgB|j#DOTRX*TTE>-amTf$I(~i zWR-jGo8D`f7d0u%R*bcc+0n50(ep=(Iuj(YBbKCO=X_^h(q#Im;c|X)5=@&FD$y)T zxlUW(kPh7fw@LZV68D%_5P%YmaE;qY%+kY;^!1tN!Bm3%2HP{#M!xvsjwYX+m{?i&NNfuRPzW&V_rp+y!7firjBmPB zztxdS-r?A0q8k5ZVYq-E#42FvRrTu+X7OBMd8mqp69rCFm)N%pTE&`!9`+~9p)J^x z>&K4|^>+}(JKKlB-YcM%!Bfut#D>ZAen9ighBx_25*)<^57j7`Uk_N}Np7y5X1LbC zX0NFo79eLy8wvL6&k&44Iw0z79yTX|%lWc%@!)`Y{bNCHZhJXk>#2DFxJMYHk|OId zgC-+h>V-+Whshab<(h&6}Ugmz)^l?n5Uo zY*hEy^O98x3sWEDgPB?3Tm8GoGcJGr$Cdu+87wPMXwiWocxvo5T59kfCSC9hYS`52 z8^9k=>a`CWq}IvFokBnk%gh&z%kxR@c`FqzFBPDbvF3o+?P;0V2d1uo<~*{UN~X+_ z<|RAQG8(1|nu=z-rB4VRHO_s_7P`gR+-!Of=X9+jy}u40GBb_jSlgUKbtC;#qK}9uDuVFI9V_A5WPz| zs&-{}P(6&T5@~AOx)eD+(T&R^ua?uNg2vyW7+V?`HPQRnbk`*$4yxC|9`|5yapp7b z)lNU;UQ9*9W{gN?hg6n!3}_{Yf*uwP<#AOX9Lk+w{G(b;P6qPhypE;Fjd23-*~leP z2rI%5(TJk8E6TYchJGoDv$vV6cegx5S;kGQmd7rSdtUChHm0EoE4)ysP`}UNyvK`3 zjyEv9JFR}N#RWx`gR8qdjUjN2)YHZJ2eJ{FRFB;tg=JN=w?*o5#vDm7?B4J~ zf?mrZ+L*Zh{0;mG6rw(*Bp9oxJ~iFVB7F3lsgW}RhGvlXS62`7;;-d3y=VPrd{51r zW{jEhR7Jy7PC!TqRFzJ!FLZ}wu?V?Zt*i4Mi3x1hF+0N6hwGr?z8b zKlB2d@PKfJ-w}dRzCH*oEZp~*z^p_1X5@i@2{s;BK3<!~a*8xdmqZ z3}UJsb6;7`z;6`p*Kit=cxk>UhbdUf|2_!h`RC!u?5*I^EqDk!AK1cynPOWDNAf{D+Z~LacefY|+(bj>or4;P1-n%P-aa3cj!vd@x zlI}HY;b)}Ly{DV5NI6o8&=WM_25c{RcrqbjdD`aY);yo)xso8o4>yerc|B&c5q(Pm zicbd@_rhr;2Pow)K;Fv9daP@RYI}Q=mmiA}Lr=|zzeWs@OI-7uE8{G3x##l}9vc~G z7OFQ`g?pTf_99&Ryy{cY5m(kYkYrr@a!)Qg*n9pt7vS^G=KSngoaUSQ1X3YTccz3O zegk#qIlDZ%4J0@P4`pR#y}Z1BTw(H5=f(FsmZWS2m4avnu%^VpU|NHO9Y{nzJbrTR zxx@8jgHPP=@UxG3_Nrz9qYGjo*K*$TirVri%0jEpFv7BBU6)0 z@5R#uXxE*qn+0)Kq_Nf`$PJIv;GzZ0=1K%?fB}IWF2d2-Z@bM!PG|6y2BcLX1*_-y zW_xMu%QDHcPlg)+zg=2~Ng%+*Nu8k9fC6+DvD(s7sHg-) zx2>8WvPg@I7Dy28)Zm22@ZiDoVjMqr9zLvF^dZf?6gF9v9L|_Tgbp@cC<^;np$XN) zZ6@$nKn(j*b^XUnpYp66N~nK@V}we;J<3Q18tF1a(|C4p*>EHT?q^44_PdH@_5v>g z#p-AI%kU5ov@>`7!y0Yind5UoJcNV8ck>F^a2du{OtqnhTr}dquCc*&xr(R*B>dl9 z5ri0_CAz;nLPZ{GE2#VEj1N%tNu8UUn~?JhScrK=b9i`d2{4=S>|!j+9b{ZWHHaUV zcH(ucUXP*Y4*w48f!;gGDM$>y`Z6eq5s}P#_&GGRD%S7e?tZBr`QRcm@>;X*??~B5 zB#%z|1J}bH_t_M-7eyu36aErL^hbM+ZxUSRkr^B#9HHU+B;*Jk(ySQ?GTDQy(C6mr z5L*77ACcSz7|i}9lpFo|Q|iKq1Z;@z52_FL`j>b&{QY2SRDAjk)Ho^k)zCxh2QAo4 zx=pW!MPU<~S7%*AjHkxkzGCv4n5f~+C~RJ8_vOX2iDNmx#8TwGq{S!pMZ z;Zihqf`Uj{SrL1tu@NmJQ0~?E_BsIyzTornH{+ zXNe`e`U)%eTZXbl*u8NB@3EVdlJq!PS21=tZUhzB|Cbg3?nCRUzjp46Axtw*-pl-T z<%&aU$#+(|S4XJA0qAnyB?7`fT-wCTOPDd5`$3NsWvg}72c7GYZMe705|3J-MwO4x z8R`jQFsa>noDmR}Q=uJ^{dc>zbG8q{s z`2&#k0zoU#rJ#2JzOmV3#)ii2KlN zeCgv?ldBZLp!%Zl^QR;65l)AI;cAF=gw#$U=F*!3vrbibpvK?LHa!!;fOR6jnuFvc z@|JvPPlZ#}!NEab;kJWv^Xe{8`0x)PLIpKXU80UZD+5U|TEgV4ed8-XSdZg;FwuWw z&TRzZ&03$8t*Ming6T9@4NB-R%K>a*H8nM}RTQ-)yQJ78~CMo&QQJS zQ*m1r&soRA>#keXbX)%XAX7F{20?VLssbsuU1Ydmx2q$AITHkoV%~!3O~9Ui84S8M zXcn1OjDnXzg|jl;nUj=ft+u3st8P!0H0?9}p)BeD3>_buARx1P!V5SFE_uPHjxVjN zU~Pc0Kex0{kiMM;u0jiQbFIYmCJ}z)t^5e136JHzAz|b;roFv01^jhhmAR zY4eD>7i*zcuCS0Zf^l`F0yhxSJTV`GgYnTa3?b*``>{qD!4PA9 zC3Ou~I4QO;tVyeN%A*ZTksW<{+du} z1Wu9~*JgADB5(3*O#2gPS=&h81$CfcVUBvw+>3|q67}1RBLShu}>JP(U#73#r zPYAOfi-_AhsB7Fmhmuhhl20>EZaY*cy(0-Xj~$XG#Krxa7r931@s^A}1n%UIR|ojX z$V=Z1FDB``X>-v&rYB$v6BhkdKgTkQ$J+E~&iJax=gk?I1Wp$laY@xX+M7lvXHo(k z+{f`v88VZb9uAQsX9CU!TtS48tH738;+E0`7$ZFu`=K!MJNNd1SVFjkGfAI-my|86 z*4KOUSMzw>WD2zSU*g3dr44ZFXQZQSH4D?R=E^0NM@ zWt2c`6E0wT(8~o`9-t2b>oLl{HLocRF(R)2`lpZ9aA$d}+J4xz!5hVbAZfj>M~Tf@PyY#BuloTB27{2Z zl7$KyVuB$X&~3J!jR>-#A>t1x9Ns^MT(koV{6TD}JMY|;%gG+&<5D1O^8Mx&s%U5& zP58>*y9pmJ#E{dI?rd*g->-Z7^eOgaDfx)2$o~C4LDR`vmq0H~`2`vXS-eSw(utR{L)qX^ z?e6tA82@xm!V$OlA%ct?iNfD=uk1052Rh2V!KVa?Exb`3m@}{1W}RH`mNqxxQqcT? zcsF>06tXpM>{{XE!6b<#C({E@C!i!U%o3f=xhBBmtyUz1RYOL(uhzdX)^@YDF3caW z1`Mz{ZXs#Ikolmg=F^w8Th3R|oOWlWvc9j3*TD@Bq_7?h@J+xyben@0ed@PIMen*; zQ{^%QofHivismkQ)#w2xq;Il{ARj+T4Aas0>5U!I0sGL~n+bX*%sO~7;dxu~3kwO2 z3=HrI2)uld-?qzSZs+k%a}j9Ue9g_x!PZ-YbeZ_#(IDe~>@Y)urG^ zx7yZq<|qBnTfb);9X4g_Wo}$tyVe}llx9P_OeEU739P+atM&$?h6cnO_Rf)nw&?y| zfgN8kP5+hm6(Y#8PclCUh`RtchQ&?bU4#jq1BN5hXIBkg;Oo_+l{XXRrZhByUB3Xr zy1!_gu?$O2heh2p%_5DfFM&-c(|Q&>uv~2=s)B}Wy$DdJK_oE9D;fr@%wu z(C6v-d2ViI5(+Yj-w5PSlN?@G&rc3zk)k={I`?3lGfp>0c4|8MBS_K;UcjCY-l8c7 zR=mluXu7~#_n z8eZ+Xon4r)MOo-j#wI2gATGhF=HXR*L`4HKsO-bZS|jmgR3UeH-Ge?PTsFr+(ufls z^ym*a8o2stLLMy63c~JOwP_)8*-m(c6Z1V@!<5F!yjwLBJ7USNkW0~$EFgbiD74#Wn7CS zRPEUHNuP?X1?8N!3*ur8sZX44oI$9?Fjq%^hJd_vDh`!1MIW-LJ za!D|e0!dC!>UL`3s-(reR+=tC`tUPdQ*jaa6FO%BauH+c&D(VorW5VGOdSq7xF@N! zM5rUb#?ILbL?*_@fq7Psl^Nk^Gp2_XtW4{tKjdH!Z2i$Z?)7vAzYRrG5sa4c_S-L$m z91=IzW#26dca6eG-fZ-}XcBO zUHkBdZ`BGwG6lilXmajtkX$i`REJx9T&I@@)lW7jHy0Nrs;piASD8`t=I_==|2qwTG>y{P>Koen%cC%pC9p3g3_1l>Fs=|qK=7E)-juVQ-BqWpv zDnYYCO_we3Mg*R607htO4}$sd0+B8@p)RhmvLUW z-zFZU&8KUjNWgC8$Ibnjx=j*N|o@bja|Lt#+Y9F+xVHX#98sx9}gX0nC3@%ZLUs0y3# z28K3&bph^R=J$yK6jhAx7CpvuyW6h{KLZ@eKv?xq6QTYS4%(4%S6`~Z03f|+*~j}Q z5Z_M}^hWJU`?yin;zclq}PA|L=@StnfqJMllj z#rO}zUj|0Mhr1F6L78pcTjY%kxDxs9o6ydQ7#kBnTlaaxa962$o#O#?thXTuYOpzE` z295(|<=7jwN%}%e7r{GIrE^_>c(`uonK3=YfdKnNN&tn-9m@~p;~{>$WD#n;wYVNA zE5qLO(NVoM&sC18PQ^>s#aUmib{;r@QqMLRR28IBTG!*WWlf2rL zO`@a3yOhtWC;gaq23GcP6U{&&HcY$ro@Vhngh|641+HH%TH`T)r2&wjahO|676+5} zZi?EtMYG*2)_kljNE_MAd@YC#R@E-Xv8%UD6z8u7hFWGlcbN*Pw`bMitRMTmvRu6Y z7yT0fvte!rH-DwY#e|hw#hTy5Hs%D~vzpE-KGqSQd&XQWk2>02s+o}2-VGc164xhP zXi~o#IXffB8-vT4-Z6elH^%KAxh)})cCb2|85^HZf6yW#(_qlS`;KYn8oaFt(y0wB zDD>xH-EH)C3@~D~J-%pkx2{`!QUFjc8l-mN=QtHS(Wqt=i>Bhw<(-(|@|OzuZXOdl zR`^AxEhvM5%KiO)Q0o01yrPPRjRok*xy^!y#4Ws`EskYFo$>75U0t9le%uiQ>kf#i z9^|W{&&p5%nrT-Jsgmx?f~FZ0`#0j7I?G94zQd&6jc3o8OM0VgNc^s-3ATC=3g5o{ zbrWRy7TT~Ws-ZQCHPau=nQPxznj@_H1;v*!7)sQ%&;xWE%z8v9@W1$6dZh{fun(3# z?@91kvSlvx+g5*NJrzLT>I0{uC^3=T>*L`q~*=EAqe(^5rXXSLM z&Hb0GYQyU^my_>?mU`%&V;$D#Mgo2eTpV}PeKIM|6&Jv8NYtAEeSu=@&sH4Xj#WQF zS~2U84gmk2kc+ViP@=IhP75}-zCj|W46X)ARd8fLIh$q?+*6(n2FZ*Sd-$TguzY3q z4r_d+D(d+6uvdRJp#Jl)4F>q**}((6A#&?}B{_HwRV>weY%4~110idkxdS>BEcyTb zi{)sU4&W;>&iz$$^P+ISb(OifIR^&^V>H2iT);2+m0Ad(Vz$M275*zrbMfFuEiH^3 zA;u0zb-;L^+y=lJcDvPG!@-DF`+oL@>p9;L2B8hgK( zQ@u>lcgUG=%o(ydO6Hu453UiIT2)4s_zjO_Ao zA88i7>^4t&=RRHP7{o@(?Dq&AjQI%12ly4Y54`M?iVAf&(eS(c+#G|&_*skb-q|9} zqD3$AxlnfSy4J#%A<6cA9eSNm6@tqjZ)hjY&E+tAL%r1oSj*6{p33C z`b%ATU1BfrrZ_pPRZsU7 z1R#$Mb&T-{TvAKguID8{s4awh9b}){tWDo)Yie%i4|o>5yvx&ZkIDlH=r(V0gtpF> zUg{+kqI`e*u@3+ZOguoHNxi-w$p)3c%2!Az?|k@6WNU0x3K2Rs|f!#zKh`Zf9w zjE|UdRaiP$?H+8zp61}? zD5r!3u^>q#z=0XYFRJ(TxHf_Uw0K0>h1M71!lW;x33+U&QNpXi)d^P!QhG$KU#y9L z2S&Q~G22@}RR@$bx~1XT8%14)+Y2oNnP!u#aQr|{7Mi$bd__^P+vzb1bRqluoGSr6&UH{b-eHnD+ zOL*{e7!&%17{jYCqYCdL8s0T>?YpHQ41rH3x5Z3`Q#v zQtm;S4r)c(NZW-BqSb3_rO&g#nV+Ua+EQy;B;{T+16#jc9ogAud{yhkv@o#`P>4MX z%Z4xXC*x@#1%Klj{&ni+SZ3{)?YGiqB6<2lDe&|k?JnU6kyF0;?bJ;{F6_3P9WVbz z2OoLOr3hi5`x~99W8!uj)b z>5#R)bKoO1zMrv(+dj37D&;fy`za}B5n3b^Lc&vxUa12Inm9TJnt}U@#XWwD;!axf zgZ@)IGxVzx>dp&=OG0O=6wUuEa3_J-Ng;Ee^qV7g03W7;0o*^`a~`|sw|C(DVhZZp zJ6ypdeab2k^G?e3x$IM)b(w=cIoC8L2BxB0j0G;Kzdn%t@~fjIHZDL9dOX8?p);_o zKk-`KS?*Rkw!KmwN97Z{)47MhJPi4zTuh_{aHpn{h@wB+2tKJ8O(e=HSp=D^ zg99%mk&FBQ4xp==ApHa69B`1iO-LKyULP59;0^?W8o*fC#h|9XD z1)H#IulF!)L4VS6j}QA4@H10|bJn3q7?^SRf&moI6U<=OePlRZziSX+46?~DSH*i_ z%z^&mnS`(hY$D#z?JLO3JD282ZSI89w?%L(sG~hB-{}VGTY}@a%Q%u(iy&ZVozLu27y)6 zh6QNZ4D9i@7r_RHL7*|cj4JQ?f3P{IQ!l%;SXu)ZDv&Ud?%)5JXIU8-09Hz}(UxXX zpQ`5Py;BR3WL&GE!Sh)v5ZPN?)6}wx#)c6?sPqnQ^^i48h5sL4Zyrwd+P@7iQiMz}*h zZtq>z`mXExe9m#JQD3BcgE_rsA5r8sZz->>$CKw4`g|P46|IdU5TzK%b!o| z46}UO!w|InBVR#olNz+ zgWP#MH<|vHTmP>I65ngl1A^qNz1+|C2hMjw$N3OAtDpY33N0 ziTty6^Iogz_4kZC>+Ap2vDeswFV=kNxnVz7$5{~EzI2iut1ZAc=_9Do`aEctrg}q* zfrx&cDx}!`efnbLsg%}Hj9a)cuo~){AUiF;3oR4LDsc9Rnys%Nzr0FZ@Rxzl-Tzr%tG^adD2D*y+Fjaq`SCgZj67WBlFomm&0&A zM&Z3m34}NS(nxq(d3X2Z{o^w_%=9wQb>wQIj;_9=G>6UubPI57F(TJe`W3$7rAEJ# z+pvin7$o}W&^pi_++MEAeGt;F;rWwId>81XI~JU7%^kigM4cia|SzIiB|hDFkaRq%~LRW2V)er$tzs#B7M0Htkv}lm*?B_^$f0fxo|RNG2uJ zVJQk0Yv%_dg!i7_r8@sHkshKT{p;`Fo}LrG^x0~Y!WSm2#HL%hnn}%E@5q6!pX_nI zbNlpmPx-rs(OiKby`&x;OEgzg!*ThQ_@WCL7-z>Y5Ss%0NWtB&58aI48pj=vHedZ| z$iKU@$a-1gDt)qg2I>>6ZrCqSNiE)KYOAsTQOdkobKuWi+N8m}lAHckMcW7tsn^O! zIp9I;KK6&vjg6i_P9Pz;`(2ocxpimn&P{)b25MU9wXUd^P2^#01ki?yh^yYWum4MddI<`6I5VF z(9|OLC&fi&-!guo=Q$yHzy+{K;S4Picdn@ z`v8)(=T|7o7f&jXJ_qqtOf zFp4>wo3CD_7ZC@p3h`>uw>42m2UXZEIyLkk)3A~W(GVor1D3xy|IpAkTkfuq;oi4& z#@OZ*I}mtq@*3aD_$lSzFk`1ox64*E$ou9awK?jVdX z-Sp3&6#%7puGs}7&5eIwc2dADgig9n_m-79Pxt2EYVwy@gMgwxXmZu`2K7@V&cGy= z+LPICzEvu|Y$c*zLVdOGXmK(suKmzBy}9Ml^-* z$WDjGcKEZX@1WVZMtR%q=(8aHUSquEX<){8z3S`?$AJK?ZPwJ+cfG40gx`BBZRgE_ zXt41B7~*Aq$6m=)$Akru`=A{zYBY#c9M_YnWyVkj!kOZRr)RlXqkN>X(A}FT!^zIJ zwvhSB_(CLpj#K=w#}L11nuCeeJNDhk9Yetxp|(9<ygtaNAc$P?i?IK7r@0wd49`#y1*JE<6riKtmN_gYrGt}dJ zLd5w-s?zi1mOxtnSKKfLV^w~|#a-$|61xM-mRfCX9IfcHk2gAhvumS@;HzaMaGAQ) zgckSm_M*4ldx(QOgpb0b$dUUBSJSTkZv!wRPUke>E)&9HH)WE0k)oquFh!-KgLkoXza4J0$r6ovW z*c+DM^jf#*8Mun}nAfv97k;9+gPsy2I<#UoS?m)ZzVIoWj|blb6(L@^A3o=aiio%Y zO-*b972V&aiHz+5A?mwm0NWK(4a5*Kg`#eprdv`$^u}Jl&c+ZFf2*4Y7FHR4Bt34t z#g_;2w8ce~#D;8s`|pzSe>_u4`CSUBtr#xRLz`k2%@D*!K_BKK`i1Xd$M|Hz7t zG=%%`^EDy^AB88~yQ=37c!rGAJU!4?@>d%)O1%+*z=ah-TwZ+P2?NE`op+BuD7kqF zv~@?)Rd>5RS~ALKrNbVejt=R(l5~>~J-iJ+XX!PPvwmG!%}q<=-!?3FY>ctu86WLOry!XTD zkBE4}mh_!C)Zt6E1Bf>sqcy*4+!4L5!w0iFN<|fd2V64R^RzPs6rGhxmY270gk1=_ zm|Qxg@^_-@Uojkc;pW7x-{H#Uo)uVs=*XVE%CpcI*jPPVfw)VSvJ2WYq;`jn9$NB7H2TP)&81S_y)u8g`z}`eJ!|6> zy%yN)fB#LzhQ<2Ns>M&jqQMpGI;h`pHYmOw_cxh$l$_RANv65pXFS8ITu44lKv)PfH8o#uR`lHG z3Iu&ob6hs;-u|WOabrHAzQ&+o`(#>&5A;hBUk9sBcd}dn@*Zjd{fJ+Ov6@;VTj*io z%_pkiCy`b%L(_xnz-gCZ9y3=UdSmI|Q5iZp{S7|X%LEBm=h@idWd#oV9>)%uBaeyi zMCDZ1vvEeBIPawE5*w#C7QHGo2MRK>)yvn6C%;?tdF*c*=v&&c5p3!Urm4I9W0s;Va zFDPL@mfn?;} z7t`2p1>+e(-~YjUeGG%6)kYbFT1DLu*>&jORZyo68OTY_WS2ddY8q?lIN>A$IIQ;e z))Rv5b_gvtUkkL{IWnro7obVMN`G!ux{!cQ^nwn3D!&T{yVWD=jZv={ApNC1!hFEC zSodpCiTm!iX0Nz$&qjJJkz0C}uWMTLm9IpVzl7dpb@v+;!}4Xt6@!iKT8_tj?LO{X z;PpszTwj=WRc(F6nP{}pe`rRg*~QW3%34sxBddyaQD$Yjd#$7RV#J;Msq_@9{D*+5 zs;a@VZ~J7>9C35&6?7=^=~J}t{l>m9C*Y{pF+4N`{Yq_Zt%!JB{UDn6Zp2+@0?BAu zJoS((5Wx)u$&7ZiILCRMk1u{@5wEqaVo%AtwK|M5d?vfz^`Eu?C5BnXrGa^gid;z% z=p)n~vMU)WX7IJ(g8BQ`iG{M@IA);f>Moy2ZLWLD3T(av0)&R6ht>!p9@;&{*PKg9 z2dS8IJ-vMcQRl`@2}D$wmDY2D z=|~`fu=d9cr40g)uQ*S&#p80f%C9@u%XLu5TQvh$>-Bx(YCJJ7y_Wu28@cLOOVcj|2v2cPWA!nC3cRTVGcgef=+sHhYA;DIl{@L z;G$XR)rET&rU1HoXqSP$ECi8;fI%-@Mdi$!@iks>b&7=U_Npbhr~r_xi? z0`13_$&_vZp(A+XRvLKQJy||;kZfS*yZ^thPms*jCzgWsd6sTkeumLosHUFrbmeOw zgX5;f4Qs6u&Hl7SLA}6#Wy z>wWhr;rhPygPy-HukJp}e0yy`D{h}7=!nfu^+w_#fC z$DwPC6WCNhRqdngQ^V+~r)?ILYvz*kuJxPC5`T_{dgm`6FR5-`qTPIspM5Ndw0P;z z#`X0vjQ~ai-O1U@d9E|hmNdMQx06o0>UI!6`sME(Gj(-;Z^B2nv7DGeEBbR{w3y2$ z%Gec;apYi3%>L-KEH1hHE*9iAYG>l3?RhK4exvzjebAs}aq_6w zYWLrI?GA$`v2_8jrJTGHCf*}~k=b57_Ja`(9Tg!wUxK9QmIn?ECwP{ubl!xh&^PpX z4E0jJguSloF)(FzB>SVR0Gi5M~|KsJCckbf`Zwy#QGe)uzcddE1y+wma9 zX1N>Lq`LdKGmTyd>}CJ+Iv@=>itC&acLd`5I`qBP7Z?rPZLyeJSxu>gaKz}UaEUlm z(u#jVO9Rkp8gbwF^Mh{(Xli}7b=HMXM%AH+dwt6Jy>s~s8k(#j8;V-3%^~X_Zi{F7 zHaEfuZg3Q(SF9N?%+~50T4Qr3Q%tt>TF{uHb@yKWR`f`FQdA;xcsVT%s)2$Z{Dv9A zgi3~!j);i3k&A|*cd-z}A&levdCGd>4y0gTrN`kgtl}UWMn|UA;pw9n(&guQ%wgH2 zxXTaT9leoVq5t^>{DjX9G&Ny9Ks!KS56rj4QBZCBL6M(dU7*G4)P(T9;POi`9ZzGnh4afl?El;h9YrAZ z&Dvl4?X-C~dK{xR`f0-h$S$Wgy<75Q9J$0wlAf;bw11>+6iItVXZ90iLr2xr6xsK{ z&Ep!nc#?!?6bZ#S{HX6P$-0oTb6K`r5+-Blp(|2HV<^HdMk2=F?%Esge7c-EOZbLB7MEX83>refv8h#lVnbw1?m=!2BCREn10(0?eN~nOv+}Tne=HG&Nyl zJGdR?UDy|bJ{G>Jtd`#^a}|V$oi}cajCSx?PnB-*Fz8I{??a0%1u19ENhcR6y1C^w z_*ey)%Vw^^C>%%ly6}IUbHWvskOc#F-%d<|ELpN8@>j4r5p6u@Jw6+qjV7(ofA-35 zc@PGce;fdDuxzP9X9xcLL;HN8B<~ij_eP;h;acuZMwJxLFWVyPVfIrJUw!?pJA;P0 zlDwbAOs*gMjD4t8|1D8EJiUETf`gYvP?j_vaO^dl#M$)*Ha+Nlf%c zqR#tjIXw#9Lni`#lU`Lh9Z~QxFyKnZ$lKE6yiM&RCkLI36usZl`g9DQQ;MXi@7sSa z#bqJB(t1Gy9pSc^QHh z?!>2UAl{m301M)pbNQbBI;7Qnzz4RPl;CyC??OX0hOqJRQZ6@gJPwj2 zYu|7G7nrfWjvsCpUmc>k)wuT&S))Dmd0c_|ZArJvh!4rUYou|%(62$nXb8z=-jvK< zH4|XQ?P}u=z65f;BrX;Df-K+M$9P~!M$|3Fj~)V^3kfo89{;Li-$`zcT!IT{V1V$~ z?N;7ZG}I!n5|rrcpu8r>^#A?y7H{DI`vHg>+-e4Fo}iZFSS3W zrg&!&-*V0v|3eqA9e3!+;;8;A5D)KwFg4+s9+x;YuM}k0Pn5PJ+yn5{@82)kD6oJM z(JD;Qm?0V*4Z>eI9EP%bsRDgTE}{@FPcLR)4{F`gcWwNiZ^miF%r-Qzh~0TIAQUZM zmj~?gFa`Ecco&aV_0CfvtQ|>}tf8p`U2~$=Mcrlk)9Mc^?O7N@YZ3idW2^h3nU0vJ z&7{Dm;M2$FP^w2HFoxoC6?VkMZ_mm20YB6F#I2IPY^&}a79EZm1w=EA&$b6_lHCTg zyK{?$=lcDt(yq<@og8yp&9LySaIZhva!VozmiEzB$yV?5U$vq9wBjQ-v7xufj z=Dh*M|MQ4g`+P;s5oF&$7Z7QG-C9eO1r%fm0=oNLj=i?Egh7pHF*Kg3H_U1{n4LN#?$%}ZO6AZs%6pj zkryB0tkb&-&2IU}jOu5<^Qu^z4ShjHr72n-IA8|v)W5>1Qs?n$M{aB-h_wP$3-LbQ zjU<9zk+PzU=ihvregV+rvhP%tnv1R`ap&d4Q!mW;GMF_|lHK&Z5*x3x82{gMFt z|Kmx>zd=-&AoHu$Oi1P(+&bfq)YXD{iC;O84T%W|*X^7D?j%StPKJCFoYw{5d6kZ= z_?3sxJe80d|ZS5y~&= z>~Zbqx!v%7x;BZ8&G31y0WKpY7;GH#a?OH>B_0r>`<_3uj0k4M| zPo=b*Bfu2IRAlQ>iX#-h&>$?kM}4oEk};%Qqufo_|Fi0DcE!dDr}%8ZE}#ctk-fYQ1IGg{QUY8|(KtCZ z)r;5W{yufeEYiReGWhvKZrX8yM1y4#;~19(HN3Ng!1C@Ln>^tA!LW_?x;gq*a&qq0 z+CjLUpZ|x}>+)JZtu{{~2XnR=qQ-u?Zs37F-HNcJDkxA(o{4cEj(3Iu>En&bM{WSn!64DRwq)O!9JwR;cdTDmX*%^dKB;AxBM6H zcPW(V<3!BkQ9j8nLR7IMB4EZ+d$mL|tdZB9hyX={JRJfmI_Ah$-{4#U6zJ6wqgS)b zPZAp^Mum+}mwtP!zA{+7?pP3}cnyLDFb6kWlSpOd_fY<51^{k~RudcNp!7W5x87`pZ}+q_Yv%D?1oa)HfkP>ny$)L^y$m8Ab2Y5_CSO6ILw%*vW+e8Zeq3Ur zgwsUy#~YCIo1W7H*aE1YAQ|>sJ7%YBm__G+xqX!_3&RI*?v`PpER$pezxV9jI>}e#dd85KT?(DI^)*QN4{<^;b>%! zsk4;j$e+ITr9pUju{J8?v`)CfcZK`&8z-{uzceg=X{ZzK8(wu!XgVqsuLRpkqQq{; zeXus-1gyGCzK_zc$0`*^9}+`4Iyyl2u~7iRe?TL7h09K2Wp}=3*;-cVh+^C`)%U+_ zKPr34S^tP$?`rDg^;#Yn;Cr2O$Fcv1{pfH)_~uH-+dhe5{$JJApAT3)>hbcLlGx18 zahiM^t^3v7{#yX=*$V1epo*^6p zY-h(^!ymnu*>MV8d=WE0tnHA)Bf`gL^Rto!bDv-w^yO?6xJhFaD1G6J`1&55HF^(y zQ(~^A-Afo=ZqLw=n5o=`&-leP?^C>lrEf*$3xjhK?Ke_Bw_i)TSAKu@u|H=+xt?bm z4zWE))(kjp!5D?T+f;qo0zW2Qc>c_+MDV+Vq8}SfXvA3E_Ay&wa2$I>kyv6eNV09r z9ibC|?`lsyxI#RSL|H=>IQW^UTgO#tPdv|-MI3A2w0|A@GvvhJ4n!XIYvDc^L1ATZ z5haGCof%!Y1D6$Z57HFc&2QzA2`XJ6THAszf;Q{2yqHc2waDYk>6!fR4f|aa44DL8 zME9%w#A{=H73m>?&nSE`wZM)?Pnq2z-} zb_@&*Tz81G&`fvbr)FhYC27-j?fNum7o#A!u3g8;?;S;q3w=R&!7?}}3XLtkFwkh+ zyg5MnH%*CyXd<(*$$9=<3cu8cz!x80!tlChg?45_-OBq;0`l_`o6hm^dH3#Bv^q@< z&K=THFBi_$d{i_TS&Xe?K0Hy&8=;*7?x=h&{|! ztSN-Wx9W;!QI^YGossjoyfjWyl9ja72US%qsp7|;_)F0x4}{+Omd!{{Y2GLP+Si|l zl|~*erSFBo)>cD!Hi@6-PR`%Fr4KDEj*7C1vfTg2P;`AFUy@Gu5_!YLM_?p%Po;8w zo?Zko2?xw&cATg;Z@&0=!_3TV`8UN=d=J^^E^~wru$v)Q)4>5EFL*-&lO9cuL)Rn= z)bW*S`gf|IC(07VS4LhCemb0Yp6K*h+lTU<#rIUax-R{G221Z5QAT;s0`6}ga@I~X z3TjlWv{Nc`9wENYFc`H2@jT(94!_L)YX3Cp4(j8Zsf^gECh(~pPl$t)i%&w@YNch^?ivP+Zy9i?~__9SrklxB5 zSSiU3pNaVCr-)YG!qEV*YW1An6L61>LOavxhM6~d8%za6o8aULh#ej~990jUHau$R zf4@Y0Zn?$7>(HU2Fn@s%o&LojO%);Y4h_vOUB=P^&hfms@W*0>0nNbnV$sd@Y5wt!dgOrqovGH`KJe0M;_FjqR=1k{#c|fBP8x_Co>S8- z3R(WFai&SE_J^Bw)!-fiSA~H`t76LL@}d5@`uV<%LcW_?fpW>_*4CGL_YaD+zf>+k zT1fCkz`(V(^fJdI|^s7D-C^qhMZg00I0QDfbiOxDBe6wLMj^uvzhE`MkiEPU1t&;?IGM| zB=a$h)~eIQF^b?OA(rr|WV7!`a0;#w4q5tCZTka9DeQvy^O=JOZ5|jhh1PB(2q-GI zYd;-!jjBHz5wK1BSd3a+gX^|xN{eqfw-Sz*ZhCgDFWy`ht>Mdan~p#;NU@HU;ikQYxxqyiZ!3BmM$eVvn& z6KQ2l^85hyB&y0ZBSZ%2;M=MFr7G#6{}X87qpQ=O;( zUhXye-0OPFa@A?5MgDmh36<|3Ua#g%?c|b)Gw;X6-YDWH!rhEENyvp1$G>T@dUiT3 z_Iw`*ovz{Il{_E*xW_HqYT0gZ*SVinKO36v8+N{A)aPSD0Ugu53T(ok0fUYE(T=bY^B| z5eq0id?c^eg&n*2BG=^iV=5}`6BzRM4xp*`K}nU@g>Q1)_t+k!b6-D94CG0>@TYkD zQ)B)h*~O&E_8gbf`-mP|JH^<@Ela5Hz}pFW6Km5U1X^VzXXeHV_N9EIZ9l$-|CDLNmv^I2Z)@$v>Ta#U?H`+eVw`A%Rq&`i0yKExL z99%n4tcy!cm?b1H)!SwwHxIgRkHsE0_16?Xg$UPq?ttFijo8sHh*FWTf(*kGDIyyRbO*(C*vLodYnRgxIx6RFg?_4U;Yvm+wdsqe&{N1YDe7Hau zDaeq|tjKXq?PKy0ezNUPxpG+0M2+{9Osb*q$Hin7;drICV)GxT94uf$YJc~Ge|^uk zIi6^9SJHjUj6omas#Uk zN0rXYI(8Y`TWE!9v%`uPum~S4hDpsx7}k-OH9U_L(-)~b!*X`f(41npX4J-?q{^-M z?yqJfp#R|D-~sC6&4vZTEfNwWYt^(8y5;=8gnD~>zvLk;r9xkPqS6PMmTJPmTZi|j z*IW!iEVZ)9EwUf)357rr4=N<$i~Vj`uvSbIa~dL_GBP0M040H1Nl*=SMtn^8 zN6jrP^1CP1lEt}R>mS6VXfLrG;O#)dRU_U{)+M%heL&7c{q-lyt}yq}UI}- z;y$u^sG@J)+`w~x91pSo@?ASKWC;T(U)eXR zj$bi#gAa0ieD&vDT6q0or$%Vk9RMgex%BkvR2cY*Ube$hE6c*A=&bPC3^^!5Oe?bLIq!F2H>F?s z`lK}kvcxy z2}(-#rbqoHe@&K@oNu#0l^L+d^n#HAp^)L_qp`D+d%hyBa^u>Nh28xDA@g-2b#ma&P>P&Z{#+x*Q^>9KF+X17o5ic2!v|Bkd{Yz`};##v#IKfW|X+5ZRAtQEau>tUJH*%t9G(?4VsmUn0JBt%yHlK5(E`&+R`e8x!??W{ac#YODhu>*EGq zLov4qm9S8tuuuql=-gnva0uQfR3u@x8ri+tBF~$tm7nsyRc#w^iP)Pr!NI7cK?c{U zX88C!q0XQ1>=bUA$44^2-Hs0&%^U_F?TAqk$1 zuZXJaSbQ#3_(y&+gvJPJ7X;H4^T5bSU5!tw(Il>48HFv6#fwFE@MdC2sO$@S6oCVO3OASQt{Ur~1X!u77BoL&XDwV|pT#L{B>p z1W)Y0rQlTp2^C~xa3;v!t+Ww>-3)pzjAE9SPnQmW#zSa!TblsyN#Rf$Ff)KXsMydo z>5iwtn2+h}(^OS%V2~L6o0}1#fFCA(2=tAbj?TG^@_i8|KS{1P#-2q8L-DuupX3tA zXe~LPrn*vdz#0Z58=;3Adry^42 z3I|_=4*MJLyhxkhcHu6vyHbHk9H&&C{ozp&=lwLpVfm|1@91S04dn z;Rta7i9;+7xl{h`mvG1dCMKv}@QmSaj53#$+N$exnQDzMO!wE?8a))q&Jj|Y529QG6Vq8_w?bW!O0CT+QAufswT=a+;GBy2#0r*Zh zHtF$&SR7RJx78@d?6R9pzivK*paC+%q62#9XnklHoh%=9Bx2Wn!y7w1wc1Di2(?*FD~}YB&GP5h}lEpKMp|I?!9gPNnw6x&{V^V#9%$-#0{q zl4-1do{?;@mJLQ97)UoZJoCFm1y=(<c9NiGl z6|=5wv_E|$U5|ErkFEHtZPIf-+9nDxUs2H_rW05llVfQ;q&;0+gor=3AWRqdU$eWA zb-RoA1#l*G;%nT!wv3Nz;p}?g1!N4N$1@ znk)ffXlTytn=aDi8T|ecQ_h();AhldYo1Q~?tXPIjXwrQXrNGSefS8mAi1!pNQ5OM zcRt$unff-D3Mfrhr$IUd%!k7B5+FTftpCaOhtD>0j0a%xIL5*ePX(btfqDD;?{h&U zYoxv_+aI=H{-VwwXXn2}>QK~dUa!RMIfH1zA-7favY z6WTAIYD_E6x%POzMekMM|OgoKS?-$%N;RYwwQq8!8dIb>(j4wi}Rj8HykqPIg<33bjkJ6S1(fFsQ6+4NOc|Jd44Il z3bD%`9_yWJ+vX%NGh80gR2!;{c!490a=YC6P@6=N;pmw@V8$nZ?*LD2ls66jZ2C89)jqWNHGu!s`_s60nb1$R+-B$NdC5<z3DTuYhdk)l(LL*RaD8p?B>(Tc`crZ3vs+ju zKS}#xbFb~<+)-b5`*F-(gsb^TT3hqRE^YA?WKttA6`GsJ3S8xXTrF3YGA$%# z|MiJSdJEs5jrN@NVtQ##qK&x79!KooS1G z9iIJE4Kj>_R^>69&duV}He}W%X2UJXC#~Q4R4lTtt)5iE+sZ|1MDm2t>iCI^VYK#8 z6nr5KMHTU-L$Sy6XPIge92wlcX|=gc*Llq!7(0aQ22qCaKKsy#Dsn1=Rqc&fi?=lw z36j1+w%HsM@68MBSRh8jn%-`H)~*gPceAMj5E1P0XF0xR+%|FMEnSC!Lirsw?*(o zHiyz{WUdhVwmuI}UDl6oG~sMV7Q7bW6?fBx$1g5&ghSbnb$PFIzfcy^AEj_wTsm3x z;0_(+I&5aQU;YzgQjo->A$)-ZfaV&^C2OdXGk=L>>AO7 z{BgZE=SeB+Q*FB>OGB>w`7-~mdotwXjjdF|tu+;8h-iiaeS%8FW7cS%);)Ep*K+S- z3NaFED3wtxgr8B5zOP&iV?C+jHbP__msOdXbBk$s@77qaD11+#u@v?p5$ct zdbegalLDuZW8rfmQ(xn4d?y}Xx~`r00suhD#!~H)+w|!u-MQT39%<|zQ^Gx?sTtq0 zFU|P`L@T5qM)8`GurWYSl-ky^x=qw^CQdk$-ch63X6^`==q>xK6+=&mX7Rjgd8H{+g=m987Q|0NZZ|`qnOF~g@HR_xF{eENNp8Xv@YyA^2w<9&^p&_lNZCc z*HSt&*RMD(w8w5P(dLyNplMHus2Fa^tu>h{J2yXWV4s;u@Gkr!6%pcJ9T;cTlC3Li z{hh4!d%T@|q|sElNa4-eim<;pZI_KFhs9INmu{HXh6L~eumC+X>Hxqx$?0U0joIll zB8+#I4}T8Q3DdHZ7XNTHmG!zx)PJ-9pLboBVO(Lp=s+ADCN3z`k=ZRGSmNe%5vpBK znpIrvTD7Z0CcV~=wLlRXv+#@WghC)c#RexBcPp&^0xh(VNH#bV1HKHz4$*CGCLr~+ z?VKmg7A1Ryo7EU|pbKg+Z{Kd;0z;^*J{&9g%1iNT=eL*16$C^yo@H+A9E!ES$;@~s zVHnTq;&dM(qM;50u4pQNY4pfr0P(QAN63YmMBiJvPD@K0Du0Q}mrp>Tt)<28H?<-n zCPAYk?f&g{(yib#B>bBfLN39j3 z0Q28>^MR=ea#MYwp&_J%{`uy(b6D5?20~s4#M%gn{=N8FCv&2BnBn!e2ld8Z2AOLF zd=mF*avyV@JPYb}Uj0PJH^IiozH(|%R8U6gb6=tF>IvRQNsy$b{;Dh{Q?|%zT{IuA z7UiBqr#B*lQ&l=0MvuUjX%wxoQ5apVwtd<<3J@RWpy%XVD*2GC#HOeb2S4ruiqDUE zYbnan1gWG=jEo@S2qnFf4u9^Tv_}ZlCPDRNddCbzdf=2oW;%{*aj5-X8&mh&+SPTDNMo25azcKvTX0Ztl znbN1C_LBKbaC2AP$o(pCGD5EQ;tc^sh|89>PdvRm`#XHE^*bp<8LWkf%-Apqh4j8L ztDA4)Y?7$3UY_HV0X;OQE&E)P#p!&UptXAWJPq2lRoSZ8XjoMZ?wF0<+nZPPLuIYu zR*G=gIVL;URyNWzjJ%faPSAQ)61$drT`$dl5do{(q-Vd&ZK{~!}7gpkKwS<&UtT35h;i5opG2{mvdv>yK6HeL&#`V?h z?hksG-+sKE;k!1Xxp z|5}#owYm6HXg=7Q{)>q6Mt5J!=4u5~{hqFgyxK#Y1>f~8k0PJc4Rs z(Vu?#vCFd4Lbrg2=ehsUGn>yID*CDUJ~-NQ?6Ohevouk{%hu8D8ne(UdI1(es@sh( z-1vb9W|4WIrFy%8;cgW$%38JIKo-ac5$T_+X{q~8j!qhz$Gc81Ji||V6NPpnsiv#K z%S%V6`{n#^pf-V(p`MA8h~iSvWrgvzps#zdxo4R=1GrN z#YDe1QMTG$!*d{%zqyCij2BwVjKV|xxJIyx5 zkDrN|F#Xmm&%P%xiRnHl+`Sclafot9m{*?(wlKXc@#hM@6Z92Jen#DeCf+sI`4Gi6 zF*i8TW7L1U z^ebrpeXSCQQCiQLyRAwhna`j5q>TPsfn@+w5rCN#Rc;SN=|De_{iXgHBg^S+ym?n1 z>|ct##R`C?{o+}ppHzONc~K`Af^a1~zKs5P81L96PtsG0HaR;v37$QBJc55zpJ&b* z{}!`JEcF^hh5m;;!FmX#Jrbd#fHoJ`{ej%^KhTwghJ;}7gnB?dw9=LZjK(+*mC*aN zXu}=Q1VFv<+mZ9}Wvux<1${TYjNM@@u5^z54mPZiTS?O1U~+w z%5`zppIKeJ@2pOGmEG0Ve>?MjZJ$PibY#Wlv@(LH)9v3JcCCu%Ze!eRPgf%z!YO$l zGy%JmPM43{6@xSXUSM%TSTBOD@bO+Pt`CBCXPcgOe+p2Qpz6K|&=-SMRK2kPGqMPP zDUUDUQX~4$UAMH`_&SQ|mzyvB8ETXaOCGE@e6Og+7ei^VOu1Uzv|E3=lX;=b zHT?x0;|Nhu?5>Rx9 zLJ!EcGSzix_+T8*XkT_`ReT%zs;Zrn1kaaY%FdrxTcrb&u+1VEXV4Dct~~+RIsp)u z;H6C+m_k}>3j~>Hct;5fRyB@r*%!??dH#6ojF2dO`9mU_E{IT-R|-tEw%9oWvBCPX z0qz9MbCy}2Gya3F-A;AxtLUz)HT3f}>J}Ug;+<0;e;IhE*W`q*!`0ajdu5}jgln31 z@kE8cTTTHAOqLlrJ|SvZD%5)eJAOTQZ%vMW{w{8-^wXrQl>=~D5(P#kMWqmhA z3@Wh&7RS6c-HzSeEu5svT>0WJKRQwpH*#pjmk5OP)`APf$xr%ap;Ro*%f1*2ImHJh zw7Vb6q4~tBh*ziZH4L&?3o|k-u$b?SYB1lkB_Kln%lJ5=U!Gri1rOt%0EmYCs||rs z3dRAOhFo-JCZ|G|tK8)}Q_9ni2QRswh5qev zZfDeeCN@BgN8$a|j-UXRNV#oG`%b76DqEE$diwe#+E0TRQ5IWJUA|7dAc1+k*qQz+ zHf80FIn^~8X@-M%N@ELt&74#3*2Zf_9N7 z65WwS-3Nm{GQ{`#4+yc;rj{rl>3bCLef3wmTEMy9Pe0svt#b*48PWAWttHA{+D=Vk z;m%=4WruzRfo%T&sQT`Btk?MOyHr$)N>OGKl28=Mh)BvvMPw^0^R_pYC>0?TArzsA zvUfsdcN@tL*?aHjeLKJ3^LieCoYy(MI>qxy z`!&+@yU=}ks4@9AItk2we~S5k)@m=0WC(FvW%_-#H%o4Ti7?q94!zUhvJ5%sXZx1T z5FO(Sv7B4?a8lD9T0>Tm*&nR=-y0u626j&+*mD%J#K)(5zqyKY`AH=pB z9Y+V6L>EucRlG`dKe4v941q4a$sxigg^R@H(LdLf0wH<}E{tFc`ByYwuuv131GAS; z$JF)1i_4uE#*y!GS8NRQ^f)Va?vTZ9-;?KH=&`J6`D5>wzzLTS$+fgGIGWbyvR?jX zPY`|I@GYgFKs@Af0buvQOTB?|EY9=ojfigxyY%7k-;H9ikF|Gw_TqG)lSQyacej2+f^}O5$gbbNO#~Reb&Lmt z0JvYG$41M*%)E=N5jB6^;&ib78+QKkZ1ZL;C*rPiAdv9|t}X~v+}q3VqzeY_ zK0tIfnnM8(?)JSHcUXR}I|N>tH+VoCV!Nm}Dd$W%x>ue(5Yci*pPjq6No*%Y{60y& zk7^6m{g>}!k+U0k>D!%C_HU)y_Q#iKSbyRFRtKU$e-zO4;vo(%eBh$ z_7|2})w?hQ5v8$?XQ~t5*<4)>8HM*!(%4k6@|y_xdTx?>;V&NA^68#t=F^GAiNHOC zVwHdk{l|L@?wLAjIYIw~fUABUAPFGP=I0+r>$S}Jp8VLa=&V%W>oDd$7-Vy3!#I?v@aa?yHA9xT+Mz0X6kz*+F5h`Q+HH#mw(VlC_Re z_-{RTmR;hfOHFQN1dqMeOuE>m$>LRf`z%%_2phqLes-v_R$_U?XBXpLP8Z6PUi2Cw z7{>l>%vk!Z-+%N?Nyi{~wsjPl%WwvrdSxy08qK1jqPWl{q-QU40HenQ?&;~NtsPlr z0O$ZY)p7OKOb{<|`~4c8z5Rfed;%LW6ypYTi6aR82E)Txc~Z0x@sK%Y1p1@VBiGx% z>3sk%z}4C)aj56b6_BZkv--}d9S;qhoX}OnvnDQtWCz^Z4bpCe%$DOsc7{l-WMlqk z@WI)KGXQcA2$s98t0sCT)Q(TjrrI(yH~6v|B+^lBhPiBYp$Doz(e5oTdA0TezG$=E znS66!4DHE`!Qc8NmyeQx%y>nHijYu#--9m{C&i*0hD(j3nI(IkUK2fGn@5x?#&2ro z!`UVp#byIl%kQ=sl=*SkI~`RjzH4S)sp&qlxKiKC;5xMWMNTqU+z zG_+dPEKkCk!WKLqbRvtEh5*ggIA3D_Y{+tIqUZT#L`AB?d>&uOcHrFq)gAdAc3vZjLee@UIbWjnH@#oLPQviw{MY?=p0ot3s2|Vo)!P_b%3Qq{~KDfgk*w)CeRd^0?`;824@~4R6qG7>vi|ue#t{ct?4Sj5t z(bb@{&7-4f9jD2OtTvnSgT^lvIPbI7J$u~0sA-vFsAp8;yTRVDv&(G?hXoFaGap{v zYCEziy#E<#Z#r+pk2_a0x_%4AJ)$B|-A5gx(7KvQv-HQ#>T^&G4BBDpC$Kair@EK4Z**{342bXWgzkimt6r%*7O+Xo~x1f2QPL zTW+bn49I4r1gs`35Y*IAsK3dF3oi+b8<>vZR$QVw;LOF#2$8U3)@ z$5>&jsC@aT?<*&v8ic$736;*vqge>IM-Kjr=9Dc`*{gG{t$+Sl=JbU+pAGzPI)3!M zo~%^az43+l0bi){eNbX2>Mo=FGo80oz+gPLY_pF(hdknI5;>kJ`O; zpVF*w=IGE>xrs|0e{FKAjHa`Pc>H4Va4P#C?duzz8?neLa~QAbu({H5DcU;cMYC=y z{3eU-j<+YBWOe<%H&i|FUh_XUmW?p#dJ;6m7Px=HOhlNN#z#i$-MKcG1+C3!RwojM z`(N8C^&LssCbPW&!^q_UGZqzT$z%7~a67^bUOe6(kTg2gD70_ko@^I#F!8t;nVrx5phV<#jRiY^QE^I}QH6 z{c3i2>&MWx&y*1(e|u4ENJ-!&s1de$QJ;slfSa&DXds9Z*cskNdxWL?P~(_22&_TSbxusA^QA`L=W zjfjI!7OqJJV6Wx1W~%Hu<)I;TyXr;?}ophJKq#S}soIp)~Nin;+Bxh1}

6;Hh9CDc_@E4ZAYHD>lJMpR56*e|KvrarZiwe@Jm`8j;nF9$ zo-@-IR;lTi5E+^?dM4$wZTL<7!7m_R4Uy8%JVfO~wP_2Yaye5NCkYe;3ql3qg=f-U z|8bF?ryYW|A0#Kg$t%-QZv)4HpZ=Md92ZqXro~j}deooHQC;S7?xar+7GrE z-N%k>_3wFqmts~#>%G20K)uQ9#S+NlfW-aN&T}vo3P)Oc|Mlo4x=0zWb@iVMN*f7M~hVA3aiA4Ex^D*W$@bhTF4Qj zE_&woL=?BXZocQ$V$RoZeKqU@BzVxyPA@jxJsr-h7Ilw)OH2_Ywri_UwOMB2X=83` zylZ$$gN^o$X*jAv->$~W`U?nF6=O(}qQ%=-(E~X?Q$@@af>GMq+CG5Ra9EDLPNPU8 zAGGa(R9tA%$%s8<*OGHB;z!tDbO7R!!Jgznj&XROLgyZ`#_ zzwST`yZj_sZ9i15dKxzC9wT+vjkf3sdu`P-=-alfcoR3Fm(aJu&q)=>qU_Ro=C)W( zM#lDiN?{6|Af7lRPx?$&S3jJtHLew>zmo8yP@>DZ%Q-zya}FV|YpYtfj}*~P1^=lm zzR6>-2)o>NLMK9jv1i7MUSto{B9`qZe8S}YKa%;WAL#Ec>I8OZhDGL(hnTU-KJHH^ zBdW1;c@z~L;?!i%@FN#JR9}ociLTkgk2*w6~FYj*)8OD#w{#KK+P6s7;}w4eQIjra7^l+vVtd5=+Fl6qy9F7<-1j? z%UY2iS2UC7EbbKZZdwewJoSviLz1heEk^>18t7c1_%AGv)AQw0QEetXkJaPp z+`9J-rQS%ZKH-!Xdqqjp$D}L#?}ROxB7XIY`0FzubRx}$`-Enw$3V=&+$b3`y{g4S z6;!mQ>N?jFZa>U3c#rG;`-XG%J(GlDzx~JKC8>Xy{v49~4;Ls6y8KQ(RF#_!z<(Rx zvx~u%eb1Sc5=bY$Psm7Y$2!bwkGjP1<<^N`8SpI(Nve1$s=Q#M!uF-p@O8s80GGt$ zJglQ@iM=A2H~CWj1}d|GB1~??Hirsfs{4p_N1}UC`H*-2BF22B1TZ!UB(Yj}n81GV z9H93$KZCGAOks&PzWSfNI9Vk)XB?Gg)$ufq_dvjL%iPBvBWb{fN<7x4uNP1tW4&;^ zu&wdt@v&?Q7%?~LB^hpKd9zRNwfa{=-S)1n?~NIj1{2=#7gcH5?a6aEp{#-l9y}u? zPM@x*Xt}%3)ts9a?zkkm@@b@A4#^UP_gNjk@@Lgd%lz8xo6~ex4EE2x)}*`Pa$M?P zuj`2DTlpCPL+WMuAeLTw22DovfU9mS8@d|@aqr*H~9LP?I9YeO+0lmE3uZ}W1l z8smRvJ`Z{$ukZJHGitEf5DUR6-bNjhWxl{cv;kOVMUY$E@OmEfk-CUpSiwjo{zrYd zDqh+sYhv(Gp(_I>NCezqu`u#EZ*79IWjK|B&~1~*pZjQarT=qQho~ag*^~lt^kTkS zUzQwe(iG%tep|4dPPphrbR9VCW=BW(uASEqrt>o+t3RbM_md@a!)0BcxQp-hE@ft(AuP0Z zuAN!cA1_*$ASfL9Ouw;+4pN@l7tUkx5ZBaRb~(DYbl?@Z11_sH{8o48y!%VzaJ;CD zj6Wx)FW31o+!}D1!h8%BKK_YB;GRhYfa0Bt6N|#hj-1nN+wc;ZnVDU`P6|4D1ttV{ ziO!l!cRDSyjz+tOnpw$FUg>bV?zl8KQ!VTZL}Y1cjw}*iUn?vu#GjLL20weCaTRd6f>KsW#gCw#2toGJsMlu6>ENVoxjR6 z-K@25eWJ7~)uW90)`7z=uBy#iaq#-!1=Wk4tu=oyK4bt~-*T8~w{qM5-M(9; zUaJ2+X?)e+ohRbx9jly2PZ?$3u&MA7{-+~ACg~L}#+7|0;fUkE-Q0z$+jh(GadOAK zob9uh{fp2nfk1Joo}tEe1fi~!&@e zjFQ-(RhX^J5|UfT>exn%IAeiR9T!>o1QJd`q~aRVyGYSyTDC7iG$tNVEz0E2742r@ zR&=lI@qjd$zv6=xeL!0BfPc@Wpr;q(g4I^adnU1TgMWNckK&EpxvFv`QVCHpH=5Co z$$E`$|6>^#Bd;aCF7*r0;^U$slNMxw$o;ph52f|(?C7f9aObTvAmwM*1#_G|bqcIa zg<;P@AMhLB>r@mPSlx}tfAb?M-%{7Pk&~|!27Vk5yrd4xpEeuifgCN52C>CogF?3~ zUaQml=rc&sZm1#d+U5S5tPl*-y7seg8+>T!&}0 znOQ_enwYh7)#JH0%*M8W4P@A%LE9Ip1~n8< zNG$hd-jn+e%CQGp=e0xqF~7VDM%?@iaBhSdVZg+jc2>xlQ$8JD!sO&izs*p5Cv+_-pKqqM%$o9*Y-qO)(B^~u1l~?`3^1cCcc{(d z=dlF0A@6;nsrl)*ht=9=oB2tDJj9{64iC-cGXA9IRIYzr*ZuWJ=nJ2(4C@B-7u*o* zc^Z)Q?i$>#jm)0;Q%l3!v-0l8G>VY@4aIjeQgn;Z%RbUk5Ydy}aCq_p%<@K`3D!se zuxLr|`$AGmo{(w05W-*R2d4C5RdKTzMDp;E#*{bfq|#R-+5{dGjJk)OK|c-poIiBt z97xqT=?(Qc(uVG4u-l{P3k5$2sODv)+JX^*iEjKo>9nkhXrxkVbA$pXp7W_!!M~QTcK$kz?;;Ej~=h=Xa_CBni2kk&)53@m0N8Ez2W?Z-fQ#?VUSY-X)UF4PN>$ zA(;OC`~6jJ{~D+CmXQ?gysMH=V6aRd>npg=1_}m@1xz0YiaJ@17^WZ6PcbtCX_)Ev zZauMBv>yCtR3%dBomxP_?KelQ5EvzN$euHJrr~8XFXXbxWx>_T#igaMi->uN2D)~~Q<7?PIkC5+ApIF5m`|*fsiw({ zuzMB%PL_j9fwTHDd;>g(Of4-ft*ms@49db!o82|f5IOWr&DI=l9H?)24%Rq};!QF4urR@bLrVqq_}<5n_$(Y9vpUDufAbWnzmQlL z16b=Y(EY2kLubB+)iKJpM&yXPe-E->TNNp29`-tRDq3}jDY`C}?%g^e&#`#gY%WFX z7&jd`Yd}88PJ~HNSMcc4vLTHaoBN!Gxq^Sv0=gJebNx`lqn8pYj3|dxx{RpE)(9q3 z$at%0qG}0i!52b0^U6S(1Emd@qweB**uRJasM_ePKk8HLeRS>S>RVzauz+n7 z8FHsyF)=ZrzI3-Q#fkn93iv-D${-DD<=P!Pd8J}DXAkwZ3o-xop1o|htRNy)3Q5JF zpn!y{B|j*6({7290l75p%5+?q)^~JmA`n^QbM9j!mteSuDowu{Z{!1<%WAvKbc^Y8eNJ}JAw z(+I~X)DP#{NfXv%h08CEqx1z2QhRNyqj-Ny^Hp*RkCyd4f#rk?qgyAY*<#kWTW)I(vQ#4G@2fQ%C9ff)g47uAm# zQznnTje7?kIA`IRNF|V^5JI560{kPN&GuChYbGu# zgOfU=8NS>xlD|*}xRF)C9(Z0hTQ0YIvm$&Lz`v@LDwF4e3k>KwWA(}>H5TRNfbpQ<^ z9aBthw8ZNHHo^Q1YtHq6qv$u(;`1#<@(NxAfNgM*UVg_RKP6TK#x*oFl&t8<$ywCR zb!589P518Fu}Gx=O+!7&`JCUs-l5Slxx<~lM}*gryUqDPnP5#gxm5tJbTnb(T$Fi6biJC!51vHPpw-F+ssmTgJ(xY$GR^_m;}BaD3pbJ^7m> zpiFOH>+R}GcSrAH)>kWN(wSY$c91-rA@nCNp?_tqOHlRn$7D5r`!VtP*9zq_CU)-a z_QM}nxFllo|DFD+yY?<;e*DpxHPxmSV~Ock5tg}$YRRMj45-MjI>Cz;l4IlAs96^n zZ@)O-{5hS^Mg_W_>M%n5nzcKfUcIX~G5`4+c1|Dt=Nvg1$6yY-D|E=|o|&>48^J5m zG#nZYHNG%n%^pS4!fK&ufPzG{u8vL=@(7*8Ff?+=Ym@s>cq?;LXm;&l)~2o%K*T&Q z`eL;`7l-3bk%F_^H^5>zFJ;&-w(D02Rg4TfC{RUGw&6tqhPS4-=w$QXx%Eh5a@`1v z?9wZA&c|M0mJy?A*=^sR-FIMcZF#@9_h;i^;r6%Mt{)K%e5P{mmU|?Be6r<)wfe*2 zeaHHc4q7nGx0cyDFgY1nq3dbB=zjcE#4gXZX#|a_)G7+cn5Bx3Uk|J{s*OCCmG)?R z39(o8=2o4V*o?ffq_q*_VH)&^KYHKzI(j{Sx>8pyweVKqm}pN!;ac;klpMz>6EuHHFb)Qt6q#x{ukW$3M4!BK$9lx4xyJ(QBf2J zzMPw(bE!Ma_Ru4BqrG?J0*&|$-UCG8I`cDmU%q&c-w7X_43Dp_tyNZ3L=_ICFrkJA zeTXQj3rIkm&^bq?P{Z(eMN+TG7EB$g7 zH-Q*<^?uPvR(040FzYf;C zX%FvPnIs`vWXwKTUmNdUU*b2juDi^c<;qlouU6cH-8jm&OxiM;|tPp z-@bhd?SEGKoq{t>!x8NY4ANaORyLHS%XBJ$H9;84o8hR;Dvv-+#;F z#zpo${&3{CGKArN=Ongf5_TZyLw?uRT}9C=gUa>ojz?NKZ{A#-FN!Yc-Mg5&{)ev2 z$aS%46Nh|Ks@uDzUtyv}le_vWB$fWzX!4ho^g7fYlBi+(hVYKBPjo+s&*wagusU;5 zE=wmdDalY{w{KjZ)lVXmtP09c(NFXH`yD2%`X2vtk6f5r&bZc!kBHARBq$4~6zRBj zOxMX?73zJnY319uEz$$I!zs((xFm=SJ>>nRcnvx>SXL2|f*zmiBqBZ0`#EnVAPnZc zr9FAQquVafZjldKuDouN(jg>FV)w@Ai+V>H_7n6?6Es85jkkI6J%{6llM@}_pN|}p ze#9ZKRb_5qAWgfaZTBumi{A{P@RWg)_;ClG_Khxgl=|A+@6S4bDPJV&t4+l={ZV4LpqM?be445`XuX! zvS(7^O5Za^DX53NsO`I;J4ry z4GRsuqoJdzX*SQm`cT-`l0H^5)KH^ojU5&<7@1(xiJJS8Al|)QIU6=8v>1vD2uwUR z7Q3ByEidDiBAx7S0!?wuCkxcaAl}&2`1HT|W%-~FH+V!$+JwSW#=ee zZSArvKcN6XtgESMVrAx|AP&ULDUwk2t6BTc<}A7}@(xG$h-`?1vo4M=JW5I`KN@yJ za=E4aT&HO_^S}5(MCA=Q7CiCj4Q!`d$?vk5~U=%K@vE* z+C7)E){duGgAtaQ&(xGKAp{)%_SJz6&+pABB0@zY(IxLxq`OZ(2z!`|%OOV-v*w92 zUkeD>zA7hgB&*J-v#+jU%!T0vnjA5)w$4t^zu&fp#~+pd^XDxyD|SmS#xALwzwEU` z4Y@@>bLFOJhN5@7Qua2Q4E+Ta_xX-R{F}O)5pEieQXY-Tgsd!j-}(D&FefRJlCp1W;XH0#v~0*P1$@@yRDI_(O@Br7R1O%$b?2-2^yDIR3J42!K87YDL4}G zjy9&cE4sH-(#rp&`cYZAmQ^I~((~+&L{S7~*5-Rl%bmJQ)mATV79CQdlYS)go;BtQ z?X3$Yn_}3d_j~(MRUdgFH*n2+8|~dm(K@02u)&v3Y-{O<3q=jk`O}bivrni?va_DjXs6lr}CO{T?Ou^@*-1#_)F+nW!JQrq@dst z`DF+CVH(7645|pvpfjBlL=WBuh_nsTVzy!d^zy+!7*_csT?+tP#w}!rpHk>#?4Uj1-Ebs; z)<^0+4^Fo>8V|kM`3Nqhk$)8}C2y93!c0&N+3@xLZT-XdpHs$gNV`+*I{f1Nd*g^- zGZD1uRUNLWJ*}M%KGM&+^(kv>Yig2`l7_+EfY~ZDAR>Jr@Y3r9{_RpPxs={F>m(O+ zZT03Q?c4V~GXt4UuCvK`A9jcnCm5_yV_~Z7`UgUJfZ+?q;=>xCc+b(rdbYN9I25xs zZwK1NRZ-4Vfd!1{m&49MU9|N=&*r5Plm56LyF)na?W!vu)G&6>tF&TTY|RI8r*d{Q zCnY32=0;i|YYUwoMBvJSClFV#Ed6aP9Lz2J@&$z_;amG&Q&tH)Wupq>(9Uk>MrswVr2v&|Nm9YF+!&bffzj!AEg6mm&h8>YNI{UkT@f`Ng{i? ztbI>01%)~H-{y8pX*YbXbFVvvWLKP@Jj zy7T3S0yE?ir`aC87Vw3ak zB}R8N_N~_WN;LeatjCinmIYI=kvg8m#|~OIBHsCJ+GHU#Zm*C1A(0?g6}9&6`m6F$ z&7yVANlbG(bo+g{s{pN>>Z+;iwtjo^RR7%;jE=f%HNo)2JaNKWNj{Y#&LdbZ;S z&V3*MDzTtf8@<|6tl6fCk4`Vb>D$}O!6&DT|6by&oPuu0$_gTP-S=w9TS#UczH>IR z#!1Y>Tzh!ZWvJ%fZ|5d0(_1*d8^a1;6pfy#$SQou`$S7)a-~dH1e58~$E-tPx`oNa zx-U~p&B>li3I6;Zf$K8~k15Qz-x(`to}Z3R_MGB+7Ge3PFLUL|Hz|sRA3x;1>(KJ& zG+iysT8;p90^yS<&Yy*CDLKhZhdKOWOS?s0NDmXVs2%)mMFqV^&M(}qNaxjRA?B6a zL||#|<5D7L4*e+~V!&D&{^jlqo5%6v$MNZ>S{?DGldTt04DEx4CV|s>*+;VDw4#|t zf;LG=h0gJMb;pi}ch?sJelm7+P}Pc5Q0alK{7xl@pHY&3 zpk+B)_y~9SmIhvuQK4(iJm`afkNa%r8#Wa?6PdXD*i**7?6=&rd7r+kbWm@(!a_SZ z9gHNHela;T+xzzbu&Zcde&0Ndp9?iU5vXTr9GaOCl77^`c>B^aa$;k-`A(d$SVb!* zvPz)cTDBwf(5$^dK6{&E(eP3+C5~{MbXFe0dDAsZd7U5g$LviU86(Z5-gmlvUWpf; zWL$_?V(baIj5RHmEj(Y-KOp|h&!FOBkoE-*3)+B%Tbb9JM)DP}`3H zo_doH(6uQXuD5r`fnjZp8j$hy=#@AsY4@_@m*?A?ot9fI{4Y@L3F`IeKj)6)wTj;} zXW2K+AnlKwvEv)28#=T3*mHcn#gE%ae3bV6OIwd&VnmLNgzN`vh$(VTo z3dUo8r^LlqCrWA1=+UN-a_eIXZmXvb`o;Rc-`iifT-=&j@Z}5gt1Qg|^4g5aH94Xu zPnJw$ND5CG#+EDmtZ={VtH?-b;b3CyN49V6*syN7pCI2wi!Yhn zgacO>_A>?s%v0F5mS6oaWLOns7iz6rYhR zhOv^4Z+L|@{-?*#%5KXo*~JFJkXexmYtX~sA~r+F5=1gXtir66%L zG(=P!>Z3{p+AOo;O)*KRB_lFBh{JLBS5?(W#NabBnh703h8W^y#G-6+^3&6?01Y+z z6}=Kn|MVk#L?Q~Y@wgw9t5SgQ=Lr$L^wMbAZKzV$Qf!QfHl)BHZ`#;jrWMVF7tb6j z-+%MXiHOT~+Pe7C)&_zCSJ`-uk;a)?foabL-zN!5ef0Flb6%gB_k8icT7bvTZFRSI z%X}>Fu&1AY!1_Dz(J{Ys{3DLK1Z5_Ha=dltSaG3533!pPqV1hKy+4nqwmGX!QLru) zOL=JdV)%$;VnjmMq?2FSUmeK@=le@ptEmo)9c~}%_A13MbNdDDzM8S$jyI}*QrNC? zM5}J={gOAlm5BOor`Y8C=GMo*#nhdO-Q3(vyAc7ZRJc9A4t{vlpn(F$CJ1|DWt9V7X4(qW0zMz0>2y1)tEy#&L{jz3`y?pGk_~ z#rF?eEK7hzYrH8K#`)ze2OmmbyoK?k!O&g&+wUW!B2o!yNj0Wh5qyH{bJDHQqw?1{ zgOOQNJ-~dktKV6IZpS;4DGEQ^zoX$*Et$8{a#!yJbi>Tl+Z+!T2Xi>zP~KDd)5F3QU)}`m<-7{X^=yO!j((#JsBAs>J^~&tty;`62Y;1mQG&}j|o42BnnnrA*7^BFK zU@n~8*Ya6X=4KToMooX#dKf|6l$eoGFjBKFjzzgW)#;%}U&t&FG?sPrc50t%l9GH} zlgCOP7Xh*F+#^Lxo5jkNPbh4+^>;jM|A%jXYV(sT91K1s=_BPO5J9zO5_w$t!b)HD zp6IS(j_TJ;3GFe-w@r8baP|FMTEH>Swf>X{OM|gInr=1QT93??a$zN1+v?sKJE24S zS(5jo12&c$KDw*iP6ayJ%|t>iQ7b>ecy+OM9ZJ~&b#(?<=YJRwJ1-cl4Hvo9x<)O< z(x2{FwX}6wxav{uZ(ny}xKUj6h17rFG9j0`BcY(3b8CKN4C%5Z5Q{7DuUzHsx@-G# zLv?=Z<8Eqdn3(Rfar>R3zTK~Dk@sq6{@YH|vg=Q;C;XIL(Vv};_WUBAr+-yli^1-t z&Y;T5WzX0C%^Fr4PZA?$*^faxzgYFuX3Z!Ip+m9UfA1DXKG1)OToag%5L*Qd0k09h zLPA3H1e{QYi>P&`P|eVXu1sItXqjTI!nC|D%*SyTd0yQTQ#fMy4w1wFpZ1h~rwS}H z=(?h7(`ij{TG*GrWSPn&+#yG6igqlgNp_gHIx62-qROB zUGI8u^oYy2>thPuLB~`7@hbR!NBd`8TxDDl$;B*$jVz=n-BAt6P%S-mZl1% zsyD82>X8lV&$A`~N*nuesYAFiq{=wF~+&ctu{@rVP6vQ%gsOg@px<#>i~iXUOaU zR*Q*<)*IUh)CPJ2k9_ZHfbca z+TB>}T+bsS+&W7Cq~e(FdgHW@u!!fH?dHS4GfF@4nhi(Or2epKlhB)+Qd3nA%qc2?nzCWc1QrN?pwP zSC6$diS#{lyM~eHn720@0%!>7^ERPS^v_4necUldqC2~tTuj*Qi>LxeAy%E2Lrff z^ZU1Fbt*-leL(A{pfIDLC@v=I@*{fnRc*hS4hCQ-)w%ru=jK%iMJ;@rqVXukndsSS zF|)8BA?L6<%l&F3Tz28WGHtOlh#)184iSGSOv(%<*@7Rv5d`cYxo|`EVdie_A3c*- z>98;7QEuMNT08CJR{%Z32s=UKk)8l|rA_}Am(9Kq^K{d7;zQc9T>9VrzFWe9Qol8m zLw>;)cjgW8_1qVC?a;ov8A+yxR=Bv9RZ4^|hQ2ZezCPP(Egli6*B87`CYMX14bGaWqP< zUY|Y6PxRcNGAb*yXQs^YZaYtW1>RS3;)S8^Pd+h;EUZ5JTkU7AZZACK3B2+*LA^ zJ%V;_S)p1yeZqQqbd5{0W%8p{OhN6V7BPNZPxr~SW!%HE&RY5&XB>C(buWn*H1C(b zb*~7(BO1%+l--A}1NIo!kX0GOsJc9smwGJ`OI*iev9DRnwz}!!*1UXkV`hoP9sfO; zJeCi|jwjXcNou`P_*b|*21~@GlUvWWdW?_|(~63^O!fYF=Kk1!6MkRXnC87K-el~I zTd(<+61)GIv+ltEdPXL(cd3h#88Y30G)vy4;AkyWB|fXKUlnJ|`SQ)P_lWNNm zxWVq-q390{G9+$4uYS+!0m2|$^O`O%x~*xCyEM~yE|kvB;;vT{CB9s30`XZb>F}sR&ZL) zymid~;6ASw56{s!){wD+n?+NX-Mkm8t=w?T4;PFd9h!9)dlRD2B(Xa9%X2MZ?kl~e zXk+#ur(HfNyQ1eSRTo4;Hw&jiz~WmvmPoGkNY+$WYr71-(?#nCN{}~NaFpL&LlHbV z0&kvpko@6`Y82?mQ2|8^Eqk?93Iec8EssQ|I5 z@4(-509K?Uy^>;R=K(ijO>}oc9%^hH_Pqnl!~Lv3q`r zU=H~`2$bk(V9;=7An+E$;k86iIpX34>FMd(xx+;C3kL@WW4Sxs(uYLO+;CXu40DQnt)(-!QoDXk%l)+Ynamsy{7lq>3|7xQ11 z997Kd&$8|o;oidFE0esiHV5{oD}wt{DYH{ z!sCJarKomW=HF_XEBcNBVPOH8xyU1~7JVV4i0%G7n}CEwRJBp-Ice(wOpR~Pjeo$- zpeE!;D;?UmP%gZp?2$ely|#UnKP;(nEGeaaSL+g1<<;ar?hD_irl$VqakgrNW)v3c zaMOj$#vJt7P7bMNaOCc~la! zEpy7SRW?dY?O9D!7Jr)N_}G%FD+25_Gr%E}(wP-L{#FwgmnAa#-_*mp(nSfSu2hBl z9c$U>(Y*(Xw|-o-f4Cg^#ZjP(`zoC*?Uof{-nGwdhia$g3Pjvu1gUS|y?Z&d56zgq zrBdYc$}iTM$ylQabxN`-VMsu!Ob7N(CySeQs3G8-=3(q>!~j<!sAaX9uKR;3-6;3@Mv@4{j6U?7W(@74h~I-7kv5@e|T#qZzUcopnb7g zq}MsxTxxo)i_X7M<{t>6gHZ?utit8?9pkskcA2$)6`7Am$=Vjd5r7YTYZ~OhO z`DNmj8bwXQZmOcWHcR0f`JG5_tGRQ^M<2C%T}Obj0eQl$LHSu-=25DFIM&naL#f}v zBd@H@?~!i!<~+>xG?L&Wd_^cd=axGS_fDXh-R^?jY4Y8iF+-Ev>hsTp` z7W4C|DJkS@&*n`kbi_6Z35kxCENBpM?Lyl0qgW|b)#=3*+!!D4;|kw*a$|gf{NvefSvd2 zIy-^Vn1*ALyus5w^UPYrO+-?ju71AIcdU?6+mSi^wM?cW?mWGbjff}Aag<41b_poq>5tD5`cQ>Vx~!WW?SaOog`F!;wa!4OCS=jN1@m7(Y= z>mlYVI1V)=x=D;rI@xKX>#u(iSFg7kHh2}WO#vn|JM^$~93=^Uu?@qsqiQ1jO7W(l zmyi0zB0wPiI)^-3&?YB|S~4F`l;$~Ml%%?E8V->qsq<^*DD>H&%a63X+USV18=0E^ z5TJ&%8#(z`pIuSfFt8GF%PZCPpv=3+NDEmLU*IKkt%`rnNFBoBdCoC7y|`OY+M~v{ z?v>yG>)NJv2gbWXS96}O{j;jOS>y+o#mr0s>mTJDg8c;oE7cY<)}p$Z6;4UlT=O_` zmIbBcLP=APk3OOy9t5mB`oxQLD3q4-z8SlqLZ{S0652JsW0Q7ypN$HgD!5Z|TI&Vq zJ!>|Dsl6)eOo`VASOTJ_Of?cR^dB9Wl{y75#XZ&p_03kyzg@NU^G zve#1R5S;a@jkxiK$G5tMIX z@OXr6?vc(-u}b26bbEQOLp(hGhk$|@i!e1p9?YxmpiUy*6j7Nf4X}BJKVF)sX;(rs z>dTjpF2|Ijqr z-rOuKBJz7KEG1=_w~}-3&(P3akhR0ZJAF&(WVP#Tx#_u?mMm|2 zZKroQ`)fkobc1G`5+~rUlRCs48k& zGgSy6{QQKYFfQS(nK5^ZiLuvaE_tn=_(L2z<%R92y? z)8vyuL1X_JImZ_`N|hr;PoFwJI0rKwJ+de9DSC4g7Sx$o~LJaHjwb7eX-$s{S}nA6Sz1(2VkK2zzX4<=vc z5|vTI{!w!A#{$)KYv)qbG}HVp;pdujmmS|({-y|^b%88nt;Vr%dVQ^PeL1gl75xQ> z6I3I8kzt?g2l%&~z448Y{{*SEYQ%2&eBCg^mg@;hM;&k895g^N0R#__6V1#ZE(Y=nG9nBWgsjTbiXKhI)%#Cq zO9iqWwBzc@8prp~_^Gv|K0TXul&c1hXQSC{AB5^4bO&#cMW;j1;t$`m@gQ&m}hVp z?pzz~yrEh!l$4ywse#)FS)uH-*U{d-aeQ8~|7>kew-4hP?VQTW8Z$HgTz_ejPz5oa z_kxGYJS4*WBQN8(tA5Dai~bRL%P=u&J`?IvA^Nb~IRBb@0Ly-{=={c9Cm)2c5=^UM zl|a>XID)g7R^52I?P1^R5lDl?!EQs9Jd z2g;Vg!NHYnHn3WxE?GM6Gtp4n2yDji1HQ-6@1E9EcUZ&Y2g}N25dlS1_Sgt2!HNc! z?;Di_zi(-G@qQti`9Q~1HZVL~42_kv#Zby3-wf=&N)$R7Za+F?6w^tVvcSh$F+5t!n~7 zvPChdajEFIVD|#546>Km$D$R19a<^S1iwBmcJ8wUl8bwO{-!R?-YBuu2t`apo^MmV z0tpK7@OW68xup0W9iz#&-)v#K?>+a=m6iOYB+cR6`Ptcwf>UifcKi(ct0l$o8sS0jZ?|yZ4>4`7_mb5td zo6|2A_6|%9Zi!D~zo(lcU)1X0&byX1C~}1|RcvV;1UM<;(6~$3s6#NvV_m`A6jm3C zuche;@>P8DF=W2?d>Bsn?9(Zx;o0Aaa)+tDjyhZz%qWQEPO>%9-~BLU7+ea3@%A}d zNHzz;=w(YJs;JPBgnWH{^=s#%pi3cVVT_dDxe(Qll&LJWkKiM}GII;hQS^({j5^d- zRk3+Pb;QMiTa-W0Q%I>bS7Aja=a^eA3%x!oaCI@vv)g0gLUXk+wzKa7ud_O9&a8@)4lq01jQC}$ap^AXOoGm|0e~S%qAx^ENs6l$eF9LR;d#! z+MjLjm39w2|JWrb1r;b15f$YF%s_b=s6nYf@djKcwA-RlfqPhJsPU#*t;>P+ZklsN zD~5L%dWVwwtF8E=#U4j3H8{|W3Y6Hf;jhNmvVJRYa87v}vqws_GWZM0eo;|t{yn^J>Y6`S=DZN&EXhDG8bG7V=|)?l$fqY|+<9w9E0-)^ zxDlacRq~*tuv)GtVH6Cyo_SWuW9$jOG%8yn)&=<9(2>9_MQts{0_@|WFwOy+MqXX% zUH%`S!JTa5SmPCONR1kM4jVAw=FaM#T;SRMAOg~QXQYQ;u-6$(>FE6Mut)4YCqX8~JI`7F7`BX({q3xmU zlbRY;V|C3E6o9vaE-fbesR}-UK*YPm*pzvTWCe5$1@{N%$_UPi3dEt6h{=tJ$5gxK84SV2s#$=|Yo=R(!h~U&U#LgIW7j2bENw(R(eLE00 zJo{jeDtWMhE%{M?SECM32wfDv^v{bbN0Pt;64RC;4HgI&s6|@j*&ytkXPimfVX&KX zrw~^{kNC@TO8cIzY0Ih0k@5SaV1TMZIg^Y8A(Ol4Qu_`cq3a{UH@b?>u88I1=Cn=>eM*Oba=JxHt|NVwuu*XN7J<+`W#&D~j%UZh zcqBL_*4*qUxsB4gH;4JMJYtZw;7KJs=8JP>(y-a?l^1UnAvwDs`ACe5Te>}N; zF2MAkKYxbkfVn7?BaaZJlR)U(Up9*P& zb?F#__zV9M^;=Fa9xqoX@$D3nD44m|poB!hiY`Twih-&G9`s-zf=|;;d*A1+!QvR|vur+XD(_XLd9|s$FyZq&Z zcF*_nw^7bR-gUf;R0LD)U5326hFj{t$%DjPc5tFIqfb)*R8;Whk_|!5ngx(!yjb3G zCihY#uLc)YD1Ojr@540#$ga9eaUFP!*P4c@P%| z!FBLX=q`r5_)v@tF-dGBhqo?qR>oWIes`e14eg!~-t$QT?WGCYt&ILB25aw%>PFZ0w0y6tii@ZxLa@HdA7Vj1vH9fEWt6h=VDFB=xHt8AD#2%<#vtuhKYD)UBGJ0v2`Vm>`Q7^ zA2gWQpt`mN2A)@4?F`a0u&q6r|Dg(19M4Y#jAQ{y@)(!xpDbsd!J|IE>i)^e=P*52rO^ zcn4%~PqoR=teckn=(8Z06g!6VtkDHG4ZQskHU9$@m4ThsV(V|=z^Ta@-j!H?BK>$u zasdJn+&h5RzP)#T7eh1$_l0$4?HaWza( zC^gJ;%OYY;yI%3p$h3)}bTvOv-WPd}(24TGrT4jVadQ{C1UG!Dc z^H1$Cxa8?Md8O&%l|;5{marg6KTh|2-!+0nIOaUCpzBqG0+x6GJA$y0gt$VIR#x4y zGUk1=@7Xqa`7GLNj+U>N$nQi?WNlyB#dD2|Yu%rH6doyw!C5Ag>7?F0?uF(RWUJiD zy01tUy#rTn`}RwWmYqTt5t7eQ=-4Dlf3eNSf@8219L}Vz)}|ZTVQd`|XWbhK1F1|} z{K1~Lb8r&^d2HLt?HU>kcd|)&xXLQOrD`JeT=fAkdk-S{0Z+EK|1jvT_vGVwUr*DD zM>yLqU%s4~xithtY4jJmhr;-Nt4fZO>=*m5As%&ro=waiL*AMkgx|2^sj1o|ZpCaF zJFw@0H)0T=s`JOG3lOA_2d56?SR}q*wibYjtrCy99{in-^lkzB=f{wMK0jt_H^8@Y zDF$tx9of3_$!L}4%u0KjgWq-Qjt8J+?Rf(97P^&hd*WCC7D#MY#2{wuo@llO+V{p$ zGBqYlRboVCxqc*{j=-BYKeSWjiC!Sd`Kdi!oyaF>mszLZLYDP(j8Otez>o2j7b&` zI<3FlKDa9_%DWZJf$>V`0(ZTat0&#rt0*RW`jTxJhj*;f^QG&)5w=pQ*OKD>PIVI& z&ud+zN^wEMGIRSzjYKewKoZ25BY`A_q^2SwLXkeL5ir9p?&7-7eKuQ&n8`|Nh?W`#(2b0va*p83OwjF)hI&5_9RM| z<2CEP#y_bIdo@~$qPe~@Ielxb^`oOtgfBS#pO!H za^j0CpMWrpp4;T4a)w%asdxqr4WHw@ZxCwQR$r;hyEKqDH2ISsWOE}UOckCpUcZ=4 z>M?NXi^XaR3IHun)$J>4b)*;6bpQI&ah$4P9QD_=m(=y~at{xjiptN*!l+bD_Zj0a z3bm)wH|l?CXn>>hV9--RwWVs;i^g9hNhe7&&c;dVgQ<=JDRj>|-E4Hg`$A%061-b(&LL*YNPPq6I4Aeb18m zRodbi<6cU#J7A#&jZ30EV<%e$tBue-XS18!8);R9E7UviBx-UXFMrvTHjbJDrDyB0 z0rW}}>oINf;|K399^hJAhjw}tn@SywV`+P%bD$Is$Po%sgPUfAw-l|G>d?MOnA18t zIU{6@{&x4QK;^6>f%;P=9{*9RU%MDvCjGdefWTLS_I&swWMw_-_fm;}yP9khlLQ0u zH&~oefyswM{})3@G8v_;(FIb*B{EdT1u_`45xh5_n9qtD2QAcqH*yPUR$BqlLS1S0Di z9F-l`ba$4odXlt=zq-5`&HDU#=$4#}f);{I&DR20B);#?u`&k1a3G#VGHIutA37`z zjR(y6GAEAmf@g!^Qs;zmHi(vD0C34Jet!PSAvpu;@e?PYy6Zs4XOAwmkCcRVhZra2 z_iiSHQXVEZ(`eUI)Ii2FSX=LfK`5?jUMMsExgl|(vVT)mcI*h=-npvku#pjQ41B^| zW81`Dx?A<4)0?k|K`YF8D9=@;R(_>^Br(z${Dj%n?t^J~R1|6=hv0pDjf!Ed{_#2j z)@+%Fm z%4(p|3W0SW*oc;KgVjlV@7BcnOG4LgeLBk9?M{ZW#)wpXY_jpD`v{yR{B5y4J{ievZ#ufJghB8Ls;qN-A`1VAO47lYO8PB*59S|g4U_i~V z@8;|)0hf#7vV}VEPskbL^%m@GKe;-pcgmH%c{H6M{ohyNI#lA@9_(zHGVNHZH+jbTtwj z=q+yNDj%Uklqia8;a>` zuDl@T8NiM$2?0HqA@o?StL{KY5BAxSWzk9C_!SHyxkD=s-?CToQ}xyMzdg@lyY#vi z?Jyi=u>A}PG_zF>b~KyBld#C4RqViJ_%%N^T#<=CQcDMg~kN zB0}u?kx=e9Ky7Kd=8PeOh`p}%Q^ZUq2GU|<@xY4|@EhsdcByw=pjZ$K3Z zml6nFzdRVZF>z?ZRKg_MkyHt@DCrRNnnl8`slT3N^g|GQ%}or;xUb?4ILiZaINBMC zipi;|gre-192ucX)F1$uu0}s?Q#i-@C!izq%w!wogdNX`A#)eOj7eSNUS-(03fyQR%NCK>F}(&2-V=Kwm= z`sr@FUl%(S8CmLC8Y3Zrtk^G^y7AsCe1Z!LIwGTA^}u{r_lA~DD+3037OzId7Z~6` z2eksadte!LEkQE@jSV5LLYn}vbo?SEffE8J4+6VGS=~HRGOP;&{{@alRTkyKMJtx^ zspE)^Np@KN*?}(0yF5wSyjQSe^}@HU)iq=tm{Ha)m(D^2!2O@tTAZJl`naI*^I|c| zOrlkKz`&rnz`*eHl9(09t~ikBp?&SLue6>J8Y&n(lkGV%U~GDABLqyQq>4mMIHEQ^ zl7?hBI0{Nie4%?{pYiN4fUI3e5;8SeX^Z8ot#L5uRxNUYs0gDcAGJ7l?e@$PEVB6m zeGLHl8PyF6!kmla4)$QV>Ka}VtMuU^bx7pp92zz0tpjYn|s#Hj=DjYU=x(4=ycVE?`(8 zQN``&OAb+p2|GLANw%RX*yYE_)PSLK;Mo!S;2kG2IKv~Jo(X8Z6*xpn0)><2{WU#{ zLbUaX>S9*r)T^_2m*idO;z&tJt6>{KLwmz2c_*F|NPX@UlOU{we#YM&Pt%)5G|_7{`YUJJZ|S`}ApymKAgCFhG|X z2YqX6Ul}S!axUWl^_WqkZ}3oT`Od|jB&~4RX@F^$BV!WPD11hyT$SPpt<0*g9UBT9 zZdIvnEV{LqahBAf<07Odq+txDQ{+A)BO_SNRr1G-5IoA%KAz?_jsl2P&)_YxCO&fr zdmr+j5T(4U?@?d?!N2Z{x948PUo!c-zr?R2Jk-1JT=?xb*W`Lj9F3!rq zf9fe;$*|_XM%W8nxtXpWjK$DvlbQ-Lk9_Y6rcA_MD1(-k#_g4yh`R`4MoQ^CZx+0H zAWelbC)OPxH5AWrNmXZz7Gs82GjfM#a*yX6WOz8;qbh9SUrA6UE@aMa?aE(DB8_ba%{@6;rp9Zc*;+94nkq+|Jam*SjlY1J zQ0o7FYZj$8RtW^sd^;L`uSCi8L2_|vDQ;y^VC9Dow+q)TVq&%#n$-a4&5AGnEf89A ziFPVI%90Zp?fwl$d=Acvag2BlvX0vO3IDNF-J1>L$0)j#a1N{7Al~olj`h95dlw|CW ziZw7Jd=Ixh^m$}8x!S)F)uuia_WFdv$T;lr<=o`P zS7i=GPJ0eKk!vn6g9S}`l&Y3EoSu(7SHDGfbkr=kCWb*ZxZEhNR*cw-auapjq8UG| zZlJg#ZXTc6%b?G-MNUreT6T(I3rLgK>3i(y>)VA#ixa(lm{ESN#3LmI><+H#MEBU< z!9lo)zp2mlwFj-!(=COsrB#iU|dw;Y3C&_;xKwssIfNPcU39txo2hEebJbjH_IIP)&|wR z{x9huU3=T@-u6&PSorU^?VzK#>~Vn_1({Mz*8GHICQz#~ZI26f2{jLSFngvLNLmI| zlru<6tm8Po4yWCpimkc1EpeTf$H^X2s-1B_+(9;hp1eO z7e!eW+r6nhf63iFYG~99&nMXi+>6$}R-iWMQC|=JhJg!UW9i3%Sb4w47#NiP_*XLI z1XAVm#>HDHs?~(FFq9NLw;-6NNIq5cMw>rpK*(o>wk$ za8>C0gmKsho83>~iLeffox?8*L%;FrVwQ2c0p6oxY%S*gQ&X|%55EOl7s?=vdXoDF z7A#+goSpm$p-6Rkn?p0oKa5<^8pm&f8<>8aJ+KnBI^!PXy(%jMGWtt0z@s>@vCA@I z?pvE>x&O@L8g+){lcHmrcI?>EU6eVssN$OwUV)M5MUV1Yxw?MFFyimuUS$wSZ`nDF5YcRp=45Di_$8?uLp;Q4CwU^Q z{+oI#lLpnj1hx)v@oKt3?QjgJFlpW6!Vq50*kwSy^0H%cax&1Q-wZr4fmKw6b-Lgc z-99%Y%-UWgk-Jux&z*a%Pz#YY2u2;)Xk_F@pNro23`viV2I|35S*kzOL!iBbyiOz0 zL+}k$?5kpyEEhjOH8nQI!_&S2+{-402jsKx(9p|%Rcedbh`ZC0bLJS=k3<-Rxkd>E zIZyXRYzpoYXq5wXwB%1sy;jv(-fWJ=rvm0Dwf^_sDtWXtWKD}6rP@kF@B`BL`W0Wx zGEP9+b$OeD2${9jNn=4QS6R%*qGFcWAJu(9AqK&JY&}pa+Ltc?E6A5VwlaFbx71lB zd=g?2&Yjwbks=}t^9rz*8g0?dGdH}4a1r;f(_U@~*5d44htP-#S7ps7R>s)305_uL zEC9DKzRbFleZlBtwY&SdvilLGQIcwjWvP}yC+c%uU6@S_YL&!#dO@qb;;Jg=%q*dL zCdDQ0VzDV)$m7uzWHIj#Y@{j){>|WFJ)+8Lx6vQ9)(MxowCjx%Bc+d?>7ssA&@PQ`0YoA*315*(m=m`NB{p1NO+&FL96w(n;8*Q5l z(us1a_B^#<&~dYdcu=wp>_gEpk@~*;)-4uwq9X`;(EurVIN@S5kf5C@{eF0O7^hxr zZL;ds+A4|g>oze+y)Innt;|K}a*0bjk@;ivH=n&@^0O%D7Dl92H_O$PmJwz9JmwgTD^Cqj9lawod*w7_i{~7FM^<`J~-a1F$D zB-a$XbnQ`$ZJj;Ta+Dn1JuSGf+Ls}gL$#h+DN*4-OCio3O+LktsbErepb#!#rBk~fRr|4k| zUIkfcMUmjDiF0mM^62o0*9#-n=Xu}Onb$C<%4*Rg>;TNoT`5Z z70o-{n_ePt?c?m>NJ*6bR0aBAfnb-1HP(-1%z2sh^!VTZJ%MVB;~)e1@ZrO={n6)) zj~g{A7`w=0D(zM%(>&yIAHRXOYu2Y#vb{k^4#2`o9@TdCR-Wj$YA!{ zRJKRa^8~LIYxw1Kz2?pVuFLd-!h(XZb7=^2G=)LrzhwFx7A=$)yStI)0a7nfQU%Eo zlUfGUiRiBsR@y;2n1||unE3#i)A_EmLRezU1c@X@(%0E_j3^~Q=j;FUdd{jxz2&IK zx(>WO{2+Vs5dEyMC9xiM%_0+-EvnyP0h`SDlFDe+kDUX>V>o`3mSOLaD9`sdHQP(P4N!qN9xswwK=QgaYo7WmsZI-Cfh&~1F63i#?|O%7KZm&5?cTP{?>_!%-lkAH)2laCj&PYy&F^aW}?;`8De6JWg*(wMAq6fpc_M(MPE z@3*;9YnCy~$5dwyGkC_U+!M&6*7c9v#(4kyu7Z&feiw%sIM{8A8Fls*Y2jUMEr`5< z)^28eg@c~l^&>4rgbLus7AG4FOlw|AwgI|BR3a)qDEdx}5A_`F2rQwNp>)BI#jQP0 zMm*8QLBwt~>2CG&9CTM*b2IMW?4RXT%UR^NI9|-+m1I~HIX`Z+eRF23k}@ISOn&LH|XLx?*qz{`n^zy7SgqEXo+E+!aSL#%chlyCq|TJl&2RxrYO|HiKbD}iXk#b`V-2C zBpWF}BfGS;6r<4K&F*^!(%IjHVFPXwC8|n1HRaIekZ*3Gq=wDBx}EMG?W{}lL&gY^ z|4cKo;?}Jn&Fql`02oAS0KPE>&X6F|CD=$sqOJsSbM~~IUD`<*)b0b#o8}57bR197aaM*xRTV z-?Ec@0$FALE}8XU#x~ny2wOb`i9vJ?Ryu-RrNvS;l3LZ5w zBJ>PG-XwV+rsjdV-6TLxO>He>Vs_fIe+j8Y&Wr}Mz$S*#e;MFaNfO5`lD{0U?np@x z-Gz^bSJ(3I$MdfK6O#HDRX07U-y8Y*EP3(m#ddtbe?OC+Vb& zZOq1?8*k2Fg}3sz&vp;SGEc0@+{Nt3;zH^Dh{LSZbHt>5>I>Yq0;3C*6cs_R0gHuc zpT$8MdjXOQstV+r8)1yNW|@(Z0ikLHN&-wyu#5#lz0A7UKXUVlhgp=F4|T5)1!YDc z6pRLQ*)>eC3ku0Omi(Y+^szM)uIcgkPeU4y0s4z!&HN<`!DI%-YOsAE9FRwsLJj&{_*?zS7jz&Ih zYl%H9vmQffPRKm)wmckm@UO%f(_jBHdGMp4o2-T z@YJ+MWIrg9KYldKv|AjIfLTiX$XS%j)LfM3cNNm3xlvpan58{PhJ=g4`zDd*vAmHz zJDOSL0ES%5((R|0up(0hM1@CMnLfn0+JNj=j3b}7x4%6%N)ijYkbg?asm+z@1S_~g z84QS)mCX+1)~keVS5l&_=pSaBnzFoKM45KeT=*zWUBmO%)~MNlxE7+C=2#Tysiq+> z&$DuASq2x$>lJFVnVFe}h6YBy9f({@mj>~`LGb;#ZDmfL@NWELy|!4GoyJwKIFdb;W49p^UR^d_jyQ?(vMpiGin4omMrKP zkVFkIN@xX)RiSqCi3}iY@J{Ajys`>jP!JpZ{QM{(8S0!lcU6m3@(0|lbKp$spF*v_ z^&yTuJ;s*$^SNPN?{a*8|LVqjVvOKTfjfY?K1&B~URG91I;f&+cqSVnF!`q(<{gGv zXGTIyGpyjS&B4%T6{v>ySOw}7dB;Bse@hIff3gj7@31c5-puo!6c@-j;8;PWjf$W& zV`LucfcRft>8Ttc3yA>_M*QvV4@5r2CdL8-JgSVc87h7s9&QKnI9paUxMHEK58%;; zqZ5+Ia0;Rp{R;+vu~?*ewIAQ1HL?OUi8Pr3s0Nf=V?dXYl1r|>Wap?+7YplBh^s9_gnoxu|x)bxWAHHe+xroIdL`Jn2Qg0tzZf*++0UC z98pohoXO?~XCUHTM@I*%x*%j;VEXp(;m*2HlKMh5N-_sRgMERpqF`WTbT<1Wd|cn0 zF{iot00KilKZj7w5;!32K=o<2XfEmndHz2SeC1a zSc|M7)e~hV>|%h!LaY>4vyph(W#$&9ro7tHAxETn@rsmzU>qHEj^jc=`zKWD7*;%GemMw|S~MQW@~UX0WS9b2quHeC-6#@u)7CSn0jNU<&k!PQr~Ec0ph#AN@Qwm|7>VyY}s zvr}sQ!k0OoeX2e*0|-$>1b6T3wDsB6H33~7u{*5AgQiQq%W8NhwK^ipH!pG3H@tUJ zW}|+jO-%aneq_|(`CvMnvrrD2R|Zrfnrmp3_f&zdSOX3(@8;n@ZHL@uS10LK|9wV{ zdnG|T2#p9>n?db^&sy54^q6FfZlQJ3GfElG>0rbut?a7IEy-9RUTRxtL!ZD|jdBg3 zIMP`2ZiSUq@%;rQC0;=Wzo2=K2DhsUmL(*|0PsdW1&}El4ZHTy1g2WSzG5Qlew0`o z8o_098nPK1E7_%@=)7Hm?UUE6j9af#w!cA-zo@1Tlic++_qvqP38v<;XKIRECD=_~ zsQNK1>8l2m^Y(2FM4<((pzysQT6GN)*^neK2ny-{?x*Il68|?XJbbL@xn0+={)bBnO*<|jazTNA-LgO%j|ug8iU*W_%Hb#VuwiY*P-v<0cruRq$472eG@!=k`vt9P8#0jQU89X+Tt^~% z-k#jLUOUUTZ*n0Q#k?)h%GKHfHn(vfAmO%XxRVZwdAymTqhsNg8elYxbDj)8CaWTwM1zfJj>wtc){zL-7Ux}#32Mi}R^wVE zmCE+Z0{nrTL%1?43$94GXAdsWl`+Xi$c=wHtrD;C%5tda5bMg=u?g@wP#OXp(8{EO zw(;aj3 z6s!o#Z~~e|K82|%LPK#}&xU^F2Y`mr&KkM{$q6^N9T9tPhlY-KuXWL6MHyN?QL|yw z1$r9;29eZ9fSg>x?p!ED0h*7j+cCiPdMI;|kMkX({p=EB#2MP{h=s0Ts9k zGGet4)c^=EZ~y-OW?b4~>AjJ8Wo2e*jjm=xt}5slooVWEWUVqxT(7}lc(KEnP$O?E zW3JP3BBs4fOz7$bThI@f-fFk`Z7g7bUc-8B_vy5xQy3lnyW4(jj&jsi?(lVqO zp?g|`nE;(Jp_rSyT}36PzNbt!D-maSU41?kvJ*^8AI%kEbmYN7=&njIC$` zo%Mq_5RZgJJ@AEjrksonr#LRgphg69!>DiN`PGI+*a}1UDhP~AR-#ub{yNYE;N(S% zrr6qz4#Q+M#}mLbhT{-&&TT^{GCdtt@ANT@65rnks?5cmneW+$;}jJYfv^IjPx#$= zQwJj*k50+}0rxU8X-Cx7zEQQY@VYi=u`LuKO(r9ys^D-jrIq||2dk+e$}b`UbKAsr zdqo&y08;?shBU^+1S)iIkuo4ROBjqMd0nT6!W><==xxG*jaJ6s=1?q}mUWslOJ}vF z)oFXeL&?v7X5CNTcm_woG5AD9l<=HH4%Uex@Q$-WrHF>TUioF473c0Bc4=wb%&ao5594KG!VJ_ z)#s4fcPXP&&q}2?^Dh5b{cV?^urT0NJjiByASQy>aK3>Kjc|;Yj@CR%Ry2X7rcsM% zE5_mr2HjEU85tpi-E{xV(YFgNcoO$}%CqV6q3M=@Ok}8;1C?@zdz5h(qhtZCDIVoQusBr zl-zZ=uU8>H-L1}Q@Ulk@WKVC)Z4wFHgU;r{NdoNk*^##OH|b)mKAkc#y}`wm)9`a$ zpf9^moC39SQgnNiTltZ%)F zdZTL=8BFOG?)sYxHKJ5-YAPN%mM;$Q_=9?Xb`N`C0PR_4F_B~7_&v7_ibKv#{hOR= z7tSEY5%}u@>Wxjk@LeR0g_@XD$+2)hq)8HM;lT`X;U$nd*cX;L$tPgpyZ;~kA&AHM--D|nG0)`6c!8mB`3XrTdiLi zrdg4a!cK-|VGGx(>b_HXh3j6S2if!E2M&G~WjK0;7@qYkQwHGoBd_6(2{}%Vpz3zbB@dkaUlw*G~O+~E5m?}15L8F*5h2g zJb2B`#kGsVS(P$L%K}>$^i_L%A21+;P}q?}p}CJVR!vPN2;_MzX?OPm zz^rw3j3K=M?}bp%aH1vSM}Y&%aF7AuNC@FHWsrxDZK|!SL+>Fgf0`2n7kri-EyLiz z0oRIbP)+Vuw-mXYJ#*#^*m01&r%O!lPFy?*0YBegcN5iyKU>T;S|D$5pZ7qyv^H__ z_0dD>1Wm@;+G6+$U+F}C=HS6=i-{$|fg@xK@=XxL(8Sa=w5PiZ=~45bwE`?gHY*df zFVK6y##fKlWg!XW7rXb#^GjBW-qct&3>?PeR~7(d0!xKaHPO~}1IO?dpB&o4bMZqy zQoF?v90UBesi}cbnA2?kKLdA2`e@I_W8p{#`|9;{|4lrcK~$D#v>jzZ$`+i#4uxc3ngHGR)+BLEk|OdcG}!>$$!sd@JbQ@R6Gh!t{7I&%#j>r!d9X!a@_=&5d_0 zZ?{DBUia>3oyENCRBqzzz}iD<+2!R4^*!iLSd7NdaIU$Ey7zzCA|6D(?5D(h2jhUb zaC?Gtpf-GW;#Ym53FczTOeGn$jGlWvh2bOLCzQ++r}+;#ws-v=++TXR+`rkr;8glS z&@##HnB>)ySgjxF?(U9Bk`yX-4HCt>PEPY>ml=tq`OjEp<=vKf27DV)UUg^M2uf8t66PlYIizE2z04Mg+-vjqZtsFyHdxf3_M0m!LduPPX%=S>Cq7yFtTP{&Gmgw&aD zjD0*>!f4$cy-OCcCA9cGOHC#Jj$)qht@ibY)n=EnIqjQwpw?-^#CmnTzg^24e~OFO z#B8IP!=c{mBu(53gi7Zp)6B==+St7r<(At#_&MNWf@jcU$%tTAiX-^va`V6Bn4&1` zFgwgNVX~vkh8F-u26dfzppfwgSBS5yf)9y#^wlS@GUnCo>psEXlFN|!hC{g^vmE3( zXlev1b-x?}L&=-1?08zl$kZV*9snfRo!0CkjE6EcjCi?Zn~8zxv{{F*uu>{%5Iuk4 z!d}j7r0C^!CE3=%+3KrMgmi=*B{q?k)2MHNQ~oL9HCIf&kz-T{oZ56hhzH#}MpO!p zF7eld^rAYqs{dRm&$r4QKE&T5c?Auz`$(?&{Q=rfG}ts9(wrSjI2x`wSHyG1(XnpU zg6TMcl`2S9l0|QBp`8a88#&F4NET3EWLM5T94R^b`p`@e&$r!B_$Non27zSp`@59p zZzo7mp{w~(Pt=W@5H?0&Ml+;JbS{fNn?~)Mc_}&*XvwcRwp$aCwseX$T}<*kINR`= z(c{PH0o0{AOVymM8=5%?L`_EmjXv}+*4!lSgpod!LHu*blcHKa1=-ip*mj`XMPB3J zVj;O9u3G(tC~=bkJ)aSi4DTtGkAxCNA$;Y-ID>-0j+hz)kZaB?p@GoW8ZIOvGKa6D z5)#SnFmZ$KH8#Xh9IIg3~Y2w33UdJ^Td(v)M%)q2-@=g8kEPKUi!HN+<%3)S6 zM$&u7WU@*JlJlDXuV=ddA4}Z-|J(V$RGVpym#}t7<;P1x=)Ln_dn}F2J3_L$Kg7A> zPpNtW1vgOYuV1$rP}L=B;C2H2tkiu=$F?T07&X13QC7fG3h0AqIzjV?)j%Ln&S?+_ z65``mExl?^yWy=vw7f_GbJ;mL7w2Xm$Ok8(Rx_tU8N0J*yIuvaNKH-9@cl|(?o$7! z>h#s7VaEJL>Q4-(Gg^OzB=If}#vmmo4Dw^HulwfrhlzEls1ur;)xX+aNd4iAF7}*X zVC-roE)Y81qsiVa^0<EZ4iXP}caqGV}Bh>Z#0SjLhB|9bS>JlXwihYe65R=7G%H zVa)V|5L{c5^SM7yK`OHPsZ0$rT58|GPOF&n#iq!v;q87zkRf{ZJMp(49m3GCg2Fla z#J6wX09r{z+>yli333DwuVF)5dmhv3G^=kS3x&iZe}EL|Ed^l;8&qP#ss&WMWE+s1 zpzhGW$Ytoi=MQ)s#Xr0Z2o26nAy9I;R4f$RGyA7Ro81Vm!kMj^X_c#=+!Q9Rly}O8t1c%P^R6>)pxt+%X*VjH+d&bMW&`kN+M&XF57PLl&Cs(oTb=k7Ti%@nEB@V6O5UY!$%}G_j zTqmttNG7qq{rA;k4i@V2|56C!|3D;6r7fAnYbtQ?HhVLu9JT?Vb~P9}uVLSFJdNQ$ zJTvh(#RYG!dJyb0!E53{Su(d$isVKph2iM7F#Jb(nScBFPv7rSX2kZCU-tjISn~zR zrxX28C(kOuARf($vzimgKq>tfNiD(QesB?=?bQqBA!-|>XeTb4aRrcv_g9SVuh*D< z!Siji#qWIpze|Kj9=6`z)A!-L%>(~vpU2ZDnub`^v;ULW)9Kqn9a6RDM^U+H-!PR` zQdRAD+eu=)Lb>q%eF)DPcX!3;8rD@fk9^bh;GNkJt|n0<6Tnt($^W*ne0+;I;+L}b z#0#v6{{eMXuG3*{s{b7zi-3=CXOmsw^ZgZb{ph?wT|FVeZ?@mU|Hp^FGH)#!7CL_X zcwM||A)&IDZ79tPoYj1OiUtSX%>G5r|H5Wre&(H?#;;Cp|Dwav1DfRA+|iqde7-$T zNx+r>_6y^^73R}lX`4bW&bTdV>YAu1MPn{;x}_)K@{fo6o<-JlgUxD=YH2b}Rh>;_ zn4>0VZkT(1*v?`a^A{0&(NauF^uwIu)E9c&M1kn<2+@%e71DLDU)56cz2S53a%7B* zFv*EQXjCB;NEzoDLvsw2so&k)NL&-o~xX`cowZxg~L?74zD0?tkOyJu?anbk{5q=L~R~ox>*2Ur(JffzY7kZ+;V^FUN zSD$FooT<_*MM8;QJ8Z`|Fh4?DvZx8locOb|=+~(Yuo2Sm0OuwMrD6O_QRpIS;!`ml zgjQ1LS<&exmoLjshtubOfpo>~+q*l;s%*eYZkk>(ORxAHTd@-tlR5J~lT#cokqJPc z$MaU1$6`<7+v<>2>gpP{O}8-aXdzYgM0?;g_Va| zxO9M6oZ=8(A>PKzmoL!+$ja)#Z_U+Lz)G#6OL%Cq+hVS}-j{Ldy84e_-8BSor6%G} zBe!+8ae^fBzbfoU`TLg)S1`UuGm-j6X7rVU~=c`0HQ4 za+Ivtl-~h%N3RjQKA=XDeU+3VzFN`CFeoQ?qh}7IkACGkRM2h*@)tFAAN0H2dg}-4 z4W+;i9ho`9*rG!OUyq7)PLFeBwtarqJIp%Qn7LdcpbfB@Byl2!b-A`5=`CTjse7OH z7bclsMy-JSzM^?{$O68c5Ko;J%`GaD4)W|=VNujGxx!-d6~@tutl5NeReyKyFu?dI znXkd)5|dJ_^mcj?_5+*8Lr0L}ZEX7B!fKm+@))nx`SU*zbpB=|^%ACtH5&83>n+Ic zgIBRy`cY$m9*QZqifM8MNZ0MtW$n{5J(}(Pi`ZJ?O$r^CiBBAga1JkubtH{FB7}K0 zhKtAtA$aLs+TEhMNUejN;r1G2EWlZAWOMb|F)FT+&u@_CH@FTCXeo_s$|%FV+OcdX z01ghRjl2f#@lky)Id`;=Vp+oRJ^+$JaJ{le!n$x+Os=iZWbAwtWuh+El ziF`DNmWi{7D`@yZC6TBke~jE&`)iI9ooNJzAmO!QSb7l5?aBzAoNh&l6SV`f}UYWpN6`jt}Ok zm`bboYA~dI1CMxJxW?4KR>p}l-=)enuc|C__NIWFsZMF#0R5e-F{GC4Q|S}f5A(A_ z{{GL8O`-ICNdztC2`|1EmF(s6P!_+SFu_a{6cXaqwuhLOqw}gqdNUOh49(=!sqn7J zY15|Jz^cGgA!2NS{7+gA9JSr8muFQg8XKt+A9?Eh^X4zFKfJ2VUw+)6>D0el9X6aT z-m4RT%|6|^#_{epijJg$Sf{xhdz5sGcRe#aSB^|>+54|=X5!FgjXCnrXj^Q(rbm~X zW{(ey1rD7!5q$$pKdIhNXT#OqCx<(K{5W4;8gL5WstzE*#f@Y#S@#^2|1D3h4IoqD z>UsFEGdkqpV{9=g`0!xs2Jlu_xOcEEd77LY@-9?R>B>*p=>0m$2jlmVNQ_;Oe?F7F z_uptL6l_-C3<>#Gv*O>sw{A7m5fBi#@>6quCijMf(S0jft6=?^v(ltv3XZ z6TeZ}dk&-3DJdQv9?|#i@hj1=;CsrLZFtK-yhW58O^f(A#quy4c;g*1pILwLmKCKY zguSUbdq4%o3y&W@4B;IZbUxL;3;l!o9`L|S3hXlf(p*p#z3KKcACkp8Sn$JPE+<-J-pvz$ByAu?%!VnH70OVA@{R0 zScH>&$HE+5j`qzttB-h@nqua%dH!7BJn!`;Hru^>_eyWsg85}vm3ZJ}m`Q`*3`#Vi zx$q?c-us}Bas2ofnuWjb;MX0|HTUn_xf2%`7aeWgV#ckt6KXEg6NA$;qxJq%eJMy* zmaW~WHaFRYzpr4vgu6oo3{u{&XGQ-~WtoDJqywy3-9ysh{~Ccy{vav;_x+0*I|g}3 z!+_f6)xSlzhn?j7r`bw+MEcW~T>hu|_`mTl?hwlqq{Ypf?XVHh48TilDZM<3Zufj@ zMRM|wX6wZGZB`+zj+i27%d-LdhRQkG|MRCg?4g#dSbyN*w!c+WR5oll`!PwE5+*!4 zJv;v%sN4rFs+)R?9kRsE&kYS(7d|GTgY>8**=DG8v`)~eboEIneL-1v1`G5`3~aY` zb>G~QEAMqDdknRec?_99(NI<{a%?TxpcfW2L&Z6!<~QT1qx1R!?((!qM5j4Eno|ld z>F!->YwH#Xtl@Xn=x*J_tn4&%2tw=4`F7FCHiUZZPs~P+zP!qzE2*gH-k55H(CI`qg%sWr{z3 zlSmIZh&TM;E2KX6?cWcSE?h*tNm1D9J`uh4fDY9=sNLW%T5M=A&~gA4AWu>3GB9I%a(}?;!5!UfAwcpgzSX| z3&N_-xwg{F;<3o+_2w>N$j8-nW`gd7<{YMqH1L)>8vQjyNdfatMC0~DT5++l&R05p zhk@W@cr2{kacl3sef!=OAZ*_m#{uq(Dmlp z;mqe%hN=6>$rCp1j)hozn9ALpb@JG;JUg0f*O+Hoql(>^7YN1RNk}DlCc*d%+^>Hx z*%SA~P3){6_v7Mby23TjTUo_pi8;j{J#qx&rEbJ>5*I{|?Qls(TH0o5X`TplYCLc~ zs9FT}^+_BtG8*S5*6=3Q&1_azH`9UWyQ>*@@sPtnoL$U$Op&>JBXH^IQLrX?E}jB6 z;c$1uTqodqB5#Z_e@gFdFCqN)l$-gOH%aw}8>AWiI4 zFz5Zu(!3A*vUr-!4w!b~S5Bm`G>^@rfl z#R{)+TaZ^z&rS@|krM83{~T&CmtBixa7+U9o3)G`s9=X16t-;NPLR+mDk_qalCYle z_EFzKR##BTQ9xpm#Tb;82J5EK7j2E6cK!-frO)&S3N z_61&Q^0o{(>HYl4lMdk7hpX4D0hTSmbtJP45}WS72d--cUXK7=k@yz4m=?H`1bF)i z@K!b8ytjGfra^# zj=OpGb$@Bom=cK)!?P~b_7ezVPh>uOb1 zRda7_04|Mr`1kw$_-#2im-)^H){QcJ$1hmlbGHT+9SP8(9M%oY;3577CdgnKu%3bp e01je-f6Vu;Jyty8Azlp{cJOrdb6Mw<&;$Tm{viqg literal 0 HcmV?d00001 diff --git a/13-exp-naturales_files/figure-html/unnamed-chunk-22-1.png b/13-exp-naturales_files/figure-html/unnamed-chunk-22-1.png new file mode 100644 index 0000000000000000000000000000000000000000..19988ffb037ffe5b5d7ec2baae2646d02dbfe112 GIT binary patch literal 77964 zcmc$`hd-8W_&=^K3Y8Ixq-AHzEQIVWTQ;}7H)WKN5JL9I-kTdGWbe(5?7jE;9XHSC z_xk<;-*La5UU|ZGo!5CD<9)o3_i_13OA6n_BEiDIz_|HFL{Jt3m@CM{&i2!Kg=a&gj*qXF8(-Lgzzah0^FO%R^~Q5cTz}@6 zvFh%VkVajm#+K(}?V63q*%)W0X9Pa*Z;U033;&yc zq(R+mtjbkJMutWyyUzU!esE`97HaGaNmf00}332d8; z%*4`?iT3{5+2?BXZ+`)dINuK63x-#5dd*p8$>AsB<*6UvezW-lN8%#}uCR=nTBY6c z(D(1(fB)upcR#&w=_>cmfX>Rw3TyMD$B#{i3g?H45X#ERuU@@+_wHSRLHo}7dK!JM z`B+t*9}(Z-Qh}M7nWoG7>sPPdfBY!ipRG>rvi9rb_|QO4&vmnveSLjBA|m4b`}cA` zCGWEu%WvoL9dC92jCJEg^ktS=&nlW%y6kVX^PS!!BC+}|;l zMBcrdupe`^-%)iIaM?F+ z-Y`XEN<^_;x`y+E6%n>_L9^6iB8XDh3$L!O4vdPPp1!lQv%Gfkc3(`R=DfY2P*5!J5l6k;=1qS_N^h-~n+^t>rB;@op56pY>+as%n(u~3<#ybd`t6OqU8UU7X?zJD`^z3Z2ZoXoc%JkIK(qO@C&HGE{mFq&w zzcE&{%gV~6c=vVP+^S^LwsvSp8ll_WXZSUWE{_Cx0&l$9xgeB zD>GE>X}3<Rgrc*7(q^Lw9RZGmG!^7?W z!J|HvtX%tzjmxto?Wv-N9jz-W+7!u(pr)bWvRirpUxjMu!!xzFhW=6&J91^!Rgvu((oAp{Y< znuv%QD2o-kU6(BHm0Sg8&B2;Ai#agZH(T&eXFGv_n2G_gKdfLbYIHN z?IibIEg|jO@tK(?UIP#Vf**@j9V}!}$)#|-coCt_9DR2j(`k2Qd44_uHhj7%G%^H< zOU_H{)zQjg(&1c;3ej>&*x^Ba=5aPB&}r*K}7`P}r`ygo}=EqRFzD z6DunxJHzJo3q4d^T+R(&?z18`*Vi47xBG3Csw+xM#UokXU{ZuMqFgp5%+1Y5+skvF zc6WC#8h0sax+ZrT>bJ-6IBgk@il^7q)WAO}V8%x^CkZEZW~x^xVy^edNlE*1 z(b0j+yZ3UHbdlU`kAj`ue(Gq*$5-z(;(d2`biq#e;%nJj_rKKDc zf52>PVr#tc5`_Xt*i7D*n2lOlTa(J2?X)h_;P@|3Z@lW01H^WHdV0F1`?12qpt(Le z^Z)jmWT=;=kjLrvojdAkYC?fzSz@c@!dl=p8X6kx<|tY^I##3tTi2Tfvb6<~u?!`K z(K{;rm$JKUPPsZ9E<12|<>uzLMRWC!{99dR@RH8xE!TvHrSWpuoA`(b3le!Gmm+?P z|HljKl$jk!VX#^9r$hOAVibZ9!ZS`ud$TnIg%V%59hJ&cyRQAZhA_j$#dTjPn-}}QeJ^~`nd^w>|Acl;^B1lMHV{^KS4M{mjVMX>VzPEAl_m6TSZ|sJ z##m0)zZMo=R9}mYjn$NuedyH@-S$m!Q1U79ZS+Uh+HXZUW05&s^3L(9$Lr_bWH|8< z_MB9W-NMsk)67tnR3VK+CFVIw;w6M4ii(P@0Z!p`^XXjy$f&uQ)+hx91vfW0I+eoI zGWCZ+;xXKV;}qq;jvzYp#1!L`k+~i1St5hMbHQt*TD8H)i%tnK>`RQgQ{b28(0R~d zO$*$>X=|<%eGWfM>f`QQx+fgV>#9;{7zBYSCMFx(ynKI?Qus>`fnkSp-<~iN&-v56 zQpsX_{P-~|D=Q@>xG(8X$!OU$`J2WHl9FG*g^D(dgRWJooIM%d_yis|H@E*%YkPaY zAqy`rZ&5h&_VzXb|J2k}kMrlNS&eCnsF(+ncm7K#@G7!;VT^~MNr1%5Y zaI;TNK_OW&BYtU+euDEQX2fTQ`TMoLfkF2oD@LFqDWvLc%*{Bl@#&z1t%~4mn9v07k zoO`lBTDg*X!1o!Ql1dCa6H-$R!FE}RP?yGYopzSWOa}A+{rlJbQ%bYaVSR6X^7{4b z5O){y^_ma1=5?lOK7amPZr2GYKyM)T9i(FLvc*E9?zSH<VlzE}7z=hx2AI!zrR=9p!FVkl7+_P3jE(|GI9MuZcY}igI04=? z{Q{x+)kv3El9RC}9&&g?Z7n4mTX9_6%My%XxS1xhWFA!j78PL94kqo5=SN5v$!;EF zcExRUCo=p)R2Ox{$|KUP>PxLq6kt+#tw^o{hzmj4jfTbWIIHZ~Sd~@6@k1O3?`JK6 z47CbSttphI=;`d#OE?IY9Nqrv)Q_c(bn5;4^CkK@=JY!eERo><^?&|2 zI5^Ce--=Fg{_jw{y}jYFNrzxldhXq2PgbxSeG|D?eW{P%}j(d zG-0cd2Y>%*0DIVIdEIIqKnN6mmjnwxF; zqRS&|cylTIGY>bbFMl4Gapbr{`V0r)kXRy?lH9S&g z-Jhkp3pvT{XuSc2LIH?3F5-OjNOxtV>?$rXr_G$#^*hB7D#4u;G8D@yDrRSA#ge-K zyt$w3&-T`VC8Et3Hr5J$+cCE+D|GG@mZwOv7@VmW%oU$rS+v z2akqB&CI0DQXB@9@h0TSeACuqKLZB`z>Iz0r!kn=*m7y|5bR+s5Y2dbtFj~K|6qKy z0w_C&Du7e}G?28a%v>H>UuXd5?0z^r#(R3Sd7sO!&}2}SJw%N?9D;`%Y*ir7&Hw;p z02@e~V5W$c(NSb+=^pwXn3!+NZPK1EyI;%n#=t##w=|Fkl@EBjsJM7bQ_}+Mjf2A; zU|Fa!1c7u}W&h6XO)YO2J zAfYX>nGW?V^?BnRAMR?xB_JTcx1ofXSX>;gc0Y|^Hdv@qx;oBru(J#`?}B;tF&iV} zI`}6U8QExsJvq8|kx5MNUy`Q|1^5J5cQj4zXSP~df?`JWj~_8`3L6_%lovFhp!p*B zB;>V_5F8!zg9mZos!q;PTRg)Z*(r?6#4Ls#AIaTH-_`m+CID3Z_3KxNzJX*s2mk8) zGL&*8B_*?C#LPuAmXbqU_NT-7U_V=0S{8hjQjS(VibVXSzFM>R`uei=r($3X6OoV@ zJ59hXj94O55I2?pb1B%_*})1!MU#t$FCN9eLXPxiDD7Kd*Hp2jhMyJiN3ZC^uU);W z0#!do&2z%MGs5Bjd@28+#O{)bUwC-9Vn!AsC*$mc2l*luoQ!x_?>iKiP||8>#00Ui zliJ(c8yFZ+`~e??9WRQa{1F{JIy!1?ZJjlWN8tr^tA&--ZGL=w{M24!1iNr)d3kwh z>D2VJas>rH=EVGbn)EX-JP3y*0rf+zx1hQZP0o*ts~Ng^iyxDLfuT%|-Ya*UW^j0T zSR`;_W@hH!zlUC>u7`GdddbO>#%xY6DAm-|Mn*f{?|1&GWq31Ah^T2a}>;#|jGQ#lxl4)YVO=CO>Cw zTfti3klDJL72MVGf|T+rDk{|I8E9#N-0(7t)cA7i{}hw*e~q&Fe|sa2!l@};1p5UH zaY#UDj^}?dZL4#_EjJ&W5BLj2w0g2E5F}Dj?B-wm{2&b;& zi8E%a#yG#A01~C`OiRQ9oui}UY+JM{!03hEjE}hFW_86Ea#_XW(YMPi_!cdi9LZ*? z(z>OQ6&E+2*FaX`u&%vXf^{_-D*ySPu`A$_!^NhQ4@*)YrrTWCJpRm}+g*ek_{Ly{atolCbdEZe}KCW@e(8rl+S{J8t(( zqbnnCZy_whq9Nb`SX7y2wzu_CdbssU1Q)?6L{g zD4KE9y8r9fuUNN(G&OqmQZ)4htbpmvlUMC)6Sa?T`>r!l3i-p6V4OYQI8N&eOg^Ko zBv|4Ia1E^N2Zx6Y%K5t63%xh0Re{b~CUcy+MS11n!-r%Jjw70%M z*Xqdk0wa~^jQ_=%0>c2pfJIgdDt+qE^ueJ^hjqJLhHhue<@gG<`7ej}kpCd%DV~ao zT+-qyy^3azai(BHx5Hjo&xnhPeilvMSYP-3^hqm=34`t2G_J`4J!&2SD^onJ)N2ky zA)V2@D3sa~gY*NB`x1nib+CBgO7}!sN$Vo`GkRlQSnGp@0IMd^^9bYlt^Zc|{u~s{eo_l!O|=^ zPEJmM&pra)Qd>s{vKm0p)9oDh-U{((@h6CwnF}7T{L#Kr^9pj#7}zXSdRZz(>Grlx zWol%2cr|ZnFlZj0dDB0L49psFa1N|LM=r6hx8g)zJ6kK>C~%pbiNfm6NF=fW>ea)D z)T=crXHN+Dl>1;V@zT{BsmMrmC?vp_jKC-}3bA%RnA>&Sc>4zj7K+D@S*CWfR*Nev zBoxDCPftlHaE4xO=DXlY#Tj~``as)hMl{Af!n2$1$pN(l9EiF(BNMmBOas0XTm~Z- zL%%aIjqxHn#C`XCgrm79;y3G&}U4rgnhP<=j7o$ zwfNP?JHr*LRT;g;H&@gv9W2Gg#hKZ!?|eFoGAvlcWURz4JehCv60*0l3xFDbg1EIp zcJ5M!{Gp+tP(ZV4%#@6|(J(NW$L!R&-9k4!JnFUa$XMr*WDtj;UJM|Yg*+b`+WRfw z_vm?><}C&>nXRRjRlXJ@2h&*x=U%iB&5Mww?mef!YpIHxb>owhlZ%Up%F2?GlIm*r zJM36?Qra$5SA-K~(;nS^qwbsxQF8Ri6-Cn6-0M)DEPl0jsKmt>RwC=XO7C^;V9l0n)#I$pwadzWp3JE zNui%~ziZm7w_+$p)P&L0VrPK2EG0IZ9`H&EenD$LwfWSLF&~Fgwi@GfO=ON26jdi< zrza&rzc*)E!PFv6c{$j+Vk)Y_5iezgwT>dfny1SpH4{4rek1tL+Fqpdx&&C>E7yut zvN{bjhwoB&i9acbc9S6D_re2+TD+#)IBn%Cs7;CcB|C(GZPW5qy!1euXQJ~Urk~xx zlO3z#O`+mw408nX$4X;<(6yfj0pbiwq{tt)Bs!akbDG9U%Sy#v_N+TXZ?IGR*{v?N zl1slTJQd|8#2hKp%Ep)7(cG(85zfqr-D7gPm{WZM3_jF_-CA$>_^R2*T)O{M_p>>_ zATpmw=z2`nA5b)$_O>E~~m%3T$qQ zJhkc6uOQeg-UbI}K(rD$-3|=1Gc$^#&AkW@Ao+y<=6M0cHrlaEsNc?6>y3>Y~ac{S!;9EX7QoyU#-8 zx2~JX`&0u0v9Pc}*4dCN0c6eCx2z-l9q8xh2j>#hZ@jG0_J>w_Gjx1m;Q&&8YYYz; z9i2qZ+m|nEfXQ8+n0WVZY!T?_P*He*^^J}66Iui899=-^u#f?K1G>t{sTwM?HsI&~fcFq;T&VcaeALgM zKZ{ha9iFuoJv<{>QfcXwiYNcvuhpb3(%nY2F$5rQ_v9xrhK5W~7$a{0U$_3x4>}b8 z{1i=YFOg()pu?r*v90zx&;9MEElR1nu`4*Ov^GY%)3l#yZY_m--AYT3|gpB zA%+S6{Dz1jb7bxKDQ@oUmS@$Q-I0)ApH2GO$KIk6LyPJxg1ju{RN!Hs`CR?;WcgP< zmb&7~4VtV6wYBe|`Li;RHyH(#0Q4zBf`cJbW`v!o$C@#a6$w z#fGhxTN%u4;;LEN%Ce`psrwihIW_1q*gt;u?AadRI<##of>W8_ zdG+zEju^+SA|qh%msqn%>l%)UT-=#o$;}s4o|O6}&27>Lv~YtzaRJbyk@M=9mT(Y| z=c73+f2-USU_IN5wV!<&dJNnab-i!+YM;)QW_`k8FxpacdgWs;Uwm3w4Q&ZqiSGLKC1Kjn!Ea$< zDM?8{!WkB+AWG_tnKpEr?Y&HSJIzKXw2Fkf;&ea81i{7KVgE69%ep@97FOG`^m&AR&fYyx6hz?{NyKBp~| z=qyOg=^^{rPG@zXh4>S|?bjMtynX{b@*iwGJb0#)X+dRWCA!%LG`k(UZyaOairv0( zNtEdEY^w9tphwHa@T&^i1?@!{h~pdsd;48|!|VR%N&(x2k@CGV#;e&MtJPE9R#9?O z6nG~~>J|vBkGbxSekP!~(H7C(*5)=9Bn%DJsA>hpbqn3H@ZtN+O!CH!Ljw0nIfGDa zwoq}Pm;eZy`h3qHXx?-fE39epI=DsH4dj&H%@w~qA~>0W7K3hkDkGPIb>3Fiw*VHdelA5 z)^j1R)!g_hF4;(VQ68Tlb*N+vcNt(r&od`|8O=h1rf8(@E3bY#s1&r7GdB-a$zQP$ z_S3`!wx!bj^yHW4H3rQpG$)mxpI=$Y&BkU2&miD)qs(IBgPxSZAE3gzySn_t2O-jI zveXj_ZfD-blSwPF9G>^cVT$uRkeu%%M2gqauJ4qIA2`k^ z_SI;6RGw&t^qn)iNtFYnvfX}LAxy4`xhuc9$nU<)J3A?t+Ge9}zH}?B0tQITzzj_veM8@@2;S$tuN@nZ z*TK4dzT?>c5_B3k2Vh!nm;K(K#tKF32R%e2cNlNk;fFTz4HCQ2#wQOxRY;TH4)gW* zXPI8ust*x)1Powt&_$48fcKmEgbk1|lr()@?bgJjplWa(tMkbc!DYcbckvczt<}~h zW+Oj;AdhB31sQJlKgy96>m#3EJ2qcty-Dn!+d1x&!|4lZn$JA)Fd>hIL zdx$VVIX>Yj3W$2a0a4xk;c@>*PtvW?o5W-(I=8ss2;wB6(R~V?^M!I#RUiwt{5=gc2v4j z@ZtLI?kZGD(2BPuHt?SDz13eFjWc4)`!WMLX#t+QV$tv|YDI3Pf!P7tN)}6zYl5M)<8IcC8&=bLaf$-y;+445>ptN$0FASmDizJ+dIjgdGwI`+DMH;Qy>LJF+gC`gchKj{4>$;z%zz-fMhTrPZnK+}6E z;MZ9VR-=7znW&PJqOHBQCSWAQYGmv%8R6pOcU55yG&F>Sgg_<#+R~8Qq}6lpuPBjo z8~d{FM2g!`^cgu}_5Uoe@JEz4kK4e`vA8s3>^Z;3D5B zfr`Aos!~CHU7d2p^_|wsMyC2~ZhNrmCmgy_X$XG&y2mr;=k;^L|^TKRX^P2&G`-UAR%KLu}D5fa=e!%UY zo0W462Io=nCUD2woEN{sNprT4`#4iWI^k{ki@En2O?k-f%RS*}m7y$D$IMUIgS>HBzg#A=t}pD)a&yaTs`l;^sVOgoH=pvah?pNBew|C5)O7YMANNt(xr#HL_k zVmjH3JvBj9M%)^&m;PI5?en;KwbJ>ADBb?X%b!-EEn7|wgj#s#j?*psm!-fb$*YhG zwTF<_3q8S8G0q-#=Cdd6=hD#)q>bqLEwB!Z9hCW8mj49byzw>ji;W#S=hlC1fY=3u zH6MnXS@~6CyQq%MTy}@=-yya#<1+s=|J>Xm0qvug&TnNsM;?4wjjLg{tf1kn1fDT1 zKm54bMxx2GWSkfq8#|mq(+y-d3tRMFe_LC#XpoE0xe?CjWx6jrhlumfk~ z?3$i?H_ZgqOVcy37#DHbAsl(4wN#U<=IPwMsm?n@n0F##A>(+-j9ZZ?OR>Uiw0uOZ zc9tn2F75%e(C{9RzIu48;A7HWsnUY!>HO|aTA5i&f2|w_&-n%SIjC3)9)_GUad);3 z)+}tPWO0Ozm&|=!Ibt0u+A zr&*-B7lAJ1Jlo%z$dMoE`ZwQbJg3M;YNq|VNRqX8969!TwZfc-;B7Y3_N7WtfDi`& zCvoSA`14XR27z?>bl|FafvN)mLrzt!i?;T^gx7xcf#mImF04vVx8*2vsHW{lh&2)k zG|A?^t4`@U@#s4I2S%|u4~VKy#;1j^{dC|Ut!ju8r5kmm*XqRO`J%bq9cgjJ76d7z zLsx-M1(}s(G-t0uoW76C?x;OHnpy4uFqyF~8;w3O$Ml4Aa-60w(^2(ZqWeULoEbeg zMRau?&V{T|4}uJ@eH?Q!Sf~r)VVY(N_{CHrN}x%ObE1U^cUl#KAW1?fqXJRDWmx-^shl~$tb%7?RQ|em^DHLi0_7RaU7+f>Pa25$Lehi zrQy-8^?Q)s1+&61G^Q8bo^mr1s2Dk#795|~)%5gSreYuE9q7`Ne%mH++@&7s(_eFk zzXeFH)=1X0v;&=L{!h>>2iUCqFbJw3w77MJKD^l*FFD!g=X(FQA3t1{1{gz|*2Lc% z0}%_gp%${}#h0{8vgT7|DX7ZHsPM6z{o+j;;!e8ZEvIY^yI2X%&ik{%v1Vqk zTyz)U=9VivCG!Fh9H$5U)sm4cY0ytEXI-AMaugBy3vH7W z@rZ=she0AXoyb?>Wq)`82FLfJM)8@J?@(sy58OE^mC}HHEEN@`v$}Esk&EHf+u%Yc_>a| zrjI$NcX8Tq*XT3Uh2lY6f+fb<*x#?z6F$LZGpCi-Ju1OJJQ6dqS|3#t6N;OpNM0Gj@;qbQ~Fp$SKv* z)R`L+B=}C&lX-DaX_kK`2&IyIy8lCRqw{!SIt6Qs%5+tg1gICejE8lO#G-L$sf6i!oc4+rIOCxZ^Y1W^Jmt zx_mTLf*dpj92Mf(20!sdDx4=PzGS<+g~{t?WDGHPkWxpdi>zk8?WO$f}cw89M5yi47 zkBpQel^~h%{7tne$ZoE?Kg}9$t0<H90Z{3!$B~`lVe}VE#U%&MgJBl@0(At?ky59ReEZjbt^g^ z*$`LF2Zx5MPWN2sC!dRUT>3n=+V2t|p3eR(u}1GW2uD@&DzA3 zTy?XF1U_E#d)D*!FPta$JH`v*(-WB_qs*JDa`eZh8_A8wW;O`>=GSR#$7{oSpUuBq zt}ZF-4p6&PlExea>>&hsXkT0G#gF&&$WLB@Y7jIPGRFwrz1DZ?)>}>Z-<~P0E}PU( zVP11z`=8r%8!yB=M8Ay9hyQ|j@(WcgH;cOixJwFM`nO!d3%UD0+)iHC$KKLbd$FAfGxbyVc5`s;zmtac#J!&P*5TXxa!$Xq zd>kJipCNt_D&kdb;9YG{$8&$vR#lXG>doMaQo+b%7f<&>X_bn?V`cZ$UT@vmL4n)q z(In4(%)inLL85}~l#-HqBcPKyYGrAe#$H=dj#|eTc|5eg`?Ts*Ot8&#HgZ_%@qY0R zHF^Kj#CX#OwPSVP`Oh#yi2mC|)C2aP=_||FPj|(f5wc5sDH;xON@8i%Kg!5cXyqILLv}6v1`1f4h7+lqIqIQ{=&SB z62jd)f6_#2dl`fD5w!Z|x9lIE)rTGT3RRZj2U8#(>$iLdfvhbEc%fG*Atr{H(JwTS zVazi>_%}cMbh~0A>G|`n7}w@~&n)$ST|BKB)s>Y;nh?;X_>R%kS_Og2>(_M$_gHiyRWP1k zKvL}2ZD(pr6EPjB`cuEP+vuAS=1~KbfENn&Z-iH4e^6MI-mpej88J3Aw^WO=YSbajPeby81 zLie;nX_OS(2^i?;Myp(%)xCAJwL!vUzckSKQ;OW1zf;ZhC`9m~k8SIGSCv(78%|lt zs-cG>P4N$7=L+$4zT=#zQp{0rY@!=xfoJLN7C#&s86^0wq&ER(rOUyh$>^rqbFCTx zTujW&3e=&2fl^T0iimuo^4mX_I$dNpe^Hk*8ng*eyYJrIR!eGzll79spL{#}o9Ao; zBf1|bVBotLybMvi9DpNBK)U8(*tB2DPnZ0xta$Dq&W`Jv!69QbE{71=SgWSn(EA~1Q@;=^c0Ylw}E(i|Jm`U+PMd5Z3~`!Ot; zekZI0{GUR6s}^ytAQqd~czNqr98)UpR-s6<2K}IyJO?Z7aV3ve?R;5+Oi1`weR{kK zWD1E~S&nmEcVae`?t$i~Bdh$;c|m4#ya#{RcFu>t-qr&--oncUs?)ctLhHRrw;4^f z7Lweqnwi-%b=tSScdDPLu$kAcJc)$G3jA8R9|glp5STPU)4})?L>r}UCt`Xl z;ZDQghZ|YTOxW8>G|%r7qs}{}7|kH?d%ju&TV4ze+Znju2&k*s6d~kcX zZD1`>u;{^v{{H@P6ezpaCmZ}K9=_CoS{TKIZbBZup{1fyE;8-~ibn5+W;3?^+-la> ztRZ3*Y3-TTi8}Rle2ypQc1t`XfwS75GX}K{!Xn&O=O~x{Mc@sl+`Xd+-B<=(8(G8+ z0|)5&qg6H_IL^*?m)zXh-i~H5>H_dOwZUiRskeF|zqGUz#RPTv@2P!!&|+Q#q8h#p zEDcP3Y(uy((AQtEqbdk%6qQ^EWq2l&JwmLgW_Ds)2cUBKSlQy`h!DDcp6d^f16D62 zEZnb9Gdv8+{kO>nI<}VNd*TpeN>Y>B1{>A2&|2j z*ntApI<&m)B}J&{@$oTGaERx~#er2!G)P~hOH{S3j{Ieio0K$F(9X*ohO%Wzmh9II zl}B|9|A<^Hwo)?mPM67RbBn!l4w5li;yVo$b2LUlbbO0a2wnL!eWSW{>sCAWW(x>@ zW1yOgyz@6ybQ)$iaLBj^Ae2I51P1E-Nm$dRVtIQv8zpp$ZjeWEbxZqH+te;@x<>o! zI>-$eIl(+j!un%epBuz5_@jgjD60O1?h;6Td4IUm`$UF_Q{7!cetOYVs>$xO{e7Fl zg44>H!M*PJN1uYEE0O2ri{I;BPk3p_%?N=p5p3FCV4f_Ma-!H3u* zG8B(*K;Vhtv~Ai75mlI{XV(Zd+zMY0gc#WyFIm63W`O1F^6=ix|CR(frO!6Y88WZt z$woL71t41rAm?*~qzTi7VLTNIOfF-R`vo5#i5ctdWkitC*!zUavl!dbIs1PB8OWzE zU!Wgg-x>fKT2RIeAf4?&7Uh30USC{X+Y09C_InC*ipEKo)S~}i-cbtsX zQX^d%@E>jb4hFnHio;BK1qe#;mEDbI26lDQ%>4XOR|-d~h@A|Tk`GdCmd@^C;ReE* z>$^R;VJQU-y*;pRc_5{MMnVj)D=2V>K^+52!o@^JF_G;O~v?+lVWPaG!^Rx zizQz~l~tO)zOLwU)G6yX9$q4x4`)Sd+&ifJZ4Y-$C-rt<&a0qPApaoXD2EgX}%yiNO*!N!`M z7PRrx&`KB*3arKU`DaRSzT@Aa)if<7E*Uz7`Fk$D7C&c6eGaxX7Gr6#^04ipv zy$oU;^+BJ=6d{gjsVRa=3~DTT+5#9tYi<{`iUdM9^3X1Kp>o;#gvu`e~ zZLRfdDgO{Y-FLj*`IU~}!CWgkIlZE6CnVpLl3eCcESvQ8&}&)gO7_!JG1`Q=AP2B; z03P4J-$fqQV^e@Au?nyj$qN@PLo;vDon!L@OV`t6MW!@;*=iQCqL7S#rkBqPj9TcI zfl`8$VY5R3msLvV23B_beB13gxneDT7evm+P{od#VF5*oXWs~E6pSAfSxOX;0!@j6 zaS@oFq+Gf8Fl<7Nc)yHMsgL|RZ^T?i$s&Jxzd?mS%st0m<#&=k_CHEtkP?*B@Uf|m zT))iIK_izHw8W9fH&t~k9w(lDzniA}VirFCk^AtyDaX85=TNEzEjNS=UVSvp0E~-h za#wRR4HJ`9Z@L0J8LR73VLS|e;Sm$>!$2K+92xYK&}>xC(|)b1J4I?<884eAp84mW z9F(rhleNM1q$KkJ?S^^U!VYh|BQAaX^1^hu(!jta*8iFlu>%%h){0sFC?R$%w*P1) z@%x-MAow>bh+ctVSQu=hqNVK_&h9nt&s3I!>1g9#>TX1LvY^;wU0*@}#gLWE%%LM^ z=ho<53aM6G)jZ0j{k-dBZ7FVb(jk-nwf*?_?wQofG3S|=t5Bxh?{|MOs7R%RyBMq! z-#5CRgik;K^Ju3qcL=j!&}#(KffN$Pd28$3N(MecTR+3jDW@3Pw>~HtwYN?zZh|FC zFKUBzWu>X-Z~l)K08SXnQ$4gMBlK!uI??1>N>mSnsg2a}^-Yzmy_1r-?|WfkhW+F= zQs`0F4|RB5?yL^OYx~oOUISCLadl<2yAa|E*LM1t3B@s;i#2b z#G@X#o*X$AECzo1B=Y9X{w&|A<79p8?jtb?2_D-8c`#3yyo6CxBW;DzVIp3xClh1N z{LKpX{zNk)Rw~7GN6G6-E~7Lph7{KG5|4sDrCrL-DC+uN%H=asq|#U}a6i<_v_0-3 zg`kW~C*U_wy*nnNjRfk@DjU7ee|2GdOJ96qtZ!5jOtu}X@Hks7LoQ3*s1brmlZ=1tpa>|kBo zvtc2Q0lN24g13FY^FG&mX_$?&0}62F<<9|@b^v(Lv1hs8TwtHjnV<<8BF+DG( z1N93#W-RUf%Iz`37v#T{%-9KR(QnO(jcYe`gnYt9|78CCRu#RmU96P$IAhmFW%Jk@ z_?sbN5DjE27YK#71c-@>rk@OI`6#8yL;Y>0l_7(Bj%}|&YRr)Dv%atoymD)X8jQYb zR#zSLgF6o~o}g#-vx>9K=V>MJhYHe@C&*c$mzUef@G~I?KwS0kAzSKc+H=;MqKxX$4&^z$Ta#IUzxbIXlQP3alMP{fQXy@0xj;PlOa?T#`N`sJl|bDlZ|2Q{AzAS zEcRuAQt*JG`bc(@S`XgN@ZVbv^!t}!E;mTzMz$6CojZxx`p{2@8n*Jlb(BWqp1t1w zm$jpRT-g_&QOjk1!f`el3GLIkn%%(Wok%A^e(&CoprBi%q-gN`?b|n?ssZZ(O1VkK zT?+GDw)d028pROX+D>P8B$*%$q!WzyONEHXzwO6&oRo>gizf5wB&4TPKY20(!;|I8 z>$iRXj3?Y+B}yh|HU3szT^-^6bm9DM97{eWCA(;;W<9C-Jx-fvJUpX=gJlrBp<1-H zVzQRtxGyEu4svN=2J6Q))O}Vv;yu;O++5Z+Qym=DjyC4jDigSvj+U9~pb@1(;+!17 zPF&?i9cm2r4Q)#Eoq6? zLt~H9`REfnq7F1vR1WHhGLV* z^s5TYhYHhnZhNX^*@2z~t=hH94B_7dVgrI!4=ULfhYI&3aLCnTr5^^wBc0K@V9>k; z3MTMfa$o34Ln|egU+fripSc>wI=l{{C5ERW8wtw9J(#^CaVOLaYzl9vJM3*+oBmAD zIbpP)4Tgak{->d?&JLI;!GkZlHAolQ+WJtcSayBv5@Il z?4Pyh5s~?htFA>8GJ3-s56aMOMF&tDJ2lrlJQoJ7J!NMvfmp-qb?Rps6hn z-AI~EA~+zHqOm-fd7FdXNO<>SPMDe})nhsbW52u1`r;tYyRp)xw+BQh3Gof~1bd5L zQ6bt~CG^=yvE(p?tCh-w2ahQjD?K0&enYuVA_{(8>y|uE2;b9!h}|G-0ylEo_PyLf zL6_CBbEwhdHqCo;B(d?;O_8r3k#4)AU!wHw^}o~g!K!(Rmn7F8y~mHlzjc9%`T?tl z$ESoikC=zIUh!;kAP>n1<&Um^FnD$Oa1i5_G$+ZtgfSLHyjQT-R{7x4%4#4|HT-E~ z@YLWV(haxcA}%hj_S|WT*l0)ng~?AFY4YjtMw3TyAWgzB@(VTi+u3?mr_lEMp&aS6 zdfvZf_d7om?ve~u>BzkCgi+AZ2520G?5OW3n4Zr;U@Xvcb61)%qO|kw@i_H3slKD` zQFl;Orfyw(;x}_l7u2X!IkmH)-wAKVfq@tacvDW+i8VLqz+L+?mC;cHYJzE&Z27lB zyOmole;;WEQY-#uF0*GYKK+{s!-miBKLh6suPQ)GeIcc@n#A5pIY4{B9PxJah3v7EXd*w=WaYdLF(exynriCgBQuR6B6%t`LuH@ zB>T~CTt}>T3dSEioIj%79l_TFV8_7lo_^HfHySku)dg2`&z-+HT~AT{@UT(|^* z0@8@7*s9{jo&0bVhqFUhYD_py!=|>U{&ozC$ZF9l8A&j?W_50h9Ku-%i7?e5OVvt= zWu15O&pKU{xT+;pt?C6eYsihUm*21$%V(37cYj!Ri|$^0em8X0^h-K7uco!`9_P83 z!6Gu!z#%~B4k4jp-K7-m<^8hsV4YxXPnn{n*;H#~vJK7wS`I{{Q+P+Ef$-D9wXbcV z&vK+soW*n#{BH!7pO2YYq(m|x*r7{I-AoY1q<(L(4TkR^hos4G{KYULsiN<487~S_*W+u&pQb<`^L8)07swRy!Kn3JE68dx34bv zU$E771)s2Hn{CKgZB$GFQ)Q0xenH}$+T-MkKjBKx#+1j{_O0%ZVKcehKi`!ezsSoF zvxMPgOUZz2cD!Mn$7w0AK`5}4*-X&NP;7p{TqeS4K4q@O1<8Eq6k?_5W8WP)<1g|V zi~8%gaNEp>x~#&omx{F{X@cU#$hI(-PqXjl7GgNIlIe!ty=i6_25ZV^V4#+x8^z}_x8e7YikKvXaY}c1 z_sgF@e?~^sLPZIn{|hlKvGXng!Q*P@)(diHYWN<82!Tuur^z3;-kk7u{o2XAINBAP zh%H7OTFGb-V716H^Ymkk(XePa+pAY;PJ;}cj&&;6+Kkr$gE@tDUE0z6cLIBX&wp9v*wuwkwmF9C`t2Nnn#65MWuNXD$Pmr zcv|Rzrruw|3rfO$!9xLy#WCCZxF@D?#{%gT10yr9RZwNMYG}Hn zI)b?0H^9-Jo5G9N7qC3xWMo#+aLB)?gY|H)9=C{CN7HM4d4;*;Dv)HGQZ*OQw@cA1 zw=w>MvToeIs_`hYWiSCKzK{|uez4i zx`@;y4Lp+9r+!J7-J|RJl;yNs-0yVqrI`I;?O$pc#l@|o#qX=CGF8|gs%MR!KILWm zfO6tSeYp2HisNEL0kdk{<9EZ+{c29r>Mg#OFF;Jv1{!DW2ScS{xKq?R8*L4L+Oyi} zV`S-!PH*>>huY&y6EkAnKB3h{$3kBEK0mS35qpDVx)o(u8-N<<$$^-qo!VOht^g>(u z@3{Amwq{jYe8*-Rg;|nG;g?qeM%M)y&$cVw{PeJR_FZUB?~Z2Ymg&RU6JO}YMxJqc zj89D!UlYy|8m1YexZ>$gfXfx(GCu%wnU-BSX5Gu+d|Nzb4-E+5hM^jkYr7PbxK2n1 zdn)dVO@2OO-9lA#J?svhZRC=EyY-c9Pug}_s=OiAbJKYmy;<;_fCIs|yk4NrPXYr6 zrsmsh5)3lDZp6KrjsIF-N+Y;1#^Q|4MX{vdFMneM_*>^sm~g56{m0j@y*{tytyO^O4tC96Q#( z1(vo~L^G}dypi`M9zH!uWJU}r^jKCaEa`&b8q^zoF8VkpXDV7tw;h>&L5&1yMtZ?{ z^hYy*X%}QWIo=&!m{-Us%ID=*;)GLOl4KTdvdt~T^07`vM|tf5$7?y>vaTD&o{cu( zaSa}Ek8d0VLh0b>C>*ngpP#&}KYI|057bnfSivG8B%QD4uf!0tR0~f)@y+&C^Ut1f zS5EqG`l^2G`v;%;i)pC&fRT;lokqh2t%d^Y*n5c4`@bB$b=G!Z$ND2#-=arGxO5%S z3HSvFUB59gaD>rQe9N|NzpJ@FA<`+B`ktPxqUc=p%VFi@Sb;it*#7J7we-)q8!gfY z3j^QkNM5>BG?ZF67}R>ss#L>R?qY0BSoQrK?d_EtWd~{PI@fpr9a;h&Vfi@}OB)=z ziHV7a41)Fehj)+wf9`~FX+?7y&=+IUE!!zYvP=4nq1sE74c)ph3WWi zMFbkr{b3L%W7j$We&pciSB{bYn~F+kIR(##iIRASrXy$H)0A&BqPBYS4WZfH({%Lc z(Jd#u?l4c5eCC&$|HPgqS5nH$da}R3Ti|M$8$m&DyUem3%}F3!c%0Bq;+!I^JJ6cj z7+i8o6%1&kF?QIbU=$ECW1#+@o*qBM$QWf=19OKt1Jx+nD^%g7F`5xCi_#UcoNifN zOHiY(L+b~!6X)J^6@8wO=MhrIhQ6u&in4#@F6-* z&Hkb{&mCs^e?C|g>+er$97I2|%km?KBJYcIg>1h?bW{n=YCui3W)1o;5T?MUQEh1K zkhnKKFA&?!fGrWU6-6anyp&nlxyMBJY&oE5&&aJkGsbb5>Ja0rQM(bu9k(ONC_ZHp zuB1_IV)&VN2MZb{oQdtBLx)oMvA2tGdZ5hcl7xnLJk8z;Su8*)BN5b92y(xPLPw`NmFaMngOh6`&C-rh|0MSCId+m z65P9Kh|*}FAuh@3#Uf4G)s$_K`!l&UcY40Q#SS1A~yu%069@IXOW zM(p3DlcRPMS;Ui^l$T*;nrvS<7MKcNE*6{trTM|`<2r4x48Um_L3BHJ&g;ADTfn0X z%I3W2_Hd#RJ6ea;%im=eU2wiv&yGLEpy{NZQ)kRx0sFfCr0({{9NrT}e>yJZ=(NEk zg=wIV^aIeB9cIoQ;*D*s@L%opvZ6NlR%cf`gR0hL>%V}=7xk1vOF!pjt#P;2 z7!3%Y??QN)qEF|s25dBgeYdo@c(@l& z5u0@y918jv<*hJA)X38HT@tZp^hiq^LstMDPL8=%-w21yTYV2`4?@pmc?B7qdWOzh zY>65C1No{8Sh;CM6ICAqm`!%z#E;nb7?f^$=_}kK%En_?PbeREZP(}N8jrksY`3XO zr8Uf{cI}W%6AwPNo2DsdAnA~+Y9XHslPryNUHr>{BQ8Q)*;Nzv@xJD>#F9M~z>n~U zBgqL~Sg`;6R9!v!>(@YIQu9m60AK^HEt(5gaKAtke*EN#)%>J^`)gWy`Zk1(sw+d_ ze6N71-ZJ{GvU2n8V`UZ};Rk^qMVz>Kf5gxgcS`RZ6Gs>A6%~ihAOmKud8c`!*+aIm ztZA~p;K`PEZRL!(xT#8i?BQE?^W&f2NpP1}MtV^q`qq`MyS6>0=%T($O_+|dAbH7} zbEBdDl+Ps8=RvM8?Ox(*3z8A)_Eo+t*o-!x)D9=$QHdC7tkK-Ef2jhi%@~1qdgd1 zu1h5g30%`tiN`egzm_bWbwkyZ+#ac3$QD=yUKJ87zee8Ck&&g~(#4n~OJ--$Yn|`8 zyB~aBgJZj~W42Mu?AA`*rJ;jiuu)51HH}!_N9eIerUO<@d)_=plxd=3N1|f%I5=hX zYw1eXt(nC`#G_<{nShv>*s){B;JO9lgTVg3AWnBiBLeMwHWn6r)bA*TiE6o1h>pmX zGy*^n3hc!l+=`e@N5|#2f2D2auH%J1vlTm*Hy>+SxCTR0Zj`yLg6k&Q-1@yXlMYMJ zQGXvBGdm&KeErrIP!AB_apeIiZwkCmSqrysV8nhUSY>K^C3L;^yDoTk=!`smHI%CK zo~w?1g=u2$_`T7#`-2hGdz7``n8J%=WwBojK9&$hj|>et!q60ulo(_{0N1A*5p?)q zSBh9nkT0wX5L1XWoG=ObPIrj>DWs8DC#oxyR`HH7z}rl8YQcYD;aTt#b@p!`XVbs$ zax!6B@2LZf3sj2nsp3>~Sk$7kw_DW7&SZ1vRrZ}9;nz0OP`GpkaXzit72P;Oo;i~7 zgT|R{$G1A+E5d7}xZ4^1jj+jrP2~X|p2;5{0+7EMzgZ@duy_s#)WPQ++?R63 zOZMVLpK+lRiTzBH`K>Qz?Hm`LBt_(G1w{-3K7v+6Sjys(iI|LB7OpRsGwn)}TG7P- zt&l-Mzq244;QCa~-Mf{*FtLGQyz;YPuZ)bBa#FSICh2vP9Dz@mwSO%e+Nz|48b;7{ z#jIXL=bmHdM_d(JQ^|Gu9<-no6A5!+;Q~ko@SjO(gwrL6U2s{N%Pn0>K@A}84ZbBf zHL5Z4fIzv~*piN~pm#IUbtkzt4<7Cu?$nn@$}k}n5#}5v z9)(u_AUdrOjU~^Ozja0+ddQ{$H7aOq_y-CF6(+q)5_gyyWa0ZOwVA0VUb&oHVhLk&5k2)gCZuQvZ;G8qdT+(SzY9#n zqm?_@cV2{_Aka^ISqC$J2@0p_u5TFslFlvUt14fzY#w&Vz=hW=j&4(V;p9OZLIkm! z26%rq*DDovaGJJ=w{S`eI!-6kz5w&VKMvRU8@IgaJb?@GFrrUMG@2>q7@S%~Kf#_u zdWW!9bJOuD<7@75J8`Hx2njHw@4h9ujXU7EnuRG7eh)+%lfLWbt@c<+K4jjT<>K z>mLDJ5RWp?-c@;T$-?Pf`pUs}F9G^3dV*^;2HEviBy1jMg&Vm%7W^pLQp+tf?DsuZ z;G^JGeBaYIJeljER@#0+v?LxM8ri>o(@RT6S=V;Yf_Sv#TwiF}===(Qy6hz&e@6AS&>0i#|6=Ec$X<AO%wn4vrDeU0MLeu!5^b6ktJSQz5i5_Q+n- z3n1+9r+$&s7b$Bm> zxsI!0%XZ>^t+3l7ED$*%C`u3f{7Nl*rBLCZxrJl?DvwlJLJpyJ1f7H9?$DIZ^6aE% zx2I-J@o00v54MQ?CVqChRs|!rYLaU;rrF^IEmyfv?C9XoW!2stoBIYjD`5*s75heIELuH({VtE=Uj4`+!ejn7v7; z7f!`D~MABRY!{{Gey`y&6nPqb1JFTJl%k$}*%+WGy4@LOfO#M!9N19PNJ%1w=H z+kL*z)+9Cx_dTjJ zUW**UD&QH&3a`^AYDS!3kj=BPrhfbZKO~T3(orB1br#@37_IK)P($=eKndcq@10OMFZ6;OZzK0?ZL_k+;r6i}Z`I#}CSD%_2m}_i; zknst_oyjE9l!v}~ar{}%58*SjYjsDgjUpB8I%D*$ZB~{);T75eNga^6@1vtLD6X%O zpt2bH&fa|EucE-Puy)klS(%x95DUPI*T@Ym!H-}jaIzbGQmaQnTQ#y~?OHreMNU{3 z*rXS@Lu9}aT~Mwk9@k)y-G*kavVb49ftq$W=wWMr2h%^$N^3UEp2|=rQ1 zSP9$3^|`9KHmu0Sr>bjwZZRyVf8+qv>FZZ|6E4C{4apW%#|2XsLAN?d+A1n`-`=c4 z`weE`7xoqO2C3u8>1!6sESd?VuXkd_k`cnk+)C&gy$o${8_Sa$l%F6L72x4qt=*69Q-9nqX6Oyr*lDay-l zMX3Q45O1|dtie9n>}<_Y`_2qydai+bZN68U?AvX&C`R$DSy^&=cd*|kQ}R})(btO? zFYe+{n?ze!d0DbvXx?OjU2P_00kH7lMx+x*evHUc6Cp=3eo@aAQtH5g&cx@>ufm~L z+`Hs*^Sch#&b%spc>tpm8eT&WZIvVw6l{i?Mxdu50xRs<=>>|_8(CdjWoP698R~S| z1DfOt;#ebDkERXmxrUDPk-maeCDubtC_!+VHZhovfd*SX8gQ-CWE6$}bVD0hFoeZK zqv6_(^k3vOsc=1CS;1Ny%PYrcPY%|k8FR5eb$)=)_~yArG11>uN3A;F{Kzzn=z$UH z@L1xl=EUDk7YCoP{iQVOo!-sab$r2x+Eg@k!9s!J_$-cj1&d&XG?k;mhUYRXmR14t z%k1=v!Nkl1JhHKph197R+udKM>(?EOu7iEdso=I@;sKsI`S`~>(3S*J&G^D#Z;+C^ z|EFz|K|Jv_TL; z4bTB83$jIAITB04=4;CWp{{w(*sATW8L)Ae@ke*I?Ll<5&z$wHRL>=gRj!n;X4CaM zy7dl?wh=t0iJ=Er^49)EYAFxz-zQAnp?+}Y1@XGwv~UCj8rPkwtgi;R0zF-C)U9c2 z?yxx+Z<6G%wWZ$kQzEvlQiUoB?*sg>_Wk?uiHSjQmG;_pT+_6vy_s+222*dMAO}F> zg0+oE+27xP{_NRTz;pqLm;w58u7Sk{U{V+2AltlOMpE+E@83hfzmVposJ|wXeSK57 z>N1#JI^Z!rxyT)kZU&%;?zYcIxwV-+yw`EsS$ox;>7I35!y^cT6}yQK%qhDBP-LH? zMt*1k|7?&62v5kIcGIjh5d>4z-EFeLa!)6$23)y}W+LPUjXkls4vLDr&rSC2-q>{| zX^-wKOprl7C#VV~$6!|n7Be9pk=|6tg8X>{Bajpj$T1jUqtX1_9IT)UR~4+m)t23C zrRqVT%*uSJoYUT*&jSmFX{Lzz`*EX^YKvFmY8mY}ZxrZ{+MLv!+VuoP_(;2N>)K^} zp}T0J;qo{ZatTvJOkfGQ^f9$z0Ps=*>=+3P`W%TG1uyQ$Z7bmkPj$O9U&lirb$8d; z$&u8QI+?qhPAnqD!U=AV!5WftkhFlvIf-T}JaY?<+|{>B-AA@`c&?O8SE60&LR2k9 zae*}^xt(w)Wb#}V^_sgbyI{Y2JFh0s#%6nrZZH|>tP&-<7pN~kLCjZjM=fO^5=c~2 z0TB^e;L9}+0hK_L*R{pfy8YhJk$P>mFV029&K=`7JjI);z4aoUb1WTl!L-F;I?|j5 z9b9DinJ?R#HOaPlq(OEbc$a^UYCK85d$+#&4)qr?%mc*_(Rx6TWDTyYtZX+04JQ_r z>K8+66_pl_+>Wg~cHAu9KHt?faQyY({)X#J%6ZdfA z=DIR6TZ&}L*OcFYu(e0br3i_E>xC$}4#1kI#9;|$^s=k-75?pW|9+y=`=A~;t4zR$ zqdrvrT8PC=YfuCgvf1meD{FJ(uLZN}&4LTvHLeOkI^o*F#s_3-4#`x!>E0wxtV(oH z9I)b0sbbF~kpP^%X3ZKNn=w>Q!T6dlP{H@_uoh?bWo~6f9 zdCL0V?b+xpwW~rK^@NwKMUjK}AssTaudL=$S~F^&TcG?9mij#Uv;)PiBtcqq`@rOaD$@5`cN$%*LVSmom{5H>5nlMssd+ z0Uz-w0FNH->#_DwJt`y_@o!t4em^WMeDlKkv>*A-TeN*xwPOa)`fv_F}Z99QRt|IHYuc`IM zToyRlKrUm(2%pXZMd~f|^n?BV7?*QJ)7keNH_TpytTIqJ}Np|-#gUIKz;I7BGl1jwzHi(my;)c5pr(W>cJUqi2<-d@7{=f>oP zs0K%y4QugmVfz!%CJ@0p#|0MeWh`CCg#l5I*)cPm%`i>=WC}E`o8bo8$lPs z@?l!s+jkGY8hd>?L>el=4cuWhFlqffV1*t5Jp3`-<0+4UyuQAEO2L^`oTSg~NK-2dR!B|mq)G$X#=#QwI`QQH=tG!depTSo=v2D6`u92Ar?)8T^dDxM{pC$%gc?AYb7;K4>k^AI|MK! zN#3xVCi^sfevr;wwP5kV6;w$*clOO&4 zKs^!n5*roQ_8=?V6&d}Snmp93%(Er#C%Do9%(BRap-YIuiB>g#$WddoCH9p3?#Pz; zQ&Jb(HIXpjFm-ct8>}x3^jXQPAivzL&-1ih^DZEzDE-k?fq0}XCmPeE2GLM5HclRC zvu2AC7je)VWHS=l^~7-aV`*0>XGdv#c5al?-5eJ_jaw`c6t`_RBRC(!`FAaH&YKr8 z6eZw;6=izR&g~aq^3n0YPpM!xI4o-USh77rCSTkDWuIRZu7KNy)*|~`^78&<;J<1; zw385+rfP`h*q*c6GhjW@F0&@0;OCY8+B}5^lt-rjaJPpor0&yUBRTFg+WB$`=_1G3 zJ2jQBY3pYYUC&^RecI}rTfbAlY0@sR$agFhD(cRnkHZ={)NkN4SvjSPMN{0-oNSMufjd))8bVR&^cYUVAUOTAAIj<0<4n&_%|OP(A4f3Cg+SAQCz zOfji3@S_P`7d&F{f1A|glB&5!Wf~J}ragBYd0X{t%guL3!taEcHxt)tehr_aB)aDP>M*jLLGU9k}UEp&RKpJ(UNScV?(_WXv?U)BMmY$3LG(7?zh~iE z87p(VA=i^`s(iSyR%5Eosk%;RI`tl9v7Tx;M0XdkP8Fd?j1)EDq4%U^4FtMk2(<~K zaz?I}Ou_K8paFxG$&Gj2quqa3Ecxsy=srO?fJiju{E|7gBdEdQ`zB~J{FE0Bf7nWh zir0$^I3wB?}z1lG(8$qr>UY7ql7tDlfxP5v&T(cT@338#)=Qzk0c%? z-4Z5Is5|aCG7~V$8m#zy!N#neY9RU+pM#MCX2NtF#8jN<-yN`|Y)GZT2M3g?-?9q=&zV%}Amc zj*>nr0I1oqeLLn{3CCYQ5rX{2lh#zN0SzW88$Y(=@k%T7*G$(7S5erDUrV1#bpK!p zT#?Rx$Xz53i^Q+OYj*nn)WS8eX{m>n|L+odQHS)~y8E;Md`U}78yN-T?a-pnVQW4H z(}19Xp2cNBN?Ve&{N{jD0Jq^6mLcCksvZ!<02qv<%3rg8nW)*TGM4U zomClYBX;8gdYWthRg3A|`%&C+OX8%SBlW!A*!L)&2mzKhPlZdU*GS27du z``k{OcAVqw1Z^W?3Tt>tJlVBM{EPcE;+N67x@!1I6ezcB$Q+d*pAOm;# zY{M+)sJfRb+1xM6zr0@;Nsv)~E}(}ZSeasiMAlsCu4;Am zAn*t-Jw4XrzF9P0ou7fS&q$$eSYt~tY)=`jgEs;(k?hEbf*`dk29T+5%Duc}ze0cV z6<;oud{LQ4y^n*+IZhYTp_Fn z2J(=K$<5_b2~vtnx7auB?T#>&2sk3`-{5_?Vqtz>N%@MZ&AG7b%#M|H3+3yb^(2yx zh8jgG&#)t7LdO<^%RUage8ntdyn(nXw^$ZJ+sx?Ji%^S2zZ#)yfN$ql(<&~mnMNLi3Wq0d8!#sFw(ZWT- z+$jALZAFLKWyYDAlUzr0f0p|$yCzH=MGM>traPw0l-$Hkx5|aK1bkbZIE8=}N8(B_ zI1}EK=vU*A?${U7$#(F3{hf@rYXTf)C8G)pg(-?4&}$Je2#*ioDnLxWebWIv{OA$w zf{57M!{2(T4!yyP`3H;TSU$RIe~uG1WE+P*12Rb~t5*$$m6ZJU`CR6Hk6g3_AUXuU zYU73t0qke{qmrKTu_#96rItu+)2DG#quzob4*>=)&&;;dTG`nukaEzI3=={ATXj67 zlxenom(uJ5m8?UKr6|eol995X zH$08oD5c24KJ95QQN?6*a%d`#A_OJz*n%4YIJ)tqVTQ`X{bDYFD}W3tDk#j(&LVl= z{J`Ny^UEQx(anbqKHZG3_=|NgA%Jo$krEXl>j8?3$qMh3}uR9pu%{{%$R<(fc{Gj5{CKRwVHTa+CCWAZm^3@Bc!buxo$s(jWbR8DgK zIY^!hftdg)V#4TUi2=IOZ?gMJ(p+y`jgq-i7&t!Y_UG1k#2eBsBeQ!LDepAOEql?j zcE1 zn&#BbVM4RyMPrbz^(XemD_L1h0y)MUudCYV<%*(NNldH@9vM1Qv6tw6VW%7ZY-3(I zyTd;}bt_QH)^-?R3aM0winMws@gYe1c9ccs+j6_@?^$TMB>H~+`FmeZkNo9?*$|2B zTre)@;>zW+u(ibu+KkQ-7$%_EJ@{FS{2m7k9XF!iBDy$!CPx0K$4|I$!^Rp%5PEg6 zoZ{x@#*uLX?plmz4GjmuYaqC24s++pFP2-Ow>>JH@6!TJC&U^tm~O_&ISR;?m<@aX ze*MstxHr;fg3bq)6&Q2{udhBOrt&nzJ*(3rzeVWY{8cUpWx(x;XbbrDp0A)- zvU-5#V5w2l-K|aiI3(ogZ*%f{@W@)OCWb)Je#5eQn1msGlwadM%wGn4 z7(^WCDf5p6j+L&sgixMlnKc{?;$mWWt22I3%|cU97up4y!6;}x;AH^eTF(gSHw5i~ zTVWtDi7q@km8ojkhUFgXWPY9?E`wC#*Fhp0^NeQ|6uuzmD=sefqyEit`Xh9NcE6MsJaZ+v=3 zJG%=~$)zU|wceGaLx(8tjq2@#2m|F30y;?0!XEMv0EH#xuz-L{S~KQ%zbGo|Q2N>5 z&+L(B*?a%biu-Cvue-DO)?bTg<0z=8%y#b#tor%$C(=vkx!V#^VM|f>Kw$gNddGHH zgmpc$2Y7XWK4;+lknD+_xJ$eUvmU_g6Ne)E0bFRLskiLi%kkfrfhmjmO{*Bs!dn#6 z6%07QRAJ)c0ZCs;+Z!4Xp&Zop8u`)*?!|u|eDZV3%(5N`+fyF|bjx z?-xurSh74FV64AaBvC1eiJw0BT=W)k@N|9N*0(rsVGXQuI1^pR66m{9@o40&!SF-s zYctC3V|3?mhH34Tm~ z8N=ei!uQOr)>;hh_U}N+>3EX#tT$QvMx|aK)%6vLoMJg&ZxBy7r*gxWc7)q~jg{;p=x*ptA91qB6D$FsaqEoi0fB8L8<2k~z7;pd?# zoVwup`gU%?+>D8d%;mg@;9$KIA@qg9=QxQ{h8 zCb+kZ9)5m))(7e&L_hE^sn%LtNu5K(--%CSguOD7jbP=JH8fm_k?-yA=f_`&kId4* z*#|eD-f~`}rc2NeQrCgag_004Ivv}}p;(lSZHORheD~#tE+ir}beK@LCZz}mRvdQ2yShUJM+}55fX_Pu` zlP9Cc+HIYT(*&IYC)sgoJs z0=~O#TR1esS^^Ljv&Nw)L6ZDT#NHB$0-#|{k$m8!okUv;S6qxUm&*Mb5^=P3ZO%oK z&lY_fL_{>}f&&Am#<~exghox}x$+HMG;}9kzIru@9+JPk0C}BVfHH$*Wc?hS?8pCC*=QprIR{7rKW6S(V$Q-kyR-ydVHfD+>y z7$FAw`^#%S!;wZ{RykGVzyCZ3mkLC29U~fK*RNkssTkghxAOM&%{J{3fNjjb@08dn zIv)7;-8;mD8OU{@&KPcp`-Dh?ZrHXhThN_=R;JLbTeQ908l($4bmE3LkqGMikoBx8%bUjQ=lZo^3_CD~6d;wp#%WN3u0}}|n z6?2Cy@(1V9lc5+@l1PK&XZ7?YQg*jve`T4EEUp~W4%TRGY`B%N$sAi#)P&0e5 z?_?YOR}&`QKQPSmO@H3v)HXT9C>#!|X0vm1s%EfT5zMC~V$c1N00Ik=l0sS=-b|($ zljL~+1h@a>sD}KW%YaIP?2FJ;RnjHLM-tDO>jlifUqLr|L7%1IkNaesMe1YO+KWW$S3LhDA`xX z4O~Ep)RBMzD2+N{2WDt!XuSj3rU$LiGnwTc@_Xug{h+dgLTS&Q1)#&tFDGzD|KH9l zY+ZfnF+2g=E_*#Cr6#m8J!!#s04E6`DFBywa8E=|o>Wdz@_`Ne^(`Yx{3!?{Z zkQ<466A!7OkX8rquedjK7V2Xd5lA%6&z@!1Dw;+1``?otbCxzR!f?`r33$nN@x#o_ z?NVTKiq8kKi1R3cy!(7&AW)v^ZzfCfX^a=%wPF~K zX+tRVpv4CN??rY4(h>KDk3ak>xYTp1)mlnjT^ZkCc*#>_&K>~C?J&sLgBC=V|GsQ9 z-3h|Ij8+^{4te#Uq$ggW1(EG&ei8+t`yB#SYm7 zq*|7y86LJ1Vc2o$)s9pdQoS6XBP zFLDA+0VifCR20>R$oceV8vGK>?;gaTcKh_<16DQ$Xo>$*T;1NbGb8EV%a?~4&*Ge^ zV4!5mVV6?Qe+8r^LWY?UZug43y+O?GT*nA>)XY*WDWTkWUNIw zlw_CmV$-S;_y7{_#wNDf_Psk8J)9*Q?_N#R_t^T%#jof?6Ixb)pLf?bVn^B<~;xE$~?JNARYdZDqafw4QmR6#fzrfi~!XXe}5>9 zNgLv4&P+Kt2Ttu`S2^(8oBU=xXON%56>DS+!~}c^$IDV+hUc3QB(l{^DG}_e*N=B* z(RDwcxR75(TKj{O>;Ow5(f?alml-IhgGGuel&~g1MF%TuV|2qo*HutZz>x7+nP*io z6XZ8|-xID;431#w(uf&&Nz0X(#J{e$C0jp@8;Gje-A7IZ#Q7dt*Hbz8{Cw zi5z=%paS`C3@L>xCjedW^|9MkF*hEYe<>Ph0L35m$z*(kN&+gwC7550wPt~If-j_$ge@!zPDsX} zB*IwoTL=EUCa%{oP-+U6Hpn>+)f&>0zuofw4_ArAL+XD}1_+kv@ZoS_+gf8j;Z%Dl zFob*mEO<5<>T!Y#3;_|SM27Mqln%kEz1Ylq_)Redko<;&VI8Cuv_ID|qLI2yR)iq^ z0WXd59~vaD5c3oHt3-*JpJ2r2-uSRpZ<1VV1H2m5w|8+Vq18dUTlpl} zAF>u8Hi}(>c8lkN^T3jr3Srb-`&xVwYRM=6jj!U~JJ^&ku2_-UViMruc|W1lOaI&5 zvsgGp;wv+-p8TidAL0|^k*{OKIRJg3h{d-zkd+BM6{AF?!E>f=vQko8#fz|{h!Fa$ zj*?l){jD0^OFT3QOn!m8sX&4l`3;}1&-@G4+n(Z4v;>eN^q+47A+kk8@SxRpo(c?@ zCx=N=;sM*&`H&Hz-1v>Z?}Q`q(vg7w1vX9{TL4+$0r%`*nXQD}kQl##u@O{j)(FIx zB3Oq|@RH|rK&Y^yObVZ&Go$&WYtj>nI#8^mzWC0Oh~;Sw-$>?YPXYEK$7v&ieJcBtj2Rv%I)-;N**S7g!_@th@b4 z%QnE6>vxgLSb=Fs=i#s#Dwl3QF8`1$y=6MS>n_5#$c@>b|6CJ^B=ip$N^+C=^I=fq z|MMwGr2ilMs#`O?om@T|=0`J4nkX4!>J5OuAC2wjH zX`~`;by1x@&Bl!*kll3Ja0Xwb&Y*d~?16e|i#S~U;QO8VHggx{*PmbcJtR4-h3SHE z?XK`36u+RO^P;yM5)*On-X44PAP$^GBPs_ezwIVFYwc#s%FNskzzbt`BScy=C1T{a zh%@Mg1z$MqL5r~LG6)@Q(RsfjBLjKc`Ca1PH6PZ|&`jP9sL;t^xj#`6(2xOSiuM zI5wW-u$Z{}o8Hu{;_)|0Q+6#oTprW?pWn9%B@s4o5FCAJYFfYM4l*4pTuqZEhA>CT zLF7{ytTI}BeXkwmuIH_@x44!{DAW+k-baG=zjlPDvG-n|x@(^(5oH}RtwqY#ghW8b;(L6P&o0k_KUTU-mO)~&e%MG1L9B!#aO1>|d_Mr!l|xaY8qDY6T^ zK3dhCY8fP^y!fN|+R`nFC^|8rdx}54@PpYkb+%nmhJEMnIVZ9FD%BN@Ujeq6 zXAkz63#|8ifvbM$oNBqe?`u+0lD1usXF)*$kamXZ_BoWTwgkVOrp88JdR{~LqslZ0GalyS3!=3g?GP*+0Z{1i2>r|H)NOw@ zQ}LX&n;2AVNUH%7LB6bSzgV4sGjOXoEQn0@8<`m!7n%3`Qq$7uG8YOwFL{qc$NLekfb%feJ$ zH%7I zD9IJ+`Rci`e^xCi{ZAA9{}+eY{}*R-UJNfkzpWKz4SwCS#?DQBlXL@8utoqe821B` z7zkhBOxZv^^)QuE`aLxlDj<=@k3N&(N0p4ug?g@jb{mpOu!pPwB7n8R7*;b{Mk(yd zcA)pVKOree9lakkDiV{D-s)H&)zhsF4+#$+{(fQ^Jd@T~TXon^1b^&>?Bu@RMKUBn zl0`-}TaHqvzd9sZjwM+g(>~y%{2SiQ#S>L*>_L81S%A4sx=Wr#y(adTSyvI7Kiyv_ z>0?C2ZaX&{qPqn5WBi2;p|M1-4sIM3dV#Q8ii|bzqH-u+#w#aOPm&ksS3%r^>6<4) zmdBv-)8{EL90w1eueWzD_9+%~fyosGg&*!x!PnW zAA8vA(-yTal=R(c^YyQ*)IMB2HjGve;cdyz{?b4QfESUmLfby)RAQ2aeN!+}6~Lzj zFP-m!e3UD31on{v*AidEU36Z$3Sz)jBPv(iN8oP(0RbGj-Rl@}f}1-2e(9?W6w?6& z1e%R3_vueMyfV8_u1ef?zCJWb;)s<`K(TEY)|Ik;!-f$XOsB8Z1qUZN~xr=Os zv1;c@+!B-;ow;U_N$;TDf;Ws&uFi<3m)AbZSe;1cY1K1l+;2u}a7OZ*bzPA?`S$y- z;WpfJR4ss#q`>6mpRg-Bzt8>#W;OqHyG$>TybL1VVbAwHi}H0E1?Jb;FV#yHOK*;b#o1o5BylgJenm3Rf#n7=bKCx`9^A7^m;G81LR?TcEgj{yfSZ zr$tZzFxBr{-b->3NM0@)LN1GW4I@o^#(1Q0n!)QSw5AUj2rxuTfsqN}#>>Z-fx}+i zG>#VajjUGDr2f7u%E~ifIRT1=7bVDhz&O;49j35jBOX7lyPZv3yjv;ulX*fxL7PQ% z=k?#{RKjzlB%yNtZ1E?5LZMOwlnlwWaA!M87tp%qV*SJXwbCNNQb0S6!4_QL4iqss z?ZIy-;UZ`5i`(9ntCq3MQ{APmD>j3RO=lad&>QVFQZ_plD5VIoSoHbL`G$m}=l+DO6L*Cz@9p))$ zXe`!W&sS!7-S z{V;mQh%fB>w{JMgxFH0uY^7~`_^IEIj@#?nGjSi7*rx5LCqALjQEZ%k_Ek?m_SVAm z2{4;pZ8&yB!_XAc7*G%B=;;2s{oMNG5Y3n7(s%Vd64YCMNnd_Fs2_4fE%x4erSpFq zd58q?yV8hbAwnAgULTrS*t9R@kNQ=9x6Ee^ynmpv9b_VO^ru0^xYkLK(a=gnKsN5k zBZi7}ozwtUCof-*B5!vaZgJ0kYU1LOv8RRwy9#A6XZ_NpNu`zM#Fn5*8S2YJEuMk( zEWd)d& zz#1TV##*yR*EOm4T#Aw~W+FjROi|@yhCq7fg$64?iy(v+>esyh7VH(w z&3?u9itYj!GJ?`$J5fL&xUImOrp@I*q5XRJp*fF#JsrmZ%Ur^*D0hhr2bwnk&N<-m z=-an%NZZkDf?r{)!}%v~b*A8F2LulWk*;*oY z>7KZ9bE-Vk;hIuiq`HSl^d%K8UBxw)NrhD#SJ%6*J}l$%7-x%m;iPFy!vFzS0lm8Y zvDZQCUZZr#2r!Gc9arIB1p3hFq)KTOfrtWZwyGPMNUC1jWC~#&Bl$UrbI90cLl-OY zq|F=7xZMqdiC1b`TAYE}kpTPItwzsTxwxQ4Oi@e885)NH9d0eK?)eHt85wcdKgBQv8RW#sStLsSl@V1z^x~N_0 z%P*L4xNK0Io~)&kvi<1_|KSovmh9s{#n3U3BqUpo8=jp%?6OC7gUyBJOLmo(ffdaMvm!4Pn<6en(bnHXc4yCbqk z^fj^X4UCO}f7HBx4`JpSpSPAPQjr2+K}P$Dwte|>qZ3ox3C0bPSHK*JXrfyeCNU84 zXmHTb>kKF#&}6sOUW={ElHKL8uO?8LEhHkL%UV2d`1As4|4#i;x}=|UNe4V`=;@7h zEfjk_eE#=6U9BS3NBVtl8#H3;22AOs6^f5|ta)&7RW!Rgi`qqlw95rX#ue65w!Sfi z=LXoeua{7N_-zMPf_T*DiRVCa?9K-=ZeNcO-;tUJ8;jQZh|Y5qtosu_+a9#=oM6m` zY{G;;_T@__P}y*v4aO%XOG!x)mL!u+@oFi=I1eE69S_wx+1afepW{iY{NV%ohc^3^ug-q_TFw4BpNJgWR|osQ3wP!_OeJci^;_oe zwcO=^*#iK(PM&c`11VcyavEgjXEJf}35U0?^Q$zvb(?rzBw=N_a3NYAJl5lxZTY;O!Y|0V<+zO^z93xMm`wVkjYZ}nAQ8$Fw#P;gSt zU3^OY+WQYq_Sa$-){Pvz!($txeA6mvDCkS0;+{aMY&7EgFM5a2A8p*PEVGkKHPfS_ z=QB@&$+zMx!{EmajqDeAes8Pp;Pf!O{<7atGC0e%^dtkz36Hgg6|1wat!f)TWpefr z-`PZ?se?BAPSE=TCnTo*NJ_4gZaDau1&&-01OOJ~ke+}IX1V8v#>U32_YT7v4IISZ z%|uF$BUVqP&IDsJ_t}8<3}?FmC<8E|AvE^r{re9d6oHTpPDqPODfz@OXG7!*#vBYB zwf#@KI22eL@wR>pf;#+{r$GRih2yR!f?)v@BjYtJT*73`!IMXt2%bS{Dfc>M(B!Do z|6%^LYp|OCg28G2GoMdZ?)W}=zO&;)9E<yUum9Ht5|J6Kcz{7}FVMQH7Ayr&%sLLN5*eakB&8lH@?*I)5&Q_Es zPyjn)0pk(t&w%i;HBPfNJ7dw!Ni^~W%h1xb`+Rb3Z0sXDCQ8q*)wg*b5-Bj)H7Dh) zZ}2Q$p3!Q-qm;RtN3oM7-gLXhE7eCbWxRK(^v@iomuP&O=)d7rYIwbJI!&NQlh4@~ zICRz1n)eIaR12}KLe`B+7Zz>9ruSe?jf1Yx2-^-BQP6pj;U<|}qvS?Iz3QhH@EL3O zMQq0pi6gi#%uIw~C<7f?B$z}q39hZ#riiJ|h(Uxz$t$csr z#Vz1T+RRD#G)KJ3pqhm`)NtfaDy2l)&!4(w)lY*W|(w)-W*IfGet>F<5Y<07~{k28YL;0+S;*vu4>-AM` zsS-Yvkxiw98~jS46Vy){^Wa6>@P z_2q~j6TuHuO3WqPqQSEs_Rspha1BmoI1;526p(uk;ph|vQ&l|b(T5xER2w1bj7{2X z1!A)pxWn-H!J$nyASUKE$N6m*a8@T~@11lE>S2aYNda2ZKP>aVr>^&uJ9stpIJwM1 zo~EHwvSfN$Sy^vs9?Y<7533N{t@eCX=P}B?aCj^Anrg|X6+OqedSs{{f4FhRtNZsy z)qu-F9qgm$S!Om1UfDjduT|hgN`ap8-#+ud<4_s^60jBuncJo9bXi;b|KjO7;HiAu zztRvYMaU{DBqMt!iIR+r(6O_3wj>%-6eS@$gb>O)Hl>B6>^%~)MJl5H-$%dq->2XE zc`J@{p67n<`?|jC`U`ruhjI1?@6I~Y;c0AEXb1d*-T+O0F1S@eYrj%foV>*R2mfAr zo-oE;yAEctNT+l@dRJv`yy@e$64e{eQm$sS7uoHtWRIm+bXR=;vS+GT=Z$auncSAh z+~qR=`H~vj7)~yg2J<+ir8Qw%T{4lzWMss49Al(b(JsrdD}d45qNsvtz*xf$eLkps zi2xr+r4ocKf?Bq9IeOv2-??)qn|JADcat)Y;3fSl>Er0byEgrbJ@KdO{5h}ir-deB z&jak5^aMrMxEb<>4L%p@oWPtQ<;k$>FiR-%QLLTgp&A5zj139cGcwY^^kTMqv95}i zE{VjlaHI)`m+&2#Tw6Mmk{up@e9yQpQWV%Y1P1?l^P+FUSu-!?SShUJ9cddSx{K82EO^G4K(H2@=xG;y#7WPub!H&jA` zK2?m-^?=DG;`+)C3^+JA9C6gir2FG4@U^#S@IL9er~Z$#yE$`=?AM%y&KogLQyZ5Y zyu(Ow=t%KnjSP3T(dn-c4n+w8x+2K1@|iLR&L!t)W=A`+TKU1^bFBqu zE;VJF{(R!>;nth)`)QHSxMMEN=>6JyTiLx{u0#y?l|10zBeN?e!MrvIP&%eUqhW_n z4!HtRKU~CEwzEln?Cq7as(+xzbTGQXrZKk2s)6zP3p4WV+99|I8}oh2W4I+JUR_LE zchTyqe)fSAIyBBAH&r}#_f2j(&=$1uD|0LgiIQcu7ZVtk)tyD?3NNIFF~OQaMU8#_tF!9ajiqGGTMgeE@yBz(SDz!?2A^y%atEB_6B+v1cB zx#P)wPeh+(KUg_B+k9x_fwsq_7pYy^`U!;$jXRs~(-!QnRiJ7(^TxT}Qas_jgBz7o z^Y|aRF`0xJR3~_;mw=3Z1A)|kF{Kx_{!FGWI_doBtm*h|IT@wl+;tQYK3C55CRqoc z_6RKT-@`85lyrnea){XNY5@CQIJkfR7brDB7$^5#R&I!>W7~F;m!S&sqxMRE#)h_7 zcUrh2L677?LZsIblbBeARule7NEt}y0XLmeS0`qTg|oYI3GJFv>1g>RDYAXAsN4yh=Ji_&= zeiH*jRv8Ox9$Y3kg3v1-<7bq08swDkU|`J(+qx=h(2t`Qz|rF_?O0Z;(V&)I-j}z< z+-nJyBL__+HF0uO7SN4BGQ|m1y|7xfO$Y+>|u|SQ)0bvO%t3%gL z4vzi_3$QxAk~Oe@oNE_+j1oN3X9e4q*ca+(8@Btn-4~2Q#LThA-S%Wx%kejNW zqlcNwxC?=S8yZ?Cxg#>u)8EWTkbaX5Pdd%?mI80sFBs&9?G->3EGr)t_PokL>bhXG z!(lP4^alQEtMW=Q*(;+b9+vJ1WHlc>(OjVt%cSm}YP&ss)5@iz+B$>0_^tS!U!9|T z$-8)YdlYwvV>?mmLIg<`!_Z*NeKunbuBnl!3+T!8oVqXLddlhX;niVZW3k39c6Qs% z*OmEi@r<}h6W+hJ!a#$}f)D(S4-ZK;RClnvvDEqwEn0)7ZvEdsb%s2sfE`{wDD(k1GQ+tkV7zTIWE z-XQBl#l~!x(KhjK4za(~V^p`q53q(vuM* zYYCecnz_^#>0B8lv?G|rfdqLUIZU$a2ADgYe#pjPUgqf00jIw(MF4XZQ{TK{LkVf= zeSO4^ZobIT1*el@FNa14XRMET7d(<}oadjHrV9VsTqc%&;!s2?i?W}~hhInRTc2FJ zwq8GZIW5|R<*?b6;Rl{xcVGPrI(;WtX-H&2ii;D9f3n}{i*ps?%35KK@Txg&?k_hU z>eWzCr~yz?3gQmJkaA{M0ql2Ow6H^bbONOJE)Lyb8f{9_ z)OygvKUVkB82oyM)!-Eb7mY;fKTIOeb{Az2pST`;mc+xK!!+<@SKkx*z9%CwDM95& zau4~1aY~ewoz(Zt^U0C>7UbHRN))YOXpRUg}D`ab86`&@K))3s3bu<&~rV&C?k0+MEfPhJ;-;1~El5|QE% zj#@=G5kpWA{F0Kw)j$S+f$|P?uqqr4-Kp$+SCk{ z1oRm6%=uK{EfOYk+E74OYE;Q~S%CkH_Lb@hRGAz?UHx!eLVfJDRZH?qYV|fPr^YQ& z+I$ZC+>dBPsW9@31>T~au$i30mg`ZD;<$aK;C74^U!gN4c?DdUIsVO~; znYG1dws~E@ga6-E?@@xcCTg(Emv*rx6+X}Vz8C@rf|ywjC@a!uZfPL z`V=bT+Ovn0&bxEh(^J9DYImJJ{JuO{H+++7$>D;WdJBLCd^dbY1ll|NoEhB?c)NRl zUk@@KIXhJM><2K1(^q%``H^^x-rT!r!xbaJfX~4^a!1P!<&-G9jNy`iPR+~AeBQ^5 zk<3u=c6$1E7<(s3yPwGGD2UZuh}DeXQ*zRWOuoSRW&CS}CCVS}UAOpvI(ob)c|NPqxhin2ids}ba zs@7t4u5+{>wLw{|jA4#m6WmWIAN$!w^FG;DEl(V3=+KB}OSO{`6>V|4G7CgwAn1h- zzo<~u=-ap@S23RW(ZCCV=6m*pwojbn7FDK7-jWu6cfZ?M^ zpWhL@xmN+J&*|G-fKOfk6ES^D4I=}lm6RgTw5Ol28DIPo4*$ZqhfD)w{h3BBj{Wu5 z`57IWzl^&c+?U0=w5VR;yUR5B^FiI-W$Q%k+O(b@?}B)K85O9d&@Mg@#Ul zO5L2)M0RLF)<0m$$q|+akB6s3YWSy475w$O*`=hS?hrNNyiV2hO|yx)-9lHlpK63= zjCkO^7YF~|r+yqr7n_cbre@A9K?B={aF5@}(a#vZOhXgX(+S$qd!`q~5-!y|a?_)B z(S31SLefVfd?gs)6UC^|;sGJDMh3oq!P50oPd&RNq7pGK3q4tR?B-(`El$`4AtWef z)zQ{w6fz;ERzashYG+3`4U~{o*2_^%jg}K^UU%*uQFU?qlEp^3w2+=hpAWVfr3H07 z9pY{4wPrt=GyFAlCTaH3dzSDTHvSQ+i@w4G%zMQ)P=#tIbE-VvzLWLZYnjZCDpZ){ zTjuH^>#pymsf~Sb7_?1TBb3*W-{9D2k~<(ztYL~{SAM2IM?+*&w2|N>h5P_>z#2NR zZnB;}wVas)ziqN*uKjlkP9JAhNpW#@On#hSgut~5yCa;Bow*iy&93<&imlHb#LgeI z8*&`Vd1L+Q*ov>RGUI9en)Y4VvFq!59Xq(WxLz*5a`W^o>bbdsb7DobW&n!=t%&IH z>(B)NFYR(7ge@42fVm#_4i3_68i(9u2_>I7)N2^-^E4;tKp=z;*qSlh@d7?q&euka zf$_)22`;C=Z}R)6yTG7;0+*CX^@IZIgy8#8ou$34EwX$NDIIn3Hx(zee@K<8s!D9M zhU*JzUOGhs2KN2Un}fgS@(IWCRt6_{a?ke6R_){emNdDoc~eOH&Ta)YmWDW07P`6F zk%ky1)k0&Q<_HPEik`9k0&3hXFkdHKnvvFQXCN-?6~o=c!ER|un8EIA#=rT6To}xX zB2@_@6}u;y$B9`=zKMTlFsVD3l+zDq*9$Xd$MVZ1D})! zWmzb;8CzyOG241uB*&z3>BQ@;8Pn(Z+W{r!4ETy@R`DF?ka-2Zlwbf)M;nD5@&UbY zj(nxYy$J^ukH5uFc3QVT<#^k_zPze}Td#$uRTd4JClvvQ-Lc{FZBS2h}-g>&hN^VZhAsnhlFV62@GUa~W$OqN| zF%4OZhLe>_n-U9MUme~iEh7^PC@}Bq=&f`g*=>^nB~hfd&U(*|BgeD~=*S*o=+Vx(Q}Q*&3})CH+{ zAO?g`+x0nxL>v(b(c`Z>B!JTo`ip1kv&G=#5W*-13a;JLxqPr+ zW!T2T&ydG%bDLj401Aa^T*z6kKq}5x&WuMgva+%sQdSIqSqgI;&~V;E<_v@_=|2&_ z=msAb$f#3P_Ag_25kF@a%P@kh3t@ig3GRxxf4}#~=#r`%2lt7q3Lh~dBIxAB>5uVr z$LB0{=9FUDpZxGqlU4q7Rq^^2o6oNAxf1JsoZz{gveAg1Gq5q`hFrugm-|$-FV0_n zqPvIV$&h>B)8Ye>s&HX}B8yB&Fg7u9UJLkwU*^OeW^>6NWRx>2YrW52hH}g0fS0V( ztb~jVp=2QvmoeJIs!AbP39@a%;su9H2dj8DP7l_F@~;GzDee%(Lq8>*FYohmuawlo zmDN`1_63O1%1M(~)5oD%1Kf62&|COiiu!5t>k=o-7mJ6HDlTp^Yh82$yVQk8xY>?n zBUk=^Mt~o!oZXt_iBJ!@oPTbBMjPbkySloALPC-(p?Gcy3J(3cG+_}# zK%jA_trWid5vkat7o^r-RY=pmXfg!%CkB?EC2Ky6+gP`$OIN2RA<*qF!xdfIDaKE& zM@aNMk|*jt*6YFVpC7l9Xi?AwZAH|sZf1=8gH6q}(zgwGiRcdKNWb}C?%&5i4J9lf zAu4Hn6a@jx>(QYGDbWlP1v>Sdf!OQkfef^O#PQ`ByUE@6Vw&B zGD%AcA~El$S1&X?^0n4US3@$slcUFc9iy@q6mrFW`^|UI(GC81gz$_t`OGh(y{Dn2 z^(YD~pH_cO#M41;%^gu^*MOLBBHHn?xgi3DS1?Pe7sIw%Uca#maiA`#WfuFyKQUCC zz4y7l!uiXyB|#<6tQnPm`Bja?1cbg>W!KpAP|Ec)xCeoZ4%c2!l)|J{g_679eB?Op zcJ!b8X8COiOMom`Gk{_abd^l)V@fnjAkZxyN(#!$|3Qrfl_sZP`ip`ROgZT}|8O>* zo`5kC%lX30Y=%cl$_Er7A!{=fQQ(Wjh^8**s29LO->%zHY{1WG{VxWMOgAX22F!x+ z$hnVcygfFK&?k_o?&5n(Lt+0yhJz2beC*@P%f5oq==21QQ}0~0xU}ke->k-6&NFH-1$SVy``wqRnOhFv%FNg>#F1N4%C)-7NA{qhZ+^d>9(5@QBhtX0Fgg#xR=huEZmwHw%Kb9$Z*T?0xGG>XHzyd7OQXuqC8( znC_+XsZt^EX*T`Ef_)Knm=z}q%Oz$o{9303dG3n4@^NBcpOd7T%dr%RK@>w3Y>Y6V zVDesI!w9C3Lhdbx03PMlcO&y?zIQ0v#{PK0_fefR6X|AWp7!1CMxi$6cQbh*MJn^j zJPnR4_Qc%L{GO4hOP-#dAo<+g3l#PuW+3$TZHMv93y}iYbeEyr_Dy{ghk|POAyX1W zzN^cN4h@|6>ndowE-y4nqRxaK(5;jhkATO`JaM*rVUy^A zfn7%@!pZ{4NFb+Sk*)WmtZoAwzkq$N5=u2tW$mGI94`3iXdS7YtBGCe3J=|&VQOjV zMNr^TyN3B`H`SufMvEs0VH^sgLaq?9aHS#jv-j~#P-4W#J0{#ZonyhIt11+|*+_8v zlR2qEdPOQH>ue48N$(>UT$-<#%rJem-v}>tf^8o#O+P&C&iWJf8PZ=|2zLy$Hv+X% z(}PO zH%%u8{QU#VV?Abv)YWNa>V}7hW7`vnd0KgQO^GeJb;GZAAILJCTFP@!Lt_pmF6UBy zB7%DGG<9j5)O>!!b)3F7Vn!e0)wQ=F0`CM4|St0))%T#gSNR6x%s#$el#-i4=#RP53-4B9^yQ_Rp&yK~7*p z(&8DTg2Qe5CoFa@rYVm{fA2l57U3lOB1PqKp-7-*$YRX>!_I2&pMk6_9iWUhRbAG3cLW(aou7QPJ{nd{TDF(!xzw=e$qE6^9?^!@YXL^ofciyVtobH|hG?EvE1g zq?!|G$HPf>>h}McpB`>%BybQfl^x#ugg)kdPExA8!I=TsPxp4VbqeI4dgl-=JB{pm zXzB7x%Cs}Zn0tj7gd$b@inmZv%_+K4n51+}LU#oERY_?ByaZp}h@UeUb)911JQS_O zpw8Va&kUYMz+RVdHc(l*Rc}4v2ieN-(pojrqNu*X#xLwBGr1NpoP^al7< z??1(GjljlrRj+wNFnO>A+h=@G6ILjq#$LFVx7TFpQ6FM>Iqz!@rCXs!>yx44=Q|md zEmKY?cL^6S%biX*zA9AMgIu|VFXo<_KHj^%aGC;&!6e$+wuK*PXJ?wz8XzowplXGn zF*i364$`IpS^t$^aMRhwdiAF1@_{CdL?lIY!)4R8T#nvr*h}}J_(VnkfcQViwPc{a zVPygI5r1=&wzBdZ&y(!oHpzv_*k9u6E3qg1L+|IExnvW1XvYAFSDDtWUO8U4p_wxC=&k^0<`cH6c@ zw3Qg5wBlqgT2e}k9n@$kzX5M0)ck)SaQ~gZpI9s+)TOASYVDP)}F4kVhx0 z^`_Wl+EM*EFXzv@)pL?AeAuD5j)bN$8*A(C z*LVJM?%Ndn-PP^vHKR81r_vI-uPgdl(Kv}%)uRc3!rBlmgBZ*8>(}86 zx%B<(i}TM(t{!{7co}MEdSLPl3bg{i(=FeTCc7Py98ZvB#4sAdRACtAgBpxTvGCgP z3f+|HrRgHboGfsHI*spk7J+8OrUW_=63Jd9=5Q79SWx&;tm~&y++QZK$tUw8Giyr7 zmb1Vq%Y!nnDJ@6+z(mDAcLP>xol{9U@*qk;EAi80-3$tX=W!UVB-8EJVMl&Rk;`$( z!XcnPECvdy3EN>3thi-=Fm3^5O^SBrRI#L_q>xF4K}O5DqyIcN6my5D=1l0goLu|2 zg-@hfO+2J)2;hr({Q5|VCu&}ys$Yt58ARg^Te(%bPQ3+c z3}@pjpxL3f3LEd6K*~fl#>_mIU^YOLqQ&sqk6vCvf{{G1#@pdeR4Q=p~CPYVq zOP==HxOuY+XdV3Paq54&=e>au@`qbZ;@?WAf2&kPYG=Ox@S)0owag?B-d)Hn5!{3% z)aOn*rlw8t{Q|3yU7b``F0y%^BaDD3Y|e-8$S_jhz!PU@Jcgdqx#yi_e!J&3$!y4A zN&w{?(tC>9|JI3A&OrPNk%3}TAtfS`pPK#u+qaDyxD3LjHnV}W=T3B;CG0|FxZgRA z9x~~|OM1SQKW#oZlmq4mjpE!>+<5jnSP`;}1)-O4iUXZkgby1GTzL{11g(>ccv{)E z@gQ!;(?M+Qh81pH@0URYDi8&`>!r(=iLfCAeE6cwBNamh}T70~c3!+DD1s zO#y#Wb@||cm@S#aGyk{x@9%28pYe%_@|Z3Tt(N}QSLeT>WiaeJ+S}_Rml&Y2x(5G~ zsd|;>y>W2jmmJ4zq`rx3+Z$Ukd5pnmfAwL+?c^Qi7roQi5H_yADoKOzxVvP?^6^ld z$Ah*rIFODjq7F?%B2;iy&>}IkrN?Xnn!KBV;fn{8vescC@b;w5_<{?N+emmT5}T4RQ+~NKJ&GYa;>VrLi`!W>W5t4(xQUO7Se)rlcqxfrHG4Q~yst1S zd(%MU50T-8QlpGZRw7;Kx4$gb_5b%p0efqH>mEueZzGs*d?aYbx}5fiSiXb0{{eQ- z(TV?kp*d~EU5pJNMiRAX9u?r@OW{RFHH4lE`=Nst4>}1%x36IH!-y!XMuhQ-fVA!G zG=E^_UwW7h!A`Nq%Su{MjXs=I8z||l)ZU9U~OGfP?%j4o|}Fr z(z}XB%tLKf4|3<o>*05O$3J+DPx#^cMK#-UGu+LAM{HtIoJlv?}`fX&J{LrtM zm~goNMxUOh-St8F-%?N*3!<2{^2&Y%!?@2p-}bnFe_bO$!9e*Gb+8GkU*pyArqwnz+~~Ex_{qU zlS8?#s;?0n5E>SE+Rz;0lqfbt&-5FJ9^ucAg7yKe9+CQ2uKUlhOYvtbzU!M$1p$#J z$V8^__DnMedLK z4@xB2GA?w=A41N*3nA}~sC#w3bmdHKY>lCJGi*F1sGPy)E2`jYxiu59RXKNzVh?6M z>M!Sh6jC}A4INJpEY($;v1)2us;M)-5-}W-MuZlWWWSxMJ!WlP5R+Vq%mTU!{oS4+ z5etM}@kgfxte(ZJ7=%hd9H?x`4oCh3xXCEl$Vr#fFKyD;Mj0S0o$!sR%SL9n&hFFM zZ4sTTp&A($QkRVcqicug;GDV+uE1^#_Nl)}jCX_;nN%);ck9{H1mmoL5RN@L4$X{~ zrCQcjU$^hRl}Bk?$1X@233hy=^@fr1t#v{0(FC?_H-~w6ZZ?e>%8M@~d1L6u4{}7U z(cLq=-zzi|G~PZVhw4k`6&Q`Id`YU^j+BQvKAWGnSFl=%xXZkbo}#0WlEMmtup7`J+G(0TKwT_P*GjN6eF2(jF9rOLg8mnkml>KAqJ+Q42Ci zm3VXZLwI(!(aG^UNEx8L`!9O(k>__^ z9nuQ$N~D}0H;*#CIxnoO<&Qa60XFoC4=3$DDVyf#{mW8VWa<+3SV|n>duvqCbcVrd zN%==ac04XjQZ`#$V{tqi5Z=oA%(e*>nWet_@T9$ulbi*pCQvp#$O)kZ9aXoF8!RIn zSih+D49HWUejv0<#2=9CWiGoC8neiU0Rq(s)Cd!2xcHOr?X!;m#V_#LAbuhB)BndW z{9ST?J$^QqGWhj*#@i!2JZ~|KG^rxuV90!ux5g!-k;9w%tKW^dk)3eZ`kldpqG0HU zKqTPmv|EYr$*C#Fq_!3=aAVMk7s42Z9SM6sl9F_9>f+(JLNRNKqhNH+hRr?+B-gWN z6k{gkpFG}098Cc4^szJa{l>1kluxKup=9`r0b_C)krK2Cu2}>a{Iiqi=pYWG7zXXo z?R<6zi%69=O&p^V03g1p3;%fvkpmLk^Na{Hhh0fN&Eep1DpXfajqfx!=4lB zloY++=>}IdEG@qvjSpMBBl%Gu?h2}!!>BUC_~0F_afhMDttTCA20mWe1JyMB?%oHm zfItl~9mLGQ#3TeV2&gn8KZ9iQe?`ohvCYs;=i2S+-bD{xD z4I0B?giGLyTfBRxF%V-Moqp#cZvrE(XdX@fj^6z*iXIJb0;B*U@fUrYpV3YVbh_Sy ztNM7q4-V>}kqX9c$W=*6p)i*6$rh*2sJ&2JBeV}cVVM^?J%5HoiiJ1Z878!$xbrLZ zc-RR#_#?69f~}TEK*S(p;98W|^k=vL04bMRsBYi3t^b+%_3TrIh~-0o-2C6EzKce> zBY!r}jlHkRr@cKDGI))5#=3OBHp$w4L|ym2ifB$@{(A>%)R(n{qW^8rBQz(8Re#~#|@R)1Wg520eV)28% z^8?flL&n_P%a;(Vp{b|c$h+nVmt(v;YxbcZQCsR5M1%zGtDN6)^FM+C(&oSz5CYc% zA&f?t`o`zPOEVYoa_kze0G$@63Yx4fEe*(QU?Ur2#Ze44Wu482dPk1&2QsnXxAPc! zx$)*DG<#h?x+nu6?;}6JK^V|G7TCig1@Zw(0OYTUg`PmQL(k02 zyEC|goqik+e+V(q3}@$MX*L;Z9K ztB3W_64XiQX=xYt^WwV)ZmdnLta!7mBB!hchXd5v$x2+$1@*R#VoFNN z7$#PHw=MZ_AhCJ+DO=FsVnf!jozN8jVsOx}AXC~gsJ8%&JBn2Z&>RjMY;rK{hSqhi zqo|?$_liy5y2Snf%0rB<5lFr1H<$;52^AN>GMH?sTZ;ib7+DVx_SY|;kd%s@h#K&r zSX)GMT2)bRz!@$=iwnd%zsE#NOBjwVEO0*{;)!=orfFYB4GvFM>BBAP)qZ$-`~GvSli{`dYgEh64@w6&c|YmPFpp8<*N z{IJsSqgW+0-&SfQa^{ZSVOtp zhg(keVILNVz~NwaT&TkJ8~<9Bf5TgjM}oDQni?#&*gBtRr4r$Rsh>J`u7fN+QOfmN z@)gxIY&1Hj5-+|HyhP4#?9V|r1C-@{Oib5HSLrLn5;6WrNi5==-~+6W?R>#< z!M>5}Szc#Z4{qW8`(8|*!qeF2-wy^Hu>=)J3*OwI-el}Tt078H;Egkq;ZCY zo{`bi{BuCH_~&ZY>#kH?vJ?uZ75=@#dzd^6NdoRM@$vC+B1@?4Gu9Xf$2VI@7?q8( zD>8lLI*z_P7^y0G;xk>oH#Wy>YflAfx5U0S&@k-I-qLA^Jj5@VfIof~8v_-Guw{1Y zw)qh(`ch|9BF`S;CpP@s5UM^{iXgZgJ`)Y?Pz%trAQ{+zTj#VNyU>VcA2;e zl4?67?4q2eI-Hj_Q_NB9pTo@`EC*MC%vJcakfH-1aVVGhX(r6gj!2if%Pw1t${O^> zgS24oSO3ceh>XMU#f{GFVW*^5LaUFFvHNf#tdnR2F6gCG+Zxs+85!L~^e$ls5Wj_Jj zfXcT6vVrFa>f3WP3rj1Y*fF%Ep{c1URCuo^KFr~NA0`#*DS(f$z7G_WA0D|RakJJg z_}){tu;)Jyhoo?0>=m-A6;(h5sc{#q9eF4s5aC)xa#B)y1sDat`Yw4{&SGc3xwa1c zS|JZp=caexz3rw&LY~I{om+A0f*wY^bEvv_$IjjogM2n6n zx0aBN0bAp?BTD=BYnITUHiunjT5sX^RB?lH(3t?^n-or)1DqVIcQa|s4l=7!O+PA6OnCys zxdcx)1U*)kmYq&d^YR8jL!b-h)`t`iQQvzsVoQs&4n#%uwLDHj!*v~N=g{_a#h8s%8tOnNmbw8C)4W-h(x!GR!mxE7l zdSkrzV9mPG^fUPp+J-|3KgTRpk=wh_kb^^QTZw z_0s&?EZIU*u8)+Nl?n=%wU=pS4)x{kh;9#YIUDTKam)E^a3raUCQ_eoV`TlKh>OSe z+wR`-WY}KNO^iu8w!vuH>U>s#Kv#z5o^2VW5feD!OKAR`YwTanry4z-V#zIZ&g__X zK6@H3h5rr7-hbfi`O4?POA;MT`^$Uqd!E&*r16u{kiFoA)~>5B^T7|43;SbXS}XoL znIhFJr&vrn#8>j1-DA_8J8p$!uhKMF>Z{_TzZy-?Idsz2za)5%^E~S@s>~hC5(#=g z?&OZ|(mAw4DrN?1-2aLq1=eF)9!ihWbvEm`38kr~X-}4PG+1_=9=YgksXQWboZjYj z%hx5F+=CyCbS_AHL|?F~);N3FBHN0~5|!PcxC&8&K61KGrG6yU;nInYor<*F8pmS9 zW{c(ihE+T=N*5I~e_UCoW-R!v-01Vq;pbs}Tn{KeXDxd?je-f7lHy9nzow%2M4C2a zr-jd+ok{(Khrgtx1jCm+wn`c%CSk>}?z%r|HSgeUiFa3IUo1KlW5-8+B}9HTyIJGy zOt|N&%-I8;Pwi?i&!ZXw;`^bgDK9&lK3ECTCfIu>kWfY*UQc0Ly|!o+;@nWSVIDZJ zpUEgf{s@u@EvTxB%HBYHOvfjD61tJi5p;@K6C0IxHK(|Zhf>>Vl`7?U{~3R0nJ(D> zz1pWGNk;Ll=abo8I&pO8SkunvG?L2t>EVnZGF=x&)z@}PjFLhH%N|7}A*1wi6#KKd z7^s>C-7Sa>4OP`x8Be~uH=FKZi@x%P$UE&0L$O4Zaa+k45{)$S4-bV?aXx#MGl*0w zrqA|d#?mRaeDMnXHQ}^0vh!~Pc_luqFvE`TZy2ulip|agJD6p?pUg6+giy5xZnULL z^L<|PirYHjszb`OP5@am4x=d1r7eJZAi29Kz9S@HFfBkWM6+Ri&r7&t2lB0G)MX!1 z&Ov%-Bq%8$&{#=$9$Ek0>rnV4q5X1k%&W8P22Th+M>DA3B7|$l)!17Kjkh?gHqm=7 zMw#kqnR%I0#BCgF^XWrt%rEqB-pmGL`9 z5v89@F0E_g{}L1ES8&B<)U`2?F1SX?z+;}~qP5^#H6jbiXqy1zLm#7sG@3EzzVAHq z!ml2u-wJ*x&fp{#v-mbY%SCr3QDSL_VDzCKu~eLXVM7EOgDM({wA*%zAQ!X!B3hS0 zz5hPSyZZWkcIkmL@X5iYNwA>l67ta+cXHM5b_r#-G4t&x<6d=U7X>cs)K&AyV4I>QzjR^a@=dZOIhueuI4A1^X=N) zZJH-3ecP0%mbirn_V0YSe|<#feA37LpIMiBxdjK%*i7wR>#8L_11#2PKr?dPYQ2lH zmdDRqWivZGGk-D|SB-e*Dukb9e&npmJ;3tm!L19*f$#n zBeTG{)qs{u7NosAVl}sl%}a;&0}-b;$s5E@s?ZC*j{GR5?EV>R61U|c=?*m~`pE3(Kao9_wP=)+m@R%me7X9M&SVJ-acra1iZoK$KGjrB;WU!Tw?JiZcp8 zOv)(kfiMMd!agppie1d2C=9=U)e2fKrVcmC<5OEIa=?E=6OONx?q%iRNF;ot%DfB& z$yWWnwL9xO zH{dR%$oaq|g~=$ZhA7BwMgXKw^^o(JC>Pjsw|bDjn?brh0&W6vH5mM@o!ur9gH&um zB;ls;dfyzEz)L_7_udL-SoEZb9X`Z(I~AieQc^lQAm3&l%UA*&OgIj z*z;j*fymK8z#_h|tV{-}zU=JNV`FdsJl0dJI`>YJ{``d@0}6^~YgmY1!iiMCDUG1} z;AIE;o<^R76qU%hCLecyjlV`7NXwk-S2z>EYZ7V$gjal1HESf2T!?WAh$F< zV$g1!qzeIj<0e-!$I+lOgH*S()6&|$$QQ~G6s3-TcquDQkR7>%jsPRBq5Um2>VHoi zgOP)l04z_Wewudx@`!yEJQ1O)jg74zmR_p(w3EJ}tG#Z{v9$c77`pr=XtS6Y86m(8 zS7`;)iZVTaMdrkQ`}r@#X9om(5%!^ostjVnU2w2gcANSU_DiH3y}XXo`*&sppxL+O z6MIUup&l}QXsp@fOR`(WVJ?3SZ8<2~i}Ht~p+?LpE{;l8K zreP8^AVO>j*sILLj!2BPv(q>^d-KK(D6Jfp$iB+ zK!FlS2a_ZdQ*?ZMujDi_pC*W^A1JWP2kNOe{rFA5Z|NG0CPwE z$TE^b@v19WR9)NZ5F`X@;FN|&G5fngK~jzvG$OPc5wqsLkbb@HeQ-v;ceyC3gxrln zr_*}2m`GqmnpT2_zJbBRq$C&FZ&wA9&pdqa;LFR*vwXYaB+s7CM#N*jWgTQ%&UJv6 zVGu+_666oighzW@P*T{QUW0t996;c`-w1sQYzFUE=<+l(v$EVy$GpMk<%I!mC>P0C z07eo1I=|!>J?Vn$bKGm8vL~7F$BD|wbbF3GXJPeoK;{w?87U5UmVYt%r$7}zCb z9+>(YZA@M{zWoT=skfu%KCO} zU9-I7f4zBZjoD#GY>6;oAdCQqH40bYCb*f_Q0?^kL?NOqO&c7%-C-$H@A@(o&uoH~ z!P*v%25#`kA(HU7I!cH}cU1=*ZP@S!T&oYb52uJaWSN2zmV?h1?#uR2nS>8^XWOg8 z#SMvZIpAbGd+JM#W&qwpU2Yr@5FjyBw4tMHBxdtoF>c%~5fKq-=`Jq|ybYvxk3a*7 ze4wl>K7{tS6pqj^Y!XzvGG+o9_4|!DYB5d4gu{(+pyP}Z@_k{ec`M!7tmBbdvAMJQi;cpSu0pJ#`0?pYIU z?axsnf%gch+0y)o7c1a3B6u3OB;*?J%Y+e3Z0EFY-MUxYNB$rjibY<+MI;9B_k)Ot zg3G_XghuBW)hD7{Cf>X25i)%V$A^8o(`?%^plJu6P?WfeXaloc9$46lD4yEJ!cmaF zXm}mCD;kk!OARE0q)Rq}*YTMiEvMQcu6gd7P(0HLj8+g8SS`!zndbaaDfjvJ&XQ6jjtTLA;z8aXye z%q<#kel0WHjW0i~#jwCUkE?J_=QA|MP#Q_<%{Ql=2G%-5NIk?ND8Jg%#tV=aR-1=SGx`ec{Tv&!mZu3jqMlswEP(1 zt4nzS4%YKUwROGr$ddC4|TByP8CEb~)G0fYU4 zRsL%~_En%M5SaT>sdxI^(1(| zUQeq$ly=y1!K$B}{7PIB=Hb|N?vO1)0Z`XUSh z&Rw#{cryS(LVyI(BC+=%y|+QL+7Pqf3^!#<2Bkc~`FvO(qGEiFbGa4lBVG~l10}At zUKd^={kyw!@HQY}B(t@9O_bw)NpG#WA$k3+m>L4mhmASdoF)DHlkpMdzrCX0s_&b@ zYmdl5oV4!Kt&G6wF{;4XaTfOy;9-K^XAg!ux_pbvWq=BtD1$zt{GpF}QL9n@)-JXR zv4su^S5Z2Zw}`N9dn-eYNj1S@p|jye)1=d=fK8ELTEu&A`B4h~6ROHFzVTk?`{vD? z3;w=5%@@gyX@8BR*~2@nMPlwi&EeYz!R?RP0hhj!xx4;o<1;*w5e~ZQsZnWuadGib zKPRS~!2F^Pv%(<5+Glz_FfedG#z1~VR&5x?v2k{Mv3ECiTnW+c(A_MiX|dM8_!ZxlMpOga3XJ|H*2UouGI>4 zLWL}(R8>yiI)*bI$iitUY>DAkJboM|wh`=oAZ7K45h=VOA*ef1$1mocYALL zCGk3B7wUupV@(H`bO@~=a=J(}6`|vp2?#F;PM8=TmWMru6OdWHn;{!CfF|xcvP3tAhiWg|nb<;+PKNFsL%h5Tn-~jtsy{ z9)_nHT{J|Oq?~r#8IjoIIeL2_Im1mragAea0$yqGULeJ#qpN38)inLv&#@>8MPltz zZBEPz<#xH6^nHEF;PJqSNYZXp;@VL=Xl@7{2#P;K2Imx=gU{}Z3AMeyYf2+O+2XJs z#g<@AUWNPvn}RW>Qh=5WV@H@hq!OTLlMb6-)7-klr9`0{Pa#$si(zjM-lMG;G0_w+ z4YmY6_qX_dg0zsJY2Bd+Kj$}yqb;Dw4n6w^ay*HH{-%s9EJTPY4gqKEg*b7MA&p7% z@C41m*4GhVI@y;7)Ce}B_o)J?cpZP&RJX_+49Pb(PcA9(0qb9Eyo#d&$NwUpbL8PK z5(4Zt(52l6iAt(Q)y!-VoEu8v*$YR;a6%HZklLGmswcSmVmpK}hRBJ0S_3Wb#|wQ$ zK@e9$(V2uSY;t9Oz8j7?Tx_9=IYo=NB0M|@8f+Tl*}q?`w+OvzP*?el7iK;not>CI zcf+NCFpouivf_{AEmOi3CgCb#|H?B7BfY(Q_rmgdE+Z3oo-9x_IN4DGR-%y2)U6+F zg+?JpiR&B)tiGLAnBTdAlfRQcs3U}G!!^uLMHFOG&eNx2F=~PVb!|I+u zL?9+A{Nq@f*Y)@tBVXhM|}_6K^FAS*ya6*tiZ;Y z5?M(}eXy+`wgZO)b@}>&O088P>Uxv~kW=8@8Hc?RpVAS!q4@3dZ6RxD!@qn%5!@oi zj#NPoj;esa{x=5(ktY+nTXYnHJhO#B80dbXU&ByBqK8GTT0~;swM!ggdCWF=<@G|E zjMag2AHd#eNM|t-7g?@YD(FUspMSWJRNpT^*p5KBic2sNQe>77N10ez8|Fg`iJyj> zrI$^(BCuBUe|&<1d963UhQ^o>Ta=Y8qqF6XIC%K*VG)sLJJQSf;XfdDA>VwC!>Pa2 z{U+VZp$o{z4%)^JOQohnODo85{F4X+4Exv-k%7h)XJ&v>T@Nj~d$DZ%oC_La^sw7# zXxuFhdv#_^ZgVZ|T}Qd8Q-iI_(Lx5#%wT5NcK3YOu33+*OW2ev ztEx=6BgBR6DX#ojV*|v_nVCJRT{n$(7NZIol%ZO07@1GkYZ(3(1Z}b3uM5Zy{$#td zx;o-kiiAW=G5rXaSPsoY$x-+`)I&pJYCQ|4#G?8UVQ>k;;M|1hrZJiuia|5#hTEkEjzPI*6%0RVXnHp6$gn2-t6a`k7TJ;LT!OCnVf;@80q9^TR^} zprRT(K>UZ+n)o-Yp>JYiSw>krWQ*3>Y@MCAd<(kXk7i3^fYM9QDBS`{mlz@KA|+r=Vbn&w z1bZ40X=8>Hp}p&aoWlN{rDQOq878rf#Kjhun{&%^HRaiW3Y;Nn3wp817^gs8fPhJ`Pp zOM&;Ao13wAjtB`gIZC{J^Ck=vqD8$`Pa}>%9wKVA@U$n1HU;macghlDrO|?*yJaZdS?TM&@(ilU$F2jwme`oMpE?1%Q zq3`I*A(9B~V_{GhFsbO&NnS@$xPw4iYdkky9|Az|-U@oH^Ad5!1_}*o^pRoNt#gH& z!s^tO?SRagUT>$!t;MxfKOllE|00P{iV*7|E;gB^o{DIqhWGV z(m*UFSDOndcJ$1HWBWg2dNVR(LQ*_7<<`ZfH-AsKFPA0~x#ArtWu>>HTTQKAl~geG zwr6|jOs}vaH~sGQX}+8Tz3^KR{wg%Ww#^i7!Ai{#V5gfzSU0mus|r->y#}Y-#&;|s z*7R&so)(S0?zMW~tDjm6t9SfgWnUgn<=X$ds-2-CNeF2hlDWw|Wy@I6WF9kSCQ7EH zH)Ar@rVMFNWLV}gLrOv-^U#tZp^_;PDbD9v_5R*-u5v`_yzQ5nk z^c7n)SxbzKf>ELL#e@`Gw3r`bBR-Np;Fg$1KzQy;5;q!)P^Vy1b$e5kp?0&w=|qXF zzrDRZS|S*_Tnx;M5Xxu)g)s^Z1#alICaB%8DMp_4%%m<2x~uvc8@nfsZFpdeA=u*% z45pDOsnQ;jzES$GJGRUE@@Y5?ecEJtCA|GpInCDk(+`ShQWCoQ=NJ|x$>FwTz2!2eJ9Jbi5>dTEb&m%y-O~qyQb?yIftS_>PY6i0`6Y-Y^QGu!8CiH z=P<8|&plA)ImKD{=k<3p4uzMQQ0u|n!OqP+_5SD3F34pEaW1oOKwv?y_^qD%0T?qF zQui9r$rlt#2Z8;j(5LN!lnlit0~D1oeq#FT`A0-WxB~SZs&KzO>ZHK#4Fvrvk#M;F zl!MQ_vAM&x!4IpX;iV*5k7x6#!wcl0w;1${v}L)fVAq z5J5k?oBw*42Gc$Sb1-@2$Iw+&+qCK@F-Qibg)imO&-f^q+uMH#_n6JNwt7*Ghxu0d z-y?3K624IhC7UFM+JnG;;#%9k%RFyd6>GiM$L-y@t9!mibaa^mWdks#g$*2$j8&|g zQi-vtNH4&F5V_48gJ6>i?<(KGnDQ46m-TPg+;}oR17R;Qo!XczjzKkL?v~hM5)aJt zk(A}BVvOX)NmHA%ab@OBSv|&&J(n&`a7KTCsKP%fL4e~*pu0TN)L{EIMV`9i2fa(* zXRE^wwLJ~^&bY!Mo2&9n$j_lp0|v7Cy1J#s7&mkeI0wWfCG|4S?R`g#jfFUE_9#Cl zEclp9t27XP)WPZa8)*j=q;Kd&>rLOG3ID`%*S=M zkD1DKcshh^e3MM8#6EOpbbuJaYzM&T(AFShXS^k{KjaCe zCAsgR0)IiK{qNVeCtiImIY*FT&&Ly&6bi%K-g($(gt5*DiMP#_*(vpi4z>BGBsA^Y z=xryi7V(FjN?6Pp{0N8@`|lQdl}~InG&WEEoO`{l#6++#vGwzqajJ}j#$h@hu6@H{ z_EE`W-)B{y3T-}m(lJ<4_^(Lg(+Mqa>x8};bE~!OkJS>EXi!xzZ}_lhUxO;mrSPZ6 ztmtCcf9&!-nE&+D+t*5e3EY7Ar`6;P-O!9$M2s1i*Yk)NS(T& zhNsQfbO^l6e$QNdR5g@F%f`xBSR#DAKx~cRSkiNq!k9D6^hcR5Ydx2y_qJOzC_2Wu zLm&ofetzZ*UEz@PV|{d+x116P^=vNmksW&yB`HMD6Tf%*$(ha%)elP^B6(Q7E?1u( z8=f)46MeDcj^6Xe)yDOD6Xoh#5odUPwVJLfyrXkHC7XXO-_1jwLKn^ET~sCn3qybv z8y$M(Xr=Fof8^{|-({;$(@^$W>43I?l-3_DPcH3CYR0x8C?vFxBN9j)TxYHcJUh7n ziCOCm;Q{#ctRSL#ldJ+Mu!7oE?tah9$D{gO`iL6M!Tb}#5{H9n5_88nMDoz^YJ^ zf`Ug!ef2){=NReiF~lJBc}Qc=r_aKag(jn3{wz4VAhA*LB)IiN&{(y7->w1%0uk zA1$HhPhEXDg*Fb)Tcy`z;^Y)67$6|R08p(vLWrRK?fW0(`-dyuJ5CJyz!&JOZES2N zr6?*CVE{%+cY$nN@jjUWq7(w{M4622w?5ZvSK90q@GB@R(IZB34NT%)qW)zSHOxaO zbA=hP2cznK`o*p1)9DSqq`)z%3Nq^B{C7N}cDA-iL@77r-nkR`Buz>aIY^cz5IXTq z2o8c?PP*7w(d)C}h0y*-I5!dYj_mS`3|iDNa(nk4&+UO37l8l}ZW4KUULRcn<4F(t zAAsH#)}%5qD|NWOK&blcpF`D^KCi2<4`(Dfe>V%502J5N4&l|5#aPfYbd6KyT%*<*G=mOPH;ynB5Y7a?j#7-qxxToM;= z9wvg}>%$}z1a~E=a?J${mP`lZC;3VjE?6R+0z7Gp10&Lx6Vg9oau~W*?ju9=JS=Jq zfWz=+p|Hu&MN}_T#spXg96WLdF+7)2-VgS*dGBp*?GA!3LjY6Ki0gBt-{x36F+X)` z#C;lsLGPxIkSv}NKfRZI!^Vv;;JrH>26BJMmAGg_Za~73`!;BpmZ_gbD7sPU?vH-> z#Ai-mj^w7IiMGJHLiF`Z470;*Vk4uE&qTj&>aayX6e7fye83t)`>74yq1Fl(G%iWU zzvt1ZBBN*9*p0FAan49}?p&kQ66kMXa>q<|%6=YyRH1oP`F$tu1x-E{vgpH~i8Yc1PXACRJ7Ec0@0u3cP zdXOWB4;Nf~Q>lf%4}&GuaQjX)8_gXRj@$p7iHnPig~g`A(Dx94Aco~eqp0;Vc*w2$ z+_dM@V4meV&&!Z#f}|+dFAs)U2^0)AVj$|Yo7kB+ zIhSFGAr@TzmxP1_(B(GH&Z63&G1t9 z#5}BvBfu1I(I!*g;Etdy$GXKxEm0H9_Qu7)l3c-VU6}nq3*n8pZk@g6!73Opvi7FP zLB9o2&o$7cDdZn4OiWC~4oRfEgXbu8#;QYK1o=H9Z6nSk!oG*=7;j;{+BAx*1+s|h zTUZeg6Pv_PjQr-D$)M0sY10+5r6Z{C5>&(lPKBMKgd%omVn??rd`h@Va48k-T!s}I zIY4mcFyj@ryywh(q+xV7Jwd)B*x((T2kO3ultzni~)*qO+^!#=_n zbZ)BO2X=OC-^(aQkJ{O#)tbRw7_IdEk*PS*RvVL}qM~&0rLBElCie3D=H`_wR=jO@ zHsWNPkwz5@NYl&ucB8)%;le64>$-N&09kUrXu#pPz)ZeNT3X@91vhQnxQrxW_LcxZ zH#l*KIEz<*1;97LSa@M$mHFzO)gSd{$F5O0pmK)V3^XhDC!He(UZ$q~@Bko>ukY2F zI;e}2qheNJw8%b)4RQicyg7U&wL;%M8?OAZX+3u2*n|WJ>7U#OzP}I$D0$LO z-J*=4g&1lcci6VV?B4OC2;P?qNU_~;fjAg1etR2#=gHC-XL`hAj1jyed%0&~9*odDfLCLf%I7A4Dlo(IV&pAk5jqxQV03P6gjNVQO&k8% zi^L5c^7(aSq1Uv+u>_dV6Q~_Ey&g+{qOUN0m%+L6Z}R}jbeiChJHRH0k$;ZGuWUOV z&*QJaK)>~0bD1EiP^L>Qxc_AhS`M)5os^Uo(`-zUaL@y9t1TyqzxC_Wx?`L+9=Iz% zemacXF($h@OP)8;sSlzs4!H&F+t~(wiGbf4ukX@UbjP$iovq&KsoaL~(D0F_vF8Ka z)t}qxha{IHb4>^vkW02`jz?$}J-vg9jnWYA(>RRx7{`%xP8V|)JLqRPbmV%E6aC9M zbG*ik0=4K#u83zkqNN3Xg0Q3|?zLR&3D+tlKGSE!=U_l7tK_dJJqOpy&8~-poA0 zUQNWyGVVN1#K8loxhNF}4$v003?prOlT86C$C6037NWnP-GKdg+lJtdOe7s7Kpo-U zgNSG9c;C21yk<=yaW({|BO;v$%3G>GxPsc}>G&KH3%D@=40kaH(`El;%FDKaHH}D? z*48dwI7mxFqXRPqHZ(vfVyqSE@McApD`S*Pk}n*T*wn-gHsUxe^T12IMQe) zsWk)Ut~D13Usm3W@kDSUVH}5G+~HuAVJM!fHL)b_))g0Tmcx-Z;9lO3iKS2rl-#T$ z0{@-@$f%Fx>~Zh0j#ex=JEFc|&6*9#1zcINFzb+tZ-loRjA|JyW4*Gaqw;H25RGg?@0FRsjoFrOuYg<#CsJou7pS`VUwJ!l<;|VN*++bpnK>OE!uGzI ztUuvyfC)hI)0MFADbvk<`}PF5=r1;xP0X18W|JbPz^`8lTrQ5{`3m6_7#Ezj&e=6! zkBzZ8+`3g}*PKY8@}}kc5srk79@lWeCi&Ozk;I<&Y+b}QQ-vXbgg_ZYEQg3EV7}yJ zu7smldby};wyMChjMECX4_H}`o10HP_5Sx|2+G|(gM9;3IP->JFo^KghRZEd?k{jV^yvN~vuh?5FKBF(^f`5f%&?+qLYyzw3iG!G8HQ!Gv)8&`TVBjF;sY$b2&9%&W{TT%Q z;D;omCPu|RlTWB0Il(gO#8w|UyI11u`)TQd`OoG-`cao(4>TyXzg!xN{LD9PGgvOu zee9I$wa{{5%4?76)|W;Ha~2!?YQG?`J7Zcn^MYlSFca}cTSnYMTpFJ9OI<`$F$<-#*KQpcnx5wiwzPX{vA0Hd->OA^JWo_LyNxrJaA&=r{ATxZGlo z?r4$fnSs0j)7jV*VU@7yN&{RLo%Fe2{ixdEMIDhd%V+D@1{&ip<>D861D-Y?&(E1ebnMIr{5KBDr?4GB3hPtfC2X>e~gx4yb54J7=?5{oa4v zvr1xWHgiaXF?o!=+D@?~_$a8ZK!sy*&YRo+ewnE@ybL-GFR0HRKlVj3U3}1`e_2T(+Q%sb}?Llt#gYjpZ>@Lz?pDgaB#_U@wCYJDd_?v zJyoAuUew`-wd;FfbkKWwwseRjzFgrPL7s(#wsZ+xOW$=xH2golz6YLja^&i?>V5qz zF{}WIO8klJod$Hqfi zpyeR`n-Nf7b#)pZ8wA)ulQqCtU-~LVaT(=FPz)MXj6d*`=NjA(Oap=rl?D{WNGhOh zDMMv~Jp3&xu#WEsySO9l_RdMMVoj1k^!16{X6BL8L zIsc)pmNL8;k3s=l`ZcBkoIsc!?-n{@LIf;8?Ycz;oEd+tW+gt~_JaZbm@j(gHB=L2 z6`!6n`BHE3|9RT}H;1^PdJa8C#=8-xNqBTLZ1Kd0Vqs;CkBi%)0xA3yw4L}+M=92Y|v1&1!W}rDAq#5Xf^4B--MdB23EK=)4yMI9yS?tKF*5Cc$n?$Aj*Y0fCV< z+f8C|@*3#sGO3`toLSj@sG`JjfZ-;%D~3%XoZj-__(e{`31hpe5q1Bp8 zQ)@ao!@XSAeicE66X)cv-iHG3LylZ5YD(%?(b~nRKYo4t|55hbVu)*maENH8uxg-H z4DpM&dXp=aeHPoZef5U%Hz(#$>!qx*uzXr(=1CB$!y+<{OPR}W|O^}HW z(TJiVkAg!&2=2c5$ITZvcVNf`mMwOLpcs^=;JB;IkDcg*)*E_4D>2lUvq)w}qCJxe zngX#b*RP-Zh_pO}rJbWEemlWH5vSbCj{7JB-68zSyZ!7k!lOv zI4+2d{sOVWzVx-d?E6ckoq^32n9c3Uq&eiUFj0QYRpiKJ3NoN5rVGwFpXmrZ}~hFl+dm?1 z4_5h$ZrGz7^L~l6Co0lf#8TnE8yPspb2d)Ed&-3c&?n=fI_&c2e1tYN(64RkWH;yUlRA`*Zopj z|L@zjZ^mCF^p62^OUq#>Q-f4MD(_S~!PxYEbaaafid1Lm4a8JUmc%r;;YPxh6~z%o z!L;A%IbFqcD0RlKIi}ZH*VFMp9-gb(T z>HqT?UD9Wy_rIa_@MJh~4r109W(>Mqz@R_l)zV3a&pvtJB$!oj`9+_Afrya#&em4& z5URxWhrZ$+q+hi1Is0Z@(q<_W+I$-Wwo137s|k;j9ofqSC& z;?B=Jc#6p9b}iMvbn$jt(($fZm8Or!?9Kl|0>9HT8gnd=Ix%V=2=>`&BX9M%9 zWhUo13VgaSeHvf!Ta3UN0hVKs*Gk+>=ECmt=pyy%{9ji@nOM`?05B3n2eB{U!N%n7 zWATVEp9W|KuUIIevR%Eo-GM!z7snYFrg|S6&NV1f9v>0E33ok_4tGd&u%~3W_z;<0 zoH4JG`gZ)gpwVRHQB7?l^0pAQ?g!oDAQ~Sm`)@Q?^citE7JNbr&}?C2C)V*_%awBB+c9wqQ6qTMRhHYE_^$$b_M(8{r{}>s;STE%=`~IEiWsePxYN`6F-u=K4hs=% z5q3zg3gnv-yjhd;A+a@NE@N4f-%AFk2C)nM`%+yFHIe0?$pI(YW-kE>CcaT2Tl5Bl zRI+uR%kiu(NbA+%mIFX3eWr!0shy6Y?)md%`3n#YI6-DvLV-e@o-nDTgmsNzw_gaS zzMGiltZsXWo&GbIHTjX%a^o%6?s(cQCim0nh_@pD4{v4ML{{ejpX;54skicQZ(+ZB zmMQ47S|j-5E-AFm=3s^6mX54VTdW-3Lds=k>6xJB^<^)0-d zREZXldo{Z4(ym-Lo94X&#hw-9y#y2XDl(4+aOxS98dyazUO6V1o=EQ?MwVkN1e%wV z8J$VF_v(n{yp_6ac#;gXPyB7m{5L?{cK~SO*UkI>BqDznXDp#HwR^>0N*jW8oqYQr z)-_H&f2c5NzE7M@RavRIY$Wr5 zOU&_S%-u))h0j`V^*QEmKgpTMa#Eb3P%5%PRmj@2S&G$_PU5k0U>f|EY!Xc6-xlhZ zrlzI>4erj@)m~Iud4@6dNwwPpzSha!@uUGoF*-e+%OQtg5NHS0o>M3k*HUDXUDX84 zLL_TiRFcoVF(P+gyS9n#((G8vZ4-0z9RGd_#pL+$)A@#Q8se;#mzUR2S4VAy&+9vpssY;jQ$~xqbK} z|7H1Ju`DiwUvOY6Y2jC0eHWw0s719zAT{BQ6iCDL?;lx9#N&`i9Lj-2NEJzW9o;Vg z(H;}ciT^-i_&wt1A6_I-%8;xN324VhG~$XqY9x{!|9|pkL-UA9f&IP{WB@uS ziTyD>5);Q zC;%`Ct$MUPHe_Eo_c&e4o|Z%3UjPVLuS7cGDDY9_>hgNP#Q>mCCIqp$2%S0)>#&|D z+=aTjU*T-c`h=7DZKY3Pm!n=6ToIV$O%O@r@17@Nd>+Q^a9s)rsE*(zkq%rBc#J>~ z(hm{B40L?}&SFUK`rujXom_zB0>^!6aWVP;8=NeJ_sBW`#!?iZ0=%F#LB0Wd01F3C zmz%3A2+jH46|7ze)S*|t83yY=)Md+yiwL3q{HD0cDj)sir*n^izRQjwXGlZqEv`6` z=IHNVS!X2+mOhqG0~Zdb{9t?gebp%;30hJOxo-_Hcp9Uci%a_-TKd!UFF}x-A z>(_G{ZPe8s(SRZy!rO^QctFK1s{3aLub@Yl4?zLFn->G92#NXBU{}|+?c0TTX|CL> zs4x*?WMII|FyWuD#Y`#;o)x=@7dYjlBqx`74oAk>S6roZq?&8biM%$6&yWj9C5i3b zORzdX0eu=M6hEvO-uAw}kAjGczx(i^nkpLT@#duQM?{blRJ?Mxb-JEZR8&+}nyM1M zR${>9=HQ?pB#nnRw6-3{P`i_&A|j_;Lk7{$xx44h{V2s)@SYw6Rbanq-B=&e^~E!~kK-W7k$Th9lb+ex-F;OP>2)xG=^cXg0Hg*OK~M4S&Q8H&DSk_%H|rOU>F6+S z-t6Y)hOE<|lS`n6)NIh2;YTwYaXnyV{X8}0_2b>?g61_OcTeIGwPUP!i>JKaL)uD8?;7Q--sRM*4#h6JE38c-hC%Qnr@lPCsX`2%Owjw4}fgd_K$zY;!DD*U*4D z#UAG`j01>6tHa?3kHiLqBX#}2GZ5C$doxFb7~!dBiwBPPdQ6Oa^Z2_@^S%fJ4Gbi0 zIgwLq(eWVh*caq$?OjKV18B`dQK+kmp*84V00QXVtlp7p=t+mTrP%In{ff6rB_>Wz zS(*1Mo5+QQp8ZR_R>kmCXEocMT4CR^g@@OGQf#iP%d&Ilo%ndE;xW8ySz<%uNHaYG z>(6aOg*i63mP$)VJi3bFoELax0>t{6A=t!-Fgd+_Qd0V=5HZi7e!TYc6Z+Bg+}vDq z!hjHQQcF{lDVFF_!GxUDF6nc|-NR^aKsu+K7)gOieAuz?TD}yUCF(r*yM|47a&w!P zx|&&Ar-lhqMz-OJFYWh;2t&^=0f^}f+#C?rwX|?^ zadmz?hYM14vL8X7(b3UiXaVOJ7UW*#G@pil0A!q6fvO-rKit10k&jZ{FvOh$GNk8Ey7oXJ>^(MEt;Xn;09To*76^P6jrB zJqvgcI)P6x8fE0>vTdm!^TGBAdLOylgM*h)y(=Qn7`q6H&B@70qO@K4o)w1uDI_>p zXzu5a9|PVaktnKOym*0-M7%8iiI!PkPY=FV1K#UUBhkIT;X+)s4l|b?z`CtLNbDN} zUUFg^=5Q2)(gKzP7l>+x!q?VAC~sfZLu_CKC;ZGz-duVm1|Z?tMGMImJ3MSTKKb?F zkC|Fvn-D}uFJ$3DxeQjD>0x}!nSg*5sLu7~kxHqnr-uzhhHdvizhklRu|g3cp~ly* zFP!*;bXxr#D?q@aNhDVgqk-Vx2iKLJenwMM6B+|+>k(q&R&4AnB1e}N7r~^%y;Yx1 zc#|>DL-W|NZ*y}=fJQ;tL*`x%c%-^oX-oOXv?SflwIG`vTwTQl1@|T#9T*tEAt@jr zAR+<>g@dy%TP#YQ@87?Jh3A!#F_e8k%k6y{AQe_t=2xX)VhxMsU}XiaHa0gydlMEF zg{n7Y${J6&qbYdInn+y(gQTOFz}DH(k;+kEOooGu7hv9j9ihOkb1tK92;>9|B}VZ%5)-<)vbPgC-Z$pmwX ziKrSH8g6cQpr%pMA_)?UlI**J=d&!}e`*@9GAa-F4;2dz+g8$lS)$-~{+rsV=3pxC Wo;2BgJJa!tBrP=^)f|=6|N39Op*-gE+{G3IHl6z8`&_;2Vg^O924xqyT_#AOP_EDe^r80G#LnfMZ<%fFlI}z_86| zmE-!n0I4q_Dg^lW>yy(_6#prKu@zHu007WQ{`!K5%M)LIssqG@_!V7OPBWo2rC&a} zqwhCDf5Z}Uii<59O2l$YFj7(t|AZBG79qr%=9Bo98}q~CqQfJrD63!CTRFh_`N;p0KzDb2K?sS@%JP1`J+k;q z^2kuB*-~pXiY_4`fryBR1pk-JPT#;l4-*pfGMylPm`plDR!)wAg(d5+Yrc58EA?ie zpr8T*0z@Jafa$+whP%IGsg%pNY}xn#-b_M-b{88R@nkaIPuE81pEm%!eW#{m_4M>8 zC@7$yp#JkC{K{3@+*T_nGp28x))z zi;l_v)t9i6Jjg)H95&)(8KgAFME`x6X_w<2Jp!0~weFaZxzdkaE)>n_`!!qlm< z;k>^A?C-9{2XqmAYD`6}ZKAr?9)iQOoLLr;WaNBW#b45m^gPbwRE3$g4{)|Fpt~bTGHG!$G1_}R z8-;6sub^9W_}8Ed4BtHZ2jLY{f8P6%8%gY{mj&K6%zm%c7efR*b%MYv+P9`7NDLUUVD5w-3fcpK$aW%*RybDoAV zUZFtWkk7eyy^_r@&#MOylYvq664Zn>E{>M`AEEF(rI$Hmn;9?b;l zfJnVD1A+Tvsk3Wqud|@t?k>yTwf=$Ey5q=1PNI?6ze))EbUGz9J(r-@ zCzX`>Oz32vhplR2b~zPH;2Wty&p6v6o*beBw8IY)?5=CUiY(opb3q6--OY2_wwJaS zOwNf#o}{sVLGtUb7(~t6eZc8pKqm`-96^cxuSX103@|h?$=_~#gI#U3`o`&eT7?Wq z`R-*`RFXR|zV#qwXX@824aUI^R~54=yyE9hI5GC8}Jtm4V_+W|AyPr`H0?$y%;E&8Fe`vDE-@o{=rFk?KiNe@7XUY7e)YumcEiRvpI zIBwjq2PrfA?fwGUSDF;-f#Yz2MX;@})T^7ObB zuAZ%L#3MB`#gbc%CKdlJu2PaIqt97VPjFi@F&dc1YjZ{gdjCnfao#@+`*Au0|050y0Ubrx-nh zjZLS{C-Sb)-tsSU$}#U9puU&C={m}t$j(c2-wlQgS=&1}y)u>qToO;aRASc#M@LPl zKBPbnY5994`(i%`K^`HnCCzTRJMNf39&6cwMcnG#UcVpj&fVbGGmp0#Tf_DdR($Y5 zHAO_rFF@+f8n=VkE)Sso$rq11ISs7+yjR@TO-`NDn0_E&t>~b^{RM_1SYxUkM#-b8 zZ7?N!2|BD?S1Pao$zf=zQE{8cm=$Lj-`zk8Y37c6%;tiXvAAPr*z|jT049Apzh!Y{ zadBy1JXUr=J+#0ei&9c@l9D2;0nF*e-M~IQc?JBuk&zJ^Gd!_7o`QdiB4}Z2UVCjT z$YPY0W%tw+z@A) zjU~D5<+UJ!yO)pO`YeA)SQ!bsDM@g)*zh9LX3lA9D5zKYJ+s&#tGao--1`go>`4LOGS<*i^5X1xLDEDg;oKc-kBxIrU!N(X{|Xzl zye?68a(JhNW@NPI6lps8RP)ZKMfMv}SILSqbb397othLaXfQ+|*A5wcn{gWKYBQgy z`IS;sRZ-u8DQWo6^&v4Z*l16w0{qxyevH^FD%hHx~j( zfOc@=T?LNhgb4<@q%fk2wzjhN^3R^S)++pzz8pD_=M#1I-kX7B`Ov5@@2PoZ*{PmgZk$Fhe@pmRV&RF{bl<)rSx)yN63yr*)Dw^ z=x+*l&*$uIG$+axs-60K$9HWHnKBjUha*2R_fqBV8`~^hIF?pcHPke$mb{3XY8l6F z9{r~Yk%)<_xZGx~U%U>ig%h@aFSRC!;klS-NQ4KJzzYFyd~nbXn{5^=!9=r(je@wF z%^U18m+fzyR-JS#Ur%9)=&MoM&~!cBo8-KuE@$u*$lfMVr|NajVv6SKOR1=P|H%>!u%->sdQXXD^<%bYbRr!^A=6G9Q)XhKx#H}E{6Q_RbtbW>vW9urYfB} z&t*o(kH#o#z0`)chgyCl*h&_b+im`~%*K#O5u*jggU+_?y-tIGz3nzSI0XS5%cgQh z4YL~On;=dQOvu*&(C*xwa7GmAY%cuc5b@s~hlY($w4pTM zMww5VmRmQZOiA({(7Zz)tX3PH)}y=@s8noL zYEG<8xuQn4r&ew@2QzrQT~Au)4|-?fi9D^EZ0K2;beabC#ZNh}MWJ$vx-M&)YL=UO z7gokR`x-M<@I-))^uH5r+SfA9TBRL7_=`BNejN&r9-2b8`Jj0ra&J;i#&H(=bbpcf z?_dTf>v-M|r8y2mIm|vrMvYvsY2w`fhkz z!L8z51^D?hib1Q!FfI=@26q_wP#>Bl#mu@K?F13wm+wcDrd{YtM!G8;9dL?{H~MvOyf=j5AD@8jaz z#&&-VTD$PzeZz2e93m7GGM~W?X?M1lk}loE8WP_L7KmAZ^hhpKsahWvGC+t=yQ#d; zZeDT>8hx^8s?1Vj;#Yx;V@Po!#*?@Za(x_8EOJwT7l~N)*`CNJL)2=do{2eN4X}X) zwBf%#{y?RPAD?jX6uf9z!9oo9stCX4r4#Rl2hL}49tUv~G45=sW5ovUZwRH9b!)BH ztwX~bC3{PHd#Mg4W#o2SCsJoT&Z2JIw&)&=j*Y_}pGj6WrR73c@w5#^O*V=}?bL}8 zn}zLVdZws{EJu?G0~xQJ*@+gqmnUwr>}FCneY2Q-*}A{uFz&o3L|}I$o^&5e^5!VT ze{)f*(y2j%P9-oEW46B`qmS!~gIyAYjv+tKlw||-*i&AGr;3=ygF2eL@m7HQNC6;G z#d)uRY9J3)j9f$H*nw|xksz=kc}iDpc-B4&3!{*n)Km?WS- z6I}LPe^f5rNTs8*$>XY?S@}M>YO~d@$1N--ra7T8Q2{@Ab~s-z>nSsp(Q|)AN)%Ke zd!4I8;fH{te(_aMU~Sy)mI4&ZVHy9A{74tvhj!;T5q^Vj7<&CJsqkpYS$Yo7J$2Qi z2o{4Bf@w?@gtci5L04HJ6$Kg=L9)=1NY3qHg7xQhJalW9dTdQ;UfDx3(|V( zNJ~NM{@Nu(T-Xf_*GcMY+mTb~22*78fDzC^4?Nxr&cEO3?mk(rnLausXW2%=>U~s0 z#NAYxlc}&ib4K~;-spGIv}rw*bm|`Fdt*+?FNUMaQA~J}+X{$<%2+ovnsKG=MMQJK zsU_j`JPFQ~4c-h^aa4bF;jemA+${T0GX6Povj+onOvVPA&KoUbb~<=u z(DerHyAjjw9F_DtMX9QES`(gt*|@D@mjC89(L-7#rnv(YFurnp%~6%t(n&sLz(mRJ zuy8RpP}8aY&Vka|K*0I@Eb#ulM1W~wMYMg~!puUfz0QUWTq>pGRthygUc%LT#yGJ4 zGK1*dN$8#XZLl0b1RbYru|8+ohK{EY}vlkO5QhQ

%g6k>-Y zC5l^n+Un;w0*Uj@uwv&g6V)WV3>Y=|gI$Jto|#p~idm619bRrDN_JpWl*QQ`#v7e9 z27O{cw_<0M<&i9{Zul)#ZfL)UJ{;-HAG>@iW*RPQw_&awMm3*z$+pBxA0!FR#h#N< zGI1BY->?WT%B1(Sw8>>LDnNv~Hj=X2c6yRfjI7Rnm7W47h<~V;Y8nnK{zHEel*Y6< zNX8Q4SAIz|{@&D>pTEDrkLUFB;GzW}u-(hu>fII1^tRQ*#$swWQyquXq`W-iDl5X6 zaR$a9+~A&8Bt5eJ&a8_RJ6fuoyG~h9QPp&ex~ecseLJCFQ{9rQ@2uzBH69}>@_!Ic z(94%?6zvT598UZ5T;Bp?#+#dSZZ38Asnnow74691}+BSCNa=_<=ml4pT9=WC)9VlN;Uy3 z7OOnRrReEqb-hR-CZs51ZY;YTP5y>06BoNnmF1`Ly^~PCkP+zUFDI)lYV&l=ojf7` zngpn3y0Dy6MrLsQlIL%8zcocZguQ~Ym7Xi(+HaXGqwyH z8M?H*oh{T=p2*fChE4KBMP02ROkH!Y>XL|ArZ`)y9$YGfXZh;Fb1Sr{+8LntCgSn; zkmKnF=Wh^&E1YW8DGA8)nVkR3nTgCs7OG)O%5Gt3o=aSr~=7z_T% zk2`iaEfUk2^EN4BZ}Z_(({?LXIBe7E8}$)HSU!vhBq}GnVO)^I3E3OLsL5IXFO9BW zS>zrUzu#xJ2KuH1ro98b$Eg|9%(*0$!Zz7$cGp#c#@^#pQ{+2*KHW0s^rzjkLS#fl zWMM@bu<`^PP1*X!()i}3be?o0y?oSXpHY9z)ar=@q-6<_wT~fHMkV!-uP=GsOR0Zr z5obm_z0-qK2gJC%KGOBdHnJvomoM@vzVH&R-a7N$6#mv_MsSD|l7#nmg@&xW=E0G^ zvCR;g>2A7#Xh;U?S5tRp`-;o^w?Y2=q|-2};|@>Pe$kLcY4vLElGp*gY1p0D1#B~C zI6f7(!yb+Kfqs%jO^IJFEz+WPz30CS2r`);;!0aG%bT=s3`xL~wY-PUVr@@fQeLc! zCI$+Ur=G@9dJ44TlD@_(V|(0LDX7e|Zm>1X8%7Gss|{t>wnF|-;5dP2J1upd2q6Sd zZ{mqbPuGn~00(h9Q6#pyzrgZ*?41qQ%Euk&du|wfbb#jMv^OMdcs&O;hldQ^K?6vx zQ-=9UKo)Qx^z-xji1LZ__4DMk+keVXm=bv>?f0Zy_jAt%ipZpUJoVfZ|317tOu?Ae z5)vv%+75+3lCFE=rXVIp3&EszZb#N$6$xwuFVg|hWg!{=5CUAwf?#ra-$xb%XTf7@ zJCRH|=*&A$=7BY#i!5XFsWUx-PQlcP<6vq!NXd7%)Z~j4BP3wFCjszx8~usufR*EjS7+l6@GzU$6I&J`Ts<1U?xb4pTQ1;kddd6w~@8(!jvs7&7H9lADBVJ4ygb(?bIR^{B@av zVqd(khx=LA*Le}q0IL=hr(O7f+Y4Ag1shYp8zT{P+P*yrJ_>iw&uFqoo~AsHd5aXm$cM(G^COe(r^YI=Tj*}X)yJ8}^CmZH z`SxgLO0ha+T#wTOYYqY1`&KPPLBgrbkfDB|+_tDNcdYaTl@y<|M|EiIZC9SKsS{L9 z^i0V@XZW!*82|?|WJyPE4g1c(*%?#A92Av!80;OIZ`LCh_0a~lPFlUo6SyMaHNMm> z^R@^fzd$%QH=mIAG_ucFmIBC9L`Dw{<)T+|3*a~FYf(vO%S`D_ZVX3XYUSyxeoqO4 z_Wc{rMe^N5gu?T5-wdXaKDtYwQ-Dhe^6`55+2b4SvxS_pn&z#dsOmmeP-ewzCvo<< zOK<_q@dU9wMFZF;%zi}^KUCCYMhte->VEy$wr^{tyG_TJ*6ySzi3+oRwDX|t`Ud51 zt3Dc!s5N zXxWR*i66l6@WSa)SPBCjN{#rV#KfM>sl-JD4t^?= zk*qLo(=I${c&!nZdv%=d8k>Ec4DLah`oV%K-%A(}^*RaRt9}hYNt#(d6y3UZ#iJ}N zGj`R%@|`q43!6MVyCR{{$=C{65fF1@bqcxih@~h|D{Q#o!SJb5Scf2@+Bn+u|gc2IGqtV=89}G8X#nNpYTU@9TpI_v4-$8ZReIB zi5NI|H6tOAz3pJ;Qc>UFn4N(1p$ig|M!)x42gMhgkmS1f>NDHq6=qrCLBSE$53XS_ zRE1%aXOsL~mjU44l_0ppm1sU1{7JF@P?v-c8R%XxNd02pQ}&Xcg!wxx9F}j2u?e3# zah3`I<&z1hXCc{4ttg_UG{8*@*dY+}P#U9##vYf+Ir2g=&F2A?wKYsa0@|Ji!`XQ~ zix8cq@~iYpQ0ioDyLir|Sx07U{0UC-d%kssiInMMjSA6Iq%7z?KCATFsg zVs8ZiCa>~)6$~F)uT@8@`!Vf;lechiU5g7;-#maGv^*9IBYxG6U|f`~INclQELGaF zjvHvTTPm``u7OI${*)tkOi+Kq(AZ{!(atNHN0d^Wo6i(0?Z3`K#%DId z-f55<(Y)2HhF+=imK78n%;n~~{MP-)?0DVb<9B4!rFikNM?mz3_A!Tdb6?#EuL5AE z>IOphH6cH-esY$?eSWse38a*u7WVaQ9*qP%C=kcG!_u5AA3jLL(%a5^6CuRFh8M$E z+FoIM`EFIvBk_lU3rzRP)1U#tZ{pHPOke&TV=W)0&3GMFXBUvP;}1 z?`DY~ani2|f^KPjD)8P8P})ja)U+!^=LDv?jLXWOW?9%TC)JkL7ezu zi)GP38Do0~X1|GgZU4K0 z>;u_eSYGt9IH{Nz`}Nfm3xEufh#W$@W?krQpPnE%#C`X@>s@>Rj~oD<{QPH06B=b< zK_gc6L9L4vGy8*2T>FQ#+1?AndutDL8&U5~H#9WkhBskbY`>+n7K@aUEC3}jL2YmA z{9~(U54Ewb2#eiK)Y)^|SeKOG{+;3dH593U$*Ct4t_k#fouhh?&nZC|H*_@yOTVzh zV~iI;Do78v?6IY78ajww6t^*U`4N;C8U>rn^Zr*+EDz#2uT0s_LwIp$Hmen|wMb)_ zncg4CoasK&&yX2j=JBAqEy+AjQ3Ok7#t*;mU_i^OO4nNJc-Dzy3O`@TWkad!Zka_6 z-hWV4)B6@kN%?xK?eJb+(I>i!%Zc$FT}k7?`wf=pHWKFmFBn3beJeTG))Z^|pyBb2 zKPMNpkkj3j_qyw>-fghDW)$`Kx1;5DkKJpAj6uEMP(VstY3W?^kj0&7E_>qnO1>Ul z-b?0d)^tLx@wu%YznH4x+WpvB(PRK^_7acFb%DVm$}qjaIn761l!Zy)km@8F+Re;k&vKbQJ^D5;*)q!V`fT8)mMMhb0~n6ipqE?SH}3HimKo<0Ct58~x?3B27yrDfdoHh>ULcx&bG(Xq4LS3TOYHaN~Z9;mAf@ z7>bAtpCdJfbU`<}IY|x3wCW3Qjm1{oh^Vx0ZISrw>*MFSuFfBCqwImL--hHclr~%+ zow-wI=h;FZlFCBEeo#Ay8C|xP#onLa>*ez!6_|XBU7xwbrRg@;RFOjym07bJUfi5~ zxwU^Ac5hsSTj^}%qNlouy&;xLt&|zJ@7#LXjlGDqDs#L`@@Ti(or19e<%TcB%yN$t z+TUce>1ve*>!=TjQh#SFL5P%z2Ji_Yu0;(@u|fA*k^fw_#Lr{#-aDH!rma~yiD?l~ z;jyarTy5Y)#C_6SqPIyHrc9>fXkyvBYAp$9t@KkvIIsx`hScUZC!t_{cc*kOxi*(S zuSy3DN2i_b@Ay2dwIs98KgQ`|QP@$i3m2vLOe4#5$SfUOPx+g zkockDk66EBd{I$(u6~<>86*Q`(gOyK!16OGI%U=%R3>|RRh?@v&-VZBC!-A+^gE&% zCN+Q*ASCQf<1kpj@l=e+ZBzo++2GZO_Tgn}WP2j{rO9n%^Luj>UobuZ*@h8zlX#7% z)+mLNH%M#8mJ+`$H<#S&0(@dXH{6|_g7y>T4Ud_PsX_WWNcr_eRrb?RWLnSc{aZ!2Qz>$D85sb>! z#H7{eROPkC<*1I1%IovbJ6K`pxEai@tEo)cP1K~fWS?F?)FB(!rAWNWi1+rnXWgyU zKhHA>voDJXf%sQ`eaRP{@3dvWUWXIapvgTYMRm8qv>jwDDN{AKg4Xa#glECMK#108 z0^%}ut1b&&xQ?zh96uPErvn7_qbt_=l#a)o2l%SUXM@Mkq7B#w3%~hDX1in=n)Gg+ zQoZ)r<@H0wH4G|AyVTu`lvVV)r`e_G6!T;I4<#!HDb<{&)b?@!aRHm{c&15g z&4(Xq>%c9!j&W#HG9Fi7#kaZR*TCBdOR)iK=7j$aAA-A6YV$B{S_ zUFu4r6P$mXmS0Xi-LOFT^+;yd5wl1V&7qB_gnzs^_`TbJ1FT0}x845~8{k>c3US zbfL|CQ-dEZ_>yqE8xT`m;0tx|(ut;^n1(ZZ5NT0URTqE0!Pe?Bxxwum;+1#IsUG+G zz`lgna-KXTAb<$llt`@2<2AS8{qZy;-k-(8Mcp!to9 zrQ>n@M!~tQqN3boWyNi?b>IE^@Vw*2GiyM(A+`$_NqMg=Mi9ZHynM=G3Ws z&BirN+vyq3{rN_R#ewv$oeedG+ikqJx^)TYz21cUTps*c8A&3ui%SUGUqHe%T}*d(>qFnUHq z#8|~SG}1G2>84<*Iubl>R;2I&JAUz~jX$i)V6#s*cVpBKqbj{JkX9uG6b(Ql-Vy z@5sa@bUm>`m*Ox0mw%zPNqA)-$fB+1=AaLN4G=6laXJv{<7tmmvO50c#X$@p<$q6yY( zB=_^s$gk+GE{k@oKw(-rFbVCcHpp)2dp*dVTY6u??BUq?^e%n$sJ>lud)JIIQlM1P z)>H1$M=o?n$DfFj*qXa#QpoF}d8&VwjeoILzXH0uAU~0Ck4+&6)BF7$o3QlM_6;}c zqsKWDo)h%cmd9TV$Vi2FNPu;k*r4%tpDVX&N_iri&1Rfe#-l6dwqfl22_cn_&?2yZ z#(4n9Cz1P+0?B=Ur;iCpKq2hJEx7Yk_&KwdKiunY&u-r z#|7#5cS2l+btvjs$PbNd5PV74#?spQ_SPsdqxTjk#Q)t50KhvQ$p0<)#PI$hxc);) z{4Y)OUurM(KSXp;0C)~w%*V82F!aHyL&2qMdl%32kZF^U>3vDtS(MK@(zg(tIE;STr zciCuYnVn|xO&%rsawf>^`x3V2Z<*<~)^mwxGITZW9OQne78QE$9jOCuo7&-&e;2pxu0Jz^YH|)6L3856ZjvIGfq7hSml&Fr z7SY_PBLH(Unf;9RFAE#=QUbzP>uc+#V@C7az>Ad7e$|+(YV$7ZG_FT7LJ~%Zv8$se z0l-nx%`m`mF4|Zd- zg!+xhT6@Kq1;RgA9S@=VEdkKoJQ7h1g)1S7h!K*b(4_&Gs_RoMz^T*XaO^2`2;JNC zp6Dl7fOK2_CX?>-EH3{tIUzMkE9RNw&Z#`wA8%!OaEhk+Zk z@#s7uBz5-$<#3W#i-M~*HW!?O9EG8c^b9nxAAfmJ3al*EWlb`K%5X_z(IW@P+K?az z`ih%}>Bj>IdxAvfjn|EtS9Da5L{DpMuF*P^&YC|L0mr z4e{bpgcO~gXJ6y=3*O0ia@J1q>BbH#L`Ksy8mO-b-u|??^dxKC2NAgMCP-lkeUEX? zePCjnwh~e&1>JYT!kU8SyhOg2VSR_yx<#60G^Ls6bm@=yXJK7u2fg~pjVcV^w99}$ zaWkWno&0oQwDFo5xF;8QDM~A2Pp%6QMNow+kcr;Sw}+7w8Y_)q@%CjbYyv{efAAdOaU z-L{{l!-NCD;N|6(619Hzd#NB+c3BuOW?Wi}w!>HMuS~1pJUPtQ207fFUIndMdPf1- z>MMC*%&fdLfd=q?qOaF)2KoIV8aOch_V0dRaoVj_i*eaF%C{ciTj9?^HAXPb!CjgF z*Q!a{q?ouyn8V=y;TBGlZl~G{tKpN5QX{)g$=kt9N8J&KkGDc^ZJMPy>iCGyqZ1YD;q| ze)Gq=t>XUgjBPS1t_b-Jgmk30X113%1-B@SnQvMkY~OT-jhl)Ff}ldUWF{!d?0EVS zk4z~;p~G$TYO6^u1hRvQlIyQq<((|GhRZPY_+PY6@aa%Pv(3>A9`XSe`2JU<2!xK5`Ydoj3wvZ%7 zR?v`FRG7X#Uir0H+IvVSC>S_6F!>3*$Z~7S3vywX6vYl>Jwdp+xd}&Vq7z&--tFcR zf`Um}4`I|du;}xa`SMgi=jv~Y@=8$m+NI2mtnFT!Y=<8Ga$Om z>Ts;qnB#RAL7j?8pijqzzC=kabUPO2*WKg2_whpjpd41rBHtNUK-%f~PEFa=8t@|Z zA<|qwl96y(B;%hIOmeUw`z(?!Me>Kzra}$_HCfZ;%n7dX7uu}!$L+D1v`={jgRGFe z^-UxzO^UK56f!r%0u+cCrGY&(dsV)_e|G0+#Zx^4!DFy|eGn8RPo#UMU;Z0UDEQym z=dX#uD+&mo>fPc39X2@3Su>W5{x#1ob|l2rLgCH;vEcztN?}z|q%nO=jg~QIVxJ{k zm%ZuvB?wZ1S?k)g(QK(5BcuGEUeLpD786akj`myi3B>H>S){ZyHjD=C8-aR+y#h!h zub*#6F=BLi6pj5dH2g)}KQ(?(xtSVr)@m_fkVvxrjm5HfhVQEpmbhFAfx-QTxT(qP zH&~R(W$ABuKXJY74JpvikM*ZxzL_(dq&)tlFy^d~G&u}|hLg@>@L4Z)x>5N~YvhIG zn_Fl+q}5oCMfO(n+EBrs1eUmGNQ^JWCnTvZ=eETsaj^9#s>;xiOF(LnqOJvdrWVp+ z-}K9T3_5B|k_Kjq^7uZP$y!+P$+x@2yY@z(UN;4yJjbeJ4iXD@9f4@CKr*k-7rY+lLRckW<#w&+Sa}3(9->(9lTSuq{PFS>a)Z`IeOnUpSY1>mrxO)2EXx_4Qxbk|0ZiXgZ6Ps4 zQ1xI7kMnMlvi?x~&beCDY`su|zZV?&VN=%J?g9dSbk2V>6P!1 zp~ZQfl&MO3rBMA;ENfKm<~smdC&9y+&EZDcp{r@OCQg~Cn8$!c>A?DuM_KNEwS(5(9je1 z11vI`T246u6(cE|<3rY-y>Jvu)n-juW=1{^83U7E*Eb~s)IC;Gr-rA~?@ABq&JI^$ z5HTKk#|D3+!EeAho#QirQk;%Qq^M|UNZ8e2>g~wkGkxxqR4|wW1xpaQyEJ7)rBi+O zD1O2tDJrLb%UFK(z$N+5p!U}k+dCA1BtfV$js?%}&iZGBXZPc~e0z?9{wF)5^!4Ck=} zVpSG7vuBb6A8F8{xW&j?b-ygQlz-;~IKY2*PbbSG?)#hip(YE?H%ITf4Cn%&^Z74~)C+@v$#eCJUt#-AOa?zzk%2FkRNO6=KM!pM zLvl3h8~(s*t71os)M1+?rm}E$m@nah15n}=V|Pydiq(}bt(sNz9tZUJ}Pe`aj_`=OxM!|7{;uHA(m-O9tS~9 zj=0gXZ|2iuSEekuG0LBSz|tG{q}ga>r|W_o)O-#ISm3XaG1cY+ao6UT9(Y)J!kG6$ zs1hezGD%8=G(tLV!?BfmV{@{xQmL-40U$CsQ9?PrTo8W&L6Has z9d@6EtfO>)5MACCMPm({&Zv%rnPZ+<`Jl?#zdgn@$(RUhlm5fEu z^A|Cy@}K8(e+5h(VpXlAst;vLg^7z!me2dNm8Jyll5Rc#Nh1aF>t47rec8XWz`3~8 z#r;fpz4u@TBCJ%(sl4C=Vj^l+^0;y7K7o6!Ur|{J8)Fa`HJ`}G&sI}rHItRp7aMU& z+P3^l-ze-AN>QxS;q$H6;0qr7zt>{mpRc#lA^RpNei$iCS$doE*)zAXP8-!PKH{iV zvMe1g{Sty5Gl-Fh!af;wgaPoT>N>Z#TZQaT&L&?-msub9_^R7?+ft{=Yr8H2>VCsK zAn^5$gg5FGU!2J+UOsk1E0tWp`sOt%m@SUI_P4$&l#%fr*F|%W=-E}XI*+L!GqLS_ z0N>}!3RGa|UMD8;`X_aoPTQjQob5H@B&7y#VF6VQ_@3zCkwCTY+RKTQy*MBX63l_Q z!j;>*m9Nbzfc{S;`K>W8(`RO`H#69vzjY+~FNTPy9EfV``wym*lWk#4_S`H7U`~lf zv=Q)jW3DK%Tq!=V|7)STmeolpDb?K|%Ue&(aHmH_zqiYfyNl5q8=C2UuJ3*HlU)-) zY^>f80Icjn@xaVtryMRzn_mhDTqX8e$^K5PUupvq-32ob&*xM z+URh%b05F$`D1#uPs|+S9@bCN(Q?26>pz%&=BBjp0fwHUxMyd22L+<5#I1ry{J{_4 za4RS{AtUuf0*K6aPWK7t4!h)q+ZjTJtbFwz8hZ2Oz?L<>S^ed3D+>ZW`Erj5c;2}? zCM48%U-djGd0oSb$1telgPKv>Nmd-++qSmCq@eh623K~<4WZv#fr@G)=TCCUrQd9|pZt^~-AwY{ zA7uYbN#=rFrDOxFjLL$nA@Yb8t8#ou_>4nGvd$(tB<}tnTAK2o4CE^n=@|58H8sT_ zJ(VsodMP9qga=CzP|+Jeh-;(SiX6$hvsn;m7vuxU5UQO{sc2B3-r=oM)HNkQ`J*%7L)GlZW^X ztMk|}g2S_9u>0g5<&hK?YG7QcHQRo^PIZ8jA#JQMO5-8#b|L#e zRJ~(#ByaS!-N}R#PdKqNv2EM7ZQGjIwl%Sx2_`l=wr%6>-~U4CD7iiB)K4#)B;07tT)XUKCEO3+1HckhN8!&VsA%3@3FeL?);BL9gWTwB08S`~ z>6A+Y;$t)SgP93M@#d?Dx^>ms_UFzQ_MZ-1=sGz*ze7Y&RYYg4sdhEPVQSr@O;Z)6 z%;8Xsy@lgjl*DQ^P}h`qZ^1ajpkG4M@WB8+oWTgmb@?9^0d2Nvn6dH5A%kRP1RT!H zySi?o!otqL9X}m_*N@|2(+&PT>7+-xynyck{z|NHPkt{FvP3Yq^rb#9DCF!$Yh5T7 zu2&C;gG?SQJphTya@$||ew}{a!vHL82$OrAl;#BUX4L})u>8lQFU(8UoXFMH3e5KN zTvUPI%^7so6oug}Eyc+Z6b>`P zZmY-Q#;A#El5OR+%NqRuR0SXv=VNor@D%x&8Eo4e3Qgy9T;QmiJB?Pm*=|0wqVk(4 zh|u9{JoZ5g@cK>;{0m5&XLEt075%IP+)sfor~`h**r!b`1w++Djr_8=v$7T1iG#7V zw6n9OP--7B2M4sOlh&w)?k`Z}T+5c-a2bl7ZTP}178AlvV~!Q{{rNo*IyoIaV5#>EzS990bVD-2Wxnkyf~-;t;+#e?n6Z-6|llr?yNvRGq50>M&VZZl%O!Wdw5#XCz!tTkjyytd=&h~ieD>V?+Lcn zX*GJiejCKXmW~N_U>3D0 znljn-ETFioB3H7=55E)ugJ_2uo$CG#d~{{EzKF4-Z-QVJQ?P4{vRZP}?^9J$t7+hX z#w@12Sh`#$%fi2Wwc(zw%ZW!6tWZ)<=zyOWKg)veUP}Y-OV5jgFnR#L$1-f(DoFj6 zx+69EX5DL!{fl5#)pL$Y{FWz(|z4&<9BSZ@=KHe=c_t`i}s@9I)qHx z@nv1Op*hblYp~_FUonf`U=EZqd}Xad@x=!P z1W-V^O|0GO#dRA2z{0gQ{6Ytt$@b-82#-Ddbw?g05dSw72ccUTr$73!{H@2FKCH!= z9}^HVOcUM1Ds4K_)$FaK%NvW&@45aVq~o;`zQWV1_(@$M+YQd(aq@}-lKawEUA88* zpwJ;vv+B-Mk<3-muMh?2UdhGB%C9NF9qP>S0&2ep%qKl=c2;g72Y5ra^#1|5&p{qM_`wTRKOWeOP#hKcLP(@u!ya+k2$9g)R(MmVJj-7Oy2vqrBz zWYz&L+I!KN^7 z+?^Je6qf9g^RWxVyEl%)RYSGC9BVzA5BEQJ9@JO5wg-X1R;pbG;4Hk@&LlNWPmhf2 zYS{MNu!&f#)2v;;V-D30YSoUnLQTD4tQyuq+~N_eT#Rcz&cJ73;o?)(Snx};RK9(~FA7eBZ#khV3u zybSGqR3#}8zi{n2UTdai{QCl-7GE#h+RE~a@LLLo+xQwJ`5vK#lm;W>rHI7^Iwmld zHQnZxkP-SLNnaWGn?zwbJ5IT7L=4X(KmRpzrUGgt>*W4h9&CiI~{I8cK9Ou}N-oZfq`-&(rcSso@*OB$%V zGb_&RVFHvjz-rHa!i0x;x;X*`B%Cicy6(R5V+M&6JC;+Bt3%dxp@R^fN5 zB5X4DQTNMi3TiqgzojjeWv!elYv+YNW!)AF-0)ke>qx)%+#J|a`>tp*x)wi1s^f$U z$HzBiUQ#_(MYw{z2QS|8Rp{T%au*@QY7Gp8YL<&$S=>97<={TTA@X^!&;hWP8*O4{ z6#YXf|FSh0!BghQyf>oiqvgy}HY|dbcizcrKwfGhYOg0;TLk0r;VW$~NP{kaE7UB7 zN2-!TYE1aMMn*u$E$LedD&dBzUoAB!&AIJaLLzZ|^wgiU#SKlax$GB*c^Xqz<1Ww0s$7t9gz;nTVSFf+%#RO>@bFJdCN9g&$#^n`;hwNuy46U*&XRBZ;%d?HqJ1{) zLh>+u_d~-UcTYsW7g5mLM2_^wSfpN)cvea%*};-`Z`sb8bYnxkOnUJ6N{<&g#Lula z4k$uIbU+TJGx6B({YrK=>X&)+ikR$UpF2xgYv`W(`<}H_&-uwhoMVCi_Kg33)98!l zs%?%+CY;3s8hHc31XimO5hr%!aX2;1*OM*h?}uaJ6St=$YM6YQW)~`IsjM#XwF5uB z{=WK(YWU&zS;)4|0Y&HMU&@S*8LD=3wuDq!Ad|7m8OL`qXuX@O#9piX1+ zEEpu^wS7ZI=SV0gk7o^KrsjXXT8vS;UORGO9vY4rVMq!6m}@8^mtkVbo|{~#m|r^Y zP9M#yfi_IUxysdvN%h~<3SVcV>IEW`k6X?CYI<*s4WDaoT2Nqz`H_srB{l8xcllyC z5B=fmI%GxB%RMfGypl^enhvtp5+tG**21e};Bd`RVgi#+oJJ7bZPhG(3&i(7wh`<2 zqeeO@+20(&qAO!t)%%W_bRYcmpzAKW9W!Lw$S$h-``UI?des>3HZGP%WNtP(!6e<@55CrWmN=$Bp4<#ikl+;7CFq@wvT5(o6j z^0_Jh0XJRrLJu=KWBIL*2>FQt4rkWJs$_zKhQ3J`cEfSi_}n_0iT?1KDMYC7OMKFi z4M03TljpYKtID4YokS!SRRzg`D=o#?OwezBD_xQn49ys|*-Wxq$A@p9^bk^uH;lm{ zB104%BFHZtBh}snO@^dXi6A%GT#Zsu6|o}Bb~ znKgn?MNDfJ1MbH|-Hr8+F>QxQQ+IiL98%`>xkp1``&LHsmhC_&YMsR@+Z+t*>7Oo1 z6}jo<3P7F1N>mhy&x9Zb`HO&-hz#qnC;z0LCjk_0%(OGs_6%- z7^A4acm8%BxYAFV*e_%OJ9N-|nEASBWCcFGc3O3xo0VCA77V;-sx6*_X=UU;xsN@V z+g18bWhESLg@{+sc{|g5FGZ6jF8kofw5W=4aP|}X^KTOTl~E_ZQoKR4NU!&ka|^e4 z*bAbfD#)Lt)im82J+j>p0U6PQLC)1prm*F6Z-)Rf{h*{TDSqA0ZH@+e`BzxEtkZ)D zzi^DB)$rW(@r(+FQD5~`e2iV3PDAD=4g0ts1=Pjo2Lz-y{X1@#+iZdiXYZUU_X|wk{0@btt?P?Nxl*qGHRy%J9n)g zakd$SlrgX99T7`dzF$wv^yeYMzvLZttEi}GDhq2kRfK&9(_!DH!&O?`%wHWu`Pb$+M8xkF13VpSz&TVG)p#@e1tm6O|NS$J{$d2_+p-dc-M_un(U( zNG>zODw$3*z=aB(sGQ?+edh%&CB1yivLCl|qa;*}rkh7FzMnn$JpEsSdki4|84$>zmo+Y1r$v~Y5tYFPvho|J*$6&dUjOsbr~7Fe$8X>Jw2 zTm})GCwjv(R*T2b+ztt*xu3rlz8zm(==X@S#$o zS-VR5#*qaYSMZSG{7GIiftUeQ=)%%+&>3N4`!zd|N3_ibs-~y(7kz7fep_k#w~dW( zBtnL?74zwhgWxw*Sd7r+)%EBh`+i0*=)!)6G^swdLe@lmjSY|h^^g---uc1eieB4>A8h`JKoXaVQvna2+-cQ@FjI~fV@MgQ^ z`+wes^vM9fsx6__{_@a z7(54$sC#^lJVffm>l0LXprm#QK$5Z&lqke_t12bvDC+8JDro1`)(Z@BeATuu4S2ls zF4(oY@>+#w)^g;oDD4d=a&T6=t}v#18bCc8-^6QWRApFwCGAGp{{o>U|9$>P7RLni zd_xP+K70wo&phq0E%3BmFrGTWd2m-819j{Fe^9b*e`0`7 zW>g{~K4QPq*U-&Q1Lcstz6Tz6o#kE_!Wqzhxo!4kVo|-FRR(c{#Gm<3Dm%CPg(TgZ z*JfCs?GS7@yS)gtT~YPk!_f%`Hs&D0|8?02zW4bcbT5q?m?L*YG^ieS{qU zT_eyB=mR>EAn;#l2}`j@&)qs&hvnZQNaahJjALfU{%Y7HUyA7t{&C{ve#%YCCYGk) z%|MqR=-L10*K0%n8j`9|*ubr^eJ*(nIY)xmfX`4KHv$8czZFkOS?bU0;npqF1LOXh z2DE_%fQY@V?*RXUKlv5oLTEFu^_SW z-=6+fuLKS?MN#PItz-A7UZv(fTRPsi2Gs;n=}}P!tEuf&3EYF4mH_`C5RPs;X-Y;` zV#=G00jepR3j7BQ+3?mhG?kR*-m)4B-`~aFr_Dq!Apcrf3Cm)vn(w`i_GyIt>nbcn z5*L9BQ_|Co8cOo)qW4yEvfk9&VAHp~^-5c)eDpuRq3SOv3DZ?kp4aVs6XLu9N&&h% z+Mf4D(^Q*wN4AayzB5ajX23rA*y}vO$<^9j`9rScTG1i3JMS6lP$GT$e_&+_TSj#r zwM%*5VjnHn?)Sq~7wwc-mQ3l~ztk06(Z0E9B)VIP*-%JW(hCzS@OLG;s(B7bi1VNR4>7gimvic_WX|6cLc!Q1QKuZIo<( zz>t6*yKQzjfQ)q{(ru<8hn$p-jEIJYhK|>Db~R@3+;R>>PsPI3{l5yYh95?S$M&SA z`-in#4}}nKNul)LH>t^q3wbTYOwcc)^cxz5?QOLG{2~d&R}|6F(GpaYl$2D|Q`3@> zQ5iI7wikj8o~IxX8;MAZmBT{KbM!#D;;pRxczZC8j5+s3<5WBy&DkB!b;ZpdZlQM$vf)pYVgl zEo$fb^9z*K^clLO;HoK^0M>wgCok$>a%iA4L@h0;h*BcShHszVd;1I%KJ+TR6W;E_ z=NF{zE}<%^VYIzaEpNHSiPpd8*zRi@2Rt|AP!rSe7$No_n{HA>Bsp0kzt2QN#h77X zLIR~qY}t%oYg_P0iRpOs0W2Er!H@xc{v2=9mXkkSeHQ>gFbg(&r)knsCaB5hgj#u) za2H~pboEGTRyY=6TQJu!L-nxGw9q?b23pqtZo(6+08;U8ku&+YKzzswS$|p50kDjR zEw2Nvpl(NxTJ^Kt(|}3LtKSzP3hO7_Van6jMk9u(5?aPR^FWCFBw>nfzx@NB^SRE3NBzvt)-67#o`BZ@By_rUZ_3S?8Us^EE%2r zP^b|9ePj8x0vt}eWy+}YVRtjyrhkao$UVQVkPt~6$;^0vKgt`yYnO2<5{lm3bw_|FIz)NP|A)Bhj;A+4h{#R2#9y@Cz|B;vPf1t8x8tCw zDOabC<@gzyj56V8nbxvzRYcTe3|khvt`aEy7j$F&OLjcsQb4}`FU1eG?nnGTO&kbc z!8z^*R?btf)>Szm%+0^P6A8SrY7SppdkT~d`_#*ciKU%tU=FgjKFUQY5`a; zgJ{eKpSChwIa3A<$MEFgaPG7#gO{%fy>`l1$_gywMlJ?gIHx$+S=u*fuN1l{$RTo< z7S?A5z6YDoX@ZEZCqDpiwf{CzpzlwwDfhxbis~inTp280&O)Fi1=9*HMv^`}dD0gF zdDfOAc%Y{Zc@d79z4~{EzzPT*Wn*DuWohV$e;3N|7%?-;%m0K7xKP#>7Nm+BdQxcy zc<3@_V$TR4xKR3wk+m|hXYa`3D+b+gW8Q$bHf;6V+s`PwGq+iS)ALbQlF{}X6o<3i z{WTXt!Hm`$e`#do@yD&Av;I^N(=ffuA?^&M-ajUut))(6o0_#NXiJ_}f%hFab(|r` z;J*^E_4Xj+$Ms@kHc|)R>H&w_{=~MVzP^SXV!&s7j$(qviC*;W zvK;zhfkq4^9n@=Dm#o%A#?tJD{M&izrEK~hJ${33@lnt3LL9UrBI8V*umVI+XHl|tR`xYUg|eM+*qRUG zv_RI%nyqT9fD|rneEn1UqzfisKo>Q;k=sGna|yC|T)XBw98GBy|5H6(woj4g=vLRV>G~kZk$U5q8PxYDHS+wpkD5+yxMnlr z5_@z4r1QGJy*rknmQ8V8IXXG=`i`-7U(`mYiea6w$H5c)3eL?B$gk@;d7Wp+M_btI zO(mXnIKXU;3(6O)vaw@f@;ZysGAJscqarnO?JcLEH2<+nkekl$|2h<34g>TY*zY9< zFz`~`o~Xt(^8W2~=}qnvldY}Z_3cx=mu2yKVwPHyXv+-f+>G^hvs-B}9iHmGRKM!2 z?ROy?Vd$wLynZYZ_IB^c<+AA>cpS-~{(HjuM=o8`l3vdH#D8+bu2tJZC}`T$J zUGQ+%MEEo2W%v~nfB~76^TYihdu=u;m;Tm4w<9zLq5G=oYJ{>?*&7kp*_r#q>E!|V zX~DcUUYqN@(F;6jJF5_u6VK7<((j_2h(U1FC?uhXRlBlSLpATJ@!%g5e~MOEJKGb! z#O1eeU-#sHeTc;08H=*fCXgSb5o=;`M&Q=khyI6rzp+mi)Al(L5Bs7eVA+xmvMr zoxeOjxf>lq=#Dw!1`oJwe|9DOsuW&J3Ljn!S5(DfdX@AU;;y~ZJNCw`-IA*&|8H-I zvM6Xe-de(RK*#bmb`f*_x3!5BL>QXhKiZR2pggkLLJLO@x~ z;hVJgV$F_6E5l-1aC0cWslJ2KM)KM+e3%hTC}H%T{7p65990=rO&bJbyw);MZwpR1>7#-j-y^sm}k)+@>5B6>i?auh5+|9v}U^Q!U%l=y(y z=_(^HZob;@y7TiuhK~1Xw0Q4lyd zNg55iqN->x*w5ZJkz5K_2_hC$J>7&@mV!% zsXr01`KXHDYonX?6LxE|w>lj^8rtVsAt7djrN@wT46hPY!p^QZ!G$a)I9T8|tVTL? zpBM;U!|TS85DAEhNqNrRtv|gPs@PsuULm8@a;|I735PoAu&6*GP5CAeFE+WAbYv4- zM>R=)=n#lhfOL@MzbXbjMT};7JLCSb8W@qYN^bTj9*f7@;9pVSQoc^8{N`*KLyA~& zSvu~bmP}Ct!D+@cTh`-8D)|b;PE|>8A()TP1HtSgC`sMoR>9144 zD$`^87jTCze=v(N_?6C~ApK5bb6r`B?eK?#Nljx4I?XE={^Nu*N9cjSb45$gex~qr zw3icHlo^iD)6dWRZ9M}-assc(=#(6-VZHL6(2Zg2gQUr?e>f=M$$Ji!H-eq@&SaNpm^ywVYw;!&3*HKx%~C&pgb@c zxgomz=y41G6Mv)1h?}q?OoEMeAEP5DQ_l)i`beup0^GVSHqmd13QOsoeyvH3&iiXk zshRiMx#2G82eU2Bk7|Oz0f3d;uCeppi*s2mulGY_R#M8U0H=iI?#VJ$Plmy`uiMn@ zPadC$oV5cuOt%TV>R*Vmt=$`Qcl$fu;C-a#qB^=ZOc*gu>va)q`0`W?Xiao5DHU&O zF_=lon-2Rz-$BJf@Ao_#f}cn~QQT30>@{0hw{Ijf%T3lNz(Khv%53Gf6xS%Y;Fse6 zS+v>!C|Rv0>!;j}?tIlA+eslj*9;`^zOUQ<{R=!W$`hGKuN7Zvl!}N>F5^E^pm*M1 zL)OrOx0yveMwPQBJ(ty6rO)ZDZ0ZvALwnO86YA^*^%fx|>k zQ=Kb+viUV6F|Z4JUjnQtV?PZWGyBo!;(?5|}Z#vt`%P$VvaxH>BJwcJ)wkvQ5y;M>6R2 zT;A793V?}|B5h(_N;@p(?R1+OTgRHr7TJfYcJ5J<-@PXRAp8t3Eoxs(zc4rc1%e6) zX$Xs3E?}EciCE3`R~hX;3xgR&HSQPobdUU10nZF$#M2fPV+9lkDeFmdj-ZB%Zi}pT z19N3L(ca~bVsIG;zZ|)v0e*NU#;IvJjAXeCm(z!MzAI7A^D%LQ zrp@>C0G;f-oQw`EmapYKM5?Uu!Pm9uaFcL)UKDBKJ*fu0_6vh-9{vpOnT7nVk%s!XUvuDKas8~x z{sV`r9WO8zr&;8|PVC@rjX(VUe0fgM8UK+UaGuF4Y^t)ro;LIRp{wOQV5@fF(wQ<8 zV(7FO1zW^IXd(E0wV2}_U$yDb=LxU;UySp8B#8reMjQNiLS}i;3kEU@gjoXim4}UZ z=-)#N1L_!1=h4FUVAOv1@u$S^@hV&x8W36Ud7fRtWv(oM$PZiEa(IbXwf9>1dte7S zvjH(nfNIZ7FQRtG!IKBeunAaN*2UE$pe$708HKp6m~z$c)HJJQP~--k68alH^FJNiT`yMSPP( zsEcT_ENKdY`SxEC*$9YEZyde&Gn}C}mCL(l(`uKUDg;UwOaz(GE~x=IllC8n#|VOu zgtZxirYw27{PwF%S%X|$;gYn!JL=a3y2Sw93o%qoj%ok6 zuH<8dfzZ@nS?t<2TO4v(Th$Wgle7C)#6?^_ZT|#_5^j+0)(r76Cr2ooK8FE>HcGoB z!${yW*{Akgn!|bnse_s39q1mTJ;n-~cRZ^_zFJTMW zjBrGM56BFxwjUcFzX4f)VEg88=&v}Ya=6zh8tSZBz_~Y#|0;y~L3#T7zzf)Ob~=W% zF|fF84yk=2P+}>gwYwK2q<|t%Tlx(b;UxGv!Tbgvt+gHtYWMm~jeII2J*{v(L zI#+0NT5m=4Xz>pfq_;M6)@cE(?k|00sQ1Lrwc#8C!E;VOyT$ z&I^R0G=0Pi#ZH9pi)*zFv19Z$>2YBw<#;of)^!RaSJEd?9Qr!L13+2k9AuT;E7o2clf^yiV7&Z|S9yFdVtw1>lBypp4){Z65Tc^ILdW3Fy(H-EoaKon9=fC#s4T`0PQmoq!yE~nC8|A zsjAt%@Lf6KepwwEB$l0x*gj6ZzbTu8x>N6nW2@t0x&)9pL2BWDK1bKSHu5FEYRYww z5oIqkOxVo-_i~tUg*_uo;1?)}w^k<5o|=1c1QS5UuPGp==zZ25#Pg0iK@~?xN<#xJ z4%#b!1wgVnt*bP>pS$JR4_CiDgopXRqYKj%?MG;#?N162O6{7wsz7p(B$n;#fz6Tq$cj!IAQCgGx=LX)k zHESwnnZy6UXS;h&%BIH$yUqjP3P1`dPQMEMxL^iDMpJ9`)=Kzv8CAH*kUrnqPXkRy zQBN_?(PdPX#9~@GQ&!ScTwLDN--&N&O+zy!Bi(nYC2e(cl32Lq8)%K|(;lmY{~_a=f(gjL(PKVYPmPFk9S3&JOSP0$_4H zlQD&nupiXs2-u!Scd6mncfT=p$KDA#oD`FuS*+h?zPDFAo0 zbZm8PZ9!P$?OqmzMGPLgK9+A~XUl#>fE#fk-(T(7pu<2Z#|+f3Q6S3JSj}AY0*gP$UmkZ771~NpzwSuaw^uj7 zqV=#sdi;@?q^P{l_M`f{e8PXtkwx{dK@=oP(@RTbfUdR^Mb z(_W4r{JQ?*`rAl}dKc1)S><$GT73Gt0BepdzC8}CzP1^7DJxW-2ET3ep^5Zcew&DW zC+7!DpI%;A4V?x7WFPD9WRfy@Z~;*iu3n14S1BMLN}wjL!_y?B<412(A=4?zL+Yl- zTMD8cOg-m-?-|c$DyXt*YEE6&k*_vp|HPu!-Db4#ryy;sg5E&KrwT`tM>{*lk{W8y>kzlY`T;(e9WQHlbX zgr&rb>Ki;AV(LwN0tX3-1{w@8{C}#|2KaTiWUQ}EeA^vn>%Uag6nFPC8>r?)x_ zn)R0kc$I>Q8rTUwA6Rx!A(Ij}UOG_+-+`t-nIK1jW*Z z#y4Wu(n6bS@?2v7Ff|_kv1JN0JoeWIaB3SJB?S=)pbu)j)r|%+M5D}7izChY$ zA48H5g&~d}FCV*q;=ceei;c+IoA1_T5A1uqaCd`d8xo8=klysbrXQLzTFGmX1U~?+ z<@ZPC7#2d{MN52g6+4gUfOh*o5bvJglZFkNELPI4mpMgM#bhENqZpbi`KH9hmz9wc z7CaLlJEg;LV!efQK!}LUA9*u2rCv0EmGn+~cd1d~o^33D?Etgq#P_$^fv+IYL)d4m zMETtCllbBXYvj~R0tJAv=P@WgAfeq>N_eY9pv`~Rh%9M78N-T*q{Nuv zNzR5SXUJ0GmJz?`6$lxy)%fe+^Rq&jFagDSTHj#_x7dNX@t~~d?Y~z<=u7*J10ImY zq5Qo3UG*)RCQhZhoNId_;LY<%Fyw!VI8DGIsO}(N|2<)R?FG^2i&4yAbi1;=T640? zX-Z#vcNcsT?xZbokpU!!?@ZdBqSk+95}Uu%>0k&J1%ix>1_upZo<>I0EV=e$49x@nzce~cmQr#z94UKz`U=! z$EIu*(apEvfmeJ6^gt8xNe;b-fjjP^L{P5IiHzH{${CE19UWJz^`=Q9p1qZq)PO0Y zga~-(EIJB)5#eiCPx^MqkhanI?~S|)-;;_0V(RLqqRKq#DhN`D%*vG8|>bj=!F!;ebR z&bJeJQkz01qLSE|1J{fnyw7$dYQx${eU8=d=VWmAQWoNm9}I47;iXR>`(KlkXKC0% z@i#>(ep$PWqX~A>gq+o6WrdWubZO(~=mGMb0LqvqjxQ$m+gm2v&vmg*ddMb)_Kiu_ z$LOD=Y#uF>!aTREU?bwF$AYM48y?DWhaElMv0FW;^5VVX;Jr0<-NfX91C4AeN(6B76(1W`?x$E?U zw+@KD+V~N}M$P0yIxs9lZyvPa-Fl7pa1{awgRgldE9I$4Yw_vfrJE?oq)k2!E~mP6 zfQ6tHbY-}w_{%|_?}sZ%+(6m*D%OTEfNf)1e0e`4KzSF0bTe2257My6JHY&RKl_iw zRav`0i3d)A)7IcryKB4M>)PG0!L#{c_^?t=^k$R{noDS~85TCAk!Kyi%!j{`2(2bJ zt?YA^N6{9XG;h{%cHZkHC=lcsudT=N0wX}b%>@`0iFt~-IP3d*^zxPH2>HL}ar$e5 zOdXM^ccmkRmY53caU)lm0%q&Or1o5f~u@%O^}pM7Za3v#Ow;h71N8c@bfS>nlgX>t`ZDchKV zx0?4?1t2QO)5(K8lNO6^^{uD6wHHuvfBhX*(om4daL0Lip6eGpe&zzTRIZoavw>=vbdlRp9W#fib1dx574CQtnu>i zpZ!B{`ZGx-s-*MU;U5|{Tos3NsjyBBV=ZyFZ{3U^pxua1>Fu;I5rUMI%V*AH}E)$G=++?^( z7%l$~CH)jHlcM@ILWqi~JD=y4dIX?Sny*%X`=cBA^%yDld_t0eWa9077#JQT3*mV1X>ENiAhEYz{!!;8R}_E_Tw9iewuPm zj650%NO?IO(_*5F%7*t5hX~91Il+HSYM{xV<*{?|VA)dsl6qBVUnWS5J+$V7q;I@I&|k)gE`Yc`3? zRYSx4J~o@O7k=$u&}-ECHDB%p9z0GOlBdUm98{dFQZ|upX2c_?FRv~r2A`<5gkNRv zJ>cGdEvVZWM0$|?@ARyyis~+nOlgV5#ZyT&)p^5_?6qhY`9j#;NQzNqzj3|l@?t(5 zQ~mgszoyc9`y4M_TTl3^<0XVv$)*%)|DEYpnC+tJq0`T)luw`VffiH? zjFU8amIGMK!t=w}ZK4A^mU>2+$I#l32zv~4&(I8Ncs4BmlTAhWMG0^ zXj(6II;E7`tKJj8h0AHQ%)hBlnt#+TCzpcSChx1E3+9=*K51z_8)gVzkm+`tn8+x2 zIG3%0@^-I@&5{To2t@`M_Q?r}$q8HTpL!}b#nY5oo~U7$y#B4RAoS1~NS8@UOv+%e z%rJD*=+;eRUn}FlNI*63T=6SzfgP7$Mo9voN^<~N)r!_^ScKnESwuxnPhZJsl$~TR zsJz$N7M}WJw;Ts)aT5p4=V>HtG=5d%ZU9rb$QZmkM?7Ypxvm{JbufFg2yC^KF8JA6 zST`l|4e3jRCno;oF{3$*>ePX$VJ(-u#4Vm%56UYBr;=*coAx(#<(WLUrjQ8=0xnE(~wK-3PMB8Yv_|t3x|9-2b){352e=BWs|Qdnux$2ZX;M`Hv#DGXUAw)Mr$Y zH*8HjNq;l^hXLhb074?X_uNgdI{0i>8|Vqchpw^`9-jL2xpJi}UzuRdOG7v6nl##7MiWiP)z7(IDLY%fT^5`3-8Zeh8p^AM$B`%W zy1nI%OZfU6?kUFU`#!(-yrE>Vf=2M^)Z=bcw;zPv$?JWUL`-?^cMRK!FJ)!W>i4Wq ztUHBY9PIbM%DW4Ax{rD8HIz_4LHnQQ50)x0sC1nO3#pcH+%9TG3SPJ+Mya zU>qJ&(=N5GQxCQL(`(i-tsh;vFf_V%Mq2Ap-Pe~kE4YBxPC2w_H=E2{G_x2?T|`VX z1AtP8Bt-;O=$IRqJ$V^^%70Wk8%paDZ1p;mtrpV&A-bx{$KrImtrlClrwSsja(UVo z%)g+2G%#O2zPyaQWQ9(q?+yk8vz^TzcG$d(xl-8cG&O0|d)@t&7UWE!rI|XKC1me9 z(cT?*x7+CS8a2DfT&$XyZ77T}8(31Vm9G0pOJ4LayE|;Q2Bv3KYjn7rI5o;r&_k#j zcUVVjXSfV|&37zXvw1<4DH<#UTa+lu$GYfJr9yY@N?A1uKiX?q_bi?o*)a#x56D8g z^Wv&$|Jih%<1WG&9>lzC{KA_2_V$N9Z>#m+oYSHd^Jhi1#>w`M{^r#2>EU3dH-Y1b z(?jLr8jrmg%MT46rO>RXz3}Nv-fa!3ZKo5wlfc$<8ns(~J2N}~rP|_V^Gsa~NF3j* zb1J`-8mIQh{IBI(70ZMIP~TzQid!E#)Bv0-|-h6CHA!&?!le+ zK1`M%g{$vrXT}H8T>7U&>gx43#gvZ=#8MP41`QkNgjdULkN@U4l-zXOibI$&pICVI z;4_8{gE|~K7#Y8ZcUC2vuH4~w>eJDfQl<`F*%{dU$qRcG+-aKrIWD{LK++OTl%Pf| z5cHtOICNH~4doY@in{-OUaHJth#C?_rc03-G<3A6cHrZMPYaxTx?{*15}-$CYvl&$ zK*cP%v#F$yo6c%}$i+wILdT8oIJUumhvjWX1P@(f-+f1J%%FLE!iJ1i(}6|=3Klx? zS2KhR8_$)i+#l<9ZaZqYK)u;NsF)pWJ*8W5JYAjVYVm zB-ilo(^qvc+98+7=m7}R>Iveqn%Aq0~XW=O*AJRl8gHAp(kXE!_z?f zbw)|;D7LFJ#z~$A+YblQVg8e15DeztX^&*)epZ;<7;&g*eGcCJV1xO-Z66E@U=^Mi zj>Bd2>L>lE|3*Q}L69qW(AR4){oe^9e&~$OPzyuqK$<;ITNJ!6*tE#*|9@1y1yCJL z6DWG{;O_43?hxFAy9Fn>1}6~Qg1b8e2o_v|26uONhv4v*ZX$>g>$Uv`OuoRE>30?GWki^@&Fy0ea2cF%{MNVvdJNN;)S0eHtVNy^=b4Je0R!cB! z3^(sCv96TqQyP->-^mjV^Aq@KjjMln_SK{2yp7KRH<%64 z{wLUfkOqPNMq0Bl5FKgkGP1h2Ls%NjipPH@i@#fu0xRKlFjDk(eF8uV(}?u#;@iTl z6LDZS=mHW1c2~7RqCncgr>k)ujxz-NovXnTh)^IYI)cu9 z(WwGV8-!~hGxu(n9$SRoqCqpWTlTaz?LG#@8Epr*Cv%hnMC{wBXPssf4vdHrsb}aP z^U1rqy2z9b#5?3ar^jjN8O+Qo-ci<${>|em^7b{~bci2TF>pi&_xoYls8Y_JyvV!} zMiGEZrdGF>o{!ENw%)a;na*1stcavWU~;1{u+I!}8mpNY57^a0UHO6o$>!Ys7wY@s7OFQUq-){F5MD#JnviCxh{>#bqdpho^FEI4VPlEH!eOK3ToMNySzAh z_+9I9Sjzj}*AfD22V~h^_ZMC(1*;|UpPvk;uw1bvIQ{Lxvz#6pZuW#yTGlrLtlW!B z4OOt+&?VQTR9}B#Ly!6K2-k67Jk0=r1C~y~)f;>VgjiG3gZW^S4+*}Um215M$?)d4 zGwQxBH4qnLadeN$XeuJ1JfDCtG+cWGQ}!_1Np*C83hcT% zg7w=>rtBiGPw4HJq@IiST3w%9I;6jHzPh@EJJNxDR?P1<`vCj7OG?@l3;W=O1$9X) zBRMlQb8TAm$o*OWqqCW>GGgMr82VT)mPD^f*^sPLZEdad)leDUIY!+do~Xja&r~qx zQ~Z2J67aysfVC5sh*JHKnc zSwxJL%vVn`?V~Dm`JkQob_DQB_8IyGD4dna?522|F0?&~g6bY?hraI%+XPDs6aZLf zH+KDfc!WEbPCH^WO8k}%6G@Mb>$q|$Wdn$3()e_}4MjiPVAHT#-#_~6moYK1SBqea zyAF`zxzBroARe}x@+%~%OuWMC0iy5~=Q&WTvzBpe!4nK}U_JxcI`=u80HH4f%STyfpZc;pCWrp6Ozu_VoMWkvM;n)}%}K5Q3kK z3(nUvuzm`kxk~RB#LhC)HBOx7?b|-zOX~I?O?YgNQTivj9bKY^JU@Cm@}6a`ic1OW zCtqwXzcBKT76rYee^{6v-j#n9c#W@8 zI*nd!WAt81`oUO&$wSGbKh%h2NElOS{Cemu3izb_g$WdIjzV_hIYX4PZ2gW8YfI+t zF=tZT1cLgEs2!|B`G(Sbn(g}YNocj?V5>KE9oitmX|BTpKh-X{NzFNgo(Gy zw#7K34t|%1bEZZt6ZS)Bf^DfV_64`ABfHaWH>`7-+zY#j1}cfDE-nI)VPSHS>6Vr} zpSq($C;d!SJna~9wBrjt-L!{ovMTHb8}juv6f-ke~1cIE~Y`tah<|@qCQ`5 z4lHyB?NFy>`xwkOq*K?kTE%BY@ApfI#(A3!h$Xf0>emqOC5J z$`_W&;4Nrqw|kHrTFEMk(_XV;zwY}U`19zxu2(&BE~C|flVsaNOZvCq+EB~fFyVI+ zFwsNgT0H*4%PbhZr5{EJI-y?{(Fp|XD0kFQEHgR`3#ZN3oF8Y@<+)CIQRCAxld=44 z8hR~zN&i@61AEj5^x=xJ2pt}u=F>aZIfyKCa|_6oixh4Z=fezJd-|moFMr2_ueZjl zN1DU9Tv|wsd(H9ON75OF6Hk0u#0woxs~DIr#c(FG9<2`=ntCb9M6agZJ*aenA$aoH zWsJ<^Jykrt>MeGhA6hD*Qj%Ww3kGt0iLPmpiT9p~x+xmky!UzCFS;m;Pj?z(e^m&- zaX&JffBpsw2SS+4W+wp(${Tyr2uu#ig(QvYZ4*9JW=%A7rEh$hUZ-Po=3|FL?BpH)^K07BmKqxV!8RJ2-RCAR zJvg7tq@=7hS<@Ht87<$Q-TkRL*;#kOkSR}(UK@#e&RgfSmN-WPleD$618ef#{Vs~tec%)#L2)uqSmC*eLC_k>y{RqRU_%eD>KsKA<(#OSU_#OtV4-tW<6OCcH~X{@iZB3jmck9Xhr z`S*~~Favtbq&z6Na`9Ol%`{ImQ*cIHFIqR9mm1)O*W{%7MK_y0A7xuS8LMei#>?GI z5U3XK#T%wXxBz_$G(bILL*|elM|LBnqw`ky<-$M}lJbFft&*T{|f!_JJZ%M&5UBle<>84}YgaMKX zWv**w!;y?2HgxGlW)mMprI2rfpQ3x8RH+Dy`{^z3$4mV^1Cgc^UVwPc_TrLj3 zv!FOGN$T1j4Sfj}*)47L7%&zVvt*<+#vjYLhVz$#U?xSYi+SYCbQBDmSlTzeoZ;Wf zw=`lV1@KkB!hwdVIz0EkQq4{={%p5@*6y`d@M^U=WNCs@JUcpHF#)d2HNn*7Ua%)q z%-&4FhYpbl3%5&~o~N8NsCZr3n-8}a>cov->@6H4i-Dn}NL94#w2J=01}^MXy$k$s zRxgXFLQuPUg%9puS0qKaR<~(0??o4}#MnKua4Wx4C|-c!29uB{JlElMSp8`wP_s## zuGW3luu-tv{YSwhUPHkuortAEX|!CCC1P#pu5t}i2KxN4*?52Uf%)azgTfmvH+#v^!us9T zsF-&VvY*qHV@Q2x>7g`}iSb{f{m*Icg0CB3VZ&%$ZNIh;2*j*r-7?XZ2hYPgr>dzq z%f!_;Rg;*mqkdZsu=>;;+gw9Mgs7RFm}Ic}Fz{?;t?TNfXR{qqGKVX1GOfh+9;=;_ zo09fW!qmp*qod$y{91LXt4FE5Q`xvc)V#_A->%v6(Xjc)IVwGCyPgBghs%!v!PwdD z_PurW@f}&{XqVhkbKeqXy)-7`=bXY4EeIIINiEAm4ABdVYtbSm-ONsKq@`^qc3Uc* zB7)HTY;Lt=l%eX4x2SBI@na|U5_q7DPvPrwX*Dda(n>OqWnpea<5bv`!dtjDPz=^w z(=F>Zx33WJ_V|T*dW))3O6e&;VZ(0L2Mvr}Kokr*b1Tyc8c3x}OzP#E%N3&)Bk>BR zW-2z2zG>lNE?D1)9YRxnE`TDj!83UMz@|>;Naa)^4ki7gb^6?zgC$cu!A3g<8X7*Q zyN|dVy5~o|_XCdX>ceM>**%QU z1xx0#c`9&j-e4jrJ%4^S^U*!V&t|T-e{jo5^Al=U+CI3zo{iQ>;&Atq%n1znKXlQt z1}a1I*1#(ppi^*fKCf%e1osnz_?!_P9QPwV1cr_d0k@i?`sOUg?s*2ha~MfT(0!97 zuop|$ybKwyfX%7ZSDH60vI3#ay1{ag#H?_@ASRwxKUJubn#ssd_E5r7mvR`zv;c#$p;dDcU0hhYtoh*E1Su1Wc z1bJNI78xcEl*xL|bKTbCB9ySKsPE8XV>R)5_GDFkc7sf~$^z9~EVPz=SC)092bZLz zs3ND;G*~jJnX5_)1U#~|wcKtGoQF2Ov2ml+HPrMve6!->COeHyurhr_#Z@hJy!zn% zBJQc^24#z)HM7!F%NGo2qj5Fi1 zC@w0ivn%dgb?vYy7jtG1?fZG?phcmr+qVf}veqO5NQ>3p8|0}$-SkvA({=G)FtdAN zN)5NzkBWFn|1l$u=9V&_OW3d4wthD!q zQpB?w1q-wTR{N2+UaAYPi1tL~41b!bAYtJmqO)2~ef4C|vlvapCAb=wtw?CoJQV*1}nl6>(et7C$EYlA-M{oe29$p4xihGxpC9je3f+Tlt4#bpb<* zpDwrb8g%7}a-l`H1fJG%!8`3d1mz^a82vu;hV@fftlqMrV&ajI2zU?H2_~Or@q61W zIbj;-#zH`TO$a%(b89+1JFzUIr(+Q@3fWsR$BP_5;A{08qhJ-4*&$UV-Fbr5-cQ)A z(bOG|BC(wGctHmdM0e4}wAY!99LB!?mi7X^#vS!U(mkDwopewVuAAi}nZp`p%Ny>o@-7Mh&7ARIeLZ<02hk`WH(nkV;#93DP7lk5{m+q8W~ic*o~#SsT14!b)04 zlSfYVUB+s2t)!USf^c3y)3hXLZAgGafKJw_Oc(qmrmfaLf=(CW?gJS~K*~HE+D8~S z_q}$`*=Y4Sot8p=Nbw&mA4D<0plC5a;1#sAc%?*Njkj6Hiz-!q{;UFL0Q ze-+&GHWW;jV^ZW2YBU;5%ly)V;{)6$H?I!Mn;fCdXn0|R;_YIIG~Dy%HMLg(mEb=1 zAtuKr5H#L#?a(6!q(x#6nMYxuVxgg7p`v3Zo)xdBs!hDVc!yQkHM9GJ!VdlkOj#M# zc%oafK~_j1_=E7I1d?iLR%sOleXce-Sn|O)kCooCS=lN< z45V$GX^N#T@yXIC4J*Bvw&=IBy2?nH(DrG0gie#?J1{FIIfrg$k zcR%Z=q$yna*S3?Wz*HxrBUKVfVqaSEUM6a9M6s}oTn?qlZdUD&GxRm&NaxHYJAw7*n1KP@^CelJco}7iOCQ&l)}>B#Lbv8IAm1!rUp^jJ9Q|7P+Dj_;blliR}2R64ZjRdvare4r61Wr!=pk%72ctBf)L%e>{-IA2Vy;uFUK@Vm$Wq@lR zAA91uN|~R!ChpA7+TdKgI>ttueI{VBt9UF=R>ASdJmBqK@n74M3+)@)<@J1;S$u!A zhB5)oTCMKhsER;Ap_%9PaefYm%k^Ct|Cn}=c~S#ck*6kBgA5%#{Y9T8Jy=PoyRM)r zrj#*VM8kr>we&E|Wi0l%BBTOxN!wtl9WlM_T(f#+aX zI`@2wP;ag?b*X{RZSh1p{QB?gccA?1lPoGol4EkPoDjV=uAj_S+tBGxm+oTXjW$jm z!5ztGOWW_MVk4_NpM$@|j^rn7Z+`B4IAYcR83-!W z0?k_9PwFy)G6sJWl7|Xp`RVvDfJ)leEBb!bU$Uu?6_Dy8e@Z_%V)VnF40pq=F<7eo zbHx&uWq*?#2Pxxp{M|2)9$)^OXyu@Sl7hlmg-Lajo|{`w_l+#XPXbT9flW0tNNc9- zvSm%j<*(H~l$07o^<_D}r!jTdXHcELgSS%Pg3~WYA{PBo{Yj?|*x>$GMl$tOp62eYT<)V&XE~L`rzUO|R%$;33Qd!^# zRL$YBk#y9MoeY_gR~#K>E@YcuqXg-h8-MN2_#!r~p{v0~{cdJL7pM+EoToYa)p;9- zIVGTB%sXn21n?vQjRe$z`#n5hn52q&jwwAu@R2!2wRlv&+2(dxn5_7FQm@raJ#ok# zFE20P*g_g{xY`|og2yrf0~FPhFWCC*PRb{u4+m8Af0&#y>;7~qBzJDQtJ(;o`r9Cn zRAy3|HZxrfRFGfZVu)w1@rFSJc^j%tpI|R}>aITmn&~Zg5L4j1`iM?)?bL-`j84OxY zcgh0!)j}DrF3S$N&ia^re%54M_E@mD!~*B~Hv?9idmn~W$855MJVvti(eRR$H$Jv1 zN$8lTpFRg1KFP`T%Z9&8h4CZ0W?9p+RX&^m^E)H$pC_gOT{BeOIPWQBb7l5VAHcr| zS;T7$nX6Ii5~odBoTIEz=VF)_Mx0LO3ZBgJ5TaP)ps02e7A>8Nvj=s7q`74Vp$dLHj_I&FXl6_c$TZKD;+ zOu0du&T$pLgJPD4xsF@#CWrj;=JtJKPLN>*Dnn9L6|>zD>pkNJIBB#AA8TwhsaIT~=~*(z zLIt_yl{1{!#x;j<5#>#<1K@R>jX&zGL=HTd8@?L~z6t`QxaOn7T=O;UYVhMkik;w` zrTA_~dh0NaS6;1rJ$`9?R{=ZnmQZ%ba6!Tvzd)*I+ zgQ}eBc2&^1ucPhJQ_~gxoXbldJafR+0wArH(^_e2ed6~Rb~wU4Dc}g)`xc$k4Hp%3{A6&g`Kb4NXlLD5y58 z;JvZzDucG>ieS(Twq#R?nu{fD45vMYB$VDk=J(S_kZV}R^*sRTh zqoUl_@Pxu6b4rVpxew04L@Q{1n}cG&gBdiM{jO7dY40K%u5rYkfr87`mKlR_dtw(W2%v@!B057Pj(WAXcn&pp@e0ED0+a(00Py zz8?cf_1IfgCk;YGQGiW0H3ha%JlG)4j<#@Y%cAyG&-{0 z0L>O-xUONAWsNOD>0U_%7FhNXR0Wls7glL{O>_0x;{n|A!*3XB^~Zs4MW1$5an@)- z1YB(-jHH#0oLlHBHDyOuYqJm^G!tyRe5Y#aUt3=3vbf8?3>mBM6q_czSmX%jGi+B? z(*;uFV{vGoL?jh*+dE+cp0zioL-Ah=OY7Qhf!^b;(qYlC&H47BTYeo0E$%rncr2yE zd+JZb?J`-};eqXqt1UllBgOG--$-$0pi}6(Ou4X27Ii9_s1ygb#BeS30c@o26tQac zCr^$bC3=Kq0VQ>}(I)@Kf}X~^?YiU3vWFPesSi_`tFWEzrUuLXl}>Yy$?w*g7PqI* zA^pRlL~3-`{D`SI#7%Z4ytqe6W4EJ-U^%j}; zf?@!9!GiI)R2UpiflSC>;5W_90B9MUk0b?7Pz0y}MPw5ko zk~J|qWSF$DrL1^dzv>a~KPK)`z_ee+3^5dT$RQ5wOnWRHCebMU)rf|c+GP!)yfAb9$3yY}s@GR&1 z>uSiZO8m1tmtu-@7b_Y*Mu^6aPhttAfb~6Ab_Vhn2Emi4$Hbwz0JgFYa|=`Iru`A+ zgXK>X3!xdo+dSVN!l@~a0*9t9xuMncyV)uqW#Vm zJ?XEv#^clPmmRj(D_iXErqarc`WYhT1x)IA!mh_wSe9Spbyjo@i;w;&vhu1s=>JQ# z2Zkcv*z35u=f+G-GpD^>TPK{!=NgxoNEvGiT`I5T)WuellQf0Z@Vcl03Ku(N%q|h~ zZHe}?W{v1pysAB25Vbq*D=)OM(>J(_Rj9oI=% z+iG&MnCZ!7w}5%Wb2oZDdqhFIs&25t9fCtQLbkUi)Yirv#$o>4^zGOhNg18?aoHb< zY;y&O5mp;mCt+%#c{pfp>UPw%Woy)w_ieCuTM2uZHj;c@M9_7a4HLZLjgFcUM+UTO5u^^>?SGna|Q}A&ePvrRohDil-EG z-p#3KPI@{`4JXLMy z2y~=JO#ON6D~%P{pvvaNkvw)dS3dUrd91{+mRkj`n~5QPSwh3OWuto;4?1Kd)W^eb z@`v%(ZWb&vRgxOfI6aVvCx4Fil?R zUc4SQs#UKK{;PZdPGb2X0?h^a`{`s@iXX4jVxHd^o?eT`-bZ;3_gA!QuZ6bspr9|@NecU7hs&z2!(R{Bi(-gbO`n>l#ueKOtDo&=_ z*bUs9+Tjk1?fWT&PG;42*+&jYsDUvKRXIVTdtNVKYSQa&qr(Cweht4k2g7hJc$2F}|*V`)Y zs9-{@1zj%bc)@GlgT5utQ$xY{F6zq9&F5C}>EhI<=y2_V$rpQcb_eQ!F?Bw$fytVl zk!YT{XY_rX3Q_&WFZSCZs($tD7IfmHN%!rq!uo+vQALV4%lZN0fH&``<+Mccv&NUX z5mjplQ)x7`=e=VGX=|>6oZWkdZ)b}#I+QubKF6b_O7C1+8eO0B2GG?WqgFqEnCqo( z-`$%00r<1T@(04j!z%6CU`k4881;T0H6IP-DIFo!qGc1MtSTK|SCAa`NB=g%loWVe z8;-pU#6Df)@)OsT*|>i#n&I$*tT`MqY+6~YcfymY6Dt-9l!_$cHV$~0kF}Q5w5x00 ziPu&9H8kpL!tFY_59WmEVU;Kuy;SZcSok$yA6F`vE<9d(#a+0_XXf;GF1BRb^ct_< zkGR9efhlwO>>?q%>o_0D_E<#9FnW`WBt_hS4!eev2+usn#_L0G;&k{3DkNM1o8@U- zcB=9iycUPRUlsmnmyeUidY+OwM{DT)*GDpz+25Z!tK(;d5Jn4X*I-5L_C+aID~o^b zZPr$W=S~SC7MH~AQ;I%4R0^tLod})bKE9BA+_S!k$412>=2@ys&^S6WT`txw9*e&Z z50x8xoC|xJkSyA5o#$}A>!j=}EmTlcvFI1z;c(0OdYNs`o2Zs|=oWs~?C!PSH&w|= z&{zW)?QfR*JDdau-8S4zN}2p5gT_Yz%9fn6VEOzhNBjw^>BTOde3MUVd*8=dXAIeO zwBz0p@!e_)WOv`K+S}@a8BHge7Et!JM}58;oa^p>HWSgZlfjG+oJX*h@ipIsxg45$ zu5wE}DY&H}*|pUgPv-{A%*%^Qhq~Hj0psf@AF5cHQY%`S)?2FLBJ2e9M64Yu-|PFu z=ELdf1mxGu#7uP^m4viAVz_b|dFz?}F^q(Swif!~T(x8hacGavp9OAjB4h{33)_ip zMvOJEO(mgVpxa@i2N()i4tARCyWe-I*2NWl-4l$A3+?02wV!5!h+@HLS! zGVw8N+v*tL<_8JkA&qDrDGexQ#t19gMf%jnJqfgVdmBjf6<}%3Rtr`5_7=`*no+eQ zo_ie}9bseOX6kDx+I~!U$2i;Fw_PS?d{fN5#>-%>_;LSaD2WeS5znBVI7xrispq%Z z#88BjNq3-6wy?7+5X^SEK}?VptEr}BPopSTMgM3YPi>B!q;m0Rm+i`=TOiv@3VYVa zl^ZieTh{;wpXmA$YS+xt)EjjIgBY)riBshGyb(_KbWL$&^RMkoojpPphv@ag+IR3WSBB_srpB8N9H8rL~5ytH}Yk zhMCQsvr^UXNII@$eO>jmc?_8W+I!4b*z3|A-Y-?&hSXRbye}{lmyGTV2ef>X`&I-u zD@vwQM>PRYZO;Ld;R7hIf&Wnw-gjBe%x+n7O+2sO86Tmh7`Yf%R)c1TriH1-w98|Q zWTopPQhM>jlF!Fh&$oz>*1BLKt*j_#gGeYd=ILSn3x%TbeKfF)+*DhipL}A$pM0tE zuUDgm=T4du^yKd+PNF&zSBB}@b#wbB$n}_RKVh$=#r&|&`zbArsIr8szjAJFK#n5e z*~D0R%b)fN$CMt{8#}XobT=grohe(0W`Eb5^st%6c|m&WZj-s|OQk$`cU3W~b+GxV z0n31d^PqPo5gt3sBdyD7N-)wA?6l!HX@ro+ECUeD>Ole6l0ihJ`{XI`YuCHStW%PP&w+R zLNhAIjACS^_`;s4S(;kP>iYWX+9{daZufWJC!86HgJv6ICWd!dV_I&Bcyh zx8@VwLFN`Xco6P3Z{ev06lD7peoH#+;{4;^Jg`amRsoAG{phoqvG#`xU~*!>6=vz_8f4((ADVc0KJMF5sProrGj){Q?>`XVoZqE< z8RX8VgOmfkgDGM9d^7I(n6Us{JJe~rHB8Ux@z(Le|2=G`Y1ZLkuSb(buGa-&*YU`8NfEx~*-RLSh z9#xTf-veL&%L0e3xRSx>xAyqiHTdECyFWbjY$Ha^U0(?V{B3hSxUDjsZ1DkEb}T^S|BS-k$SF~3H#Zz}y4>pUP%x1% z8Kr{HW&E(L(4w^FjiaS^YvtvblJFJu>B=AQL9cUv9T2C|5Z@nLx_CgAde|+g!NUUr z9N*>yc6YMQQntEdczb(wb>)MKft9GMH)7-DAdoB_V4#0{vh#MP*j`kCa3U~|QxcW+ zMZg;c-Fg+A$L4e(KP-QqDRAf%aQt z4@Ahf_aQ-$IWyoSRRO_~5`%~5{{3U0*Y`V$olL&Zy0YL2;H5zktv%wfA^o41CBWW= ziKt?68Zd8wA%E`Ny8Y~;Dzfy)&o&qKzn!le2?ztOru_>>e~!T*Fk+R53-Nmdum_Ze zjgDM}^@~ho4@?dpSh#l&iwLzOZ<8Paorr)~Y`6yLMU<=m_Ar7X6wIFho2Ei_#OHt) zXx~Fk4yB{-*cgTdf9n7~E(A=-myrMoC^bw4^4^E!sS4S5vBX*5`&XG890a^498}|U zJ?2PJwWx*LIRc>r^&fx%`1!9TpEp>p9tIy80TkHd(IbNN7LW-vu)n`zQEL|P<>sR2 z6tgYXVAD;3k-Yr|Jl=uM9|M#K7W>3su(BX%B1vTfCveB#?kfNdcz}bRiZGJ%IMeYh zAY#&k^p#esg(YHusXs22sQ&-| zt!R2SSF9Kh1{{$-Qxc?HT4NBfg48muMC`^#Lv3||9_^j9>3pFN1(m(-nw=b>cQG_ zU!KFAP^T8&R=|JuL@a_ke**r)m~v0~rO9~v6b;`O9I767)7>2X5M|^-XqbIr1i`CK zIqm=Pp~xHZ45btZC)uQY`pB%zI9#w6-Jy9K^R`{`lt3+D(b-qw-}>cTR&f+`qneS# z^n>&2{qjS#dN#Yq`FIFMbZ2-_EGNAa(!kPj{vUdfv^mXNHHrOBhq|`r@l}>S%@;o? z{3&4kCwa*&&a^g^Eng^`)17^!U|`sB=6Gmn6w;5qcOOMOi~yVi4S0ZoR%27b6N*W# zC=1#ln>y~g2n>;6C@peUsFh=4#WnqlcnzbgnX5#KIg~qYyA3C08#JAoR2=347N}l|OS8PpYlb=}^24(6br5+mX$SX@ z3Lp_L(0~VIPFuWTXhL!R=%D2Vm74m>qEhwzelP?cTOtdL0(*OgX+&WUGfGtE3<+oj zW8zSuq!IEb&l?lHk+eUk?o&n z38t&d4VI0|{{@z1hs`tgKuI3hVM)@{Om^D~2r)z21^f=`>VmmP*ycL2FH*!=Bk!BT zKFt56C4aZU;Ad$`D8!6&#;v=|EV5qOub@VctJ|1sWE+Ba6x=u`LXmJ0##8?TDhV*p zlURM~(CgRd8D)tZO~2VyT*NH-cm8|yFE6oLb{tV3Vn`8@#x)Uf_1@RJ{E%$>;)%!9o?bAJ??i73876;V-X)Ow7qNk$p2;5&Yi(;{W## zBpgXShF=5HUVdsuo{gPo_USp#_1#i-Wn6nzM1qkJ&!>gQr-t~x5D=$o%=QL;puNd6 z@bPvU21&XpWedzY7x=R8FX70Z_xTf7VN0*+NI)W16koca0J{|_I1@a22m-;7K{_Mi z|3OCt_-7GSkBQHrG8gSfrpYJ!&^_$j%>J-yvAc}}YMzD(xuFRwMzZTY-cEniuV{5e z53Im!f%Z0OPzR!nRmrVZ9=cH<9tO(g&aI{fslFVC5qK`5E>iv_-IvMCucjZ_IzzsQ zn3(6?QQ*9T1bTr$PpjaaX080wY)zNfr;=EAT@hOl5l|F5G3BM?E&)xBzgI5#t5Lzxh1b0l93algwK`dvEpZ zCdNY};_(2-qwAet0-;CdJ;cvq?bR>=I|ef6Sw%bQWrpN*f2btSxOPH9H6iuU%G6Lb z;#64Fc`lcTJj@*_Th8`yYX!*VZ_l7q zRN@GG`9p!a<*`DNT54+Yt@+|}M3)v-&E|=7weu$~fDRDhFK&giO3Ab94yy!x2W#uk zgTkN4g_m9e&m5QVds0}wIm`QVs*VXT5380m%kB%8g#bSimm>5&H$mGwf1iJ{6~!BD zz2=afU61*deoi}%f`Wo{M!OP7c-OZ5czv)`W!UkO;`{vY=YV{z+@hgUpHC*#1b;uD z=V@|l{Uci&Arb)@ip8qp1E zrsLr0oKL0UCjJ8kf&>sI@(s$rn?}joq|wpTUFM)YFrmLxiO+lVx;;W^f9dP@jDVV& zvb413w86o=*5k&K^}QH7LxDQy;}q0zA1|4Ka;7O~`O*@5dnABh&uQo+8ZyQWVa5{@ zEw8~jJ~H8P5-VthC)r9s&(bhyk3&B*vX5>lQyXT1%}Z_az)>R0QMh{dBAcsEfzBM`F$quoM)9Tt=s9M zE#?x7R#=6ETwVrikzQt8+#VOuNI)W91$77&i(j{)xp_K!?tkxLnnFQ|ypcDg0%-om zSBW9HQm4{+t|jA%kymzq=Kfax#i0Hr!O+F(5%(RC4Y*DZ|l+XVu1swM`A6-{zVkz{|CN_h)`fb3(scWbbCD#=K~=E2v{iy1qICVi&EG9 z-kj?kb9T%^sSkNYS)1YU-!91!XsYAKn26vc-0w!T!rznU8vnCZz_9!Wd-?$z7LPaF zXf-Lnvf7NmX*T+G1Qnes{EKVC39H-S#y*{!*XkR1T7rAuXEA?x-8iF$pveQwgbV>o zoPX5x0m@$kz1|%mjAFuh__eMrf3nPKdmTTd|MtW`|Mi#ioQ*cmd#$`j(@gA>CTyUO z<=MBR*xngHybC5y-0+9K4+{RL+aXmzhgaSf?g#8s#}bU`-8)W4lZGc+LI%>}-UE(H zt>KCa^MPhYt|EQe ztts*9UuYn#iecX|f<(nkwP1u;AMEE_LcY&(9EgOen2GygH>_KC z?zP%;C#~b>X|>0;u3p-S>y+hOQpc?E%cAGCC&}MqOpfzq7{Fji!NhnJF#xNB12`T8 zB4GiQ=OSTU@_Fo>{pWi z?~^#-9|%0}SAM@Tu_qsFcQOh9gIiLjE?D+VLxb&?`D1;T$c_Ean)U~zwC!fMD1}PH zmu?^&DRsH1YwdWh0VsM$Y4kQJjE=ciT4e8i4!Uyx|Mqux`XH^kvK9-CTO5JmZEf(( z5~wHIYGkEoyjOpOzdMcWPV;=#H0e_xASsgd?+54v7-*3zob{F)i+#SJ`hnlQnJ5qd z5dtU!`P)O~P#ni0luGbPm)pU-(UpJEx|6au8lF&LwZM7ylJZBm3jqKHZ%F9O1{a}^ zSXeQX6#p*P&<>Fpf~5Y)Ts9b3_ycqdC?(Rf~a_WXOoX&JqV=5kGNm^%$@tzJm;CUT8M z022dfcRrqBVH5j!p*w^p9k!GSz88z|1H zq9D+EF2#?o>-Eu3EfoNH0N!No9m zK-_L@;*K{e9*pbweSQ5n3&}rvd!hlobJRw#_OOz9q28v_dsWrf(|P`80`9lmZ_+0; zowa6IlYQwFGAC1ad(>n8p-a&I+5Udn_}NS5oQlc)kj-JgQKEcqVT)7?_Q%F&Meq%pq;0`;_5 zGOP4}y-36FNyDW#JPcdj%9+eSb8R!k5wh6cFd_OtM8&_#AJCPv*aVb%0mFixC@wE2 zlG*@og0ugx{Mb1;OH34yB_aU77c`Kk!lL$!s0!l_SfYwX?f3PF3|}C9PGsSgZWic+ zlK~^abYMeX*3cfm8fzFBK=bY3Sn&F7 zQ3-wAJR-=HbkCRdOjRj75g#7i%!z}&e z^d0tlibNRpm#{zYp$JZ5e!7GeIG{9;S+-)JzPcasAFs72+l=msLhl8gmbHhIx7M}` z#-IWV^{$6F77XyD1$2E*?C)`KHt;Whm+4IoBAxZYe38yMe{W$PUc4H&0Z&Mnk7sbh z%S=Vtvf;$yr`N3Qh&-Z6C+mu$E?~L;O+zjAq;N@8UR+wsb6IbML1!u(w&tn!5wwH9 zQAh#;onMuZ=X;dn*9ItN#2B=F@%=~i{>+d$6vNGaRWGwdrIb6EGn}rjy~@-LqfI`K zNKw7U?4_wh{W4^6vJvv(_vFYl70u@}ZK{4uIIPm`N0Epvw+w`&WDL{Fm1EKPs0!`b z3Kiq`&L5~ff=ouO-oB~|8znAA&8Y}|x8|0R319K=^z6wKEC(y(`^idm$W!Y|NOb00 z#|s}R_x0#~ehBiys^7ND+2Eg4F&PTS-rSJMQtxSw=}Q4-{%+TyJp{seb?MOQrah2; z%rVv0Yhd)0 z^GLVwh9F*_nFmKgg8!Z0`&NKRxB}DCQ8ry}o7>9m?I<~qqCzs;R6pnu1wKDooOXkw z;NUcR-(U8Qu-LD*0yRX9-s0`PKBIx!)6#Sb?4z4In30$5acY_+3t+)T-f-Y=NCDE* z(a#MW_$6Z^g>blL@s$1QNu`0&*E+qxW--_!~-wOkxN$MV?2xF(%UybibJfV}c)ySm=< zY-690aQd!rX5+9WDyL#L>gwD59{0K6Toa1N1*GO;a5G;XMrX(%$SE*3g5MMpQ1?Ld zZ3cbS8vH|KiK-QVLVu9j`%5qi*qSHdR-Fbz8T~l?Lg9-7a_dEJ6U#5MYbH#(+W2W~ z)pex~;mNsrenzw612Fx?J#p}}8g&zsnnn#GBS4n^hDzROI&G=Hp?cmFkFqD#o0bFG zxhi0-9GV;6f9cDH2PJ3iSuChahVO&ncv2+x!6^JamvP(ts%(BD)eX%v3~5+-iPy{Uz|ewglqwpH zS!tSA^7*D;sJk44xRQxC-xYvkUfJKYot7=65 zJpGh`z~T+(xd~Y4{}`u^4@BUkoN;sd8l{#*>Ds4Ucij1fPQPXF^8Mi{xkdJ@pME#> zLUYqK1@=;*tceAKkoRM3OY%|$`{Ue=XEL&Mk&J#S-(q-4;& z*FlCbM`6c2Xy?Xw2LTXw>*Qql6JI@mV}so)QB>t|I+8cUl7NKE(O8o84U-NI9Cm(Z zDb!NOsNwLGj2YEePbD79s6_z9 zu?|Vc5UlY}6oOeggBhtOC27u0`}rzmj}#Iat+WT7{ujK|Fzj zgQHDd9qkjlsyN^zN~Gq#2-z_yEiY$1N)>8MwKu@Oovis{+y_~{97@7`$PR2Z{7(-8 zzSTky%U~X|tv+y7OVR*QbsRr*$@>g4x!br_%f@YKSpUslCw9llKc|`Y`)uN|e#5Wq zgvWvKm(|{h;KPXw=T=C0I2nQ&K;{YpC`Ut0s_Q; zaBDXNjsAZ;eRW(`(bDw;lG5EJsnXpYlA@F}NOyNjhjgQKN_Url2uOE#cQ<^S``+)K zfBngM&fc?U)~s1Go0!MKkv6lbj(;O`a*PLSvxkrIuD64dyt1lo*Ct!p*sbAD{dPAo zIXHSO{<3LokkBYfgLuV&jzy!i5&e;Z4ubt?0FB9#S z2XfY&B{|AW!ml(+KUmu0gas9eu+ZKOPq|7-@ zZJ6*EmC*XI&*2Z9Zffd+Tq;`Hg8ck^@wO|$3h!TgTkzQb$w+QSb8~a#J^qgsw!uI1 zc=g|t2|e-$+BYOOrR3~_EA`$u?gQo{jwF*-oo7$j=0H-pR-^sx0V3rGl3bN%=l@H< zGW>kVQ`=zrTFDUDZE*UB0{>^-K$AOW4y{!-m?9W9LG=Yv=MV7(Io(IUKJn?}HwlO+ z&?8ESB!aIt0r3MKVMv=8WJZoPMJ|VHYdQy8T%9D9OSI_u-nBjW*WLsyzwt2XWY#MR z$i47?7R2O}df*dJg5Be-yRokVNpAdJ|`B~ZGy8IoTBNP`wF%BBQub38Sb}KtERmF$n35mZ<=>PkJ znlQefaJ@|TpQ;l{8+k@?n@#Bc4!lNe4S%F=`hL3{m{d7yNO<1<_PNn4z3G>MjR-FJ z%lRvU3FH9OmmrMQtkeY3|BR>zeFnM`bqy1fq(?j;bVOIYM9K$tv6lkJk*1)?URTA; z=7_s3kQX>95P()~qfKn%3Gb)3B7#ngRnORAzwAfxvMVe-lXmj zzbxv1c0mS0)r9t=L4KI2_6Kazrxzz`@`Zk5EfTwzGZFsjn*QB8zyBSoR){#+T$TIL za?ofX2l@l>`M%`DejGdB1V5qsZbQ6+vj(O=kr2FO<=}zIRAC;#Dp#N7y{8@1TLBZ) zAPBEhcuW@~|MWo&OtRI=Lx=v4A_UurWJ_>sM^O&_JAAM0@poTdqC^X_%s+agI- zR+$uBR|fITkR%~c*A{!7Lj;qV2F>e^I=cIkLxYDL!qCMSXDWgsV1Pndarg_-6tt zSQd!4-=O3b+UN;r(-%>*4EX=2@rG54k!$_36p<2#iVu+g;UOU(9QRpvhf6^V#Uv|R zv!#W{;6KIdjjVRHVYQ?kI>xie$j@HerBjjp}l zNbjqvz5tf>ub1DVYrikJ$JGML;z_UPT#ysu{};nN35>mty7sxw_p(@D4jKZs7USKu zrGX^*Wavu_{rq3>1e}$ySLHMGtWNNS0IQ6-x*ilcFdkv-gv{Gw0N1xzH}F1$K)viR zD0+=RPmFQB|L~R7zANd;rap0WF(jA&^-q-27kU>O5_#$M7;|<57%U=}oOt&CMTx}B z_%?NV%4X-|wmb)#erJ+QL93y}972pD9$T~**#iuO5M_3TBN6_nIOyV^q7lyjg6X;1 zaQ_Zcnu0iXqG5hFzf+6b*8#_bPVEWF($Q-7SPjK4zaht$lkE^DGvXHq;E^&7`7oX$ z0r;EXfyq>Fuyj{3!wJ8pjZ;<9iN;>7H`=niWfXu%Rn_wOO+}RlMwtJ{evyLxMJYoO zA!NjQW6<&Gi2uz|phwK9S1PK-NP5vgcSnpkpJV*df|$Bh#^ZU#m1sFovUD5@B56_Zg)x(2_voi( z+v+{b)9qP*!qK4$SQ}NCM;rm94QMCk~JO+wxHDrfi^;FiukzoR=n*B8_>PDootq<&z$m6&e9+CAKY zz(bi1uTYK*4$7~$@9gY!|M~O#3%Pedmx!A6o4o4;D0gHLTBdCG*Du?6@>4N6K6wp4 z4I#}bYWnRLx)9T_X!Z|eq&GqyX;(T=dW~ikW*@u}yxD5-AqW8w$AeML$Kld~vbp^!wkKWQV_J<&C$t-q0>`(7a@$kbL;jNBl@!w28pxto%C=Vr(LeLd%4 z>JOAGlGmi7FVxI3@+gKzT9nwco6ENJzVy1S?gz2Lv`<_d7PW}ev~n$icHIdWXEbMD zHNM_Z+gY9VanTr{bddSwzk)pBKx9tSBuMx!wQHv51j*a8+XAy5iS3sLk>;DDKd|<{ zKf22kMuUu`gIg~<$eEbXjG<57+J%}P$xNtZQBaP=2kyutya2Qll#0fKo3R^#BMkyw)PrslDs~;#WMr8eg_c6f!raM>dZ7p{6>?Tt<7BH%*B* zockbiMH~9uNX!}DvuZmxnFxV0ot_p#rG5KWT2^-70g9Q6EBKS}15#Y598->U7z!%0 zDK=}Bup{q_b&R;b-hZveU9yw8D59n5x%-$WNFeBR(Ud48s{dK^Oe}Fh_Ztbs=fo%K zNlh6(NddAV1l1wprQN6L|I*(HO7@zIyg|sG_ee*J?<{kd{ z_3KwuHN;C;Nr{by25v4m3T=_F#?s3`-8W`@gi`H=Th2_V;4TqM54PQjTECf$EXI<- zO13n%5d6Dp&sxk{`Re2k^iOX)!q@<4$TA`%TxZ|bKFm?-tF_JY+hXfrT=b8urZ_w- zxM}b%$D>{o7~5d0fSv;Rr-IMpol{(n@4>-Arq@ks3Gu|Um)i;;RC*+_asES8)&zlF zr*@(a+1RRwVTGln3Mwkl=YoBJUciBD zLaeA0s_AVen?_*^^a~QZ`JL5eG~B`wmn%Z(YPM26VX_>3;v3$OzMJ0SCp@oJH~NL$ zR0ZVDP;{OK?6R_JGyik%jCRvF)c@fF<1@PzG#0pwkKib;75; zx1mSl|N74TmavlC9}B#P{+|CT)GYLp`RJ5)`;v<(phv$kzhQ0jFTq~|Si;U$%$M&e zlxr!U@W^zs#n`Xj5fa+!3}PJn0>KUUCMjhP)*o?;nrSeYc`Sk6kAake`lU%j}Hw40!n#^ zqr0%MZ)D^UEp%pHUSN-}r2lH^gFL{h%fdhn10!tBJjN-hJY!A{5yr|@%fIG2j)K)I zzh64mQpRXBz3iH#LK%AT4%D>@;fYebkU%iCe8dwJl@dmf@G}QDTNEJM#m(T}y z0j*%4H74d-?sdeEa--X(CaDIwO^%qF~!Vkj>9*^9 z{tPYOeaxKlx0B#|>JoVEzEDV~?@M|k_=j(?xd4#@QioBu>;aXhl5rsr3agj8SX1$h z*;Es<@*c_+Z=nKTh1v~qm4bpo-+Oh`25U^_*B*}+W0HIx%lsv9hY&&EoCiLaBTq(% zq@-kLr>%o5dSQ{oi#kppB)}$gV_d=iS=TMA(Ro2*FL8E>p*H^epW*L{ndY~eP>?!) zdmv#AU}jlC`5wb$@`O=ZGwN`0Z9 zxW3+!<;th=nCt(P(K1heNfoQsC}NLcr~0@&xiG#fpfOqd9{L5s$!*iY3VB&Y8i*EZ zxI$6!Z9rHocJU*d^0WI)mG?%v1D(uC`UgPtf%0aaBHE~FhEYeLu}QJ zQYf1E5|Pn65qu&QrOYND704mv5D1#5oS^5;$$3%7O-jMXjL${Nrf)h|=12f#JRqt!wK~7>IipAO2 z5gXuM1KfRbYRY>u!(6^tPU6swT37@}+%+&v!5UHTg0Nd=*{DPNt@ z)vAiyOP+n6cNL%S*f4M$J|tw*l6H!td?}fp_1H9FMt7E(56}Pc{jZG`P{lU%zI0 zh#7lHGx$(5ONd|g3nFIp`PueP?2A%EwfFYoN0$P%{CaP6A8Yv|o$FTayQGPPg-1&l zlvcR^d!e~Q%fyGDk_!A8qyO+!XgqXX!YqcVBZVQp!$rS-Rn^v7Rbh1u4wlx{;ii6I z&K!-Y#MvuaNXAhfMpjY%Pkye|{hjH1hMPrxbWn7O-vMqCL#JCO`xIV&e+AD$y@ZY3 z$nvLxoWjH%0EApAMv@^NF3=s>IP*4|99l-Br6VmglWp{OeFUYMSNzPlV1r^aGs&&2 z4u@eoy1S`(cnDsxRA(&tgTp2s93WFF|0LiRftQxQv>X1t>LHXGz?9wKdR0 z=Z72mH8~vI1qK3G2VSjUOu*R(fT66DV#ebom@W8U?ugO}p!@ zp;X=yA!$)b>znRfhwZ_~WF9sev^|E>rX;dz$RuvTyhPz=2 z#gP{H4Q=k9Z^uc&AEM5n54H1>B@=xSEB5nv27nmYm9owve=HRPm+fhgSiwi# zkq5Ni>oS^9+2W@zDQLwM(h8ULZ#woQ5`ogXxenJ$d#Q}eDPAB&HoeOJyZNWPoBb_> zmzVeL+qa5X!oGFXGSX5+&K#&PgsixECZaEEM3!;-7ujCKO2klqW3Vud*6ZVucaulK z{E)#?Z%J3_D|=}BUk(+t!acg6W)3AxZ2T=LtA9qi{Om3J9qkC+xtq}^)%d0g09Wq)-%3A*ovwOV?FyoEEOG7%wbu>-7RyD8$>Ua9lp z+DXO*9<%e))9=}ngq-W|xVVNDj_1v8y$|c%R7z9!G!r+f+dPu|!o*q~+Ps+I0EGHF z@>g0;&XSb`oko!KY#EV|CTX-I2E;@as6!z{0>2w6h^rlKf<&pw6i7}q+^tAjQJ+Qh zKieYruT_x4K(Vb#tRA>jEOi>P5*(X0)Jo@kS{8AWdgS|SXs@lUZDnPpqM~AEW+oyc z;_U3Kp+P9vDg_>KaTqXH3xxPM|o=W*H1G`%JC&0a`??EL&cot;_IPz~;v@7k7xu@Etx3~R3O_b%I5J2F50y(Nf;e+q=|*s8GD z;kd26?c3}FK0qNRoo9m{An?xR@X0UioT;szt5qPUouP3>tqz;DY6 zg^5UpVfW#PK?+eLbzS4fPJ@)5ox^5^Y2avLhIhH6_otFAlQyTgF5U_FsQ$Y2hc{6mmU*NSzRRMt~Li`Ezl9y1cro z%2ts=I7dvKSk>97&a33{41NFr0ay6c+_K!3(3aSQv5NOyl5-K=�Be-!edqK_5f^ zZL^a*ZT7f+IXs?@7ZXeg^J}mG+yF(83b&`bI z%jAV}r^{-8l7zLrd8UF|vE||6;NkWZx;|UTC5jVVu)vP>)~lz2?#MHRVAx!f;VRu@;=@JC)zV`^#g#Y<57`HG9uhlmba2Am{0xrpN8 z;=sVbAYpxDQm4~|b1aAI%<3!ts5RpL92ywPec)}QuIhZj2&+o9h<+!g}*9eAc*k+$T3 z1qes2h*$2(@?%h;{LjGk#ocw49&riYcZ@>C=RrcwpRH9SJ9<>Gnq%D+Qrn+$^UD_f zdxyOqf4|9z`}~;|KmlxB~lInD+ zm)t#q8NzCCd>MA+4InW(Vgf#8jxHuQFA*#ONb^bJleCdEVjf~lV2od*AE_B>eYVYR z`{;A;dPW{v;#achk(dsOkcxa}T>nx=%|nBO>R(keS|bpVz&^vo_;^68xx2Y7wzw$) zpCzW(`Tm7cAS25N2naYkvwu23rz>XalKRnagyTspy(1IR%z2bN%rcEV4S?d-pXt@@ zbMrG&S^>e62jA3MLM9%1)eCq#v|px*>Vd;BnQyL^G8I@ITz<4}?HrwU7>}3OQ9jo{ z2e}}yxDE~L9~KU2t7$W2pAVMxW#xPDJg|w?hI5Z{jn;zl>8Ev*f9ds(w`Uv{QxB)T zWERsU8cn88@s*Uhc~q{Cc-2q5PwyJnJle28oZR$2+vtm<;e!HH$h&v%GQnv*lc{mG z0EGG_&rS+nO@9=YuenC8Mb&;jZQ5Px<>q7@p{Lo2h=1g? zNwh*AJ*){W?}Eq4{25W!%!GBv+lYQ}@hf;nv?J6->MiPYZV%twxPr0x9@j@H$;mZ` zA0BlPo+yCdLPbRd4F`<$^c(L{=-%MzZzgg?_*5Grf#)K=bHnX;*W9NX-`*y^)67XY-W60yWR=QZ)byRqXp$!RG3K>t4>Q zTe7k!1lz@EeOFF7^XW9qs{(WqtfIA+?k>(DW}Czn1B@Hmsx?6s1J0-Ikhy_vI+`QlarI? zLE{Am0P)^YyDWR@3OMI%gbIHI4qOze zfW4iaor}x$*_r$88MUAqKwiPY!N8-fH@pG4+VQ`}#ztST3Vk!f7Z~@P*qjc z(a}*?R|nt?pg1KZ|K|>-Rj%NmAVIG?>}J38^d+@Y+C+HZ+k2zP)|u|8`DmX$$B|`>iM>`SO-#AV6G#ug__JO3W?v zsx)McyZ)IWWuZV9U>$dt7);t2s)UJ%Fz@B>fi5oZ5;P|GZ&sG;tcZ}Ipfz4CC7m=j z_bK=S;L*iM6+(*;A0M_=X71?A!uH7(n_Vsq!B@RP9nYVUn?8CpY4*5MsFn3+-;Ljn())CJdHHy2_RW*k3&0dW1npT*2sF_(l~Td* zb>v0Mx~9BIePcmd)>l3l?DaH_1X-&ZSX-<^iHnVojwa^6KKS_oE~#<1{PJt|8!!T< zq9R1@TF@jT_iR)i)6Tw0Zi>CqLB>BPjq=Oa5yDu zyGAAd2L)+^^IWa0sd;$#QC3_`gpN)wyqn=C34h`tMg_fw=)0g-V-4RQh&1DZ2#M^e zeW>lO>9#Fo>G14GIC-y3bGc1*(5w5%ysGbW{?vjk)|_!zW+0rsr29&cY%PSJoBO6e z;XU`>05p{nGd)y zC$uXTq8;167?KymxsM`ko?Bx283m2Y*i6GTw>9$bsS1V7%Vl>_wkY3rxmBD&)+e{w z&b9nm4)#fQIj``kIcOXZdAhLSJ@(Gd)@Rs0V6fl9f)?Ps{AI+Zk23|$zdu5@)X-ri ztGsg{D_@qm|9<(b_W6s_m(8mFoNg&0pUZD&-;|k(*Knez;sgN|`}x)5Msl)3K~iEO zu$;BUbs~GywU4tiGcDeaO)Xj-m;><%3Agw6^K)~A1O&BzU`{+LR&(?6MonwTenAm4 zZW~Vw0*2v4q;h|^jL=;^%}2sj|K>t-yz>0L=G$%M?GC?_a9CgIA%`~a0otNav5>^W zT8H&eTJIt!Wba)_W)f|Rjpkgnn8__vm{{;Tw7qfpLb2Yb`%<=FbeGg`UC^wFe}~^u zHz9upqrmik-;A2KHuqbyUgmfQcY~B!R~G#2I5w!0BI1m@(*(5C4<~>7#O@<8BsyK8 zM`Q_Z?(&N+>iI-j7J)uSF3D$lZ!tY$u2=jR zFp{D6XJCGQeq`jtV%-}!4sdNTQ8+bcg^6Qln)II zbR|WR;$A#k{EXu2x`8{1fxUx61jayHl-n*G3 zF3t6Otc%Sg^4r;>DL+_G7Fb^}n}kC*vyAs^&+0zo)2ZERx{EyCAn~$h{(TUeYLddS z>bk@;7_Ri>bTvCq&l|3!n`+u%wx*cp)Y-GV^m1X7Cxa#DeP0}{{L*5h^Pz^dHKUvW z_J^f_%*OYj6vF)Q_yVtt3`L4P6Cf+Hf{`~Wz!11|%GGtZskU{ABHH@BIsUohqe@}Z zV_Qos-)&ja3R`G2x3vlK@y+-4!b`Q5k{$Yg%uQm{uBxu?!mtH?SYCe6#^I@3Ev&n{ z8y=0crmCS6NWVZ1sI8^-?`!3pr_sXa1?3Xu6F;|!dsEm=DV#ECdifuo2367dBR3Z7 z6eJ@|=n%#q#ZR%%Q>VnzC2@Oj_Zr^Z3o|%Tm#Bj} zRlOWpH~yTeCc!_oIP>hfKTbofqov*$CHc6DS#5=18U*3rdfoeKgNYMF9iQ4#Qq<$R zcpo1h&DcZOV9-(F7hOcV3fNI$<~*=t_OtXgm>>WIg&#BEj$_8LMOVMBz1w`>r^iN0 zEl6m|g5N995)o{xb|%$f$a;Qu=IP~CT2i8sL9L{wc71ob&wUj2{d;L);SED|p?(Tz zBtb$!X?56+^z##WF9jnZDY-^oilXMg?}8Z65^UfO!$(T*1@-7CZkDrKK|U2j%s51u{te_%XH|Nh)R&M;{K!gu1Z`_g?zlb%nIK(fV#C@BZbS z8)zkYSKc;3Lw+8o1j{32xNO=(Sw;XdwU2PRR}m2rssBDao^8tRz@RIC9uJM}Si~V> zh5r5{$nzmnr45v-8Mmd!uqFq7-TZDJ@z$4dd;QF9s~|t*Tz?2Wd#jxLVnma)(P#bh zTEv?@0&HwU8=K|3)hD2mj3N_?3<>GLTewo?4pb;GF*0&WgII#J-U~Nmq=1EKv2z(9qYpONFhPQRdLWyQ<60mZrp8Gj79oBSw>F9S*pdGKnX1#^C~ekru2(W6~j&VgQ*G``d|87zZ5!u z=8OlUD7Rs#KM527H7~IH)4}uY;WU0b-6luGV}%h!^1>T>r%-YKR)wx%E53&lJ*tfHVmgj4AzIooUuUJPr6oP; zV_FO17<&-m6k3T`j@bM6@8=x`#aUB+#KwMODCE$F0v#UHW!fIMXGUgbyVqKZ>3M?t z7ISJ}ly1y7RB(eYbI|G=UADqZ!|1-ybx52fA#^lD0@aD!KHAi1WgK$)!3M(0D}MQ` zG%QqL=B(qpo`EHa_F2bKa(FFlHwKnXQWgoz3ts^4-OpA_7whR?B8whTKU?-@V8dxi zb;?|<5*d?O6jePd_OhtX>hD=VZDTM#DT!+uapmxEFyLDi^y@f@h=*Hd^ulsN-qOGw zWYgp=7>MrKanI6v0-nHuQ$tN#{PI*?q)x%TMt!xn2_i|TEJe~^WLC>gn^(O@0BZuE z%F4xMBR}IKvi@7=d+RuR{@XpeU)rD3ygaVnE-OLtKpi#;6QPFNtzh8c1^eGmVe@b@ zGdDQxtGc?ndOdO}NV}t7XXZHfGQw$-(h5Ey3fTtFquN>7slQVH(0Vxl1L?|E=C5vW zJxtKUuGJrZ-%@5n#vxqdkW{v~ksGiq@yxpDvCjvms}vfSq7 z?u>$c$H&LU zsuF6;B27tC%K6&sRc-80?C66VPEQryl+p?S>}B3N2?{8OjV!a4oYuo2tx!@LpHfC) zV`X(eS%DHfYU7kbzd~uI<6C%o{CC$_(DWRT;k>Zj5KsoQG}6eSh`&9J2pL5YE-o)B z?N|8tp00H5kfZ$Pk^1aha6wW9&%+d-|8(71>Gsb-BphBRs-Q>uS@%x9cftLxF8&!^ zG)cL<_>ZMy^cc1JEr!to!}j z?@SeN1?ihWw^R?V9Bb|tzAdkkSdG4n_y5)^z_9`DfSWYCI!mWlO*l(YR8+L2v{aL4 ze7a+#V|cjySN^Z;w(N>B=6vogor6}dqkBLbO0Y|ulzpogb;&t`=SMx!_Zb}y=rdfK zSqC8+@S>%o5P&N|*-}+SrPkXKW$E1NjiqfGS{?pD!qFv`_e7u?9w?IV?mEeoeh4&p zS&<~|*u6@FDrQNiCHExPuV+#UHP7wiw0~v8O8LD7(&V<=DKx~*tUQ(Vgq}R{Xl0ON zEo8#OWn_!ht@MFpwd2}1YL&}oiJd10NeJ;LoG4J-!4|^FN%kC+yh$3b4uV2@|RkRvxHaJp+pmaz| zO6ug~l%dtu*!{bK9rw^^YCt8jcmsJefFrOHIiiYS^XKZITAZY}AopC~zke+tTBN7z zSj+*W$^G_iQG(Lj5K>=LzLxoGj{ST3%h``NJY?>WGmG<8@;f8wjuIx;TL<)G=i825 zizBJFD7zG#;Tq%XMD!RXJ4Tu(CEr>}53#`oQQ7gfeuMBjb%>&+RqUR+L4TchRHXXKr^!@{;t__E3huvHS3P zz7p1y9YCm~u3$9HxH(--&3S-vMn^H=t8|HTzKMNamRmM+9tXR#wwO{EUgaN3FjM=x ztEg8w+k;YbEr9bb7{v&1&F`M23k(Uq48s7zUs{B<15k9`5iHR5%BD2xv zj*lj=T(q=^^ae^eIRtBTh#A4|?eh>GD5rlN>3K8p?K#f-WbfN*=K1epq#1ZUK2F5A zK6*yRtJ706`NMZ5@GT=kAg|6q)_i72nCSOueM;bp0i#eR{}y|G=3ATo{OOaQ<`YPd zbbpw3?!%jYf7MXXbj`L;TS8$;q<_y=4e6YENPt$vH>FuDz22R-k@@xZ-|&!=O@wO9 z2NImgA;a2rOX?S^^LI&4)<*I?T~_YPHFXXFd1>m*HlbOiU|;}*+D z2yeeLvG-SQ)RjNFL`>)oyyq6@CJU()xfCz%$64?omj{$pnX_4+=CZ zAH4=#SpLosxyj@kmu|(ch#QE&;$#PdW`^F`+1s%^S%wIN-%RQn8u_`oo|PFq+)Vh# zC*mZKWilQ3%*;BynFJRn2yrHA2NRBOHnYX8UloS^P ztpB%fsR#8OfZw4tHGKmWBr4%T_9pKXRHB@idA%`IRQ(}(Q0Rwm=FX909vw=@=e|}! z<8yh)!W=Y9`M_Wyzjs=Oez{!}f zPC^injy(N)b9oN7pM`}5a3l=anjM;}dy~bWQpLd65iHYzbbv>d@SH2t5#$$Cf#CxH zT!9e5XwLF(!P^XPv|!?UIR|SKM0&_;v8eo7gH6yRGZz3ZO$C$$7Z3YXUtg$9;9AZ% zIlH&KMI!&8ZWIYtg1q?15W2A-S?Qu*@w%xTsQ?dw7mvZAs;|2Ey=fh?xt%MHjh!q< z6G=%zLZZnA(H{5$LINchSG~N9dxBCw$0J8Gp)<}nF5k@qdB|+9jHf}6KQ1u4K;~4qMoo6bOP@ze{fqjpZim6L6Lhmi zH2px5mAp=_QrNEhXw7r0UCvR@Ot}^LXH=rgut)sEZ<1V-hr=)PkzPcAL@pjM(bLP! z%39r~HFa<}zj37#e78bHl_MmWip*@z8x~=93{Ae|mn;4|#*u7XP>r(ub${x;$vs*V zJ3@I~Vmt1^G(WI1Q`5rI(nGx7pJe0Qb>prDHVroOOA{Z;<#eB21tJMIi#2S zufgf*=>Y_V+1bIv&S;Je5hc?jp3^WL}3J9ariNDQ3y!#-E-X# z`ct>3Hh!rWuTDM<+%nCS+x`8bs=9S_^weXoY{D^QJu$H#*!4ctAmgiG@YoYO*yY<*hz(C9nWS>zP(t z;HQz`rTV-#L|MCKF& z#U~q5<{wpK^3spSQ4|joHbV`_$ zN(jannw_Amp`n4D3l~A?cw<9ZM`!8BSMBdDbGc&si}nETk^9pt>(l6p7`MviNn*~>xL7_VT6CZ+Wm-Wb7ZU|pAIQ~0A)dmT5&t( ziS%nD)L<-pd{cAtIr~%}F)=Y48=GKecokWdmeMG9GKQS^$B@g_H%DCo!GNc{(FF2@ zk4Bv>MZ>8f13h>cQc}HJlIFWRJ9=V;rB=KROeOEN9&Kww@fP=HIDul-?y@ zv%J-QTQY^4g&RE>`Vl5mzg?eY_tMF!w$^FV$&fX$Ur*%tMQeLSyOWuj2`VusftW>Djo9}GOk}YQWd~lfM|mCj`i@IlMVH8pueA( zm^igW=j_xfTsDc3nucZ!pMBrf0#L{5uV!hbKYDA`27hb%1{h;ZFPZ5HJ7GlHG@8!S z$HV#hv~kXdmgZ)@KvA=^vkUgkqN)T|>s9akN7i?2bLI*7mVdt2bGfHo{23JzBmxP{ zZ{syQs1D7a(gjnhYLgR_Y_nQ4fm+&1vRQ16if|ZUZ!G>Ao|S6Wr^+oooUC?*g}pX? z{G;e67Zala@o*W5$RJ@4nEj?D&LiqPJTL;kWg?$Ti22#7*@X`J$}&qsLqbe}&T3?Y`Q5v{a0yKa)XI+A#J-p6h)51M zukprf4G|WZK4FZ?o!j>t7s!il0Y^NP+uJ)T=wb4r1U!W`V0h2Yb;J1>Im9Q<701Wh z(QUMDv*Y{~i4(8PzHE|G|9l^6_(#6Y&CRy9Hr;=xQC%`hN=i01$7oP8_HJim@Uo{t zOM6uu^)%PPWd&Bbr7cDLRA!HF5)u*s7h%>3_3-eJip)}Z0mLqvGHNnklw8lg_pJu5 zF7s;zhc|#)8>mIP-Ub3meB09%FV*uZ9@L8cOyj6EA1>;;{2d9qPl2o)K_mTn=u??G zrF*!-&A<|6;6hst2KfHLEJeCOCunYNZgwtdBy=kC{gJ9mGFIr(-l1#$%dd;1LnG=R zoatf-&vtWq5!mer?(VUhc0)vS6s1!-T#!7+UXg!M^CE_vx+fY0P*eR{`C6V+Lsc^oN&4bd>Uc>kk{Xtc_LjL16#{ClD=ebaR9$ zI|*Okq#;4#wDhVZzlS`6IKbyZ%HvbufoyY!%CI!aZ7B`*;N?~jAq4|^<)oUuC^Cm7-`t}_-m#7Bz<%&TBy7hA z(=f3MGLI+~X{mq1LIyYevh+!CgfqC7zFWwFwE6 zcmo~;L_|VvXStb~D{--(K?VC=lFCWYluypE-t){vy@;Dg3sotej<#>yKRhmLz}O<8 z>KPhhV_=LLW~zVIt=ivZs=E%qi?Yg8aXYyFVT0 zC?F~Tz7li=F`EB|G2gAVqqajmMZM2B-c}jMn#RcRwz&J5%*Sk&1{A=|-Ji1^>KX8k zwpEm3Gt^1us?Yo2p@c85IbCRDx^a}za%X^37>+_Lcw5kq8!T!LbIIwpm|)l03vW=LD<>I_;|C=vo|PN#f?jj zN(n&V{NRL|;K{j}lBZwUK25rTneuSNQj$_qx^13~jRYh&c{4LJH09jbG(8+Wm*uoR zm+ZTt^IFQXjw^Y7;YSQ}$CYF@`#=s$MlEPB@7(h|CoxaZ!g2#N6d=r;g(0p`BD}xQ zFYj`__U#|^d>9Bnq*0ykWmA$}DkHRlzM^J5Wt3Z9na!rK0K{8#@cR&=gh0)rSU$TmrKb(@n<345e1k=azAr6g*r)epZcft4VWdMUG1 zADzTuU|}+qY9~E;IM_Mx zjNP7)mO`DJ(IEpmL5UF<;g(m@F(Ggp@*AaHrLabWUTj|QI)s0TMxQi~3JqCj2L=YZ zyK^^po`HlsD=P~)J6+Iu&>xGttQ(u=)NhD?|1_D<()G4djFQWnr`8%@csldlW?cv7rV#+=68?ztl)#pK28SM7iHxDYx= zcWAe42S9`-7!m5>4FuUfa%v5g(xlX#G$C!v?RIBX`{P=_?B}kFDJHd}u}@z@sNPYW z2kSs`NNmJGW*(d#50ap?<~vUHV%U|BCr;k}FeaU6-qkxQXH zFJ%x!m6g~_-=HY)>B6>UwzyyRkBn6Cz*m6GYjAM0ZbGQ9)L=rtSC(Ejf-a&1)tJn} zhjI_@=^E7VqaV;qzTK#N4T8kStbvPQ?UPfWIIDYj9hD9iO>(uihu#gS9w&1e$rYe} z6+OoEciwe=Qx-Iu{xS{WWStx{&&Zfl-2qBIN+E=~XeGwscZ3dqlM9Hi&%HO@6t@Ovw_b)6=F8l(IC|y)JfBD(s%b{o7H&9!N z2gP+YwP~7+ChWko=A1iL_03mDf%nSli{e_L4@;Q@ve643@c4qTD$2Et zRMfC05#X6#m4r| ze-dkn46R2XB=)%AeVj;f{cx^`l=Up}Jv@z_^Kx?Mea`#pK_|`s$kgX>Pr$#{D0gSw zrX-noYndJ;uI0O{xOI5d)JYe9626hx+@?tM2kaDZIU1=pyf|`S+*jNd~H78RSPH zM?d`LWqRl9(P%qRhfcfBRz=d$<4&y%vW?Jp7)i5*qQm-weI7TcUE8cMne48$?uumKeQ|NApe4xC zY5wg;)(@ayLaj2oFhpL$kDp4a%ZFBWcDe#mFaVlBSr>r`;Tgk(fz{u0<<<{%j)cmI z8g#JU&NV4_^rD{JoEngj{M@>N2YD0Cc`I~#7NkP`;_O?*UtwJ?lkI|!+Uf4DZLh=o z7>mBzlb?b14{vVZn!37j`V2jR_!a0)M#MdlP`kSfMrI_s4{rmBLfbVL#x8eCQ1^1C z!1%l1Ob;|of&n)5ohh+g?gV_Ki)(4+{%ag3S7>rd%If=zBZ7M46G^DN`14EgEzso# z0s{BLq4^9)?HiTMYq@uEdtk$y)k_N`hkFRahs}RjQ2?Pd*Y)*vIk?o2B5C1!WAnyS zEKqdVu}9?`CZN8jM51g@UWgmipBJBTm^Cl1UD!|yl6(lV7iDL$c7EK=2#q4Dc(KgDSjCpR-UYNl45kG2q zW}QnPV2`}n!DIjdf!01^D*zP$;EzTPu_>a?agY>OEMq3nZvGgst4sbCwscnRCGo}Q z#RzP*+H}E5$o4XcUSOVZz&>;PKJ(z^apw>DG0sy!lKDMn4+sd3dX^0AZt6P%ZSt9z zx))adA5CY$R%O?9?ahsVbc2*2(kWdMBAwFRAzc#ENOy;HOQ%S8gLHQzT~eFe-|~5n z&ws%7T5HZV#~9~q{g87+5J$8F%DE@;wd%wtsO)xC1TmqG)Rm>RH3<=bJ=A>@-v{o4 z5?7TP$Obyk?jO7rcIP=lhAHY4S`(cO+kL`R)+N_5H+}gvj0UpzJf4ZreMt=x3(T3B znU$t5ML`T$z_7c3oSW;T1GiC4w;3H$bZsB`NNu)rk4ZeCl9&JT!XRNx=U%=33?2mN zp+tl>>_pkN>8<1@wzfduMw9PN`6E&Ahm=3z`$LPP@UW%XbI)geixD|0p6^)TWodDT zXdLcv^z}J>-?p>8<_>Ez^L*N{CUmJk%#x1oKlfI#n3c&V+WmUmNqWayHl@pjS&}=1 z{QVb+8ln4Fu$O*uHE{;@+3`v7vB4AI`|#4iX-wAl?A{A3s5JfjG&UwZ_9(1f!bc}J zeBChr@amSRlI@W^%2!+A5=;-W)6$l9n1chS0_7FCH|MY>aW?rxekV{a=yKO%=p)V| z+@LO1qZS6Mn-JK{{VpIR0PtpE{%MN`I0G$h2MCDCq_7(J!#~#lCqnPuV)ladFX5S> z#Ypz@ttE-hN}IiXS&_@vJ&Eh~EgW{-Uyn{pmr~%txlt4tzXI}rq(?kj!PCpjBq;Eg zZ{!GS>)v)d_R;U(d(SKxjq@%vn+708TI|2r7bex4us7p1(36dX#i@L38^GcS@a@Kw zlX>g!d3m(Ifly~osFbQ{hIlBL{QY!AIt+TkUMd#TyD?<(h*M|E!A7J#kHgnUNqGCd z1|zcu@`{8cWiI9U=$iFxty;w&mwc^#m+}&V{y9qZfWrRGQfN&2I* zf&BRLR!pLE^!1%LwN72Hw1PdAnUtW{I`nX;RJc()y*z zqICl0r|XgX2gh6Y!o``Yl7~Gg>ir6u(2@>s2KWbDlUxl6uU@@+@#4iN5J@Xr{{)eF zYwz+V4>tC3re4<@%Ft4G^VI0;s^_lnmoOB+sXT0LGrWAU3BZ1jq;z=UMMa+zaDUp^ z+J5=+B{vLem!LFR4#WO%-g<42n%hx}a>6UJ@(hc`-tXF0N9pw@EO?&@RZb`qJ}**J zeKW4nyZ<9eU?Q{$Jt#`}{W+KjNXkidTC+R+_XeT~FVxDA?;kApaavuu&r?4+X}vJl zHY8s;h7%LW;J_BgNTy+~YJR@_gNc%Gb5KoGGB4r-;e)0pvFxXx_CbV!tWCd6qvta6 zi6wPHpB)YNwzn_)oVFJtP^?ffJjs%0k`kwqKrb#_1@O$e3B&Q~yyaN)1ccK#%X{st zE&LCjJ{U>jeUmUc5@X$D|DbM=bh$=re6yNdy?A_ebp=vyoDF5))6x(T5GD_t!H*{o zK?z`XgsxY>-oX!uS>Y-P32qE?2jzOIEITrY{`=(Ol9SC%Or}j~|4mU6h5~7}7};yX zNH%$ipEdIF^I^ho_|T(LCqZAjW`(yc!bUdo?}E^{w~e}cK+Elr*fimGAy?L40`!8<8><$EwyI59Dyj&aiYH(5EW_H>e;$sWK4+>B4_-V;FtK7ue|qz;Ez zo!I%G=j>_N8YpD-XcxS5JQ(ciHOgJfg}|@cBhrI{Qcz^$d7eZ~Pk#VJg3(dz0RcHp zO-;tKZn*#6LVod$55!6ZNGNW*WY<36M-^pJ$UTO!2l2~P)qP! z2JI2gBC_B37!bTcrR#%F3BC|^d+j~F=lw)10OwJX15c~uvq>o2Yo3218J3v88iK15 zyNrdB^m2Fpgc|W~uoz2N-tLuB2y_blis2=70S=LZ^jn3_KN_pBESXKzI-mgPC2MIgH&YVT>38t2H+tV$vQ27)vK7C*R>*H~iyF zAKuj9lX);ax$Md(Aa3OTR5scdwj>YCR&hEVX=haQ9y~Gsgaz7PjxHsigiOc+N^5It z4ta7FZ;9lKMiYX(!3F!)LrU8OSRzt=ThJ?m(>=D9;QL7Gc7DowTc4LH5y~8)K4_%( zzuQSh-U<_w@rL-nRr0~cUi7ta_S)Dd{(Z z=IiqTeBcX{Tz}3iWxu4AqXAm}U!bmy@^u2o7cMUD8|qcCIzX48f|F6#WZJ@UHr11? zo533Vd*=dn9w!xQ>CZiw?lzZ_`sm7(lyz0j%$l~j=m^^94+Vh20md{N)<0WXJQK`_ zYhD39iU{rnW|=Ei?#YZ=@nbp?4IV*0f;FJ!K=F1i4Qn@4MQSG-sf@M%y6GR)XneBlJr2F>x0vX4%MY75v`}Pqe^b=l@;wKI}>5%aI4p0Wq>OCKpf}vOlNGj>zSH$_azMxTfxfLJ>$h z?CFt*q+CSv;hEM&-cN5)b2Ftis>N(unk=6^A>*qJ?xV0p5W-?BdqS}v?YlpvD{^;H zVkd-hlZmxSyeWwbqHG~ZU zH7y7WlSXxEKQDuWgIizp4c)%Z*Ozqs;xcz8H*;^BNxx~xR>Z#-dK(9>KPqQx2f3KH zo?E%ny|+Lq0Aix-feiMzHOhs4x4}0xqr_3Vfv=Kuw-1+Qf5B80WXDEN6rf9q2?_8| zkd6SzgbXG3kn{$HftadX+Tg+*Wo98*O%W&c_5&aj0nO@U72N+xNopXxx8k>n8$3pd z*jTl8m+43cFX;T?Ns^P_@5h_cQafoP<=7=AQ3y+#PqtNZ&PPH(Rg*v{856rt2{VNW zM{Bd!wg*VCicH~d2i?k3>){;~PhZ6D<;LH~XZx;aj!-O%FK*&@=I((67qIUTG_GQ1 zBQY>C0=7Be>wucb%*@==-MwI|#B=Ji^7J7E(df(1sOqOJx*S+wlCFY;S+I2MP{#5X zkbXTiT7eIF2J;ATbVDt}Hhlr*!wlVYSAI8%DQQkndk@IjM%|gw2Jm2?Z0lDeL&J#` z1(&D$Yk&X$8qttjA=N}Pv`fFK3I)cs>u;{aS6Or1?T+qu{|cIafB*8^8xim(|7Uoy z6Pg2duv}4r>>SRhS4++5Yf0A{{Ld06=9BU;U#`(jiPQA$Cw#~k-Rhq?3R4vq%D z?{blZQ{qul=J$hSPl3oZyeQXRK?JsNGUCw}fVA=Na^n4)r^RTtQ-rrBd&0SyNqi3qL1Ml zqK}wN!tbnv;?A57lIu0qok_Lp+W{rdCo&_LGB1tfC0>$9B6)vJOXY5ZBupS0n=vLI zrY10PRGqzKH;HVqDm3FRk#jDbAVnBv8plYc-ahDcf$J1tJQ~Uv_Ar06KIV}b#2GkK zK5Hkoiq%*r%qt`-C1r8?x(f+xpa*TrT=2S%0=>a*BMNFKDCy_x4v5ewpzni(1hX>> z5Ra>BYjKEWVi6#Y^k(j?SMpnoz_=yG64e2tY`ZufEcx4Z%g)Z9jch3bw}Eu_6%;D@ zEO!8PLfl=v`?h#i>Nk2%&Nh4P30N*FikxVR$=K7ewZP@KQNcxz62MfUwWx z@$~}~*!F;AQEd}?6k6q^3%p9q4lSfXqR5z-4S*drW5c}}1Kzq35vc8kPoc8cKq+>f zIGvbo{A{H6CIimL{`^@*U;lJxC(ygLskauBT!@L8Ij9~-3NA;zmlV1_r{OL?TE96H z_k`{Xght z&b#1!0%#-$qFAlMZj=nw}jVKHSj*ye4Y+`v-*$x>GloCrI3z4h;kMd7GE0lf%$|2v!`m; zg$_IDmTVsJfR_Y0LJVvhc_}jA1&~;Y$#>Za-1rqM3TW#ZSk55?Axp#)oC!k?mu^;p?l9xGYnXTr#0Pmi;y1CDC_Yu+cxNCNm?(WQTJm6!Hl9BNb#`y!RF(pp)Gk+x5$tRz0u04Ac`j{%2ER?3JG zL8rWwX4e2&TM~IgddK?#6Ju+DnWop|VX{hp*<`8s$RTg;tdK;^+rS4>)t@9#{P1$d z?3L&AP<&aH-ajCRc1)uhYbo{8a@}pC^>%%uO%sj}bt}bV#LvJ*T~~nTNZ6q*@=_da z=CTHDHE;m57K4cxc(-l`0WJ`#t{Oc?2ncw8Ia?D1qn$tg)u?HNbJmq-Rg*AnC>MzJ z2h0@&s|Pe-*eM>X{_Blu40dqWbD4NRwlLxoHO$K?FV#(c+5Q`sgS+_+doz^TAp& zO|Nd{9r7vH--Vwh*Yf}WdWWH1Ox8mKyH{PXky}Oru-|ClwbZrVwORmr^8S1oJsv%NG$ZEq#@Cr}*Gh0&)C zr>*1WkMm9dT>*XV73nQsw8^xi#sGRVXK{#QjDkldurIpj!g`Nzt0eWuE60AYm;9%( zPdK0tC=MXe#yrwDGe6H$&GFsUEUh~Dom~idN;YjSr_tPrR-@Xyu)YBZi-Tp?PLNh| zV2tK&LLz?k3i|K>L`OJW2u6Aw2??OWWIpy^RPmWm6%?467WDP@0-y%1&2$V)@gRCj z({&`t)&EXVIQUxsu>0&E9P|wge8hcX;3YM_@};Gw%pW6y@3raqP2TicUf*wLZ5*-R z_u+nXf$J?2^P;HNc4$-aqxET{*`FNdkT6V))NuXw4_;i~NCi40cr2i##@FCOocbBo zti-E1UN*#m$(;?-8G+F+s`OdU-u$2rPRaqJ+Q;`k8^XOVy^cAsO+iX+N~mC)ya)Ns zd(sSYIrG?5(jOG3hTuuS!0=CL2>JknQf+K*#;Io1O}f9u7$sa_m11~M+GYd&l6tLj z_qs8Gjf7bjX~B(a^EMzXkdTn@G?DAKd+`B3qPBGPi=1|fBER7rjX!->uk|FiCXH(U zxO8X}<8s5l1X|?>5izmA=xBw6B0X8z-?i-f5il1I_2^{#x2O7wdg9Li)$Q6|?{IFd z!9vP&d`}I3?562`eCo%=g)rIU;0Nj;r$>>lhWZ4IF@PmyYV&{fIOgKQ(h$MUFwLBh z@#lPHO+=YNYT$($@Q!A!GbpwxWU{AR?`f0-cZ*Z76LfO6n(?`%$Z;GDE`iJmOSv>i zHcGDPtFehToKMJ8E&&#CE57NDxVXs(LRL*Cf`HKp&x(*=lG=**Kw=?}lS%5&+m!bc zmzB|A0LCO5ieDekC2oN&(~d4JKmV<61$hp z%FW$tG%v3&i*kr%dY?&v!`p`s*bzYkAk^B}%FTKkwsAdy zpsGFjL$<@K4Q!;qEZh-xQLn7%t7Y?Ho5Y{+aQZtr=ev%srX9Q%cws5Kg`ZxZra6TE zpk#N6Y_3VFZlq^qBW(lZ7RBHg$+Us8at#0iEWt1Nb*24{WOJGnP%r=w!kSck1QLbOT#poSLEEXP?9s9i$6LD{Fz?>jW%aJ+Y@i{Ge!7wN_7=prN+*pCuKEP< zLk?^>ui(D&AVUS?Yo8>TS`E!RO!f#;-&{tgu1d3%)5%}>Ze>koA-R70Mt%j2Dwmo$d>rhj8COuzM^!_=Mf?*0ac0WUdOxe5!n z2aM!#YfcBsLw3AOF0rK9N8-P8*geHNGqH~rU{F!BeB@n(IW({H>Z+=+(B=AYHZc)~ z=SWw|xO7^t2Z9nQ(yYMwTYmy6F_}4du`hKbEqf@VAJr;j)(y?Rk#%*g2WF}S!nd-r zvaLF`i#8V2A8;V4c5UV-?_C(_+OonJ*eS}{Q18G!KR&168Gw1lxd@V4En(9AGlD9pwbj;ftW-o_XDf?j?+^PoQf0qnW z>Gf;H|2;VJd`(PDFfn7o!^3Id%h_cXg<`ywJ(RbWwupU*In_zf`a2C0|8LHQEsyPv zdj~+Dn>W78gRfImK9ASUU z7^!!OpM=h8bE(>zf4SDy9U6z+yS7q`fb~OgXMz80nzip*!1LJ9kRr0RVp`^8&&- zs5S(4Rl)dy@(t-MpfvzPR@=Z6H;flsly)EVx_n}uGOzdnXwkT3uxuzG;HkxqV8S}! zumAZEzU!@-)6XppjW&zNweElqBiS1B9Wfo4N%3a!k;S5{yx0IM!`ex*Z@j3m@B=NR z0~L}lG=DSF_dN}!OE9IsGCjra`ZtWOXbMNrndPw6a-0nT+}gqpycxj20o;IGDcE%M z^vDV=9pUBguc{E^Y>ExezOwOk?_?y}~B$mjJ{Cf1F)VdS@}GyNlJ9go>6{0cq? zCwHM>c@`9fIO@;A!Qu{77Gx>`0}zjp@FU|B&R4Dqg@fGo?NBTNq*J7^{J=zeExd%F ztoyt|olh}wfeMiZoj0xLh@&pP@qB*W0W%27EFwo~6@f_^aPd z<7c34*s-B?$RPyN`x;`yqQXo7Pfkw0a0QTgGb1T!o&*e_?P8!qBcAXbbEGv_p%+@5 zNgFBP`8*e$f`yxucp~_vP+weN4M!6aO(swes!?beL@2kkba-)b5%g7O9Onsu>+wU` zcl<-M91Thg%_+LQu;_~cuo(4@Wa2PW?0NJ-G4uoPqlgxDt*6wB6^^+a*vW^zsEN03 zTlzkX0_G0;bJub}dGxq@ygAzlJKPH}PS(7p#Ld1iiR6c-hn&>2sLd`UazD&*(pto#W-WT^+` zh_m0UBAzkaO!X-!C@4?Q5*rS@Gj8uXoG22b5r{dlUC1QLAMM@G2@)a<_FCIXzRWW$ z49|?=c?z5j&VpVZJRj~}>glbP%~yGdd!BeVYh2e_fd+HxeyVkAKwjuv7TnN7M8n{S zwM;n{g5ellx{`9Ua^|(bE!)Y@n@w$?*sKpDzSQzXNqoGqiqTV zyn6z_s`k%a=3Ct4;M|F7i2ieeU3J}c0cbMKa)Jg#0L*3+&*)d4zXsfJp1Ol`tT=*B zA}*rP*_5(Ju*6DgCFoq;w}Gu8!PM4q1u{gy$0_U{4(QFGuujd-&s&BA)|Cn!-U51i zG6*b>eP_#$@`M~tS3}U$bX_*(t?ZBp3qc^-6*laHx39JHcZacu8-+qxqSv18>j)1zQ3>(o?GgInn^H z%|6t?r8V-AbWgOJPkDa;^O=5c|m<&)|0XO6IG_KD#RAyq^Q#M95_4b>R- z-JzSD0W@#YTbL{D%<%cEmU-I;k9JuzzIi?g)pURTWzc#jAFcjB#9ItqB=6+FV^k8eux~Rbff4Ny*Q{8wO-sWYBEkW0KAhI@f?1au^Z;O~L zzg#Yh(~$R&5j8^JMA6^I0L1Q;cfl`c)=1 z&c;~THh6zVE5m*Bztt~LY=$H&Bcn;(a|ZyeSf^m5OA5~N$OooM2Q2WO{gK;&L4l-^ zr+geDsst6>WRv<$DzEj;BZ~6=g+phBQLxPL-4^XkTo?(=8YVG3jjYiXCzuTP_(jNP z!=?X&a6NH3+=3NGmgF1zbVW+Aex!c{ELa8iaTl@b>Q!)mieAy@-oLZvz}e1RNgWg} zS3!cX@tj{@W_CXN{!+Y@BW$+)Y2WQ7-0#ERAhN6j1VqWqXex9ZjDvG>b`SO*&XCM$ z-uab_2m^joXDMx2V&4~%C%i1#<~*YtQ6J<6{1r<7nVP0)&U- zxZl=%b>=vpldi&z#uLu+ydQ!ec;Z!6tNsL?KQfSlUS@7Mkn;$vZSf|~BTsbUK-I`G zhfxo0r%3Gaj%{vgZh*gcVTHIGOwpk;eZogug&9E)6fyPC1cb44PF?oyiO?YhB@P?6$E8xun2qpzF1Iv03_Cb z?J6}$ZZ%CAeg~s4?+di<@poEcUEm;3tHzVp|MurmdZ%Nala|3KDY?P8-Y=Q$P`K4` z@Y&K-G<%nk`2kTfPIrw z*tzVtI;sEVe-}VNqS4Q8oOM5PL}AmnI$BjCs7y`f_B!Rof=-xt-&iI9d#% zs=#;#m}(Tu<8Ix5YGVL;hdHLu8g}`lR#zoNv?=c(d@8iY&--H_-KKffxm9=ri`;(N z_xZ?|2D3nq@)A|JzY-T=<{a{b#=s+7rv;S z1_LHX|NH5`eM`Zw8=7W08+o`n(SgfE^9$G@wEyJmVk{Loj89_VHIEe_v<`^EjB<=~x`N%mj}R$xH6 z9d_JRBUnxZmHq7n^g*(@>dpwnUatTHF$XFmrmw#){^05Y2RVi#hD@>yFJ8|F5{wO3 z!PRT31L+THA4HA)0qpq8BuqLg0hN@4=zMpq@Na-hPY^ID<9#D|-bnePFdnzn!d|e8@H!Gkw5n&~8)7&;ktf5)#1_&y{sdoVHxpy^L}+ zc?)wf2YU`LzkF{``_4S!rW-MIhL8qekd8hdTUmHsF>6Mw_4}|u{+xwFA`L|45TXB_ zu379C1S6aZe;a1>on=Lhv7Bc?4_XEZQ-tYO77D`G= z%#tuvE&>^ADZpFz?L8W7C_H-%bdqT@E8hKAAfk`U*WI%p+CiAUu?v>Z_s3gKOr@Yq zN#jBD!M;PwuMs5b^w3&1Ec7J|5Cu%F#19EWrZ;YF92Z4LI3}@$kKG%0E!S0Mod7X_ib=+5P@P-9jIz}s0-^Wq(q>Lv@qQ+;QhY-G>umU(A7ToX%2z+`L z42~Jz?qQeN8Z&-RLDT;AO!5T!6UVD6n?jq{#`>BXp=+Z_XecOFMr&h^QQP1H8??fj z&9R}hS$bzz_IXZN)|-28j1*uIK)D1bt;-5d#nX3#FI7E=Cl93c0H(6EcwGo54v_n4 zT4WBSH!Xa?a{{c-m|GJmk?Tn(vHl3=y}}h)kcd7MbaXHyv#k}lKV5CX5_|H1dj%5I z9edYNYbG`}1&)U~9>S?_w#~_AIqqLoaCjohIICs>gy?^eb5>FeS{|PHv9ZdbVo@M^ z%+9J+hqEI}a?3sH)e_8R;)nT?3drEB*cc!9mg ze!U&oSu13o43e8$#jL`p7?0L7duX-CrRTS4Nkk=CyF*pj7RrFFu(Qdg6 zLHgeQ!rS%E2*OL1kD)$=^Chn4I-46GCz|_&d3~(lj;_)b->Z>j25c79(rVhOUVnPH zwQhMix)MFIwz10HVC_TOD>UVE+*89`pmWtWKTop~+-JU-EUlox&Bdjrs#*?ytd!<< z2@iS6lIXWC5@|0|@i>U7BA5e49b_ERuAP%(Be9Z;SpUffuOK-@B8AGC85w{z%#i6bJ2z*?(zGzeKDl)w_N1t#wvM$H!7e5l ztqr|3O@!flF}k<{#>68XW~)0n3ajGNxAA&kI?HeE3DRLT!dTg%7#U3KW1Wr#8zRg% z{`h2MPge)i>mMN(9QF0}zxZj;1#upu+#b?>IRr@9+}U)P>rsBAG^E(WX3prNqII_X}c@6TXkQc3_{2MYy)!FpH6a53iU#mUqOjBVzzy*2U{+Zr#FSpPEPb3DRQV!Z> zgMdu}CYf@=b|JU56YcO_elN*b7vG9O8N~z=#-dpsEV~ z`?raerYKJQQ>FwC>lIQh*l%hr94Yq60=*-9$TT=GaHYc+mJ&_tw*6!C+goyVdz6Lt zY*nVpi|Tc8EoJ5payVu@WpT7L=_Lmxi{O|f>+Y>({$?5KccVOxsJ^YdqP@#Zn4pGx%PJQi+n8$d4?8{Mz071xq@57u+&@g_%wSL-;Wy?Ia#=}XGBEh7kYfYYt}r5-0!ll9GmY-!hA5?Zpz7K+ai&_VCc^~ zMM;^|x^KMr_ZuQG@q(!>Ks+m#jCH1%=;-J?S7F@rCYnBXb+2xIY4dGGD1P9j^o=oq zl_`38&@?+-4v6No=T9KfR&FTBP#^g^n4G>>Q){X|YY4${mfakXXm6Y=c=axQ6!4Q8 z0ekh9$TwA|!ItObD(ffHm-EJ{*F8jfA+^ou;sVh#?-J9s!|O?@FNIAAxV-uHw6QaY zTBp8JtIujy-WA?$lA8d7W8roVK9bn(uU#a1%r3UZF9 zWY9bM!SwBr&%!g-8giJ?on%dat990cXtj z5fvC&x!>F4{=Iq%@D?k*9a<1}Lp4_~C>6c_FKFlr!~`1a^q%|Wi_EM`1Vdo&a8?GI zGwJdrOqSa}Pz5orZNe(gP0&M14IMR`g_-c=G69vgUPGg?g?$-zgXb0)dSV83s70<{RV_4w;Ac()j$dycKYTZhJwVm|m8 zB*UVHWh=LB9#JqFRbyN~UGIoV!oNz8;DRv8q{Xyos2aPDW@;F)c!v6q7*3(3^jX&^H_U0~d*ouMW`-b*ga>ZmH!WqJvOScKfa@-w*^ zIOj{d`l>AAAwpIktCTS*U7}*WIQLZ`YW<}RH-IoUPgxj_fQVbVxZKjZ2_%iLg9PIG zh}6_>cG%ITxi>msf8V$FwEroR^ubdWF(P!GEh=X=Km8jVB#lfn1JHICL{8M3M@?6hGVJ0<{p*h-9X^Ra8^2eS_nq=2mo>@uQQx3>wHR{jEpXwe zFw%sv3_V*aMGY}h@m<6E{P2}#kDNh4&&bU5B?qY~58R4}Y8kZ7cyv0>tr$r^`6YKt zWf+`5=f=yK$ephF-YOIFXzH><<`_+Wu%Rv^Jw16IB-5#>5nzz(r>mOQqr55cQN4G~QW>o2R3RM}nIts$&maVeomnp~RBaQfzBU9e_|&b$$7 z)=(C7djWos|2Ma^z|PLj`>*FYQ{?_7CG_S0{RjVv7T$1I$KMk}@M+H2=n=X1RAA-<@a&V^j&KX|ay0<7l%v)EGQHz4cdB>?}hk3h_uS$v~taJ2do zq4*4MMhSG3w(kp>lEaln0~RTP_*yif6<<=v^bsTJaqcUs-v6xpCa^^*JoU!FAT zF!jSlM6a;ghlX?d=>O*p2ux485+4ubm7*?G#?c(exEVuj*E?i_#npP;0 z`c$TwK(@DYJ@Iu_adD`x2N4kwDLZsX%e3*OC*m=wDEr5>jo@Kpv}s}*I{9u);x|xe zc3!MH@1M=@1XIj3!dV$A$^(^=4==ebD@?V+7{b?}&iNROzwErIP)880(7f<(N-cee znbbdh`cya#%qDH%Z%51_m@k8HEK)yJZ;ijad{5 zzB=+MR(by(La=m5EyuWxP}~=lV)=k8ZiL}+wOVtK7VCuf+aKv*@BQ|aH$vs_Q^&hh z3WpXES*59*JLvao*zz=f=1ec5kLu{LEb^Se1Z@Zz<3~p1z?O<(m8JD2l|s1hzett)G@X5oGTCd|nfZ$C=Bz7=FNQYI#>Nv{ZXsaEP|E2)5>f>XZ)8UZvEhaW` zHY2Ugld5{2S%$}mXu>A(A40u8eyB|LO?L-BVk2W4YoWO7v@X#n3WWt*KLhl(aC)eX z7L9)0Go2dZEa5B!j(G4h3JJHDEaf&fLIK30Lr(Jd&=3Hp_TW&wgK&jp?myoz-N&u= zHIHbuNsiy-2h44%GwZzkb<(=C|8s?*GW*Pw!1Yi-^-g8=C%Hd3uI)!Zm1Ou!BAlf$ zD%L{!S;e1d1tUM%Vmqvi@<0c+L#wzkYQG7oU%mv^27T|J}JEuFAyYsOjQ; z2D&fW$0zs(wJ^9>Y#oR$4(aZ0+Vd|<6f_A$goK~%?DWk(l$D~1bWH9qAnfQo9m9vqQ*q!! zTNQPq{}WB0zR!-#izKnPV@lTcQaUtNJ2X&J!`C?l@4>U|+L$_f>gm#aWl4F(Q5ufr zNsI-Ev)X~j_|t1$b9Y%W*B3nS&mBKhpjrFdnM4XwHJaTk@#biV~`4+1&BpvSU-2y1S75g$BBmG^) zifR}fc-`C~=5!y{p(aSX+6*!|wHM3|EmfF{d3ii$4!E(%>QzcS3GngZ6FhTbGjB7! zrFuJ~QbDUOEdOgy8bLY_CC_$eDdX#x|0?U=6SRkZIl5$K>JrBji(Vp=r#@h|OX|Cjcv1L5Qt;I^!xes%blH$b2b%k$L7Ok?0YSoRMU-(2`$KFLS9SH|l$3dZ zl)88t9Q}RbvSF=7yO^0QKuE%pl`Cvgx;Ddy_(eUvydV8~;=#yNVMjPC6$MRXwgH8K zS_qon)V}m=_BKfSrRyQzM%TQ|W#Ux(ATu5o7S<7$*qqRhF#{w-h=nMfxT%G2cdgTb zunqT;8-^tbMY@~mn~CLdQ~ZgF7K=&l88bBZk7r>PPj7aP!(K)HolF7e8(;@Zr(!$4 zUThKSbz^Qk?fvlAYQw~zu{`4?r7HSBkZ|=%k@%c7%jyT-+bG(d*6r7|mw2ft6gRAl zNM!GWniJKKj<^$l`T!Ip^oq;W%X=FePfbmtE0XCieWlfz5UE-6@(+K1|J$>5YYPk2 zT`D$k+p&zX1bwblH-->YKA2$p6>HW#y-7akDNo?&W`z2@k@0USs1(|+kKw2 zbsw!CxzvRz@KwRb$~Ut3Cn4QA*2(cI+?pv~Vh}~nN>Mfq1A;j;;f3Qc^;rPO3O_Xil@fDgSI=(2=hQ~^aRJp|T7)s;V z8ZPbHfMSuy@AYYsnO|h9Y8Q_I^PyCkZE$EvOGoEY=bZ?B6q=u(dJT_GbyrXk??@hw488(Gx~3Or9JL$!wyDc^nUZldvp(A5 z{1huS3=Gi0S2h$EF5?RejcEnRy4U|6j53AKsxsyMh&hcf1m97qXf__nlyDVo`Z65> zZ$4vG$aDKr*YxzysbP|z*<<}Uw&11Dq>xZ3z+8Y|$*vU?G|!%IR+6aNxbqjfH)Pa8 z)hM-=(o2Bq>6c)y(7!Wh!4%(RY~f*rF-JPWg*l}#1^tHqGq!F*BDXZA7*b~dq zMHLs_+x^HMqGN^&feU#1z~P+~aV}^MQxDVLs}W1q_18Qvh3ay(Ki+DdH9cQ6Cnn4^ zx$PyBFb^O_7;JIR_ot9d)4_`OLFe+39q~ORX zJtB_C>T5^Mjl}0gm;GX&Gxjap?Ac00l7LpDK$Nau>mwtH*#NW4$I}PN*fL2kuh#l{ zSG7CSrj-^qR$kukU52qS^J|a|Oz%s{gyaODXfmd?nm@a%bS?tbfNoS5AZm`?~2IK;L#if>Jlx(-0YK|%QbSVaQ@;t$vA;ye{avq2ubftDVjX8OrUH6?~C*${bL^nP*`c^M<{(#$<2zPoCYENwb`dAyT{|SY< z^Z5C$O!-IjGlHte&vqB51t$K?F5@qy9ibgwceU2@m0M~PB`QVSwo4<~!r7P_vhcoa znoTzuB6X_^eS<^!5|+nJmj0D=Ia%97NQAZz7xWBC_h1iIY2pe<3xHwa-7x%yx8tS6 zYJV*J0SB^P@>^8p(kJ?an0Ma?AGwg@`$3yo9dO@*3hD5P>7^P}9rD!})XrJ2vfHmW zcIT{yQrxU?dBD8M-UkGvJ0FZOY*DJ#Nv$}fIw;Q1si~`1O5B5D2ln_3^!FzhU6v)l zNlDX63)h&P@E{ztTX63ZpGWn~%+!JZLd_>6L`3z3eJpEU(7NwR{7yfo3qR(Ezt$WtVQIJ^y6Wq$UA}CfZ}Cui>3FzIl+D zp!%IA^)`>2>aoR!y`RCBT~VS|xcFtDB(C;Q9Zn)a@0lgzJV82~4bD0D^5Cyc9~79t z^CZ-5^6dQKt^i?ywEklqd@6Dr0iGI`nuF3H-LPQ|V-x2WEF^OKudYzg!a?6%m;_CR z>sqnA@(X5zkh&^tHCQhfIYb;_XgUotP?S+{sh;(28Lck=`tEyUttu2?pb8iAfq7(1 zZhWXHaVoWSib3;=ikceiSdwZ%QB_s_Gm;9=0TD5Y&xod}pjdJnEZ6>AO`nqkPbkGz zc=K^+IQ*<55g_})RLVf6!ADY77WD|9Afn@nUFfEZBQ$Y<-EC9d^u%xK=O?ynTCEsN zECbpLC8WT3HRU$iIQTQ}WK+5OmRVs}fiFCH7#}BR)CQ-k!g+Rg@~&Hy_CDw`E3CS1 z4L>*9neaA-DXf*tB@6pR2h0Cyzk5m>oh|ldasZQ@_{_|w>D1yvxK5wzA1HhVnUc9* zl<8DwGWt6eIe}Jko>$mrb!Uv@vbz*ij~Q=qblI6c*b!kf;veZ)@P+Tu38gB4l}F)^?iZT(@|i^V=lNoHk&oh~?A?AyAeXnH#0EIp=eaH&%THlv326oQ zU31Pq@5~?J{|!-h(i7J8z#LSc7(&A(3DZoyw_mI^OXq%@LRyPC$lzJn+XFqMh~v)7 zyj>h1ya+*{V|>AFJK;}OMBZBMc#EkxHkdm_;??@n7~rF<^V8F1Rtq@G8(>gFBOKLbi~u`eOlt_MLre}^nBC|w$fI!Vu6qc^IHVQGVDgMiVmclIwF6}3`0K2 z#@*xM6i2z4KYegwNJoGc1KhLDY_sp<_SDP_8Zz?T_L)WLnyOuHF+XkC-UqjQCGPf> z&?KVd^e}`lhZ9>(gdTG*`A3hP>o_*dfh*;spkD%Rf@pTWZ!F)GJGYcNljU)l{u;8H zrkKX@aG7T%2*J-HvwLk^d74|fQ(CZFVn$?6l!`kPB1)7#(qeG7RT&*MTru8YC6tk^ z7cY3Tsky@2Qy0<};e&+ecZ-S;zyC=Et7$0s5~9&}vA~aOK;WHpsOT&TxH<8HT4s zZ;7JbYV;S~2E0vGl@e7017RAP;Hvi!_3DLj-DJrGjl9>}Qa>H0v%*2ME#aX^g%baO zHW$}po^VaI@cNT%`exWTtB4}n5rl>JDGL)uOHTTRtr#8#D}*16$?NvDkHD7`?b*AZPDkHzniXa$A5j3 zIL1SErh3-FMCc=?@WQppf2trk)gaBFLMTEH{YKn&cj@&{;eKJpwCC6Gv4^?TEA`ul zJyzJM;@GZBpJU>wMPR-)3ttsMUpE&(ttfupr@74iGy$rJ2PGl>ui+n0`&3oGq`?}xf=ZfxZI_@SP3FHGrT+Vg~dip+&l)O7V6A6xe++tZst?_iSG6z{Wh z$8uYeTp4^lQVx?fF7fY<>xu6+KlBR7P7U+I^FR}TMv$*gKJdditLwd8q)cW+$v3#- z|Hsr@aAnzbZKD?;ph!q}cPl9^UDAzocL@?wN_T^Rba!`4cZYO$ce9tz{eENYe*o9H z)?9NQ^N10M;~~5JBsqRs!F!(JNlZjYGMcAe{6`Lm4~3lHSpw9rbc;;_Le$Hd+vkRu z0M6210?l&bKR7ZydWKh=Hh)+5pnu0s%N~NJO6C-x1AQI2kFiZe<&{9kRnbbN1ByMW zl4^9^3}!zF&-Fy|iHcGHSq#Z9BDnD>Z)kUY-nyBDD?3FsV<}EiDNZaR-@TggsP)yo z-TZ07_#(*-#!h{r{vku-8)=S7IbF%nkJke14ngYrx3C#kP4YV(i^C4G+7)h5Jg$^` zq#o2?OX)XTT@OI$i_^z(({YomI*`l0NYiu0I%><;p!YO+8_mEr0sEXZiO;?A7 zGwJcSgC_58rL)GtXaqbR3K23o+LA2kW^?IfY^fJy$5kpKuXkF_FwCYDbB)2HF$$B) zIc@Js@x40I24J2sp)rVBE>NjTpP5@Pwvbg%vxq|7(64f5+IXmBre)%i-%pWEK_fyU zkUrVe-{liM8Lv=3TR_zBnC4%CYHS%v#!UJG=|8wvlpY2^ja6PU(&DEZ$zN;;wOEG| zEjGKm9R$NZH3hwO+@<4k>ZolIAED=WbVTW6$Umt@1uM1>9fjXlxGI?p`il20^PUqe zr2>;LK2V&`CIFAm6%ezhf4(ZgKJM-*?&T(I zaM+Hl9nIdms})P={wLk4@3e#(^BJ^n+tlFnR=f;eQd{ikr439T!+o&oP9l8;3KL32 zBGS4&0?98aahUQ<3un;x_v{0YfHldzzi0astP62 z@d<33#gT@f9;%|y^*X@$%#Kf?bn}Q-xgqLt2A1;n0Z6xmqF<%yj4O+pKu7NhuN(D z*(d#Ve)O-~03R9Sgy6&DUZ<+y--e(JI8NE&W9oTD`A_*Zy8{>By4^`(=srMR+D=wG z2ZG*Q*RXObHhgt`DEzx_aP&&#dw2?m^U@5TsY==%^^}LzI{@SVij9xfEKw&K*3n&g zuX>bc#M8N>T#EV@0Rg016^^rwrt(S4$px@ZqZ`#yzxGYRs8=4*N~1P^IivH1>h9(_4kY}R~?M1cgCt^?<-@;kHWo8d@t;#Xud zI7)0im58{iwyi7NBhg-_Up&rteS$F5M?9XEvoq6AA`5Th{N{t5_-|={{2{hh%z?VK z7d2#+MsQdsgC;!ESyF3lb={+Y>cAos&eQTDL;}?tD^?H2?iWqAYjWWms1j6^v;=&J z=_sAQ>G}E4&`{wS1P%@kz-w`IEx&m&(v)kzHDk!)l}V0@9P8{Z!?2vbG^HL3_*a=N zwTw4*!siWZsSSF=yN_HGiZA)cnZjz9Z%6%pWZqe_-8Q&>ne?~#-Iku2xqf`Cqow5& zETn?tooRkhtb=9E6%6;8{KKMlZ=_X;C+RS`q@|5bX-0-V``xqsgZsmEm}-0tZ2^gS zz!tK;hCaalDAjTVa*aApI_3fN?IG~gBf$3J_%c&jvM^BdbaLhOnFHPP8)UR2)9bnF zu0F=ry`jQp@3FJ8v)&ImyHx_ziWIE8%dDH-noqHu@OGo*o&M4i0iq z`j0=$10{MntbH4TzQL7ze7^pIw}JulU<1iD*MN&v{(iAq{);lUIo6jZ;ifjCCQi4W z>K|eV%YZfi?e}iBy|lc-lL-W)IuI)IxA;u2ny9KO)(odg5U{HH7o>PXd0O87Hblso zIKv5k93V+=db2Sp^vAu_BB#Hwv}(0{92yp1hB9htZ6u0Tr4I678i?LnwP@_?@;9m+ z9T6?x-i41P!@&EInw(J(;+cZ9%l5wR;&zp3kYUF>T2zodU|8&UW$X}hF|521@$7e< z*8O!#F!hr48l78R#vQvJ)1FpX^SYHgd6@2n5|WHsd5#FmjAJd@8(3 zg*iAlN~u=bnwuZNim9y*CAssPjAKeZ4=Q~sK$D(n4h$U(>l;WoldOvuZp}Pa;~|~b zom79|Jgqr_@=RBne%bwb`>=+LLcm`QHF zC{Q*bO5Noqex^#%jK)K^DkyU^JDBL-ppuZ)EO#4i=q=-?G}&go+x2{0f>iV8S*9sz zX7P2(dW$iZ%01~|r~~atN%21pS2DT}6lO`=%q%tQqRbWv z97Pde1E$A#KjcqgXc%k0eAw!|Xc1Sp{;P5p>ZRTgHLvvZVZWeaySKE0zcHHI(uo7Y zuRVK(qv$L5;drhCH9vNS*NW))0?2k$M4ueI@YJ7JJ&_IcDieDIdjQU`74Pb{`IMiO z|AsDRKxGYv4Gsqmhhuvj*67ux{1GVyWA*Cap8zX-9Px(3?Mhb|Y2^v|ew*DJ^BeuQ zWyzg-C>XEKdLN2zZ2zd=wf%vVI~-z;gkq(Vmuy6-X{M6pQ4CrerjhP2X7!!pa)k8j zt(Ikv?;*m)s9eW4+lj**ynC+4X8jo&r*>mY&pj9?|so;A0SrO4)#=M!1gX z_mT9(1NpiS6z~F`1uGcY#lmpsiJ#Hh^^QJiL8;yuplzy*ujOw9I*hMaGmJmo{&*oV zf#9d2ZXzvaw%sPyz(QBX=gc#facqhxE@#!u-%qEf5b0fKa zbDJ_479U_5z&QdH&mujWSh}J5y9Tk!Hw}ACJ~OQQJrW0IEY@M+gvz8+Rjmdkg1O(9 zp*lU7_bRr9roq%W-flR+h?u_NE6=sIv-Cacdl0ITd6Gr zlDdPV#K`F49i-?APX?^cf~?Ncc3!z5iXVK7vJ#M_rTG2$VEwBjFeK#r^W&X!M4rQ) z#d;v^?@GA}9u(v>Hu0l%m3>vtI%M>tbJVXUXG(jc&#`vij)kI5nO^>tlU z_jdQpew9wY4tU`8^BNZ{ZUornrr&*lu)R<_V~^^1Dcs0>Qvd93;2@=`X|;Pmnc_yM z?A+~@_xS4B%fU({eI!RTdLi_#crB3&geud0QPz2=#PdW0oVc;Mr({25EfVOr0{l(W z#$y<7FTpYOzF)D4L^+mi##@Yxbny3gVodR`eRo z(1Osn>gBs~gO3+KRyngxqd89ml44Qnb^Hl?-9jy;(z zT1_dP&sJwhbCB=}W8ihr(lBJoH@CFZR9AbJ+`Dh$8$~Z2m`f`Mseerc4-dIrZvqgCk4uD8~z}&2^uWZI*UU zxa{;s+B3d8z}QbZ)b3_9!l1K%(9=-(`3;)?mVXRTY@XcUh+rJ~090{~{E z<{Tv`D2R%R3h)Y4-jD#RZScHeVPn6LdCys4q=ka@;I!-6O>l$|>r5v7d7nTw6P$lH zS@26VL*g4$`Y&2+#*}XNXvRjuv33ojzgvFP7rPcoah>pIvd&7pS@X>DQdwqAsETD5 zzC^6HS&nc0x^q*tSMP?NW$D^%dp!2W{-(NM?u)N@M#BrUM6>3@~5PJefxxkiSs$7->-X37#<@dN3 zc8DAh^?}!tZ;>W&s?WB105z2F_PU*BtdC*tuwrz>x~x{;&v)hh+W0FF`#={n{|>&- zpsHE184H)`&kAKOP3}<+k^p6TMhDg`U%$s3iWnoON^qc)`g~mXse})|`qlQw@doPZ0^8VA_BPAq$Zf0|mf-l|tPTH$<@tt z*V4(iULpv6h6T}N+GpF>DD8S5c%%7dl1jUS5t^cuY~>WpFm4H5@v)StMIiGh0 zk$;~-w)$JzdwbO@M<8%dFMfTZ&Vz&Ro%L@$2nmx>q?@^% z&$jU&li2e%^Y$;7Tz?np20NQ_vURjt#a_Hr<)^;ClBB^%lL&ovlZZN5_(u3c4e8U@ zF+?My>1HHI>$qy!^OHmxv^neD4Yk=fzk_5Z#yteEFFI%zkoENBR(Qow5qR=UQHq$9juK=Dcw)qVThgv7D zx5F>KQAm0V7DMN2&PEKrTcXRVZ3pkOIl9G#yw?2O) z9hu{wU8tQ?DVjPiCiJ=~`;N(jEZTeE7BaGCC3qe;_P2cK_qkGkF~z|Pe4&CP@9*E5 z460iGny`g*Yp(E4+?@o}_r9|#{?hsU?~k#-YY*I~z%=5G985f}mPczer75G{fs0*Z+T=6&!${)PhyFo1~OtsFJc1*@IKc_Vd0 z{f9H#V7m0ZGLUedY?qA0%xMRIdzO{r-gNBT1lZoRr3_3A^g|wK&a-dBv0HQ8A58HJ zqX6!ygLB7DQdB=6sUxPKD&)4-#ybP|kIkWORXL$~g^Jfw-n_3GaVD}Zrzxn~{aIVI zM;Bg}d9-)J6+_eO^atJ8wb!|m&U{SZo_K%06#@)WqN5eN-H->=%J}%d zP3RwC72j%LV!_5S-zHXI5Vi&Ky9@pxHCqWHR)KXxWJaOb6@cSvP-%qenaOT*A`Us` zD=n8B9)OIQRfFlcC_i7B^%~eL>&nZI{VFm(m%h*yZ%xhQ6qV3?EdXbUylmbu$v@E= zs1w3r^mT4Uu`R{rtAX!G;6H6dK3*>S=Rqah)RKNXsV?uqt!qq&{K@62=@-^*g`)GD9|9a zDo6HLk-n5dXufu#?;?hWROd+?*LfYA^w9i6JmfD9lJ4}Znhv0gwI&_{k7 z@}MgPADSA(aU@L5921(^W_Ht>73p_$qN}Yag)kI^NPYHKfNUx`4odGm4iGs{ziNs} zGAq+fh-K?ois *%8ro^D3yZvMdfeZEKl!Gqld$EZmIQR~q((JnOl9t1pc>wuqSq zP-RVwZ7&EDzIDg~z+?%-D+rq&iYaTQbmhkR`cGCLZFFscUXSPab0p`b>_6E;nxrmM za33I6n)YsrS_WcFVcmE3(m5ZBeyaX9r)rXQxRHMU?+45E8y3uAt32-Je9gy6&91@R zmu?v>@$|v%0hcltEl6djP+vv=B3xqVS;^eA^g&e#C$35H4|q9%7QcfJ@)lPkdRpG4 zx15kJ5`pid9gW1KJKy%r^mwDCJG-rqP0HLqqqOmOEhfR__YS~lyP6# zJYm~W#`B4;wS~{U94XxDiW;q)CT~y0Tygv$w9Twbi3{|cspV}Ml4?)9Ef`cGCn83{%!>y!jTNTYo8wP zzT)C0S`2~BHDQ?8MgXBnIWBl9dXFMd#tFy@Y34Oc+2gNNa^7__zZpa@gc&=ssgv1G zCdefGqy`0g#4e`L+4|-p#+jFrT#LWA39(D;Z#M|?LhR6=>)u)Xt+jqgGxH(zE)U!! z{ofh!LUn&?C=h~kdyo?y;I<-Ou>(qdi&%6qLBS3X0cxrAO&HXd_3L9G+J*L zEP5RA zOkf@u81Pbl0RjNIH2$!lpaQMexw+(+GKwNrr>~}*Bq--w7T#B~Zt zxDLj|y!1KB^GHObcT~Og+hoPYj_3O6x}TvqVl=M-DC3BbQ-XmEOV(D=AMDDldi4+wD>mJp5Z^!Rf ze3(T1qlWSTC6q`elcgNT0kq(HiUd2@N`e!41n#Sx0%?sl@= z0<2xOwzr?xNLVW)pWjv+3*fQ7eL^E0Gk!hqw)*frq<{juq)W@;*9Aw+o5+*z{u8VU z%81_lDz5SN7v_LJ`mB&TyP68TDGhv0oL4evFx3nCtc z-?c2e#%eHN&71*u%F#4|GJcylp8c|{ET0?!XD-z+l#kdNe^FrtzH;qTYLqT@!)N$e zHWU?0<@enaCN(Az%=f|WZp^+UWVbUnKlqMl1Gptaf%SF?BA+G9V$@_=zw4wgu@9n7^y;B8PruIEHd+jYmjJ7Hzf+3~FcSh!lI`uEfct1t z@m+(RhOqV^)kliTaG~1BpZrbf3&CdHSW~7LQ71~+8SCqr2AR)0He~SZMpP5*_g=T` zHm|Xr6*f6aJljPjeWNizmm%E1LKjOP$bSc*Q3r= zWz4#oe?N**7*8a=6L=~!N+AIOo<^2(z5&_jewsQ8Tk&FX@kVT0zA9Nq0YZWttA5Tm-l>mI)blr za{3mCm%M~#U>UU%uzx>ZQWmfUL>R9+R+7-|JoI-BJfElRPkAZfLyEU!Dq{%vdCbhs zRp!m=vTX?C`FT%{oA2ayz}n<2|7mq==n4Lgi@Q485LZ!|-uEj2Mj=2#{`oUv zO#k5LoX=R?%rf6hCLAuiQ{eGG4^mkE7GtEyg|@u$Fda{pqhW25ZH)2zlNHqybI#7X z)QgsIerCz|2a^V40O&@GqD$KH^x5CPZ!UPpVaAO#cv(;+;Zb^zC2dkMM~YezA+XdM z&uIb06|7$smC2!T^y2edtJ>;<7_mLmi5J;FAJ?z?52u1H20vXsUcmreziQ6&jl>Zy z4ZFOA)b4ktlz0}#?*-RMnViOeY-CQoH+q)#)(qAT7T8Ola6&?(ANy>>lhkT!Z5Ld} z`u2EinqLCGTKhnOSRA6&W(>&}79%Qz5TV7pj_BxUZ-`>xe#GDpa0o7eP8%pqb&gO1 zdjiq)80~t zW!!5?^jl)W`x#!t8$bjQ4Y;Z;8q@^*h{%rfllO^3KxYJ~Zu|7~`Ykz`ndiWn4EQkV zP`;7*EC`bqm2*vPlYT$MWMq`ZQ<#5~UAel%-Zv9v8ltMs5G}cvL>5Ha^T6dy?r>G; z&iF2%vwv{#;{2S2jZIle>A}#Nc__|uV6e^|hlAYu6mdTA&TQQQt?+}*8!*W-%yy_+ z4;eU~lHKoWHU*o*`Wa16=8{t&{KW4sci}1ERFfzeTBk8T9Yss`{rL)$GfqR!)TwEq zq{i_8NfEzPTDz?93Ih`pB-a)oT6}1!Pp>9vqTs0@`M}Gw$TPh_F}GRV`S&cM#}K7G z1%0<*{%ghBy7+QLWpLH1A_UT|YXuo7Jv!q+{{o0kKe<8U3Gsf_FtQ>-U>Pd;{KERc){I=4W*I048=x%^nN*}fL{FE2HYx;P`A2UYCj*+0= zy-tY?-`$mwB3@WTHA4fJ9;jo4X2hc8mHR7G9kBmPvNf%v|2it|o3L94Hd(5O#g1g| zBy3Y-QnZA*HO;!&g2_b-pQMzbwaczQZ%*zO$xaYlqcV0#KARr-zq$dD?>V?Ja>Nb! zlV=i#-Dpsu{_j;z<1gW7`PD=g_$9qCRSC)uBf0?nWMU%4=`&ogb>G6M$ce!ouLq+- zdodhMy04RiDsm&4oD@7D3W=9S<{P^oD$}vk(DY4BVH`XQaLnJ-@AtZm{uEkApuL1f zpk_q(>rI!_9nZqvoswa5rR<;bt@++P@haP{!w#+ahb|r);qZblvd*W3t;kR~+8lR5 ze+I>*R)1xW9^3Y3K_i@sck5YWDX}1s0T&y=nFMDXDb;wjtk)I!PvHIlf&X)TAnZXoNaryz zF`04YNcRm^CPMqcW60=G=t1zFKR6HvxL!mJ8e)+Sa$ad)>hcxr?Y6^Cxnfie=12GX z_g`PzT1Nl9cz~vZh4lm3PkNp5!(mV-UP3HxR-y67WR$@Ts0+8djY1Ca!+p#eSOeR^LW8sZl>xI5 zBB(v(&ZRC^*FlNY#fPX0c4@#CJ@lZ)cugeCuyFf1ZG&n(t zO_lcbZOCr&`E3}rp`tLZ8734sD zGFE_ETU!H98oSoP&y@BUYB?=!ZIGdB5&gcJ9}Y6O2ZP;bO1T}K`3H&O36y)gx9VTM z0JueB8jaxzoPd^=mV-ndc50NpRP zT&7CoD%nvfuZwLNl^RdUo>6!dXc!n*mDt8ujlzR0dV5{y@7^PHDa>B=za!Hi39ms4 z$uz_W_V?d9`<`I!dH?NjVgZlR)EiqQ<8YLBSW&zP|E3-Y2_JeiO;r|!!&z}017K-w zy5Ccb#?~KBA9?FzGA@mn6NO}dR{RFJCuc}GJ(eVvi+-h*JupL zHX~q$&UFI8aGTo|$V{$MZ6qdc4G#~Gi^Jr1cYj*ze_s6(l+3AtI%TTpTA9U}_Aa?@ zZ6wSX0>BSW!0pZPqEA%4MY*B4Sp>P$`7hjMj|B)J@*%Vld3q>gz#66JlT(nV6_v zl&c}eJA$fQQ&)F$bpBHWz)sHT>yxk|b@_f@&cCAyz%@UD+v@4QzcI7AW2bN= zWIP5DSE<+MM-_+5#trlotQ5@5C^wN7Q!l{N!1W`b6XBY&5@r%^;|z81Oe&S+6<1lA z*i&iIfCHxsBmcJj-w@)>aww4bW-#!ZyH#j@PR;YjknVwzk?Wfqud{X0lGuvS&`^+e z_~XY9fGI>opnQW~se;3l9|M92CdQR8p)89ERyOV+zoYkv!&+Z%prN;BRk-=MxIiT7 z0chgDk&Pf0P*qSUki;zuhR+9tC3Ew=qoWjnD_*<{CYa=vJ!mG819E; zW9OtfeWVAHE7%*rjZxrIXlQ5vkqy(u53>^!2*}7budj4HuQePGp>p?Sx|^otT2>6x zdPOhE>QzAxkp`E3@|*HYL@K}i`Bc9JSEIFx2IcC;|B58!O`>*n*z4Y+U?*MH&Kf8n zg7;#;RW)ZJc%;?V)&{v@p!R~KyJCWoKP5&9wZzo)OO~?oIQy)L82#ML+6Pl<1ju&VgyN6)^?l`DuqJ6=Ef5_i>_F^9C|nqA z{Tv|z;d~48$ylD9j~(>Pe-yt*t&ssn*6&4v!}`swts;wMVC>-M=g00?q?o7-&ZGj0 z7_hbocYVLDv`CGW44d#4+_eG7ZR%g=^*NcW)%w_>!(xG`#3Y=Y@75`ss)qk?7zhb1 z=FvyVsq5e+8p;-(WI9Gh8ClsL?p9S=dphJqdXQ{lX(`}&ZgC$RD5zA$+&^IvC#XE? zo87g?kF3%9bdlWP6b`(AK{N|6k-T`ky9hubwy>};7zc`K^`egF6Rp<5O7n=}9G-Dp zTvuM*`-(Fgsy%lQxWQcdi~~0q#95+ajFZ@?xQwzgU6~g^ zyagjpp|!!^MupGJGuIQxo^?%;p<_}TaTTr=b`9X>r6GRu?@i=$KuLw2d9)zD5tMaU zob+=2=UxD@)2|FvKl})N^;^E_ibF+`n=URXHum!F!W3YQ^GpdZFL)?_i)Q1Pbyeb` z8=POBJ(^RnnRS5UMYHGAJV>YlzNV9ttRy5Pyu7?jOvo?3;JY_W!;LIb!6MzuQk8Be zwEQVsr?&-ffSuj@WzIvz@Q*SjYZa{>XE0ger}{RGZiJBgSOH6=;3;4YMtoo74QYod)e z%?b(VZO z><*Ai!vhp=bq$Tb3k%6fNe<2spOu~`J-)5yo0dNdQxg+z#z(DYmQj6nva=uhI?IAa zbMuHbUiMN6nk zC;^ud9WZZ-7w^98bISU}$H65*V+E)T(RgBC9G}krHFpKy7a}PlsC>{VT;pFGW$DA1 zmY=x`6iQ57I_FYne>~!b^@W9@+)W|>Yk7&u493p2MOc{THJjLP*g=UK1*HY-d~c4I ziV9OLS)oIef#3r?a;&UX!1w6!(SS>4$`Tqa=98jD{y6sYBf|2JFV2z_pVA}&!Zht% z;NFP?VaQsFS?c8_Ag7`HDD3Rt>f^}{bax7Epc4qII^S^yg3yDqW!+CwdSU%Z043M@ z@Jt0{S>YeT0q@9gDFRT?B7v>KTtaQMx!+6AXdrFyQQhB@m~COx@r(xWhl7i_dIB|A zNRO~}mUWVXzyD><>YIf{A;^pXxRbxXSk+f(t)+;#UEp>P4q|0hRfA6lzo6OKHx@6J zuY^*o5wT}LWjIiHULU?{=g9_v&4G1pUF?7^YSOyd;O;#sTrQy!dj!s8QBhGcInVve z6A0IT4?Ce1Bs6zD4!_qMJhB@l7+JcQAx_~0`gwl21IjM{Ay;nGy6I!!nNj=8Hu2fW z?LQsThFUK_fhDlFGFHqO|9^k{TGbaiYvz`8_O*jkosq@zBwgK=Ign?P!KEZ}$r)Pjo?^Vud28Ba@E;8u+Y#v)ZA> zNbb{xOZQc9nB6M%jqPG8(5}m|QB(RfJT=8eN}BOwNo+=?tiU>+T@PA)$(|HnG&y1RciBJL$UUV2R5TWR{jL&sbpy?e`VWds{ zvWWZm0}KW1)(J1NxH=8F6MYW4AS?_pJAh{vvrcn)ZS6DIO(rC$fqxZH^y4&_LIq}W zw!fM6F;qHA38P?QUQAM!zUw!SuHtedEx77YgCnVW|Fvvn*-){!kU7mtU;l@kpzy0D zEY@JY7(QZG0q&>kOCY}i(0K@La80BQDGBB2AdCQQAr1Fu%Q+wI5<474-->Umwn(- zs;jHP`wnct_T_&cBp7c2cKZGO{r2`YfXBZ&JEI^V1OxwhIk{fd?Cp)=hPz#Vmi{II zH&lmf5%)MEIO47*X0tKG=v5U-c+A;`!?$HfkmOF!i>qPRy^HDJBp~tTunSPhT$ULq zL!)O=%fR>j@UVASN~hhRka{~V+p6t#^&CSimumUmc`qafP&0pBx=cXApl)+cY&ZDb z3a;GtZ`i6nqBG$QV{nJqpczdFX25uAJ-9F?Bt7&-faa)-U3)<)7xS0{>~hBZ|KF*O zj2HYPwtylElNS@4KGcJ^GeG}oHdcZZ`f-}tHXV&F8C+n-)a2ykxHvy2S3r0(Ffh>4 z(sFck1ZUsOj3)jNR3#!JBG3{M3wS!(*_GGSv^X40r;_K2%kqD}48(yeK35s6_j-8- zE0_l3SEu5qy`W0~?_wMFyZi;40FlfZ_&)v{4LEt*#h?t+f*%}E1#}bzl}_rW4T^x4AF2dWia#8F z7=8H96R6;KI?tM+l?-*?>E3bn)Ej4fE>kWu;r}~7MW=6sU~;1rj?Sc`f{-kHix0Xf zCA3jMLqAhAw4yZ$d$2gKg9r!n1(q&OQ%frp$!DnLr{JW6_)!11$LJtynE2a%YtfQO)^kD3w|m5*7`*d zNu-Bm;GgnIygS^599YxXlZ&?~wP;vjX>li^-e!+Zr3J~Y*QzZ{gji_4@FpZJfFTp0 zDNeZu=}1ujJx66fyTzzx@-NIPOFj1KjIL_+`5U2q zii*#vvb+^shsk-@r^GMb-x~6SgJ_@x&!*ZN9#z6 z=ut^-lBhMaMKmK5=`I^#dF9Ws+*o7kPdCZIR?E|M!K&Yw_66bs&#waTw4$)(BbzyJ zb<=8yJf3>;@+Q_;0dxH@JJnv>lJ}wy0zw16Xlf1&sx{p9{`o`3!;@V1#;d%`i|EuH zygJ88#QhJ^Gx{?C2zN7a=pxP=qaArOGN{AQ84gV^1cvwmW<}R2-g-ASav1NXF8ha# zn&4f+2RjB(rv9r{mK_sX544iD5jn0a{Ss&VQiGdY%8(EltYO`F@(;apCK5xUSl3P} z`2t^8p~stCd~}|X7DNF4w5xKiogAKCPQ%X^q2p=Rp;{SJry|+s5Q76j4)BR<0i{YM zV*%6~F#pbxo}RXI1^R5&7dBadpZ4d(PheUCm|7dIb4=H0nyH#F>~IMEul3m*R!qF; zC^1Wk9!GB|KP@oU%{Hs8PA+{Z;bee<{%<5~!>1|Z z&Tlt_N3$j2^<+4CpAfkv{Bpk6(0A<0x}~1z`JPaJM1ye2Pxym$5P}AwA&A${lsDJZ zF4Pga;ss8F1xf-i?FJRV7cVRTlWE}P4qeMFm&9I_ypt6++UL!_}1kN(8rG_w_Jmx_j4-_^dY}Kn*f^z zFvY6GrJnth9ta8wHf!H0i7-#xIDdZ>_en>IusvpE1MiB$q$?3NehWWAJ{%qpFkgz3B>L=F(kM$J5 z6rHl@nOWMsv~K~yK@))JR zwHr1z1DES|Xc>RL73BJuR z;|DhqO2mZCpE4C1ungMSsxK&5>ZsA7kp#anX;!7VkN*p7?0c!yTfV*0c|!c|xE}hpF0YIa^qiR( zcv~vF^ftG)Ko)l_c|7L!-&;QRYHWAchrTfvEdCq1tLjmr)+lmo2hGlVZ>YbAieGSK z(4QOGyW8_s78z;~V}%jn$5d?om>lF>Hh&fUI{?d;`sec$BblFVQ6`VYZXuZlP8C>$ zH^PMdlIz)MI3Z?f(BV)lTq(rSkfUDcDcbiqM>fS=z7S8a<@;Bhc)knA1nU0+%M zJA}Y*c}|HHkjbxGX0hqJgBsD>s672bFa=_O=ikg)aek&5xFcVYw)rnTangu&E684@ zi1vCacBtr2`6vKGMZ!4l!iJ(BWibEMA}SI_pTNUC%fQ>7Kcx#eY+niQPY^V;FS=gg zYDD#-D`h*TZRRJ|q&7pf$+%N!G=4o`Qt-V}=$wNS>CRNM9h1Q%^Me0Ojt;#tES7`v z=>M$LpL{0Hu#%Zy-y@Nzt1hCMet=^TP!4Sq$iO##X0{~g;N4rA;pnM-PKYbr^L!>t z)bdktAFDu18m8T(ijS9%i2%O!3AQ zIBC=-)Rq_9fx!#j3K@)Ios=QA9hw4wRos<~o)X6cV!FSS+yK@V$h@1q8fQm*KXpFE zeRI6{XXkBGz9VWZ+F{O&^oRyBOAGXWHwArlE25T&vZ6|T;))>RTZ)iayiuZzBA(>p zowmIGu&S0&yw~k3GDFMi9mIXs26qmMDeYuzr`9(n%vC$U?Ne zbl;!kf}(MNbd|qU61ZLd4DH?E+}Yw3(_TCI9$12WEt=V>5MjTGQatNw$qR&@MvOMo zgw%aKcjzl5)mGSl`->2q!j!4tKDB~A$Bl~Rz2F;x5_+(e0<=MZp-)fUFHzUn`c4Fz zJ~uN@VJmUT}ob=7jlf!_W!+fK*x%Gntl*KaY0sN^n}B&_5JDFWaCVE zEd5$CMyvE_Yr(K20));tEdkwP_bBj~;o9g&bf*K420_;kvHv?IVz5O=cgaz|C^Y`E z*rMb5_u^ef{AE3xhU0-6tfNSj6PK*yeqD4CQOY~{H-{}YMx5X^R>#^n4Fxo;cqHmg z{>RGgS0S<%=99|(#uf5s=~5em>kcoh2lf<@I=b2JEtdYe-lx9-pyWFkSGz`{deP$H2$_$mTQ_ zA@I;Ka1^~^&-oJl1!bB@{iDr?m1yFFmN{;N(T^8M0611@#Gt9G5UmpTKTQz8vVzf))oYNfH3R&f`H9cs=7?+3M?`ab14>es`^|R^YC(b`;gK)hjceOa`>O@`fZc zUuBqRm|NO>F^vG6;Qzzl?rz=dBLT9Xm?Z7z4$T$*iD#AFqMM2n;VPlY;0eIdBS1!c zg!%7GXQ5+=VL9kwh9I@eV6yD$B=8WB5ywuFbij~xjvXS=P@JFGau>UGX7$q%T0!h! z4EmW$WYK7*WsnSU+u1R19al{b<+0Yr6rx3R%hlbT52qBfbEU849f%SU@~c>c>M$d3 z(+4^s&_B<<&|n0ECj945A$BgWe>QmX^6%2HnKMZyR7;Owd*3$m&4F!xW1(Yr68_8h zr3IQj&|bI|UG?~HrXO{LW+K)Hvg1>Ge`G)o={5m7Ni(GX8ay)=mdbv#Z^bM;VIrKd zL4`%sF68RX>qy7kew7X{K^#LPqMXWOks4hvdV;(*ZzfntEnR}8B{F=H+V!Hdb2`>2 zc0f`=)bpG|=r6fyc1~1zF{~9rCm|MYd90lBXZfc;>1l~1K?QL*-p0vus0zS;99V1u z0-Q>L7ufNE?Fj~ERG@xwQRB+dvSRKQca;+_?}U)%8gR=1@at;Wh2)~Os{IUZ0P9?2 zsK>`^;Y0ZP@P8D)|IG#Ix$kjy3vl~WX#r>3KyJrxpsUdN;SHG|{O~94QCAJWgf#ui zNIyQ!`V#l0@L#X++F}_t?heH=vCG|=vm;%CPFP`zD=pye{3u+JRY&7($1JvNu6!p(N|*VjkM%n=G0={-ih}#zl*hcleKH= z1TD_a84GYFRDE8-TqY`~=2RcxL^tpD8E3l?x44K7#J4z$h0FGB6ISRb-i(FEWczA} z_dDz{e+a-3sd6B(f%;CZO^&9&XpF&9VUr(h=mgV*&1YEI`IJjySadHcz?#^%2v@Qg z3>Pk(0`J8MNvw)*85=8PnQg1CZfv{N>A$A60VQnk6wdl>cP#wR`m&es1HQ|vJR`)chFuNmLC`b9F=5W zVOKgzt(HyBi5?XR(T_M0-_UMhLR1gex({E~ralWw9C@xiqnnT|rSM!!5^;qf_po#F&pTg-0J^YW;u8@-Hy!(^Y88R1x3nk8yr@30dC(j zxuWYQI@b~&iOZ*5KMGk$GT9>zN3t)%&`M}6fhg!^H4Dm?0~H?+zBycsiE5xJeX!%E zb#A9t4ep=_nE8&j&zq#|Rg`I9s~s2=v`4e(mg}O{0weAyn-bUhHBa#hQ2#bgPDb^V zS*X$C@TaA6RY0LLB^WuSXpjQNivYt?H?@7g5UDaGo`K_tmGT9ncwxx~j3({>|9_-s z5Jg5ql8rn57jMMO@G$jwyUT`>T1?HMS3oXvMrJd#B3%7;k^O0&!?}bIg{hp;fy9Jy zYdJ;dB)CI@OK=atEx5Y}_u%gC z?l4WxInR5ZneUxzuIV3pt-be>UcIWTtGn*HOStYT>*;WK=Nut`f zYSF}91Mli&BQ+9A11HgmzMu&1j2FP8;Jufw9TW{E^6~X8{n-`tzK51Dm!%YV)_n%C zv*aDEuj~RH62O$19a6==kTyi=Iz~a)M(gtP95VvT8S5~(+pv}Gf8N2E*IMM7I`fwq zGiYW<)e(KRis{BN^-&9CRhW}ggO#z(HM&s+1?Rp|xNeiQm5Jf`GSZceLPdR{0RyfK z3r~QeI_>l2owX_DPr#d@bX-^8*XchuWqNN$IiKRy1QjB_l6QZ_wSQ9Ww{qA> zRZFd~iTMQJO8-_`c!7c8(<`Myv(daXvo}aYjii!NemY{x7%!q(tCFo>Ih**QYP>C* zcpXravvGM$Z88hbPk9t>-25J$x8XBd_xTF`sGLwO0V)Ds2VFpu!+=Os{Kzl5uMUtZ zg!%Yxnw{|bCR3Q9TDu(pN1Fvhp~IP#xjD!n@cyoq2zA*p%ds-rEQlD$38TsxA5Ewm z(M9zPOwcY`3GpSJL!DK^!IurB!^R{Rhi^qO6acjGxOjmBaBtl`uOtU+0-T}W;IGoO zrVUNQtkTHLy)lXJ&oWSE@^w52cst-+ zx%83PDkHX&r}*Y<0Xm3W|IUeG1uC zLr|KZ*S&sZbt;euOXq?;QnU#luvkO=|h_{Ar2{eI;8K(~#qg??xWCUJmyRk(5# z7@x&Q4S!SLvZS9Yt4yytl$<0f(t@GTb;*I%f)NvKbhgEd81hl@*pB_lQMd6D*73W! z&hXrTtk#a_XE>tvdM#KAPlGqCQ9R?~aFlO>NeR|!FVO&b4nVV{rKRD)o&8p|h4Fwf zhk!tw)$eQDHJqC5(wPmeF7mMQMVJikJB7e^4A`Gq;k1FvBjXF{KMxVzrc<_At{~wq z<7(?@4Z;YYlGBn<)6=meDtvsC&N9i1*9ZV6hg{;h8OPW$1uE$jS*)WUZXJAF+rcP+ zgOv=J&xa@#J|js2YB(^pK$;aM5nm>}Rmhxxb*<1Y5tAyefKe+C$+$gW45l3yaPi~q zp2>yOR{%aU-3&lLw-~<}q^{?uv{-a<__$=K_v?Y%iM8uvrvr>NNCZfG0pQ7z-M=2j z*^_0ZG?6((@9T|Dwy9>Lo2aWIttP-K!yN^Nql~TPso_cgC8LAdz7(yPcQ4+fJ0Iq7 zW-sy`L!Zp?l{uAzeX_S4lGg$bo7=EKJN&`i9iXMz_RxcUd^{=uaJu?zH!sKnITF|3 zP2OQzzEuAXCWZZpt8^eF7w$NAUy%Ms1x9t0uI+*+?UUAZC>KwSZ2yO)nz!RDB5vdu z2>d#@pYMEeLX_~3>s}rR{^q~TbCD(;9z=Qj4n{6{PcHsF2)F>zJ8Hd^jaOTSPzC#` zJ$OWTV2ZcA=Sb>usNRIqi>R(w3y1G1TZWnpELRUKQAVJNqC5dl-a*NidTW-})zp9F-Hq{}jBdr?RCksly zIqll|;pt{2)}Pe|i@?(#HbS81l}zkPBON~&6})a~AsdCWBF0OK3wbxw6T0*B4U8el zax~P-IR+lx%%dJKRUzG%oP0Mu=Jaal^?@jeYQ%^_za@BxA9+?rbk-~|=TWkxYYvg& z`9459@D}(rADe$AMpbQ5HN%NNBAC>XPs{mGb6&04SQLSrk^ zz)R;v@ZRKvw!@c%cJe6dP~w@xl{|*lDVQ~b4w&ulUOAdqkQ67dJ`mSuBueH{#GeNy zA|h4SKFlZ4OMic!+Be6dYy`Zl5M-<9wUgrJWYMn{(*2{h&$JZi4 zB4D5^sx7qna`JXAz;QwUyZ$yyFVJE*o=s?m#~gWkHln9^?3Q!qNC~oiNp8^SioZ_~ z1A$*bLNfQgDN||24B92(_P|x$vEJdoxCT^OM}T2j)lCO=44PzU;-6T?@VbZSllARl&21w>hVh$@-d!}J~jwo?2bt0sl zHzfHbZ<30G^WQJY7OQw1eB_rdF~>&ywixnUm$Cbm&5ZpS|LOunRk;Md`l7o2jdilP z@gS~ll_O`rf?DAB+2L;dHFn|8M5@l-V;;f`UP}c~i!TSNqO5{Yu&bg>rX&kuy_$rm z%EkjE+e%ww>Q%m=G%E)cOp#69j=12OcYL)%o9?RE%AcL0|Bd?Bz|)Kt$2ERzgi27q zl%x>kw9`5%%j1mNXpR9g23-b;i;?e)mei{k!(Kf(a$H#&Hr^L0Jxa=!qiqs_7_Eop z1FoVJp^@+!LI%HWq#zLf9)GvVM3l>K8pdrrsjE7fzE&sRSJGw8YQj}Z68fF5dsc=| zT3#C`V&aVrdl+31D#cjmkA(2m?2ux}k19AwG~JU@2cd7E{ zGrQOkSa|tdoUa7DLY=KXt*iQ#T~=ppN*_rbc_aO$-{hc_zg4uxtDaooI#CRpxn2a` znKCv`gqc+`X#?0jPQJrgaKM{AZeRW4rBt!Zm^6wk(j=LpfXyG8!qHs?0s}<)Zbv;It@oIeiSnLgm%}ih>^by7Qup*7_bEJs z0BO3=a@ntLz|i7NM>vD-09z!%{X4Q3lY4-erHL? z*oh;0PX$L1_nh-#%GFiwCjUYRRSxpFO1&5x#KHGV#;iT#m2iiJGMlwj4};+cJ($V9 z+w!>3te=shXnSn>-8+-D@O6J!lkQ)U>b{U{0MsvnPpy0%k3@9QdnU$c=fAmry*!6|3Wab)^n|2`fT&!CQo5JyEE4%+``ep zQu}8oKs|suj9PJhS-0r`QaLRT{&2MU(vfi_d|*(b3Nk$F2I>NK)4bZ;<8IAI3G@ur zmRm-7nBi4Psc@W_7xt4ZoOinXSzbENg24k1PeDQP;lqcGL1HcSg!vEk71je%0jXba zY!60j8zxIY?4*j_2VwAX4WUA0I___zM06uEpy{!K&a$IK#=iwgg!NMkEG{fPc&{Ea z!=l7K9h-yi*OYBsu4nD(GHupt3Hcu5mA??q1s|@nivP|x{l^L*VbM2v#@}4#5H_us zVI`73K;v>c`+fDesW7;bkRlQe-KO^jL{|Fg823;!dwrepQ=6Wo$n-*n)R4!nCwn+F zg8UsmiSu)0Gwrsb6z)awZ?1zt|dTv`ECF>p}7+oVa=~mN$`u4Pw}9!s6ci zRMwfI;76bH==f@Ph=wAc9sbs{kgs{gj;+3(BFtZp)~Sdp{G%X>kSScQmuHhMfU1+^ zr0Ot>??TxVQdmVubX>Xwq!3Gt9|8JsL%7-yAQcg~0hW5*wG6Hu?WA3~8;xZ<#^rlB z2;>6{=FBtW)^HHTR?3>QE0B{bETvojhjBH-wSqEbSmcVZ=|zP*j&Y&vj%I|krkLe zgkQ8{nYtHuo9L%LbQX1;^Kog48Zpa1BV2eAci#4*FYT)iN%3GfAWbN7zd6f&ZHB=g%#*qjF7*ZIf-EcHmFB`h#E$MF=Ydr~$9 z5K$nGrc}xL?)nUnZnpw9osWywfUrKHHc)KrTZHir6S_b`{M`n$<|T?M*J?kHY=jb- zibAORoA(UKUww)SpHIzn)A-|Aa+(u}7tr6n%VPJ3icYv}hJ?xV>cD2f?>knc`Zkd5==?{43(&39A1S6nzV1{&X@YwM+!i0(hQidp_v<`PR z+3u~}UxCOYdtxzaw{EA^*GVE_5zv(fi7hQyisGj%<7*?z7#F{-Cp}2HoDQ+s-im88 zLe5@+@c$7-n{O=ykNi5>U_n~LuzWZC;x+AlNmn83+sk*0NKEfaluHZ76AP>&`Vx`Z zR|;n|fFIuec<#QzB?|xEBk5q4 z_uI6Qs;(3^tW&TInu2S5C!|1qnfi*kjLgZMbM^T# zlI6ACDqHH2A!I&0#tRq1&kD)Omx`19Iam=o@rad;z?<;|GrYqEFl*&K@mP;q!~}Ui zN*o!Z#plc#u$v0f6*_l_i#8N&@XJ0GQ#cVG)#gcjc!iq^mfsvR9fkaWE=LxufYbID zSAOebdblA34E0Do{hu=ugslBcRJ)`q{Xdfw`3Ad2<@NG%gq(Q=9>37jU$L zOaZ`+2nZiN&)h%|&2rB&fX~dEmYf~?^#Yj&mMYM&z{^T5L@vzgw|D`#NIvvR<}ty1 z5%}dEm%|gD*!uJU?jed4G&?dx0N>Mn=i*1>=kra#LZe>(%ydp~v(G25l9-F8$Y_f& z=KcGg6@PlbWl;tvIaZE*I)ISN|Hfr7;{DNGc9?m@$6*F$&tSw%vCg{=;4xQ+pU zZ0&{Gq*2+azYS!32D}WU8*ae6`gR3@>ZeabWDtdIo--~a-=R#hw5_boZN&BN_brJH z2}oGMi`mkCx@?uZ0BBNBr-`EK8KxAn$ds=x0XH3K7Uj5B`U60@WDCUe1Ak(E)6t2F zKiUXU)<&LasytqO9mzm;wX6;D`eK7A&4hBdQm(f=bOQ*y1F3VEAQ+?lvm?w3ZLS|R z@wVr=U9{KziJ%LnZFgC0kAt0h9g^R(xDpb?c55H6+d~5*5UH8Erus=c*{cJ=Qn~qk z80Mm)g)34gVN-%eIv# zpE4Yc_5q+p@Kcyl01~zk_j1jvp@p$P=b~wDkfGnInqB9UO6Bv)Nyn$Xh(H}{-dNN5 zCBSI>^_*-FwU|aSgRfEMA|~$2YL1>8JF&7>Ns}zK9t==R_8QJ;I9&Fv<#ZHhv;rMQ zSYs#ZEsw!M#M&hZQ(_)$Z#&cJL<6`N+@asKvvqyAgiQzD&kqC*Jriuhmm`qX=yhCp zT!6RYk#bQ1AhZR)RT}agcv>36ei=~^j zo#ni9QgHHZ*FxR(13z|#JxpCc^B0Q10BRW?v< zsmVZ}!KKi{E!KV4VKR=o{qCJJBs<<{ANed@Wxd)tz>nS3i{>JTMB zpaP)FZF8X3f~*Hnz_)t13XiM@t9P}Wxt8+8kN^gw)RU%TF%>;a$2Ch6n6 zI42n@$J)uLEY22>jf1b{E@?RPE6q%~3EjBIuTMcwK{Ul-RjbhEo{<7#RU2c(Fs0uF z!V8Ru;ro+c+I=cPjqYF13rnDkDQG#Ri~IN3Rn95_=dn`ej!bV7Fho_!R8_vjGE17! z;<+yh9C}0|MQS~1R5^4Ng7-lMK$uCoU?;{7fw`tn(E3}nwHg_7kCR#fAAN7<*}YE} zJ9D}spZJ;xJ?g`hjq%L6_m?>Ln>_&eAX+0|^E`|*Sd-9(n3_Sz=UFc33a7SxmUl@* z(UggyxB16G-+^2vXS}yvMGP<@s)2C195PFyC3$I1r|z$G9X=G)<)l2rs}p(R4ga(V zYkhrb3rG)uy#YwucY$~Dj4H@CVmDLQWq@`VBZ|cAb20sf()(s&ghA8=gNnSe&qnow zj)S7J#E-L5KXk_tHiocyOhJr)h%7MH~gm#qp z_Yb>pbQ-Tg+!d-SL2GMOrd02z&<@;7{P&8n7Y@upEV4~}bAO^_zOusUpf$IJd2R#I z0ND@~PqVDe0+;THQ(2bRvlEk7_(eBFRtWP<)gU}iXs^ox%XB~MfyKoaA2G9df4osZ z7Dv!!VFB<7fS&>xmWDX~jOFSoOy7KsV!ji^OR8XCv5w%IT$@) zqt%2tOwVW*nb0~pDMlMOS(4s0fz>h~ydde+Zu#ugW!r`qt{1ZmbDp%aq_Jc<$R*3C z^Sr8B1%R7DW*2;rDfYq3?TzFXac;;VD%v08q|YL@u!FI{6h# z0DRbYzxPBDmy2pG`mZ>MBMzEoa7d}W3=1fzd{v5F)8VW+2|(r(kPt&x)fGUe)e3Hk zBs^S5U4q>i@$&YRI`TjeLgMz2in+3gysyL0i^LobUnpNdYxUFe=P~{9W$JdJ^TH0l z`)~f9d*E$nmB919dR*)Q)&ZbvlhB0v%_1Uf^c-!-2wk;7Z_o4CEUdw=pWN=(d*W1B zb-C>4t1Cg3;S$}*DlPIX3RJmZg&95KIbIGEBjf9^ua1nu>S8qSZIytlWgB#L#is0# z$QR{Vn&JIV3edpwf|mjMAnd#L%{>ZMgBJk{dz@cr5vQHdw-VEGR7#~bu{jAMW>126 zY6}8mb_IbmF??zD(tk3X`g%QFtx4r#g+o@w7g;myeON-p+hHa7w?c1KlrKU25fSQGwwwYmVp|$@fdPE* z-pUx5-+%4{Oe?`PYtEdoFSBk#UPw6;PttaeU?g3S!gF?TM%`$S;50-qtbi5ngzylQ z*;GpuDE*d|yIgCJGUdgs(FHNbl`KfgfL0}CG;G(n)MayEqmD!@`12TlBufwjBkp-u5)|jr`dekD10#s9DT)tpRR5<1AaLweiS-{Zwj&y}&MjbWfU)1Np#6PA?j!na z^l_N}a|+mDU_@fa&*#FSu>-Sx5cZ>K0T@iRuOqh{%UlXB$gxP@@PK#zmq!a!r|~5< zM<6~t@BVOgIm!G-MiZ%N5b^|aL;+e=>E5CLfx4@f6!y5DyfUyF`XsX4(tF<66 zMl%Z{(N&bILHY`SG6f?nr@x}v*`VQ7#x)3|p`;}9e_%Ug@$?1e=c5Qb_GO5x1W1fz zJGZ4$2b?nwUFUKt$|?n49D+9A0T3KuR1K&aQmr}Zm*sGZQv@3CQ5rx^A)Xg1PO25x zMbXWKUcf^V)1YFAYZ$K_b>3O5y^8^62o<~)a3;tgXVY%R=oZNS4a95c$G_iF5#Ta< zPDDyutx>#|6!REpH-uxo+>dbb?8JZ9e?iZQ%U@B9=2Y^;W%)*br8fj5-+)$t2AXsJ z-j%106dw=cKRp2gVTFeoQmd9uW*@PX!3RuhauUUvQj+E{fa0zJWcY~5jxj0DweT*G zt`7MWR#NMC4bUV($k=vDThx@&^ISVy`JMcs;F*Ua{#C`4cpQk14ii&J;xR`-TLD@V z|Lk9x5J5cvLI6zW0Am@@U9X(9(CfZ@lOU{N(Ag3=Uz$uzwydS7VVRUW0U?in_f}9x zjz9h}^2B&Bdw6yJwLa*UdPNCPeZPo!-un6BMp#AJ5%5sbt*e(el+Q)Xf=)t!3J*ZR z|GESK@wxf->tO#z1RRuiBXS*m#|%GZ>+FTrd|!S8!2cv0Gq zr-K3l(x_XPtZ`^XsLC*balkka^!eXita-uw@sL0F0h{K>{r_~QKmGrIg!!L8|Ji~= zVg6|A$1Ny8IR4rGM_B%sOZ++RQPKa^*}>*-#q`)@pfo>zfZadazm9AE?_2%n_&>+} z^`P2d|M8T6wtpT4eE+irpZ{;Q1!FlVk3;D{-2-ev`Ttp=|66VU_lEiBmVa*b&n>~1 zzn}e|XZfcMz(0Rp57>g{1_ee=bkZCvvK?fZb3yZKgMxYd@y}n#%~}u&9`3`2Gc%5d zxGxIVvdqbC)ZK$mPwYLcjEq1q?Zt362PwIqLJtPR-={pDjN?h}wPZzGSMAVQVuRXn z6#B3anUr$=m=f7jpeWgif`LJqZgU`x#Gw&Uw}BV&(F5tfPR?S2JT4IVX?qE%jr^{Q zd-r3xIKE`T+`cejKDz=G$Tff&tBgo$hO7r7~CzSCxoc5QP zOe^tts1$?CWEIvJn)@46e4EpOyNQ9uqi(9BaIYe}sHy>D0rxSTqH={lLazOIax>%> z7S3}izfr7Q>h6MwU%9)BiLdFjGl7_$tw+PGq-QLOk-zTtY!D#QPe_`VzbG#D- zsiN66t`C%5qcvJ@&oI8Dj|iV!qo^OVg#ZFHQ2r7RPeVhnCB>fyZc-cEIU%#Yx45>DffW_| z)R>Z>pj`cdv2?cnf3=27Xgb4W3UCpj2-{%!?N zkHumYWISIPqfeY{w}36`_H=9HccvuvhZYdGeSN-H2Ns&6qA-nh|2zTs(1zei&yS3t zFE3-T;6&GVQ1?h*9>i7vO(jnkZVRJvlrRec07imS+D5=nMeH@FVR0{ys=j>qjQ| z=XCJV3}L0uub;Sfc9z{c@sK|=7g1ZJ$ko`PK-n9SS>(|Wk@{G?(ku@`cAVYmo;AMingE#Y*lF;lyFrydbpB0S&X%P+q8dMg)~7-?|1E(pXf#f3|9-9T+UH^Qhcd zq+%a#*M6)=^Wz8TN`^x$ZiBlTleKe>PQn+^c!_2ZbA7C{nD3Xj>fDhU;_J!F`HZ>I z!t^u0{(joW6X8;(S`f?XN^JFau%PegH|u5k>2!xo3a_*MzQya}OXq%U%!d1(%yyZk zg!#9U1ZQbO5?*C)F%0Y-Ed2O&Nk3~d($YV85pXqhslbqP-@I;Yzx#rz5lw*l(Xk|;|3eQEELn%l$Q^E$s~j~GRal$z2|&47v>A~ zrpNv=1?u71@Pi)p<7l0obl)pO+e+ui&)M`f~U9afr4yha$40isE*(!Q_{=&t- zTgOvYdxO-ck=@z)?)TJPT_vqnt?~Kp6d+Ul-ekQt07GFZk$By)KK{Vd{CM%dPi+>p z<}^2zcb9l0CFhwO8yoBA=ND>a?P|&%(!Sn(-twWn&nGMW@Rx9i1TavaYr;L|h$L8TzAId(47-gE^9I=bmh zWx-Q$?dne5E1x`EDVvI`jsZ!;nXH8Da zzXE_rkXc$-T_WO=Q61-DVQe=|2-EJ?RCqNrhvzt#ceqI&B3xNX_;-|%u zl$Zb17smtwQit#aBL!3CFflQ)7&O1f#dV#8fOie#MH>QfUj-@ygIvnf{!!Gm!N+4O zgNAw($3MgT;~e6z|Ngw*e@y_9~&Bc`Rf*cT@3sUt_<$+c;$Z| z3%)cXfrRIzq@?pr9%#VzLEYNc*52N(@$q8{m1ov+s}GW5wv3NGB%uc~+u-7`J6WRQ zEo26fej_g*9vIjI6dvGS0V5U$W4x4yhX-{uB4~jZ1gM>DZ7>Vaso)wQqz@lo-WWb5 zmy(k5DKfG*xY(h{_ryeeEG*xL$9n!<{&d1W`_2FS^tWn${Q7_T?JtAr&%uAm=bzm_ z{ov1@HsG>Ybj@D3@>Pbx`^hn0j`2nv3dK#{+ZTdY&?c1qBtZ>^{de?pWQf*xTM;TU zuIY!QywcUkL*Db-KZz_C9F)&_kEK~W`fGEqETW=JU=9b_h(?O zbzZtTnXHA&>M5W7SpE|1Swt*_l8lcR?{S3MOGj@YJOfp~>ld6>|Gr4pDma;sgT3q? z?^%-88$W(H)=B9&>2!sN*RJ!EJnynsKg^GC=Ko%v74vYwXNlYx4A%6xkBQOh`;y2Y zXEjMHqG<>i%c`<`-@>R(x*>j(Whgwo?=_5(EB(^YsDjhrct5+^AZpE?Sw4XH3|VkQ z%Q4UfL-S{H{Ip^U35GHun?q3A{bxI!k&)KfDAd8-vAPq_rPm@M1oP=OiJC4i=JYyNjd^Vw?Fy<~ci9QoMAcqmEVUzER0U;Q#i49rgLvxEs#?SM;y7r~6DG zXO-vb8!T3m=ExwDAiO<8H}i1EynzNX(U2IN>8g>G)ZWaHR+hkK7)X6(!tQc?pIlLB zEwd;&$_wnxs{TzIbFvFX_SZBWqC2z4LU-I}gd|=Jt_|(#m0BKiT+E3GM35YKT4$ZO zpr!px4EG36Xhloj;(lt~+gSt?Dv%t?h1_;;${_4lm;7r#yB%uoQ~&9z%iCHiK}LwQ z+r9~`)dBH~XQp)HHeKGiBUv&;3!?RUl9uqBbuG-S>C4@Np$>JWPL=+GvEer_K4N^9 z3_?d?kj642`s|0B$_z&t&h+yfjy_hckxXHiD$LC~v3Bls?--(eYm1dd zdy=+s4VUMdxm2*8wQth(n4`L6!Tw_GM}6)S0MBKwvNw!!}EG-rg+P zRL#4da+A_Cz54x-yW7syP+LL8bC>RbAM5%-a}=2-L=Qa)wibEXXeZ{^-iu5VO&<6F zMBD9(%kvRhyx?z8cD_ltYa7Nl+imb81vZ_Pg{=@qN(3~9g00siLyE_xS_)7#%f+|> znnlWITQ7%Pel5XQUfEW^fIj>3gP5wx>Zc>VSK|ui$fkiruoC*=bxS?b-V-?4I*a{} zPhJ;74pP>$dEx~sZcfh!hAYyPa3EN82W@3LE44`e7ju_={1F3gm6XeqU4_tl+%lZ$ z(WsIyy=pb~DNQ;+=9Dd_;~|51w0WKG?jz0fK{Ttlxzr@a{b1cB>;_rdCM1?1#gMfN zQFI)qSs7UNHlM~2uuR<6O%J|h$O{gzW#=5P0g?0x`*FK`Rq47k{-y)B% zQZ;@ZZed%xasIr8RZd903-=K|ip(4M`OYxr0s*UG^DODbWp~R+Y#h9SunY8=Pjp73 zlXz7R3WVjnZ6$ieWd-|!QhgmW7EL-z|J{NBKfVB$N!!w33G9%!AfL8(qe2{WH4EW7gHq!imX`hpnH6@HPii%vSuO?OqAS;{!ugNPnYMwY}nuRuo6WsZf8PgZ^1 z`|EXvD8KG3R?a#RYRZp$4di3G*V-?;pCfV9qYlEt4D~&&4CkXbOWnjyie76lO4B#f zg^XW)($d4?7Kp^1@S;Vo&CrRw^T_Me84+HfUam9P8F(E^!_$hWnlcYfyLG=##z)Nt zIW@P*Z4>UgPD$Oat37?(>qu_ zXtAJ`NV`vJxV)awIh-~+Xw&(Duz1!i`XhZhb2u6gqAcz?cW0t+pVGOcKBz$Ragn)! z$nM26V=`{-88)-0UeMdiJdq8fG7Gli*9LN5_p?e;_3C0;34ev+`9#mfo-CMX5ls;} zv_d(Y3b-blY%m5k^jSHeKQkV2TVA`7X|JfidX#}cW{ikZNe{P}cw2{S$NU^`QB5iR z&u1QKUZ?Z+`sF(DzS7V3Ztga9ZY?y$wl_nLwei9i1D2z zFZ75wAt@!ukUY|zig9t0hT8r{gGHf&p|ijUfq~a<3g+X-_|GvnBLyv%7>!}O5losE zSTN>$Y_Tk6Wb#kuWU1alt-mwVn0^Dda9ud^fOEBS-I?`{i!VuvTPL)jlbAGSv=HM9 z)S~QjEDxh=&gUTcF3*ps7%gMy7pVQDMoz08qRFpm-nxP?FZ0+4Y_)+Y+diJJa3S!l zVNhKtE*`dLaiy1w>BOxg9>HwIlF;V+gD)ALT5%VlM-O@`KiL+^s+yXP|0@0=!G({u zuC>HJ3LuojqLW>0Y*Oe-Km{5_zW)@%GGKQK5MfR zA`6yfbN09o$9d5`d7@8{UhVrW0_SC&gWA;PL@oS58_mbBoLAzSMjhcF49zEZejrjY zd-^g%ri2bq8HiQwQMga(Nef!_U$e}&*=|@L_e`_=*5R@>ewSjIQG;I;&tBZ8uZh_G zQyaoruB|@y0;Y?`!c3Au%}5gcsR1Y33r@tb1n}jVksNXSY}4sDhUj3K=4&^_x#>LJI#adJ3Uan6liFVMnm-= zbGV3!tGCCd*Nar;9cV_2LzXKM1PrqJ7*8hl5mJ|mXWvh$vs|TRg@QZB3VxZPs=4h; zIx4?|jl)>^?2d;6arbRoD)z_>BpLWV`>ZayjMPWHr~*yuK@)zr4hpAasW03Ad*A_s z*jXbZAQ_X3)a<&lVaWG_in~oVRdH@_wlhq-=;d1hx8!Ak*c3K)(O;VsvyCpzZ!ZBG zkDLV}jCD|X{6IB>*1#!b$`1g}vBj!WgQ0y}14l_L(YmvfNdxlePi>6?~k%F+aq z;-KL?tqib(endVyU0W&g&R8vTN0~B=HGD#Cr8cUSUltsXl=)`OMMBqeRug?^#-ruA zOA{gsgg{x%v!4J^dNdOkQv2Xi&C4WvYz41?NyavxgJ5 zqT35*Dm6gcw0eS8T!TIuy$BN)Z{t)@H}X@zin2aN_+_Xt-@yKXH`X zOY`%~Pj`MlJ|Pb3D24f5G3|e-l*s{g5e~IsN$3Q1K@)1eg-?n&Q?nQxH4$L4o6f({ zdLu#eT}MrRy^g{NOKPv~WPD{aSc_(E=wyX>VOr?7=ec^J0ru%@1Wdp9MIEuXs=f30 z-}q#{mV8J#p22T#yB_W^5pZbBRg5Jlqs}dXO3Auem~4t0%^|AnrGI(V$rmAXWtt{7 z>vMQmMqOm1V~v$V^DclM{(}^`0YoI}Q1T`mE=st!wAQ7OVfbO?MaV2=%7a%2Go)|1 z@59BnFg#v9qXqXRRVF<>onSuIE6P!W`?cPz3<+NseI%= z>lD|ITCGu=RWGr=PAJ=MM7VmPd|6E8WWZIV`p&ZBIFctq-rtPdzUJY9((m1glhX@< znZk)*NTIw-=uh5{AyGM*$m@VMSX{i!UkLoEtoSrI-YoNQ!TK`=LE*}x?A?QOgi@4F zp}l_}1+sds2|nV=1Bi5zWImNG+7q_4O{e?vyAc~&Z&f5uYu-C~kJa*`x9AA8f(Q%5 zUmE4JBdZ@~_P(9e_PdTyYF^5t^fX9rE0=9kAV%;5jGdpfG zNuqz7jvNwF(3ZdIq5Q=(CsXNDv4KO$r3>ostUa;WMn`3PH-n9Oo9Z*qwSfVTR#x6M zqHNT5Je4OqXBX5{sC}!_ErhDTVHLaPWsnU&eODDF^{uETpD0?dp0Zk{4r=~r{3fMvJ30LMCTW@J*eychk4Y!&_c@=%`hzQ@ zBF8?94*qAZghP!xJH5A19z_4j;pLDN>+Lbnu zt3$D1-2hA|WrJ_#1cbp^zvr%BGN9w&Q!~%X2ev^W&W8h_@TRW7A} zHjn})lvSowqY92qI?qmS$f#SSO?r2UpqDW&Xlg{re)(0;YVt{@gv70CIwiB>IKcvK z)vp_cl`ZNq)ntsW`sLM-`bmgDW=7Q2i0)f^<;%nq7Eyl$+eDi!6MYe9|Dds9EI*OKGd^Ye!|dLZ>@!T`86iPe>k0ZcUle@q>W|Rpd#~tU4mpRd1{@xLVzam0 zjpd=qwtcb5yBC)w`{r~0LuXJB1;`@Lyp?0xY~_`%4Y?#T{pBU3A@(dh?AbY_$q3Pu ztbWtR)W<->+*u?gsOQI4!_7Gni`{j(czSJBI45br4nZQyS6x9qs($1NC0;(W?YIHL z8JoI==5UPIBGrdiOGc`LS!6X0HI1glVuMhMhW+1JB|ZyYB(Xb5aV!b(Fyu9b_Ic*R3(je?NF)&vZNHCcFNqe! zUs}LSv7Y$`kEyZw0#iF-kfNqwrS@!}$Nf4ucSZCZ9oI%`DOcT9X3nw^to5DWD(cU^qYI~uU*TFtt>W=4`&%zApbtouG90q0H<4H+46faY#*x;1Nq z+|SL;=%T0fx28uf2Lu;5}X{Al*c3&RejYzWNP-|q1z`Ygwa zule{JOI!^sj4sAmUUKJ!scpzSg-dZVWy1;**KQ$vZd@zVrOzBki)H&JrR5sug1J*y zm>A|#q%3;DHB}M1Ujs~FA%7K5k4N<1-vz81{$2j(xBq2b?VkhxKQG_?AD8O>pSO91 z>ep|wXr;|@%5fXH5z@aTSO)#LXn7g?1Sv?o2paC|5knpds^6KS4I_;ea()+1Qzb!J z>O}!1#nj!`kbRpG&(SmyV?_3JQnH?hGZwc!mpG$JEmsyv6*jZC%HrQ~FAP7&-UReZ|~RNI9)8sXaa0UMS$o{7-;1+8|88QUZOlG@bmgtJ30%YvA!i<5;yHa-c1q;{ie{7Aph}E(jX-p-gzVmC452X)=go03nTpBY zX2J5vmE@>u%RBR-r|GUYKIR&fjd(P#fz?jbDv5|6sR5 zl$PLQ6OL*A4)weOa7J$YKs<<~9#dk4s|sQ)Lw92>BuHekuvOg&iQ%x$JRF6{ohZ!F z5}S2t#S56II4uyCEJo!|>oquVAs_qxZq=9d6Gfc3PvotKzc{-u;}FjS?qU2#{Vz^eK{0^EnOgd?p2Egat3Qjb>-9@Bw#iJTt&g$*uMRv%~UL@B}t=KMnAOHD^) zIu~~(8ea~7nyzlSRBVMABxlQ2Heivw)dHd#J5y>+dm&hhhFfOY*;0m0ui5D6e9&Rw z=Iwor8WG2Bvvjl*_+wc0mNTR)jSRk_&Q5o*{L|MiC^2(3>%gmQ5zar}fZG#xPbECd z>=I+!crm=vsoQiTeW{NU5~d2SQL!iLAv}J-yZBafds6T8^ecN~H}ZMY2y^i5sqxOu zhiud>3AGfBWU3D#ib2LrO(m=Xr{f7VNl&owc;5YXYP1ZDxfeTW+=5R=XV=9v>>wlO z;-4Jng!7EpOfR-l_S;u92>BQoPwZ0I4^aach;=O{D10vd1@ygIJ)WQ47!+T-pNs*yG!S z;kIeH!es{c7nEwV@e|}fHn__mxv^E4d-zJnKkP~xzX24Swp~0yeu=(l#_H#{zuxU= zL`t~dshFJeAi)^C%gjDcy=5#MNL%CFo+r?(Z0kkUvOyK^>l+y89uNygb+I}=TayDKM zHCQ7+&Epi9>px#w&Ycw+w}&AexXOsSRlLvPoI07TtXb3RTXqZGtYfALzr?IF+wqm+ zT_cL@JvkZ(hV1MGjZ@)px?vA7B}e16Ll{W}@XZOPMYJ#Rr2QE8Q&{|Bh?m!I+oxE{ zF014>BXSahNH==xQ_C8wpjc*wY~~JqSs*HY>(jGb-O;JpwiY%L9yh3JX}j%&t*d88 zq5R%4?BCtiigViEMJ@jpz!Nl$>6|VlBx3Pc+aNWqY0SnJoian&pMw=(7?m*(_{oxv z-Y=agN6E^ssy9e~#5A$U9WNaloqp`T%aAA@a_(+pY-n|>U?$&<tbPm_lw$N`HL91 z1Sp87*5yE}82TPX!@zXyC?>l<%|7yS%)%y<7^G!^oG80X-0Ea=1xLB$`Bt`}&`-Kg z>L($)Kg2VwG&W8O$rLtsNJ@k|2}ny8=S;D4Q}h(#&`l6TBKEHLYC{a~jSBGfz`DSn z!Hpv|(`8qMrGOenj{K@L#G!C&;Z5W-q`7rN8N4D%#4^TRo{&+p=s)Dikj(t=1~y9A(Sm&HZpRA z_4{{OU=Az!jstFw4%22kY`nhKZ|2gIz^$f+fPVc&!dEv5@rtJc=L696KQr%EXy)dq zzIe^~d(F`WdLoiwk?2zRm-`?Fdd&p}2swblV17aWU^75p9Q9?wrQzak@ZzNL!iK@c ze(-y|(GMqgmchPP;RraiSfZCgGHexGBla82M2$;tT0irOp@{YLBhhwV+^R~fz7U?v zyhDIs1qo$`BTTMm`POc4*ZQ)f`*i4^6%tTGP0adxnfb{01Zs^8`DYJx#U;oV`gI(g zq{=DI{dk+&jfn_5z_^SB8H%MMb(OTy(-3C)CT56y%qxr)gsOyD*ie&Nm{nL<{3xhdRWf;&GWkgcR@6xZE`_LjTmD3h|zQ0 zbI=ehMqBcbH>PHVMR`S5osl>9n6tn1brt!{Nl`-R9MPkXPF$(gvWn&+p2HwPL{92P z>O@Kjd$R9ees3@)GxI-ZY=HUhP#5-@O<@?uQ_u%&cWKydC@*l_dKyrH`BPDHLfe zoK?PvQcJuqqsQl9Q;OsQCJisCw($~%9H|RtG`V@SVX&A<$df#MxV8E4Wbr1`aFhay z`Y6sAAS&<8XC*1@O~+01%DCvF_)(-=Q`EOjO}9<)XHxkG$9_wR2o$vKHrb^pu;h@s z(yTu7$0SE$W@N@=PPv9dZq!ou@%Sz#_?kcC`P@9_rU6H4D8w@{@#z@rOc1Ny;afFX zjxU^i%&2qY<04-W1zRhHz7@O>6-1nzA`#Q6>uKh<3TeIfge!-GJYq5rwVpwq(QOT4 z%e>zZ5;=7nw3%$fV^#QI(D`w;%CO!yzy3R`05Jn1+uG$>XvN;g+(}xv)SBBHnCwq_ zB0V&DCOI^c0Z;p;&2LWC9bI*GrCePN-F2L#l|KKXsJctkCwq&`*A^taUtA@=J)p4{ zJJ!0bJuEi)-Tz{|x8o-bO;@j2iX5~A9=?@Fu+=L$mAQ-56q?_zyAERARFqx4fe5Mk zqauXX9x;k@^Dh|Wj_i`Hh_EqZw3SF||ogTYdV^*1#gtE%pRSxkzC8bs1yyM)SDz|ux0t>Gm-3L3zZ zArpbrpmIQybnb6HkA7EL4N+dSLkGy;r92#;B+3jPkduq1MaZ_jqIE;NDWYWQt=iN$ z1&5Y|)*MfEARgODyP6=Uje=ja$zro>O3F%zh$y57i>W)uzGqb3|BRZM9)23UY2R*Y zYNA)hL>6cfRenzeWH*?tM9iT4%=rxyCfD$AzA4e2Z;*ythw5LIwN6S(OwG~v<%^EA zIf9SNg7c{>D&iWOP0fuAWq|+~cYrG1gZnEK=~2~htp^=XJpV$$DM6dEQLnRhEfC$C zf}pJSSF(~~3y&Q^QL9}w&L3`7km5#BddW#3& zNLQ=v$QJm*c}9qtD-$v9AWy(A4ULO+#D*vkb5>M5m3grpG7gPnAK&^`i+(Da9J*85;_v^~=l*<$v|hS9URozE!|67zW|94q zRWr!hgOM@}!~cVVq%yZ%A!+%Umllv5P-yEU zUDki#?V3>unS@V9%j@tsVaRd~4emRTuVMiX6y#g}CtnXx;cHtS}Wpg4)(Ip5O;DDFoP^}2J=qxtx`Q}iiq6jq% zG5<=7+cznWK`27DUt_L;7s(Dv(Va+PFWYOi=Egr=fv|Cst}QzU2?!SbuoyZ@4yibyllH zdzO`yQBTfp=!Rr<>?uP_f-3#}IabW1TOiU|^liaVi80Y#4lY zjLAG;4Ad9H@Hp()%?_Fk`nEr~z0T5?V1jJU0_0QX4@zktgOrTjMmJMz>4M{d&>#uftJBdnEkV7UP+~wL=kykZt0(z$LqmD z#sXyDJ2}j<5g~uyUcMYwH|fWn>_$5G%a2kjY+xTWZHoQ=Jy28t@sysDO;!X8`A+$# zM%E#dDQ&MF^*brdhdv#YGFrKF-($4e|ZBvie(OeoK~GI zeR5?v*N2BS3`%xwwaW^o+XSlr6g`g5n=Bx8(6IiyHD1L?aB6(W&QDSqNIjdyiH2Iw z4IU1#=^4R@W`p7ZX!^jAVXHGoAEn>|L?VEC;P3V^Xw_T@V^A<)`dW7^>^Y<#90jF- zp4v2y8%1t;Ne(p~+tco5!^w#wrGdep*<~pt-F3bOOTV63oyDfok?~%l%g8JEm-+Ci zz3Ys*lo-G_ft)|`LXKg#<>y%i2}?_8{aUzmD471>KN~2p>G;j9EIo53NWj2|A^SS? zRyp`VbJ?SI<9b>=oylcvr4w?tW~1Q!`M+Nk*qm{3vcceYk09@U*xaT)#$54Rc_@ zm_vis58e0SuuWC7ijMTK8$ZKa$%d96sAh&kOgSM}G# z2$Vdxj5h3y%w3k983R89^BWFdO&!bstZO^(C&#vP;0dNR zzp#;>QY%Zp*P+5SLja0g4A(IwU~WT3hC7Ds`V3Cy4ErwA8?fl85nxzE=r%eY+!Q5o z>??u@xQ9qi90pUCIN_tN%z=h>`Ltx&T$@}Su{s2zMt+|?4JYg1zAK6CLb9*}q)eur zV%&<4E+tvx7(GQ*sT{oJgYv{=aj`LYA1iAD8i0c05R?QhTj0@07*IFbG2n~Q9Qsm&||#aMG8=lRKq+Wh4#-i&3Y3m z+(F&ao)rl_va9__PfyAUmXCSt0R~h9=q2TU)ehjgCjj)0olK#%36#L5@jJnL6+ZQorPxSg1Vq`C+L_x@7?fQQFsX=2*tvBQCXIB; z=!!~4lwJQcW;86Es8E-L<{et{82pMY(jgoRbDSPt8=tAoH9je{X@90DNRyzxTU3S+ zBu_f^OKh<*K31XSxM9gK&0-tA~)yV3@uae<{8yVF%W27{dg9c`}mQ zFZQGDhB)o@ur5=*R}UjDrEabx4B(xVdN;00s5={z;(ejRoH>|_dQxVk$!Pq9mO(Uy z(3oqvBe!kEWm0wTxFH zg2^{>{ns6&wNnex-ec*2)STQKAT|PF!arp)=Aflz_Gr8{3k(|e_siII# z2qq6)GgTl2n^w5$RrQT-QUWko#_3(8BaJ`@^<`$IiJxJAt}-ia7epQ3W{kEjX{x70 zKSnDdy4##tU(`(u7zEgE>88s%`SZJ9>>|as=xUd3`f-8T8 z#X!WYxZDeqW^PDIJ8O)8aF(Va@(L$59zg<^4o<0u<5~0Wt6L#`(_0_Tf~3^SwOhQNcUzb#$|M{RCvX^b zx5n5jVfspRxhjvgtzE$QfE`~5Te4~x_ZMC`#ZeLU2-K&C{UHVR>QKjCzxqZQZp|_6 z3WWglyDS4@KhIAzpF)_Py?;#MRvSOeYPs|ZH-jSdm|J>*$GCaq9~atBSYKM|E^FHw zaTz2K=znOA*~0*SDUI`RQt29upkM4*$CD~ktk?!1fu*%Q{!;itK^Hz9X9rC|1zUP@ z=^mpFO{Fd^W#p~IUCSJ}d&z~ANC=x3^=kly`@DkgurGZ?vy}}g^{X<&F2EP`H~~KK z!33&W>II@f_FN=kPR%_%9$T-+VSLd!7x3lGBG9SGW_(F5jmu>AP6Ic(D}Xs+Mr2Zq zjkqp@oBz851Ry~2ZMPjZ3dxk#BVo21TM2G+BCQni-C+mP=VHxJGPfLI$KGLdRVG+2 zlP_TXaQ@in02fm(lgDCLTezs``lsk=ct9Epq=MusRB%*=ank->399M=`7J2ZE{DS| zK~kGY1)8SR?&wTvyZjL?kI53%QgDuijJlVNAW-%fu^*#37@#YP{e79MWAdBXjCU6; zcmN7;z#cvckiC<(sml^fudaW#_8gJEY8#Ojo?gu2`VcqmNSRL*q|46%i6~si8$o-~ z5>WrCl)LqP*f_VX}QcvU0s?kfMR{m&Y5;QTrp8 zhGTNe9%hOIy!+OQ@0}jTm+C@puXQxK0#WY^obSwUSz`IGk(2MH5$$WzQ|3e0O6iN- z9=(gs8$!+Z2XY3JedGd;va`!N+nZf>`zwa;aHO@2 zT+iI1!_6>yEM*K^{dB0*@DWQtJYfMI6W580KZY8AEGZaw0rcMjrv1UTNCnI6(^)0j zlK{RXW4R$4r#q^Oi`-~B%e{dE6s!}E>wgrKY(I^kzZP(KH7?}rWpwQQ z?a^7oB*Gtm*#S9ydFio4fuuc{^Aw+E$Ah zS^-Qb)d(Js@JWT#!a@cHDY$I->Iz1k@BF%w1*7I9?w*=6A5pvWfFU^m6L9xtmxK() z@V=U63|{1*Q9<@m?GsCA_KP*$KcvXb_4g`D%t!^y0bg;FA553Y)*c!WIr;L)&io3T zUkjbFw9>DuCat3Kdx{>QMPY%MAg>mnx*9ak~#zgRTdz`bT1kPs9 zGNy{*8qD@pbVRn3AV%1rx;x~*cA^^upyVmPhsAa9Y&;LB?%WW44sITy(|%EG2f!r$ zn$yFGjgICXRdLbzZp)FOXPP6Y|AQOyD+(a%eEX}om|cpUD2*5Z?PW3z7AcKpUAWn9 zEe^lhY(U*SgwOo)c*rG7;EAnAaEFl-UB=n6;<1r+lyV*g_wW(8)mjA;SOsF$k{qY% ziNVH?czAqh8wiT|i2!EsToT?$=<1FaxAM`~xAO`Mz=&6fzus^se!cSub$~;BCQAy^ zT^a8H7qBjAZ_y*f06-0Pj_`t>z{N9v>l)=Wj!QvpUgbIiH6+=fz5)&UTq#f4<_~$m z9S@YVJQyY4oRA9GCO?A^1=!pks-Z|s5By&nBGzRNiY_cQ?YKZ$0Q+_8bp zJFZnIUs=c_<()ic@Pld9tf%@Lw2B3R{%Aw4JCU+x<0E<>hh%}Hlqo~!Q2K{Kqr z`{W#0UpfkU%qBP7ui+9ElkmK)LAMX^12dUIOT*Sh?5ybcj5TT;=1o#Zn$`gOf5qRY?D}${f{wLbOD& zQa+8#{%QTog!}6!m;h*a_5F+kn2!OwOlvVb)A9!9teIL5dXOo@X4Wn5>p!4Zh-np9 zUunW!zROdN><3>aGlB3yO7%HWf%_0^p?(_NrODKrTRk#jhmLVzBf`0_Yo@GT|>tkkSCiJ4+&YApwJP-((L|3HTpnjai+8 z{|q%c&40px-Vq2XxwPEy17(FBtVL$IFb#aBALTW}x7Je>??A9^zG{HEG_c8o04*1n z2c8b+h4a135&lRX0?zPE24mF5gmDEuuN_e=X;r0S;@=?1?z%VKDU3@e^Em2s zfrbyoD?3a;{op+B>0xggJUPLH?OP~-XpxL?tJd{peneC1!JYT>8}93U_k#$iJ<`Gd zGWZC90eHP+7K72RtbaePBT%4PRclR}8CMXmkdGEvld`CeF3Q+(%N@7F7_kj(p# z17hWT&vcbq+;7r=5IYxl)s0gxT=JG&A_~Tmke`(u7OhZmXec}=|Tq)88$kQ4#dbXSwb4sRS6mMZCS_Ht!B6tx1k%6|+a$nzz<1lWVNdn8l_n(QG zAyu}g+F+C&Ezo>FMBPtXX^6?z4d~*d+U&rf2lDPPeCT@L%K0e({ncJ?_apl?3`M4%hq-6al~Cr_??js+A;cv*2M1$&dcr#b=USwtItAI#lJj22-scuPa!nx><##ouu){Xk_Z@hPMJ*HXx%VH8Z!CdvvQ{WpIxqV{ z09uKxKYzK;6*RxSEY+Z|Lwm;KICaS3bGi^?$(8w3+u+x3sX1O|3=K%WDh+O_?XA z4#qzDVq|DNw@#T8LKMIRc2)#N?`s!Xf;9MzRw|WN4%c@s8FT|y%+RnF;A zR-6Doi1QyKR_~`#?d8jgIFx_S%3I>*TzCWa7Okors&Utm#bj(fl>3oM*DwHC)ajjmya@vc-(v1Qf?c^Zl;-0-aJXAm*DrNnq)(#X3K-zlc zK0qsGVhB90mYa`!sisSUqQSe>$9BBkg%26M9MSaPR%woPASRz6rEY4EI{?{IWY?yy z1vRS8$1{~&_OhFo6|)f5^VRqGVhY8691*Irp(Nps8BCsA zU#bpkBy$b&$^G}W_%Ype`3@{o8Y;nYbTI3D%ajLx2Sj(WOQs*lPPXk~fqGk=OC)DG z9|9M!t=}~Nt*R)={e{uGs`m9A^KUw$hb?FGC&8*$R8_Dzt67qv&e{!+ zK|1!UX<<8izPXdTOPN7RUEfWARF~y4r8rM=`$5wK#3!!PVvRz{>D5tHL@pNNCty59 ztzfg|``mvPO|_}4NsUcYdu63t;s!oAq5k`crgYN5FhjL@q+gOrs!+lT-|iB+bceq{q`nR6)!^?U%vmb#t%icDEBGlKPzfWk2 z%0*^=L#*UJHaY&z4vQ1=(|y+eUI`5F_|D%F#L8~W*`6~Rw%hIBDHF5G^*8<>YK9twi7(n zPdM1u$8Fbfj6Q{ns9Gix2)Q6yDQ7JxssZ&9|GE>~C*L0z>h zCh@fJ`gW{*bw@qI7>7}lnY|)?V(d%O?_fP~gUq0`q(hC{`#g{5g+r|;5<&i&xA4j+ z*eS&#MZ8eNtpts%m)>7sVQTulL2Eh5A0*mGI6^LOV5kA1T6id7Yuj-TE%_A;)|bCi z-r9MJsl?)_TT$V!?pxH5#?k*CVzWul^j?dk~gGkYI$$@Tco)a!5I00CN~yyLX2@9I>!5 zK>E?muEt>Ro#1PB_jsqXBWuz>%W2;^R4pR52X~vbVwc`FUKcAn_U>wgkCzqc@(XQK z)(kTts1pA79Cv>GQr2gniNM6r@P|3G4?I88Z2ud$|3Oi@osJu$23xG2z|8z&nPc_@ zAuUG0>Rm68->|Ltot>Y3+hRQ^@FQbW*L~v`DhW|=h6ll_=)pWf{QTR>8V;gfaO8@| zlLk=5$U^k$_>flLxPbZP{X!8t09+1Q8rd#FOnXQ z+tGSxr(TpgTq5#Dn;q6;qkExP^8o22YoLEotnw#pc}3Hmj3%?1Q4Pb2UA^*l$%#R3 zSY0_`LKCWmy`Hb3EJg#lv=40gETo#p4z_nRtYJPs4~rrUkj%F?>M&3@t6~3qy*4m9 zX+zC}>~37!cGGd$iX|~g&t!2?Od-J@n)V}?9a(pRsrq%X?hE1-7QFS_>DXKhw1(AQ zx^AT32Gkk5_&J>lkX=qjh>LVSRa7h;R%_XSiRNJ5hnX^#GE5+BO8X;mP`4K_aFm`d{1n;N7M+nVRqiN=k8=Ol66lS@>B-W-T_I(QA zMu#hx@~A=I;7W6QnACWvSGAs`_O}6grrv(il6)rSb+@Hd4X=<>>^8$o)~1ftF*`wg z2&F7f6ku@R8&lrc0LKepLT2Ri#vb8q*D6zkdy-5=zgzvkhBdd44^%@#4mH(F+uSDE z2}*{Tn_P-fuIT=N7RQUQP zgqhpHZ1rB!w<=+%yuT1n?%Z8pgF@qe(KG=kj`;M8i0}6#1E}IQma^TSA@~0zE$f6@ ziWRnonp6Y6q5TY{Uw|rCL19 z>L)K^-F+d5m@E(R0EKNAb~~^A`~e0aY)v6_9CdHa$GUsc9As1L42I-yX&3t`3Y`C= z5xr-%BcZ1)B|C4`mr%D1xu|XV&O})ny3G1GRx0IV(4nXq5?yDap)qjc(tU_}+7KIP zO2&&?bakdki=mT=y5DG3NWv68+4W>>{);VReyd{ z5Uw>O3FEr@CpjYbff^OTRpb^X7)om=|y5|%5sgk)LP?Y6zQ z)b`BE)m7srAYm1v!Q%ok#Q;;a4Ak9N`19<2d!wQF=GE8w3p&fUJgx^hcv}^vq?Tj< zqGsZRsdxDDRQC>Hq{P|?fx|?=idH%r#;XI96ZprbW$upsg42EcqrH!F?H!7%5A^ys z-bY_x6+5fuOj4Vw5EJ)HYAU7@2$OdH`%@_kX{)Qfwb84`n2M~yo4^jIT4(OKKJ|MS zJ}i@V1!+O&%hdpL;cl)!507D3DGoD6rG3}!Rd=Jw861W!{|9F)mKeE;DcP?q!=>t@ zKu+#Vu>+PqvCBDT{!I4d@}6+4WM6=!aDbY)x~QzCBn<3dNRhvP=Ih0k%`0oqR~q*HNDgzneTNrNUL>>4c-; zINhy2s@lK&cLG4~Cun}-d1lH$G{$Dj<9xjO<@2aslO^YKu1w?4$yrR@YtzX@G8?4f ziSs+>>n4R$kpP3%P1l(=vx-fBv&Ku^z1hTU8mH5sbBIMeMby%wJPM{V^M=zy^2QE< zn{NB;ICG8|3JYo$_S3X+U+wX*ccDyH+sHg`PP^Ourf%j@Cvc(sIK7v4%lLzXq0Z_h zSrOl$)#N=2|Mt%87({GmL+v~;u8}B4pP!ib>cN50z;iH`!}4BC6FUMf?iJM3J3`(q{V?7KIEzwV=5*TYcb_wZ$ZNfqy;-D-0DSZRkzCatoF ze{J#F)RfLMsxv@>l&sU`c!(s5pIQ(pd3ZVozuIU_)7$$UGCYYloZ7ZbqHC`0$z)X56*Y-t>FZlPYbyM@}|OncTYJ zqh@x@ri%ICGuOp4&LUf&ImsN;=8AA)dDr06{OeEnye}EJ);`@KuNYSBwv*Q9ZI*(e zt(GmnB(_k_+aK9dtYW{sPp7^r^_4y9@;WxG4Zk;`TRpaqoLL2KP2u2<*OuXI7h_AC zlm=fHwpc5rbJ<*L?zQPD?zGoF>`Ec>rdb~2jA?~_A@iOYp_6;Wee(?p$GGJ8*qIDR zqViDj*7F=Nj5FHOPAjVlu4kT4GMi*u^}JWors))8LI{{AcpbEQr)_pAoJejto*w8g zO?)Y)fjgYgZQq@LEspRXKN{&{-_xzqYB67(FR_

c5^{S>Ro)z?%5tX z6nhPZse0FWdS28J2(%1eRdqcdSH=EPM-kdU^!{J)K^7{CvXGRwiiL!Oh6r8Zp{K3* zIr?Q)8eL}H_F$SjOQx@#ot=e+b#X;SNy(4#iKmaVuo=Ajgtllib|ok$Qm&E?j7~WR z6B}lW?pqRzi3XK{0kQ)01#_<{9XDy}P;rwQEDmWa850u?3lAOC-#2ZO`+2CTscV$) zvN3a1N565JfuqzXTGh0R@&RBNLDIbjFc~WcT_p?V`3I?CyK!-~r6;QJ*G+G1@j|^j z)yAt;pWu-pm6eo!npLfx3FB|CHc1kFd8agzQdTEg95!No%BqWxEMic|(KZ&gwnIwG zt4NlDURvByPgQC21@#Mw3k{#soktb-tRPaK0uvRwX8tCMgn@iREgDIK)3Qn{5_n@q zX|9|KWXp_`R#T>g$;G~e1Q(xzb!n!;(ssNX#QTY>G&o9kZDAeKsQEkq8c$(M0i>nA zX;A>_E&~KgBxioqSgsoROUeX+ne&+@XCmTnnE#m9pK!EX#G6x250oR=Ym@ydcN@*a z{mKKYY4od>P7UDDAjCFkJD+(u-}KJ+ zOu;S_(yDt$4m}lI;8F%tl=2kp(OZz4&e>?S7(NHrSV&OkLBzXH(VjfkD-BXVisZ5! zT)iDXe~>c1{%2^TlrGov(JxJJ-4>IjDaDvX%RF+a&E%QS6GvA}4q9!LNJ>Al( z^a_jkZN`JzF3TA8{XtYhZ->MQKvktUzbWE9H5Ii)HGIyoQ*Sny{Le4GAmDcx9;~%+WW@`4O!ek9G+kj>y!xbhb2kZ z6MyI5OtZ24gK%zpy8-Y8fA@rW&))RBmdtYH6E z^`Gj3MBv}=|9lbsKimH-?Eg>xLFN8W{wd&p@(;xCfAWvB^}hlJDE;3i;9nTv|Ni|y zI==tg2l^ENxoMMf$e#bZ`%^G1JiJDo7F3JwZy}M932||X3JNp-J^Cb<1IlTg zpYMEsqCx~}OyaBaHFg-7(6uHzpZ`<2zS`-#-Wyt5Tl)ek7hVJKCn+i5zZJXM%B`t! z01=!CfYkr_{43!9TF?KxSb_gIkpEZbuK=R|M-|k0Kn?LfRnQ?{&>8-x3OWR;H%R?I z;`?tS{9n6$`=>zAzW>UtHZ0uMN;zo#6p#Kt9X9oHAOOD zjrY{U9y*GCvVo@!Z)>KDl)rc#E>4IUU@gYb<&_Ojf4*R0g`b8lCw{g`2M%N-Tfy!U zZh4?2=t!7;bh+AU^A!@(2&@JTbkcHfAFEWES+G8Jm8`|V(7}9MX7a(=7T#Y@V@22+ zncP)lV#Jq0zb$_d7fBAXnL)hreF}g03HBtI4R(0kTs2P3`8Kb+lHAKRf=D;?*HUSy zmp`zjf=Z)hEr;rjLhiEIu+g`YF>cn!D5@h_rmqG|W#I0b|Dq?)-O(^w+1_p7Ht~@q zDqxrA@Z;1~g&TcDd0=P@A19gdMe~a+85DPw!R?;hZoRrclP!S#(+Rh`C;-_T@Tm;VITzDH~`j;mbw*CkVOwX;4pvA?;Mi&X%DZPz&?6Sm)xXe{)sYoH^ zg(s`tW=b7=N|=d~6h~_2*He(t6xEfGP>|I$IqRQjEaZ-|X_6?W_?$FA$G$)AZ%j5j z#60?Xoh#3EY7=my^~tOH(`+_CDqx|iB=1LdcC+3=T*NM@BpO(h3zYV#_CCB|I`78% zP=`=x$vC}AgZpX9loC7fAZG=k-z?*@W2>G%|D5g9y^T+_3pOUJ& zjblIa=l?*mVpOi<{+VN&7NeA$GmLpIE@HU+0;8CqF(pIXW`8TX`?G^<7SowG8(;thUZ&*vh&_qV-Y= z9il=-mcTdJhnXemjY-pVoG-$W`9NJ9Bx+cq@bPii4^50qulEN{E^6ca+Xw$(V=VDz z$he+408^g>IBCdh_^xv1A{0j3<=Im`3Y#-ny1yzKm@#NrV@Z1LpA*a3O9=niD#rs|<9p>adA8Ml?RCFIyK%jvPm10qL^umQKPp3#e0?hs7r2pX9yrn%0r1 zOz)DbpAuRiM71tN;B+K*41{LGUiC2l9Zmn~$b68_;wQZzI9)9w=2X;~f7HQZRJwnZ z6(9b~DcAQQXYt5$4$qPRu70X7T%89w34Y}aNc3IpuffJFp=`}N2{XFbb`2u}fFP8N z+QVn3T<%n=-cz+ma#3q$SH;i+}X|7N-VYYmjz1VAa6 z6w$&81$(zoKbGdhghT~r(arj&DS>~?i|ulT2S@=V#w0$yTtwqC3E`Kf32$WmYjeEWMI3Ndp?6uj5xu-C03OpOO0@iU0KAz;&a$=ZK&w}D-#S%?yf z7!(!UnbCa$@3)$26(0vTBJ7GjA8}RXhUX>#u0N?bBuVe9PcH@6>e}zvn{|aG4a;_NtbuTEp&E@s^{0>? zG5AgyO~o`zy6orY-m?$9wMgmGYS0NKqszI;QYNHIeSN&d@=5v;%}|62dVvC$R0f}k zqR)3gYHgg59f1~`P$m-Vt=EbGc=i{x3|l{JQVwdOw>`O1ch&s|R9%DLPKK^*7CG!KyOqCg&(>{s*&(bUOye{Wdl2z{s2= z4z!nBTpc~5M@k<`Igt(pvOxI)hg60To{OkNp#Pdc447DNq9Gi6x+pvz$jF0eXrU7t z9og-b4zvzw%r*)=4Y0_QY1|pi(+fHycxGi*v0R(2cva+(`=CxAf$+I@v-;5&1u{ZSNB9LKqT&#&PP6C(b=<8u?%oRd4hihhPhX}wvjydI6m z@DN+<&csqee|orH+rI0Xb^{_iYR!BplhLI7b5d-Rg<{qGih;27Gz%F_m3=SX=w4eTZW7WbgO$`=Z#0c!TRP*X$QWb^@(o9;FeHB>}wCJ!YDLBXI zF$s5u4Hd|hZy^ZPK>1r-X`?If+>j=pWt{-(6JG({K8k?Af!>x6M^vs!os%QC-<$lo z!lroXh{itqNs!&Y$B9k8&ERI@GyI0^?rBreRx*@^YG9(F;A8>gHZPJaiVImsWuPU` z5G^2{8=vm_7W#b@@ZzhD+h96ljAmJ1MvrFdvKcKR{mW_KB3s7sOUqQ`@K10*aS|kx z2EPT>l!Iy&73umi;1Su5TN|`H`QP$T2$KD&)Ncub3(b{1r^9Ve$Geu+E?aP&m_CON ze`7l-&r$Z7oWWv{-~f!+X_(K#FS;^M9W8rAU<_OQT|o;Q?eI*kv}~-bo>wcIv|Pw? zhIiH9a6D(yW%GzIZt|e$-tDzTwdEC2f>8e8H0=vnt7ttg)Ylr-k#n}o=HIcv6vxEW z2rLQ}-XYQ@!-H@WIZW!+4spZqG9TJS2!2|7U~oMqUn!xl#q~+ zC!HC7Tz2-R;bC!DlWNnf&pUwf>uM|8Kt?DIEtcZw>vV6Jsq3lWrwm#AFdo%ZFMHA^ zf1S3H>*CyzA|;wX_?`a|W?IqcxZa-XOqm(8g*;~9FSZ7L=4>UZ;o$s}C(jd50OwIu z^Pu&sNotIEvYC07_7>@Ger~*KxTH;ITK{>Gc?dtTz+_o)=-nMsfEx=f2IRGzF?Ge1 zQFV66w-<<;F!*K8hf^($<<9F2Vvw1?JDnn6pvOPV>Zr&%_AMl5?iUHl7CNOHHY5&e z(W59VZD#T3^HBUn-hMEN>BLK0j|S)?>Bc0z;&;M;ETL^XWB>u*6;LlS1%D>=%TIG< z_ZK}w>7hd2t{(u$k5+(w+?bQ1Zr23%JUo85pumzzzt?r^i6buq;pDvuQ}u+(^#`GC zi^nTu{y`DYXM5lAqdlPRHQ08ijdd~&?8qD5y%H8r@Z{2se z+|>FUhJr7o+|9__ca%^N)a|^cSm*W1`RJN#?Ex!LoqqKte# zl_HPO2n8BZ56E44j@-L2w<$R!+$6xvz;5LZd{hDYWjCk+{1`~Ky%DklYUrSVJv}$) zW*xBr($9y%n`C;sj`a(uK$8P9V5jE>cBS{DmnXR&i^Gca=K6)7dN9DeoW8I+$Y6p4{9NW{*>`DIDL0{F@#y3ccNby}opq z^~^9<5v+4uZa;mrZB@{i9frW(!i0^lxz6^z&LjoGl86Du+iz$|=nkImrJ|;rj~q_D zAs>*Izh=ljK0I_@wRt?>m?+KZH~qOo28^H7pXIJQ%GwX-=U9ac^Ygd5Pux1GGNWlO z9rn9tt+R;=W1Ot7l~3tDTwQe>HhLesqe=cWJEMM;A|Uk7OWpaHw5A$!-}XND=N(6% z@`QPI*-#lLQ8N|YXaOGc+@%E6jiq>_0>6Wh;%L_Wd2^POf5t-~lk^Il$Z!}P^-`rq zf54U<{>k*WlD&Vt_kV*iCOM>U*7HbKjJl8mu&5Na``EATfjGi-+3nC9XU+Q?@2;8% zn(RE+J6`!XDj}z+XuqftzP*$(|IIp^;%;4kx#Gp$Xb?-BO?|qqq_GynTwkZx>w4wL z2W+?zw0wWbIDIyPTaZT?<@&AqKtK>p5+AOmX{pr9ujk|j#EQ$nei)tEd248sgH6lP zPgPfnxqIuxJZn2UOV^=?ET~>GRcB#p4giDB8gJ}|=kpl^M;tC?5(CiMk5do3dm*13KOkb-wIh!0hQMNc+0snI zxIca&D@rpk(TRVdLr=LR@Z{9>%{=ojd)*tJmz3Np7r_Wv-i*Qje1C9hI^C)jS0;~_ zEv1tDeB0fec%6!a4Hxe0baZjHZ{9xJOY$YKhjVNKh=2HjklVGS{Cdu=^#PhoJtKRQ zbIa{Guw?=3njaTC1N$eV)8E*D8-hr3mxsiV5GaK_6c_iTQ)N?K2khUt)ceou=(rj}7U0(X|8#U8l;C|nNumjI+3cF-rsPC2m zPKsiWNhtGdtyNV?+Ip5et=fOId5Jw*t32)-=E2UwX6s?M26R)sD7dGu8XmKE-cD-@ z96Wgx3hK77#rPVImhhVrx$?5&R~SG^xZ=gk#TPo{Vr`Wjr`@#|+f#meK<7at!_G#U zG!%N)*{R3iEKh0T-R&iFH8S54?b46MZ^$TU+Q~s?^?xYZQtf64nN{HnSZx+Z7octr zCz8LDllu#e*t)=zAW{NcM`$}X=3|^p$Fzr)jg=dsx7>BZ^PFIOm7@T@LQ~~mhd?+E zS}jYL-F0j&I6BrK1?D6|cPzgGMaM5ZGE4LXRkS6Qxdr@kdQvd8((~izs;`Jz^fTxO z`1!)>fM?O-S(Gz~M~|-| zYD&suwHWt3ynDK4@mreIYa#`qDB@Rk8BO`&%JHijP&HWSO=?!^whrt@ymQtyFhh!b zKd|Ax{$4@AsTQLC?d@oLHKlF|D}(3KeRNeF%(8+I7C=d9J&d@)jow;v_WNB8ZjEb+ zT^yYPV{~%mnP4hK#vJb9UX#Ukb+@3<4DXC?=_nMA<_GJ8ZQ&ybnufCFzN~eGpoWPY z?;aZ-03i_f`DILoX8xy0ksWuue3an2dQIOo@5@-?YC4yb{m|+Rh!B1d=hy3CqoAN6 zH0Ro5@9500M6q-2jPs_7G&*L}Mo;~%Sbu`oag!y)zLHXT1geM`_Vtd-_4l@>jWZ~G1;x!3xer_okOY)t-Ik=WOBI9n&X=k8KI1)3&2 zF7MS<_nOl2tCaA@-$^WwnnR?ECj70A)&uJ`ak=2kvh5ZWvr>KSO*ZOGf-;gyCQrNf zxR`XzSnR42ifClKgWDcn#{zILAoP5FJ3S`bI02{YO6Bb&Vj?akwIp?AV@JAT@Q`ZZ zR=bz&g0qML@Xx~;0yH9_Q|l?=fv3ss=!*P%w7MrHLsdh-42I*<{q{pad%Kq*3aa!2 z9*5gOa?ucD9$DSrz#zJHLP2181;T$X z5)rk1^g&M)$Hj8Ltu{g%$-Gmzs{De?dDc8&Qv%`*UTOHfBZTn=- z^T%87%zT)snyR_KoV)fpwN4PQ?uGKrvq8HC&>{OUCx`j7!8!E&Idd*FL~(-XJpTD$iW!7G*T z7ymXaZZVaT%Y^o!4wlnknqL|WX+y^6mdcpP;c!5C_uM7|1E6H#BHsoE3*62chxxEN z$QKgXx7h0QehEg4pUW&c-7_upNCG>qT$#bKD>EFG+DswU2MsT3f^saq4!;rH29S!qiR?ysrmcphRKhni}?)#h6!b<$szjOqNSM>*W;r_yY#O2{Zox?@h{#=RrglFtx);eR2+1=PW zcQ1g$iRlZX7jYWTq+_Ox9sCYy>7 zfR4b@$I9|ncDO?Bm1|`SSiS=LsLoun!aL&pPNzfCl}%$#8Q-kEL~i`wdU#hLKe&YO zPbbdWYJk70f64N?SXo4#F`A;&&d=--;^NM(20a{(#p`cssA>W8--zI8W?l$Ia4OwJ zWwjHA0@PKgb7?|``XZ<4tuB6ZsFF)+|KQrqWy0$3TgM^>cGfcoVDvwQ= z&vH4GHuf=571NgR-|F)jbDoD(=BJ+DkzFE)y=rc7a7RTsZu8mfAA#=_l4wS!X(_t( zI+_TAfHb}5^qnlDk$XLLbY8>IVvuHJU4Pp5lG3|>6QeWr@CXT)vP%2Yb%=+%^K`yi zmzJ+IdspovMfMnjgLA+V+br*I@?h(lg_%lZE0lve%E*|87(9jj?vw)@GM=GB{}^vj zI<4mth^#)t0#MJ}sAjAo6S?d2Hrgcc&p#Dc@M9#zQgUF5A-DXv`N;x?ks#XF%eC*R zEtkzaxjooU&K@uwcWVWlN1a|`AfmXB*rquyEAc-H<&@Jv5nH*4s3cQ7=){UdZKDiKS#vKv?UROrGA1>9ffqQS5JV-CLVQG5+8tdj7Q%3wt_|IXq26+ny#$re4^s zL$=xpn<`S_=kXEOGm5yGZLI6?oLpv8Y@6uu0?D47%{cJc1_4Tk0G@RrguQ7ypoLw% zha8T8TQ3LL5ZT}b+^u~RXW3W)GIKm0{SMc?!RWIkf%6JCxnvyMV_eqbDED8VFBG^5 zHedjuuU|BuZf6;(n+)2Q=-M#}^oH{Iwq6ykRXvm?ZeoD4UE^vp$N=7LWq_8`B)I8LO0X zRj26bHIR8%M4c2eGxHW~OFnFI&BFxBW%iRd9isSB1Ge!ARW#zBUZrc&EaaNq3H4?E z!D#51&9(XKKL$NZb_XsQ_t8HJ-EGkR#uk5 z@(n8Tc~y>Zll&v1zIT%b(17ISQ$^M5fhJ$Oq)ctJF(Mf$?e~}e_U>+DecjjO-tXh} zAu0-CFb7#c1Okv9_1=+>RCQT3`2$&3Zb{#9lC7kZP0(~2cLUo64&X|_NuFM{B$;d8 z8D?|^mSgVYCX#E4RpC

jS==^>t*{GTm{Na>@Rc-{wF242?(Z!9?9W^rFm=HPiD=XoFkQrc__H*pZCW zlt+i*cUIejxG7F~;ED!TgQ%Fa)K4+2EtmWM!8V^^<4lx4OpT9|&HTKj=SiF7$|vz&)!o%YGZxF~)P7S# z(uf}lIS$sqbA7})1;BAmM-|Q z5_U4|XxInnzjZG#6i#!nLpN6{;9t1*Qk2DqH@|wW>XU(qkVIo1MP}@vr#PqO0VF0jVxXS$;VHkm9@f5gu_+WqqUsaKk3Ay>}l?;QQ@czn_JvsjZ4;U8z}q=?>9`Ux#d=`UuQE{d0hu= z@Lj_E4%p9_n&beGfkrI z9xR5lf=)EZMt8Re9)$T~vSsQ@me8G@UI_F1Q^zKSo))gtwq(r&8MgNNcaDEe+apjk z<|(IupO??DR2LwOc+m<@ky~N=l>1fn_qm0juKWIOWVR{~Ua?ltki;G@B%r*Ic-FiR zL;82{(4>c;9}-^X2PdM`HjRbcyV~tp8ru3u_(;ayz-tP1*+{IS%*4$cD;-z(>Y?XLxV9!-ENk9?F@1=q8r&US_}VB}ws?{gI;J)`AHWnYFM|8^j2t3yEGH&Gn!L?_~nlUYMq zlXaeE2b6am)uE$dHZf-F#@EJb-HOOdxWQ0W7WXL$-L96DWIqy+> zud3^)V1M&a(Yy)7l@er|{xF?;o_&qP^03VKlj@&(nq`cJkrN~g77+q0I=We3VS>;C zAb{+qF<|vX^^n3N*(d;ZTn0M2v&~K~KOcg>D=ROc=7&o6ij>GC8R3cG?B;$NY*?WK zO^s>-eEW}o@9^4m0S%t?XCwe>MA)J;^B!>jf8GES&xa83{v3Ad*O`{#vB*>N+nSl} zeS3o!?QTTttrr(A6C)!tAS^1AnR@HdQ}v!?w3{E!5>75_#%=c`uoU2rui!K}&_}ne zR(k;bUWW%mv2|!!uGKAl21lIc?5M9U?P+IVE;>wcS9wPnlZ?5IeSSvN_JupIx-h*3 zq8V@vV(#s;ewOl<^(pBfxe;!5JAF=W@Nsoi@$u;Y?0jLZY)Koi@v~tO(?Fpht1I$6(ULt z-9;tfTgpwCUFvqh=xV@3L0i}arrUO~J9mBbJj4NhUMT{S2KhN9ApA=^HF-h=zkW_p z07PF=0c=w#P6}YgjlapWbSop#QorwAZb5CO-+v@!k?I1bVP?8qsc|+ct9mjO2mdy4 zCjHiIe)2;?qqvR8tj)lx}O&i}rAQ!)uVyjN3Oe`NX=}6m+Nly21JXiU`tND~3lj zY@K3iFD(y1ze;t514u~EljV>6a@1XwS(y1-Y)DOlaT zpI$B#A*!2;1-L`P`|q?Xc73$v*Fy4`U1&`%3zIZpQu@|&%u2HRU%T?f z!r^DC0ex<@5UHQtGnP7|TX^ou7g!lA08SqGfgfgI(-%3~E68qheZvp`5E`l7E&@SYMYI|_T?Ntap)ig|kC1Ko( z==(B1-l|tddVsS{rcmwBIteU*J8wv>gVz@92NX?;9l9DeYfHxMbFfTFrlLrit!4ViRv^Qhnd}sLO74q2a_&zt2 zeq;rLf3e63EJ!;m=}(sSGKUC1$ebsCzapfH**Nv)Cq_r1b$mZK^OW){&xM+&Jz)Xf_Zjuno2Ynh-L^Pt zlw%;FI8D*?;R-}X#3|2SwN+li7o42GS$JD&3PA@-fL#mny;Uwbf+bzHeGz%tu-6&C zu06*9{MjR<-{M~b*Y1F-9amScBdYT01mpV29vOs6m8vKQVl zwGk98UW@iHU4H@lOPaKC_pYV3vE^k7#SMkwp-P3mwLY)3Bn)iD23mvrt2lV)_cgZ| z<1TIJ$|g>xDeQ^lF0Sz&HmgV%0ux<0a%YAGDvHj$TwtHvCU(S2E7}O+WKW*YKyo3m z_`qik;5#!8i5ZC%p%s4&zqf*SUR7R%CWaZ~sIY_38xwpsy$uC$wr5`m4V0Nj&YD7} zE&V_w_{ak9_sF1Y>};#5Lj1flt=%FA*!@gHj$BXj^4#(iG*CAXwA?i6WAq*KhXh~} zeW0NMN@&KSMP=KW6k7#lMZ8m6x~xrxs^I~+lpcFTm;k?I-xx6QNyOu(&0Ki@mbbU! z@;v8pCQMFeYcCaRF$Ga)3D<_`5qu1phxv~j4LEBlaDd%pS%E4ag1b`Rvt$%XQi9IW zW#|rX@mI|Z52GzdUyjavw?Mp~YLu@nFa)6SoYo^SROdmWSMd)tI9}Dm9 z#yuuDe_VZy|L>VuAFn10>>evtvhYN3yuNS4F|MO9s zwlH4^%paHY$3_fB74{5U?aLEUFxnf>`R5fTfZq6E&MUjVPPJN|fN5mN>E3`nOSErs z-(XYV=}Hf5coM0lQ4X?@+wJWvh}PT>Jcs(dYKJ>%bao?q?yPM}s8AKIuiLcg{S}LX z7*x2|4SI?ahYJfb?Qnt7DF!P-{+rS?|)z+;LUsr&Di6H&q2!s_Ce{=i#jK_bH*h86x^$fnQCpbWR!d+mMeG~5uXKlzxfzg_d?sQ8)%q>-N z?U^6hn&8O>jc_M~|IJ_U@3G@*#mQOSTLu_LW+hDh$dI(ue2;K|z@%M2brlpe>^r1x zg{$?4A*pWbLSm8v%eVMdGT~Ctn{=OL`^zv5MhqZzodK|#xcDK21<+P>1+fyEzSssF zV*z{%L2gx$z6ByFL`lrM}Uk(9jJBMP%;Sm^H`urL0L4krgiak2ON zV725%H%2lg$I^x6b&s7Gnxg(lK^ZnZ5*OAdBir zdu5AyV0#7l+5g7Q`<@3bVRou{Crv%kif2gf0P7F=X!doI)m~QleMFs1oU*bDO)F?U zZ5%d7z*x&!^j(sQrDTTP{JaxyQQ?<2TB1xpgn_ou?4^kiRe&q3Kbw#&SRIiT;MowT zd?gm(zk71dbV;Y^`TQm{y`UkH3$Y7xy$)T(x?pzX{J^7|HK3+q;S3ci`q3kn-nMnT z!HbU=?E4!h^6OJs(9z+m(iwFsVSAcxbcjq(j_T>1knPeRe5Hr8%l}laF#y*f03&tf zdCNnK$rX+JsNYs;Oh)Xs03gb6Vm*-Gbn>jv%8~RP{H_~gk-d?aooitsi3*C}fM51% zdtz$h8&uc+8j#_PK1P3P$no+U6)3-H0>jf3o~+46mwv+yqF#ftSGe!b_p3CKdUi$1 zsRb=uS%XX8_ea9oa=*52C{B&31%~@bkF$BC9H8;j&M=@OQ5+`l;^%Gk;8pqbI+vI@V050|?} zqV7>W!4U1!Y|dBhH*MzI6ziaRnX4^D`_)%O&|;{hkxcM3 zC!M-tTWQ#H_WV34rq}D?Gey51H6_nZUDfcst3V|ORAdTrlC&knJ?Y3R>!^8)fwu{v zj^~+m^OG}lv6i~=vevUcrpK8kCZ_#8Tn9ZUzdcZdC; z!_zC>f=Jpf2~SS5SpDSs9L(D@NS*LECaz@hVq^K3f}EC)R`8@|X=E7^!llWQLzK-Bd{MG<_tRS^2^q(uKmHFOYEcbk*%+!fy)uY62BW*i(hIds5c+yc4RS%!Wh1t$Ig(AvlhW z+4_n!zSv-8thau5G#S@X#}vt}Ikdek1HKAkvdOU_zf0g+GZWd3oDT45Eza+2?dx{) zy7|7cRF?)BWN^?Cfrp-!Mmph(YwQkx$@pn~vu8J4iA|ZWef>AlIP3wYing2kF(zQP z;nrrG)l6BZ-AeR6lFmw+b|O82fqFAq?sE%mkKdOFMZb%x{rvc zkPeR>bzh%jLl0>p^X@OYT)Su@l~aHx+u-6NN#`LxOS5!qB-JY#c-^{sa^}4q_Tt7h=_g_jQ_BR80~3RQ9)h1x2No7EgX1T42k*jV7z8d8e`jpz8SZ^#Bzde6{ zlDp9!BWnH(wnO?ywt9l|--55oWvAUfn29DM588&9V;PG=CJf|peBK7J09@t|f)6wW zU>OQ(c;O7S;jV9n%VXVj!>+z7okr9PuD7>HA+I>`89#2$#iVR7wY9gmw{a8HX$eVZ z`JJBnlhKvA4;4ssCV2`^?>>7u8h1sb{KzOi=~bpq zdan45b+yMzC(A12PM{GV%2eC-%3oY{gwNDCYkN^vN+yY+cqknH1{Ov^ zx6W$7<^pGKNQ_bcn~Z{6S=UhLb;#(o%bmpS&8>w(Dz|0$j;)a2Q|Dm5GWE#})R4U| zLusi3oUb*Dc1UQ7q0wv4l=1<_;%AJRXsw@}-11x`=WgEg&mKAw0i$+IV=~DYtqV@w zl6=^O#PGEtEdJ=loKCa>}yF+v#PL0ac z(t*($z9X&b1D5szNW)TL*YL1wo?QWknSEx)m6$X;TiKcHStRt#@Ans6MkBxX2`j~9 ze7#16#X#!-+Bf;X^t`pi=dB|R@vM2LvWSWT-Y??=RvYt{Y{`1aR;dxHO#1A#*F$cElxk8?P z(^{_zy&J44y!h>{eU%?@2 zT&^;N7Zt=`TnGL}BlV``&%*7Oh)e? z2AF3SK^?#}56v4h66;kj~^;QcgV4=FTblr*UM zLrx;Btff1m_kkNcVIc|I-8>r0rjA-0a)qV-XmSP<^$^6PP%=B6{L%$kXo>xlAqoU5 z6mY9XVChNFCs8^6)a|Vo>^Vx8 z=K^vuWh;mhTSKisxU1=F`4`Qe`3prsihP>$mx!k2l%>Te%@h>e#)Z*~fsA6;HH1OA zwE8_4s6gp*P_S9Ig#pZ*ae6ZFPBc{3{dzMoVv5Fu-2G=aIn+>0)>_6`P)|?59^u^+ zt3EMT`=iqwezxCbC1vt5lUGAmE6#6rw-UQ*)BE~3{z<)AUpM+8%H~qyH}S(1{fnnZ zR|q|*#e>60+rld@+e5LXbZ$_8frP@Jo$b90)EDO^PahAGfD`Mdb&tpQn75mQ{6?-T zA$0v92@N(K^xm!1*x6ssgrBTuPXRC7q?E6nLk-Hfd6~ayDmiDjhv%&5Tc?f#N1{HB zD}^8lvkq;Ze19*`Yq>8CK;h1QQ+H|R;g_eY7!H5)b$lS#7Lhu!>HMH9UDAQ>DrIGS zei*6TGmX!%WLme0j>?imUOQ*i7LbrtmU69qI+D{>Y<);p2;mW8Dffqe)O{*(eV07u~R{>!cLo4O?K`9(xFtF&G zL15W+=~VRJOzFQ~^=HnfDtwY6D-9hnYmzOzw-fo6I5_qAm4V{ggNrz@)WT%{JbDymfxkfcZk` z)=U8#9%iblPR6oO$+@PEsY6QLr)B&pyTZDX)cq@_7~r;bGN(aoHFeo_ z#WS}n!%hB*ColD?mko^m!X<#g@x&A7IkHl{XhAAioG8)gSD zVU0v5BE>XxqobN|uj-s0!7?qfw50k5A{ABia_>M~-5==RyfIFtQ%IaRSrUcc zPk|<%Gpu|DiNUpT*G(_HMVX@7)ce~4H$BClr!Pxtaz_!!rGgWay*8mM242l>rKRyt z1Z~w`C@2~41ASIogp*77OjH`%z^!LaoyjNJA=?&R;Bn*Hj;%nxy^Pqbh;@0Dg3FyR zeVxE>o%H9)%i}Hrb1Xu8lQ20-oLSgrMUh7D^WMhgUQbsjDdqb&6OHyL`6gSoO>>`h zy3!6WwE9lgv$8oF^gRZpDb6hy;72ppTGT{r_Fc>*eV?*#8}VRSxSum{I=W!p-294y z!e(*_`^UsYlkJv~!;P|v<;_!~r0XTKkoQnGq2zej%kV?ZWskJ_btR0tpcg$cvWZQ{ z(93D@{&B2kOzNMXU08oq!bti!gQ`b5n&2I4b>*AWE^8a#P;~pluPx=L@GqXU&)1EN zZ6JI$oTogV6bmbTia%-MpPn9$zaurjllFF2863NgHf>UHPv+N9UufqdPZF|oh(>w0 zzf@@koRDh)&{>UJqSr@+XlJH2C)>(xCkJs{N%wpB#l(2yk zCL@01bu{G0_HU*$)cubd&UCneRLJ*8(}GZgIdL=?P&FVBA#sTsS^-mg6D@0+62qM5 z<4-8q&>mEnuLz~~7i_~?a&)*G5_vtkQ?Osxw=WXK$&6~g;dX8@F_)^b21ps#G$*r` zej^QkVY{;kQ6r40OKYag7~H&}#)klU^E%MDB|~)Gew7 zeLz3HsV2GTB;jc%Iq#lfEwL;WI_x*nwa5RkLYycwQ?hr&`8rl%MT(P%6iumv#p(4K zp{|Aa!QUeF9= zKOqJHg#VfSGyczZ=YM|wpX2|F-T8kxKL8lWw~prP>l+7ff4bDC|Iah|>laaN*sYMo zj{{2df45lg^wLyQQt&(|8S2J$4eP@d58bkg*+oCq^2$} zE<%9>wmfs z;eXpq{BQIBhimfxx7`T;+no5{=KtI7pFa^J#fw$KAi(3LNL8twDbdwn{ReX5VNl}a z<4W0i;pbrh{`Uy|x@h5H?FB4aetweY&XcBanLY2FPj46C{?fgT9E%H!^J*LoyJ_^> zTtF2wPRv3`D5wyLfutssPuT;?W{SZfVG3lV$zC>K%Bx^w7cn0%N>K};!1Cm9LGwHo znPJ2Ton>BKn*c0fXrFN{H$I^w`QP==>?oq;*ShBt=3!iwF z>&DrkZFVTpY~-osb&Xh$$;zN~&SxYhSR3h=ORXIcvbyr~mvP+pOR6}Z z$~5Bk&E2c3WQi*m2>|WIW&F7=tBx_KcPS22ekTg2)0zOGf2xy@11K zZATLsTvzLU7`h<@QU7&tGP3 zRZCkZDKj%3JU%@=E7QQXUL zsshPMc5%X5lVq>M`@-C=c?5VC)=`JU*mQ2u7fF)j7Z51r2QsiXQLE*>6dN{dmwt*9 zX=dX&A6)Z7TB62CU&|=!Iu+y4!-GLd>MEaqxuT0Z`{~%3u=wqDD;zj-0UI#YJe5wq zalxqU+Vc!ib$>#h*t0<$!Q zgW;9F1HZ$w|B6N*CLI=@@VH@(`$3y+GW4XuH4x*^hQxF62W#RlX?QP>{>S0(4&K^I zkwz{kgf_qZA^rcU{sd91iPfP_5|NX@2S*vf!`Ao)+7{7c`GvYnaH{W7sQf1J)#T#?bDaiIAc@EO zfd>KLIH|p`acTK>7u#*o^YH`$Akg%^*oGUJ-1a+NFC5dXU~xhs2lE5_im#r#bQGoj zeQoMtfABMHCy(T8?Gm%?PfRYeBOGHyb`)Wk%s7fvjffLYut)uO!o7g4EFX zjuB&#zLFuKG+s9_h1|!&19bLO*Cx_`eZf@qoZrVxF@)yY`JCZlfXdzZJ!CMyjnm0R z-5#(a;tmdKUlu7Nd_*29*m3c4?t@U2O+kSLxs{&z)%!E~sC?>Xx!Yyp1SEaQ*fj&V z!65z$E#lG0s|V*A60T-HFb)C*NN@x7470HBZ!ST7F04Jb0??fLoO`=P0nB#>wVk}# zd4u;(T!fSb1ymG2G&zjZ1R(!Lf~+pTtQn=ETdq!zKNyO)=(*vVc!Vh4v+4tz{dzvR zz~XL~T_^ptKw5jEVP$6D<4?!4$1H^Ksc{8G>B%avvqXOp6?9J@yA*)bI}s{?o|p1G z_k*0~Ik!M!YQyb7Tu(IFaI*6iluXe}dy) zj6oYgNg0@Z|u+xba1b}Tu26CHbwtRQd!lVZf5-~4+hX=F^kpfOT+-y~VM#}0# zRbDvy-+<6d>}mUpIeb*k;^GUf+eb%77-89lac^H-ly`y`Ng$(zK{D!ysyIt5)?`{< z5x3(Rkndr>OCT``&)09~e54F6-*s8g=2>@W9mJLXdYpo-pi9L4-NbA0&IPyd%XO@K zSaJpY5PeaMI_9<^hWbt^qO*b%V960MiusB?K;)^|9zp+Zr$9%UeY^wh>U$Jo@K?Ahs(kS^hJKofoMi zC3b@Q1ZrAmDQuU7qilC6(XK_hfuSGOqmGG-3g#VvMHL=9Z zx0dC4uPN=6vo!g6B&d;z|Ayi>vBdJ1f-b5-OUk1n)ybGNJXW-K z;H%^-lUly>m3s@bv6lk^#{Uyzet#092o{=%>wD>6eLx7|h0>ZXC?dc+JHxHn|BUZr zI8KFAe6u}|_C`V$TMKP!_YnT4jtv(N_Y@R2=uQ`a>T1J@Y@G)nmEVnLi=Nm%yF_+1 zA^t+-tM*tHMhjTlS&|`FsiZnn22Or|mp?MBDG7#kAQ8ENENnb>#gG4%t2C_TY&-ju zp=(a#D$slWrCBE9^XH`aOhzK8BMfy?PE(b1V-H~>^R<}CE1V1`}3GMk;{6%HWU z+kQ6;slylBWdlSm1b~5fp4G9s&0ie`OB!z&{ABIeIw{rsB9M$fDPJ1=Dgikipo*`c zh?tF(TM@rVEGHAZ;`b_%k1Bw$NGoF=iiTbc0DQZ9fk%aq=rHN?JOhjWr#b+@8n#E< z$&^Z#KNuy;gcj0*?j{U&{pIL=#JnPiSVl>2aIpFL%B#u{6`g^BMI^3hLuW zeDhOghTAXJGEXGr@x@acqELc*DoZP23oE;2ADbZuOwV0#6Dfu!ji z)aHYX75$Bu^IjZvu%vG#YH`8amRK|R`qhQ)|v8j}Q=b<{+PJ8^wV1r|n_BI>$)ZMYK-?N~pWZubsyE2I(#nDaAgtIAy1FqB{2C-3Q!X zIq54BCMP{BYd6%Ai-(W20>XP7u(tIP#0wNAlP+;uDuW4}x{ivM|hZ*jZ?PL{}ewl-|)>@r=B=jCe4%(-c0 z+%~ZYG*+_Wd4ax!RwV#V9?kdo48rgs6Fzv}ban(!4?SvEaumX%PDg|1v6Y8mIC}ac z8v~2pV)WbzlTdK*QSh;_t{>BZrmlD~-M5!?-X0cOD(1>dI0yxcW!qeCF1o(iZY*5Gwc0(WPbf!49ggiM zPvU$$wJyjjxYE3cA-%L*vs*)V%kpC?u_pK{z;bh3b~V*$2vc7Rl#loevRxoAqLd-MgB}*)& z!|?E-e(cOBrZInb6s*UO!&*cW)1BK` z7T&iNqT6Z`Ba)ecnrzcXQ1@8z-b^~$P7E>fgCK$C6<8kCM174PLIsa<59VlNv!Zr9 z*_-B8;9S)&ld389k_9Ob0_Z{3-qQ58#7zsoef@TQ9IGizH`S6DkB5K@c59eZ0?*mbq;mWK>2Px=*+__zIyqw4DZK7S)eCJ^5 zy>@a-n*0WX1%;!TisHW4%OYD4hNVGeF9=N1488b)n=D;64EN+JXoM8&ll&ID;_=!M zK2~|?NvPr>aV$S%V!kF9E$^yJ(EQ}Noe^g!cEafEqoao~KlUDIf@eA2)oqxG_pu$( zr@%I>5Dm(1HoJ6Tp%_kQFQ2mr&W@yZJp1;Q zc%v&B-MRoJJVGt|x&6>Ir(Joz+PP3x7!On~&MCD0qdfx7s5?G>khc(AlXAT&mPezZG%knuI@1h^ey!5D{J?19?kg|^AcYQiJ*@%RMgana&+&#W;kD{X_ zHFqdSTyS929M3nU9$`yZQNvu{-MQ*d3^5T?bC3Nr)Uw;y-kK5~Skh0W2ILBQ0AJQ( zE9J1@;GBV!?FghQCY)_%>~Sq#yTafAT$zl>z4OIM%@E(hJCV5TfKf{OnnNj5JBCaj zN0`#@Qw1!>*O|F=9`O=*gI|PL@p{CXJ2@>7v2mV%MOh~Hx}1=j_oAkX(E5xg8TpU>cUskps9py zB8q797CnZnm%h%1Oy=u+-!`KmCm)`gqT#w%ELj$XcNLVUrFy~_N<~m{c=wtsRNXE+ zxUh3ASue|{T)&>e9W`Zpsb4UbhiyTSNXc%wAY9VM>{zv~=ssxpnQSmTkLKsMF9YWL@?Sqe0-^QB|_}O!|?#M%9^yp?P8DrS7 zx2+Xpdwq9Z<1@_+RB%fBUc;IbHEf)~+P$gIE3OORblj{eO2Os1DA<}x-abB7B&3pb z-8B9>G;!m+VZ8WCpu9j1>IJs=Fd($m#i6`e{xH8RzH747S7W6AA)#dQQ5oBMO(QIR zHDuAJUYb+%z>ghTDd)e6Jndy+c-Q$^m$c_7+%}7aZYT?%nCU%OyWx=6M0J!K{;3aWxe8fHN_)XHEqy{cs}^eUHuA zUH|<9ZFE{JoGM&#(IOlMR*KGAs|5sv&@OiRwnt#^z>>+9+t-^fYe%5HR1BFr3!m1~ zc?uWT1|=ox^LQ{Zwg3UyvQDrbvu8f#<|x=<2X5N(%ltC7y!L#X(9Z!*#j7o`QlDTV z+1k}pdhQJ$tZ#S51Z+mDaCvdN<_nt6_e_=JdCB1-kZX7C(cc{VT&{8uAsKz z)=VV)HkP6C8y6mzo=~3DZcvP9Tus(Z*6rRG4Cg2*Had0@+33mr!vf}{BQs}o7am!~ z!lqct60z0in}kYK_Ze!O0Tg0aq}y7dW&_e}0!XU-x-xLMu-DSFC#}{`dV)BG^cDHa z0}drpnkL-Om_2|GK3nmdoSt5oq+HI>qh6-CdA2WzQIinvUZB_F>MU!fyebyjxvKw! z_1n<{GbpzXNC%z+Pom6%=`w*zCSg%RBia3%%p;k!2E!jT7%!{hYul1ILddA3jG9y8{t5SyBm&=6o zW}sdEoWPl@iiAy!6Kaq%G87|ep2N79c^FM@VWgzFn{v5Mm9f&KKG~W7k=aI%OVBhI zN-E2%AQmcS!2099J}odKK6c-z%bGV7U4W6q!OkvmhF7uf<`@HKgFhPKs6^dUMa?7L z)LJsGThCDdZkTvKY1)N!8}Fa=2hD~?C*6uRBENXNi|DETF6+d0%ib_`q$~IrJq9FM zZevXc+7NMyeRD)P#plhVt&Dev?F)H9s?0f%FDg_~O(#GfnHIhI&6~lWK1u6UTlb6L zsF;rOg9{jzX6B`lZO-_m9a^uqR5vzC;*MH&)21g|3jEulBO?m-t{ySt*o$^1Px7P@ zx#@nHBCy3B>PR~0&B{U~*b0iJh>&JgQNv~hy#C$lA64- z49tzi1yh{**i`7g?e6O48i5X8H}S%%XsDDFmWKmzdBC!yd{`zdli-^pc5CDL%1NQk z*l$$ygS}@NONFCp{O;Ak*kutWxZCxDwR|V(VOlE-i&MEpp_pM4YT6N4k2Yth9|f3b zDat0X7^k$eyMGL-Sf-A}<&08VE(E%+;bcZdHt~Ye;Ojs>$G(Th9!0lV-A!(S>0L3{NNL(q(M!olfdm<6-W-aew;i7-P-?0x+3KBt z!wee*O<74}PDyi)?>H@hK2fFCV+es8nUb77A1;>ST50ygPiZhEkb1)e23EYXWM*naAwAT6)~;iIy2rHPX6gQCQV4sG+g9zmc=pllg0YPUKFS z&Ppex^;HzV}U0!s6NBS!E zUJGn&;>_sP4>A{{(7`t6Z(Ow*AhDgK0pGU1xm%T>HWahmJyfvTpBD-JUAXqPr^t~Y z&rcNgR>UtKC9T4<=Sz(#c?||IFtE6^t)9sFO4|zxI_uGpb%{xi-?#_)5vPm!%!-;v4gF-+z_KTQu^Pt>E|Afl zc;+WxQ(g`FGRjQHJSL|or>Go((gLr^SP$Gzx+%d^AI;qT z)4mU51d{Qx9dpmC@$TdlonKnIy=`P?XWu1Hi1TTm&qP{8nTF}ALuqEq4+OZki|tGE%Zhzp3`Jma zWXMhGgL6-^K_h2|QONee4Mgc#eVRPZFX-T;mBtW{sc1qLb;3F>?wes-81Koy>lk-H z6yz|+_12sc|O5GBc zWTjc`>rawKB`>YeQ)AVrzTC-e6enzk6Qhs+n&KlDmg;Zz@lM6*;OoYI$o6w-7SR-! z6c4QN85e~#_VK8tZnS=EJ^jj#6h)Ng4;!>J?Bd8AY7Rf}8mF&iP*9?t-SUeIufO=&vOM#|zHDgQGqhOyno8Ez)q!tL_HDgq6ULR!rDk~YoI0T|fo>jAPS1=nHlW*obx;lw-Pd$0dn46|W z4<~(p;lQGq@8YSm3H>rOrkvs3BV3sP@Fq34f5?>&=#mT6^6!O2>Qa+xw5u4b|c%YROz>Q4w~+ICV|)9zW`A<)j^J<#`5 z76_i1!N=l?AEt(08YFPZTZk5!ou*FbQeX0LjtA`gNB0?dqox$ugo{^ixAcYz;v`N0 zFj7>OT~WF^?3S0}(Tf3@zUEl~pzw&p*pD5EXFJkD%eu4mq%MXk}?8N)zrQbFN zpDl@h*pasmoZsn?P&LO9xy`cIwz+|z>k$_sy9A6O2*CxKK2a{H<%Y!TadctFvvkX) zw7byLzmyy$Iez#PFvX!Z6)PM8A_Oz6?t0+o(hDhi1_V-IWiN)A+0W+H_b< zCv3lPAEe=W(s(s(P*-DQY)1vG+CvSx5$EDE;!~s8Y10l$Jx=1qT}GvHr^T=u=kx5s8bRRWH)v9VE<&s>4PHCArRS6N*>4~=kLl?} zw6RiD4Z!_ZrC_xt{pbFdG}N_I1A{c#kr(%GyjQv$#mS|gqxI6WC^_scwG~M6wYs*% zNm}S4k$Wx^m*TOmATz9};+JBET<1k&_4wemk#1`{emM1hr=Qh$UznVO^n;hXV ziR~qQ)%T_CVP`mx9nQ5g6L)^L+X=z$;n-xWDreBqg4MB=i&TV5!_+>PT3i20aBasRyZR!Q zamHm#{oI+@=ggqRu|L>Mf-wYJvGJnFK#j@Pab(>z3z8FbfZD=#$ly+)d`SbnUBcq3 zPmPeABa?fJ0ey&jy-hRvv9s`f1O#y_!>qlnznBXcLli5RV?D#)kLbIE%{|eLQI0dz^??M zoc9sdJf}%CcNFU_#=AG;?}zf^iG*JisI~lShu^G*D7w`Q1MkHj9>{cODic#qhT@5Q zDVy5o*)XZ@pC^*dEZ#(+^7b%w=Eo@e4A2x)MBv}OV~b_5*xRa~HdXKX>JBWI>8Vsy zW?qv}#Pkj|%qWQy(_8Ot0ZSFhGhE$O=3boV)tKM*M!wAE>NGchUsN1ybayPWjj$Y0ula}b9&vf9g|fd0{87& z$Ux9e^QPsW9E0Dv8=3bFv($o;nofm2qU!=LHya1r-v13lWarU*CYKx7rD|V~ zRw9&Oj5q9zcuz$Q$tW70w=((kK`g%p^3*OCn)gZu!@|N!_EP>D<0)DkNPB(!$8a41 znL0_2i*{c`l35iry)y!-+O+VZJIt!8fl9N>MYJY$In{;2wk(uPT1&j#UG-88r=)uEC$;`e{1Mr8Qw^<=({6t8`i@&F z3zHhBHyOy-=8NUoiCSk9dy}{M^Q{NU-|cdhjh_p%jD|5v5)e-ha9bIP2#@KnbNQ+) zpZ8xqx+g*epUUKci}E9;z?7v99r-nq)bIO=-m_AZ=+$Sd!K(A~U*s?I!!Bu=!TRAl zvXot20;$!WNvUh7qsQI>)Lqo4(Z$`PJj(Q+A^EIoXs+UBRpWDZ@f@30R z0>Ux5p7?SqmKlp()IQR7hGn<9N`Bzc7kw{FxbpqXPQ7}VJ7-EH+f%0SvJ*PF!1Uk# zZ~!D2aE7QP`i%=h=63cPfarx6bt-rF^VF-5-KE$8jQjp#AK(1COjUVlk6FQW>)>N? zZYU=CY`|AW-=6{?zg%T>R!Z{x2_Pkw!bgA#c$FGS9TrldBz{+#<9 z(r%qAnYh^S83}zRgRgZtNp|AVFCd=@ODd-R=O>ArG0+D9aUybz+kSQM$064kvetTE zLxVpgef{(Gq`vOB zr_G~i(8|wIm~vO@78FJXgnmS2cpB{f*-AwH;wSLM1g_%=fA%`qX%hM zOPbKk*T1Ij*?>URNkUD^LsCL6X;D0Wv>_q+k6FY)U}~W3+x=dJkuu*^NuXkSf>o zIL=St+E11ru>#N+&pEdAAd*qa1wS^5$611%-x~9UmW|5JYyAaU@ru781L?G-Q9hu$ z88uRpX$?#%ER3e=N!||U`HF@a)dmYfS9_~&224_*6*lPS+M~38sj~I%r4#C+zxxiK z^1Gi8g5YgVWChAcgzGP5jxwV6`;LgkLwmHM+jyYXzjXU#a?DV9t#9I%{$Tk$7$g9m zb@Q>f%@!;BI{pc_xpY0eWY#R)uXD#3uIH28x-bQR-+E=oC1sCLRM4^+nk|lgzvDb; zU6*4Xr?&J3bVv58rQ#jA8xqzXPtb5Vp7!4wVEXOnV;16x%*}%DT}PD8LBfSvX8i7_ z2^{WMw|0LD2mvri{vt4NJ9ss+FudySe7V7DN{HSr`gWUA!fO#aZ{r>r@X1PzjQVK) z-v67DT6>xI_Q*6`5oL#JgGExo)Q&61F!9WZFE$b4Vpnubt}N|4h?p2WPfsn8W&ywS z?#Qa@7LCxD)J#iN_yy61Zb*!5PN7<2W2EavZeWbjqnzi(-hA;b}dt4#pkCHUpN#+oB@Ug>{k$x_OyR+2>tMfH~-|^I` zUj$FA6AR1v^_QFEp^TFK*4#z+J1fRJZ};wMoY>`#AWZVe0B#B0 zhzqi>UUo*zab`((sTJ!7*>lhV`4n@$(<5zD*dzVr)D*m_>FzBBwf%cx$9zXYb?#1G z*lf%3UcHu{MOT4b$I3ET3Sg=CKearJaGRvyvpnBg>1QWy(dX7pem#5v4YR^S*6RaD zzBk6Y+V+x?_RNg16pz-idmMoBWa!$iy}M)S$X*G#rO>h|1-9x5axz#_l6y{cx3apL ziD?+=>E$8qkg)o!7=WuJGRpW6_;9)>jsaj1%AY*_X@vvXLj=$lNq{;F-7wJV7G{|! z%dV)*+B9rXUr}}rrhlAR(Z*3tCfOqq(#*XtDufIJwe1Z7@3VojY4QB>$y=DMkLa&` z_&b2zaX$4%chCs~cvvQaMNlO&ok3L+gNB?}^mj#H&L7S4CH--Vz1~mydr9W*6E<+2 zooUl0sA%xgfWscv0P~xTQpCPej!(#nC8nl+_3ljtE@)*i-2bb|Fu9|hyE(j@^c^jR zKD3DMK=G80|4eH}bU`eWbOA#3w;ZGQxUNbd+IDs6%W4c+LD?5*q^J*c!4UQ1)$gCV z@E5+odmxwuMMOb;pp*0T^h6O?@_aZ?`%e22YU*+&5H#eQ>zkh51=hZ;aq_o=0)hy= zEplSn@X2SIT9@gTV#ptzNPx8gh`YUnErSIBh4+J65pM>i0N~uD>b+*gjWToC>TPK( zWKlR1A7`Th*1&``XTxZDJrDty&Tunmo;n>>801@Ff@oL0z3Hn26mx_-v|>`p*|4mW z5WFt?1Nha<_sXZ}yli1JXCaSy46b*j{A%Rz#BFEV?iS(CKbRhx-DWCeDNsL3#@%p3 z^_-lN^G*b#ENUKmYXiWqkT`9ZD~o`dwj|tLj6fB{m`$OY#Gj3P+PyvYYZVjsVgW5+ zuX!M7WG{}O>E-8Gm8^f)0Aa8bU9`VgwB!h~;C|OK!$KR|Dv1V4nAY-Xbl=A1&})5q z!Gl`K`Y%Rix5vkyFNYBt!jJ1PfIBqb@cG#h96KtfI+Y}|RSOVQRkEAYB6eFO`(1^i z)CjXj_!xq+qns6JuO)b!k(>9$aR?3pF#47&5#0GQNuM#u?&nbx;wGQM8^1G+8>f-(N;C%%WFG@cQ%1Cp?4oB$Fjd z=V)rug-LT()2CO!=zz-hnFDFz3=S0^d28Nb8~|M3?(;FiERg^hOV5Cah?n+FNvBLI z)%J3@NymM_W9}i;4Gj?Vb8q_e9_z=YTs|lWm}Yy?FLkLeAE-LnV=`b$fFM?VAsx@T z)T0%79p_rbH3=zy$f%_M$4djC^TPq(bb6O*L<+d=FGH9m3u^H|-xqO{RM&|Bz|#{~ z8o}-eEv>_^xa^;Hv)@35*_l&Dy0Eq4BGa<*54yk=W;uKSm@G`4$$)zQ2;evWiSEJh zlk{J?Uc`MtGqva=N3MZmXUzut{V216AfIiAx>8wN*A<`${SOMKOA^63b>YehPj@)E zb$(6OOnTkck5AD!c?r8v0K6Mh;5cS|ZPj3b)3c@6TK@%HOCJO{fhfpcm}_d((|24G zp!Dzq3jQ&77#(OlQMQ;j3&aM3G6K)kzWk<0uge=<=d~)XDbNUjw3J+k(Eg>@p;?>KCw($S_ zSiJGvJKDgv+B>j(FKlBByje{2yJc>~R}1@sk!Z}x535bM^}{@&0rRIgcdx839L}Bl z&}ZHy&68P56YF&QZlDeL3$&esN2f~NoduVgsm~hIocOpnnV(2pcc=H> zbSqBh-Efkmd0T~QHrEm{p@FKwt+K9Wj4Tp?{i|nURpjxih+Ca8D8SC&jGkciGB98O z+5xVVWUoK<;m*f@P(|`U&PRM}2`-Qw$osvv!VwmIL&K~)SAJ>W$<=}RF8wuVd_L!u z1PJnX>nw~NAAaoUzxEa*v$xbaA-NSs0rFleeViTrpIMUjvlXfbUpiz(3=n`(9}1;F zhPO*QC}R!3Yh4c9u<)6jKqaP13|WXIHL3*N_B|6+WkyvOK6U4DQS(ViEqAd)-L@fd zal^;FzdWguD%~|Nt;kc`k|XF;uZz2f&eL`;lNyG_ZgFdR^li@FDjX80@mA}W&VRTYeLc5#Z( zr1dwF|I{$VNS%xLLCaJ#6-q=nUSr0U)9${P-m2``?s2 zfL()dduKWxaFC|dcHh-L_VTz409uKg%>#s*t07gXhW<~qrDf2oD^Ww(7mQ8kXQ#(p zz^@tNT46F}ZCPqVqe^J%$6*wLZsB6~88uZ+gLQbr#Lt|t`Yxe$kl^=qI;R&oLdn+V z2xomZ05qAHF^8snDE$|(+iGaLO_MA8p8mMqMmlb}k#U^xIhg5_UyASpgy;;Al@L|e zr)EZG);5~hY@YAdboa|I=h}Q8ihfR&k(YIzWK}3xe>41t2t0hR9ua838vU0@)c!n-w)(eHupKJ=5WdZDAf&cl^X?Kg~$E2?+M zB2pFH6Ft{&tdxFF)lsIlt+y&;@}_(7&I1_#iNK8W{FVf$3>#< zZ7rd`UWh!K)P4i{fBlx0Lfefv-FDlG%B%x;3YEx0$7^El^*CL6ggp>?&ayrr$S;T% zHEIekBJ4*DGc9f#uE-s?wKl>8q2?_1ebNeRiz6+7H-Mh=SCe_zg?0x3#K#FM(z%UC ze$by<%aULa|WIgBi8QnTKs>vbn_<~HEH1O*+P^I#z7Jw{2+KIm}nXGvKq%A8Nw_QU@q^q+Y`R@G|uS4QvKjd)dDa7jP<^~JZuLi08 zb=ESK%#2W4V~*83?hgm!p4Ss;2a*5}szl$MDhP;oG<>tP*Tso0hM<5vTl%fsnC(Ma zN@2glu4(8pDcVRm2h}9ZRRjQM+rieH#bWfMot<5!jT=Sf7Xt#i8aiPvy5tm)_r6MxLvb{nalo%0Ljifh&eiQnRvh z7ViL=d8z)L0w$UU3_se5uP4xBh6x0Hy>)o8mWjWM$LAU?47$k+yWUy_;NeL1BU!wU;$yZ3Xizl*qYMo!$~c9a?dL7uXCX+nEo(qh{e~(rUxc z`Y5LYBId7CsO*(Od+;>oECX-8-?V(gudf34lz|>_Gq?+~M#Ulgk%Ud>1A->XS-!{p zT_?^#8B0xiIU8E1MM?SadQ&Ja$XVj!vZLj{lQL%XSdB)zGpmnS=LiLexb1@foR%V` z{MDSz5?Ce-&8@KXbqpB%hL5(@a63(<&g(!_%Kfq&5x6a&qt@+&2L;sSZwx98!`~$@ zoq2#_OItt2EL>O*Su3^quCe7=^jsDah_0X_DtT&J(0JvWAD{@Mf&4=$bJ{qEe7esw*c3yY02nD`kdl)b~ zo^0^YmCQY#=<19pjRo1F5ba|^G^86Xz1;YD(G0dPn$s`!^kEBvu4j0zns)SCYo7`e z^(Ga*yZuzqG>9UD*m?^b3PtxeJoVI6{I?}W@bM#7eU)l!HAGNO-}m;|nQbqAo;?bK zIRq6O_(DbMRMH7O<#P*g1U)PFRq#RbZ z2e94q_LY}gkEbC5V-S^{`4)5;fmQh3$!GsTQH)IWPy7wrdr2|TT5?W5=HDQ=bL)%7 z(q|f!gdL{q(O*AZiNDK~sK`i&A-A*Ly=L2J(${n;9hvflh?EWrl{Cb`QFCs|d_?*Y zRDH!S(1Kp7dc0wgx!(NB0loB<*xz~)U%UP3Cf%2ttcgIn=xaHpzP!i6Yw@5z4`adU zUDt?|XX8G^d!`v@vF`IbkMM(zl=$74r;ErkxD5rEirc4jMlew($b>dqsuMw2%4THC z?5=TI^|}2X=V-kD#YkYKi&0}=E<9cRe6Arvkve1CJmV`CveQrW#xcdeMxbQw3G$50EL48TH)&Uw>*PWifYFI#+=32 zb%;@A+6su+pS5x0Lq{r5Ha0ajVlCC1c6SDlXnviCy}(ab=xa$b)N?}G57J&F8MZ&O zT?AbJ;ibLzvi)f3uj|?Vz_Wq+OX!8@u0h7oociSEWi5zG)Trk1pc|>GkgYQl*cd{;`PMHgFwymllHK{D z;R6FAh}k+4I^8sLgtan_#L(if=IlKJTJTB@srw)G6=9dz%ZfQUI)Vg7L<#M^T?F30V;wz-^ErO=1M<0AgwD zQ>iBu;Dx@B-*pucJ5e=8Yw>0JBTPwnkVDxhYG;?0hJ_?k({|`i)HR(=%_%{{o|l9Y z92qALFRLS(n=wKO^9|@22$FT`>Z)CRAz)a#U@1jfHF=|B6P$7+<*?VnY@GW26g+(o z>ZZiuGW%d26cf>!kVfM?cGeA}IR9w5Ve1yM4i{SbvBfx_8N=Co)6?V;`;&d$tp;u- zHUMChu-(r3$k*KFdN0zW#gMB2$I3k)r3CfZk(#Tp>JwXhi)ZUP&fj06zTD=ZRl++j zHQwt4o{9^y=pZF4P|xm2p6Upql7=T$U1nbhtjSeD)*axZ{mm^-Kc`8!uD;q3tw0Ns zGMT6lX?J-y$II@(pRh4M>{08JKo~$^xyu$q7*5H?jU5W&SSHH9N%C}$t3*9pNjzSyjuW0`*_eBlnjs)_kI4$skXzT zJ!|PjjpL2G%lgVWe6?naX`2_jm@{L{*d4>YBtRZ0G?a2BBw)I#xMQj zwPk-j@+OF~M-ZRtKnaTKMqc~)IbGYSUYs>-9&>(8pmEAix${Ak5p?)hfoU?zE= zJyWQ*96T&q#j9f0;^s<@t zoekJlQFIk(H;kB}0o7;un8zO>5BALiWB~}6egi{R`v}&JEwtF|%{g7?2ZxE$_Y2CQ zYJH7+HEpV^8hDY!cgVm+NUTzGrhsNS^S*$Dq`c?mpdgJBv8T3O>C|P6y^!nZugelZ zRyMNVyO3h;gwOTz#f9Gy)tFZ2N855-$z_fXE77NFwwWz1>v&dlFF9CrFA^(9PhHtKGb#sotLuWpzt#zET1D%3}e=0plAbd~0 zu?b>EO3dc3|M-QQJ$U<+q)VByOkp!!5p{lC(%+M6Lv#bRpY>EZ1Bc#R7tSs4phTcR z%~s~!EBq;La%dkOU};hdD{&W;b37}8&3f<;r$`iTc{-@+xotqvW3JC_?5Q~*=Gp_)@H3oNU)#QUEim|)JQ#EZoN}YxmQK0|?0fhv znhScDp_Bw`w?Os8Z3V%6O*rkc4+l{WEnG0gAT;W zgZ>-`g>@>T7Tw*cU6w!onmlqjeSlbB%x_2rSJiG$;&q#iaqj54O^Su zUB1iaf%tAwv`a^|7Fn3+JlYJlCav6LhNG_t6Ncc|;ksA)n6PG0>PRaBDtNQXoh!gu zFS>h0_eBjdn2HJkE|Y88U9V~GXC>mPD^pH}ivbY~r9#GsuiR~?n>2*wZ>BAP$gtBI zR2~QJs$gerA;VPK$Z~A9K(o`e${U>s_#Xn<1|G11P|f7p+U@AeS{e`{UA5+YQB*mW zQk*!OY(ajRp8IEWzV_(v+KHj@XXY8zLhAz+ub{1ZSKFl{+xDQ6T?BwT5D5St%ayJ_ z@#Xcu91_H>HV(nD1Rn3}4UYhFDq>CtXsz**ZfB_mcRlcS>B|iK2d;ka?T7V$6KcPI zVzb$N?rbip`sLse)W7bul7tf;+j^$QpG+aNmC#?xgwE9Sf&mST=>ON}5p>^HO9f$X zo7mrqI?bnj1M<(!OxDcJc~xefcS-_NsNc^Xgu#>wHnS^+9S?AR@3%tyW)7(jFH0!No}Px{GT&$JLk#XQ2zf#^+T(BMr3`eBLWu>ln@ zqkrQCehdm2?G&!%-H7Sy!_AG6-d}SgEUX;3|1mPzJpoG?it%M&{iRtq=Fj}mMJ`{4 zZrPz?re{I$yr;3rXTkfadi>c7pQ#~Y)@6?{C) zpTom;IYOw?TaL!jz3^u$0oUJi>`N^|*+Q0^NgtZ2c<@w~i%M}RA_>~(GBcTpKRH?{ zv8;boQ}8z4ySEaKUZos8@9YmM9125ovWqKG&ZaG=vL-`l53MYf+2`itadb5Z;F3k* z2&{xByz%Z_j3 ze_;rhOI>2s{VmfGAY>#emHx+=O@+#KB}AMq9PbqPOrW=pGKSLe&9tb1AuzN6R53aI z*y`^b+zR|YW*Ih1+vgAPfbG)Y zdGsS2qE1?02)`D}>@S@2G~!$+vnHIA#d>XJgAA)XLJxUCTON5C`k#K?mc1YSNs_z$ zpDvUozpCmCS)QMwkiI9#_DVk*5eu5;VFd!RN^W^=x0|a{DxR2}{l)u%L;y>sskF6A z7NbsA9YR+^Xim_zuz*P@MtG(5vEI*5!Uees>q7ob?(@a&?kS~Ig3H`c!A>4SFM3{l zhkq|oL8Mu1Bqh~7!pPqQ3u)E3L78XI{`N9*L2`RAFi?U3Vk=tMt z2NCG$qA?Hjt_^sT_$Bzj(OHyGv34NIPwF?dT@6;G$Y&CPZv`*TBE)k-^1k=bKoFLn zX+?^d5yUL-96tX{2a>xKZZ%gA#F0c4T8ziH=2>z*k#U%w$8UWsb0TSreyrQkLhFaR zuFNacSpEo%#21O_Y}^2D3yj>ftV2C-KqdUCI~Wl9BBrj}pQfC4?Vr z)*}H43T$%dvcN@nnL+V5PHb-1_}6^&zw0eZkw&m@Vf(bAthn$(TXD2B&Zmne3qd8# zZVv20tLnPAScF`<-8}>csLBUCbbDI{8~svetXH! zz3|lM{T9)jki@gjZod0XYC_llO&lp@4f$<~8PO=Y-mM=iG2icrAPTJ#jgwW_W2{A~ z4C0ppj=6>i&)_rV?Lf%64s%$?FuJyMMqUhql|LZVWG_6;IJG^a>Mb`xS*QCD3-e-} ze`wuUP|UOkS$6ceKM6``Xo$B{)aHoT&c$`9x>^7rQ%NS~!l1X9;(krtT~jD06tpkX`_UBqF5idpL?&v?`9srB+&CSqy^p%+~ z1g`Dyw$kRoZZ!$y@GS?N?(x&^I*5tR>1(BSLFkxoMUlHBS2gu6o(A(#$MzQ&7r%Fy zSy_RNCq%W*Pb&75en=^h?p4D-HR>sdT3g}i@ZRjyVYgHYpEJ87e*O`iN(z4X!dIwo{V4mR4%FB~+waaIz(IT|dI*8c@iK1Wc#Fi2D?9C$1osnOF8AW^*iWj3r1r3H?W>0> zUMA0kY-68|+E1Y018)7f)XM&S?iP4VI2O|GA(VZAv6@klgs@8yYjZj=v5Xv&olj+$ z2|MjBDdL@XkAIQ+wkT|l8!E8S>_uTfpnhCB0-v9v6QMV)2yRvwJ$ z+@4$vlRZhejDj};lsL-RCj}a*mjkcUn#K!`Q{C4c%)x)-@vd#32miTQE<#nY_};Cc z`o;y0R#%Qjy1Kc*F4*J#PVcG2WzcasGf~kvcDjdt?)_{T;M?x8o3Pkm2|dPU75h3z zaTZTi{XfNb2fL>58LR33?w5%7yUMCCLZpN zMYsKG!QHo5ZqMLZ?Tf8~{;MBu8_Ww+dV!PMX2?@`5eEq^=#w?t^*xT%Ww`(qFtTl# zs)i0O)xvn7zhNy8eHl)bZe~hzKwv@Xv0}HJ(%W#K0DY9Mj0ixf`8W4EAKdQZAC2MX zh+6fM9h<9MhSB>SMb}Qfr+-x*ck;&?sxxxWI?Xw(Iw!Z(+G2ypztL*`seN~SM$@E$ z$E?tk_3F5Ci8rZP201&ah1U>0-0|SFu}R0t-~o9iVdP3%$Jk3S?3*QcnO^A?n-o<+ zA~4X!ZQj)ROdm6|!+6uQl;Z3hY>^=HW@18!l&jCz?)B$ovB4zKiraHdtdt#{J(RHK z9jjGy@G&cFFp!faQe>9|xw4MzY>zdFN;Avnp|1IsM(awu`d=F}h^JbIZz`63M&}NB z?vvp2XRzkQ#~9iEFcEmK`FJ`90?uPL<9r@`&uB~HkakI7FuBf zn9Shn*OPDGh6><<-nLFQvf7Yw8P_~ti?x>JY_g#rgbsA2!oOlQl`s(6ln=__6&X$9i$2S8^COexlr$S3EsS4Qj zkeIXhP-Or06IKBH4RvK(_xG_5hP;8esl0oWMu+YXsy^Nn4S27)M*S^&MR7uQnvC1y zIKQNxz4_5{5S18k2bb{bdx*c)-mtC#e4N6tBQRGZW6 zp6v#a8_aW(V;B6jE~io7h*~;FtWQwvt-`t%!0vxmbZXe8y|Ic)KDWtkIFfUu~F+V%U&0&g2835UFXw<1=R-zn%W^jE4(!b!>;wSjlnrZ^nX!eS_WQlV) z8_Pd3F=e_U9E8&o5^Pq!qD*~FbMy0}pb94n6`!JrFQH*i85K*q?qVZ!p!i_+ zD2IK&@gZyH@^j3vSPF8!VO}6SP`gZ*pv1&FH%q{}8Zh!Sp%<4e*y8!VhFXbRt+S+> zX=HY=Q~9>Y!BtQD0a7m%@IO_*2S%u3y&avzHsPIl4OroEH*MOWP!pZBYuxo-|D4cn z4d_aXKh2psw5G1t{qX7u0F~tDV@!6uImgU$TL}q%+;|)}R@ni%b5f$su>VyG0RJ`l z;5{+pcR#up69>r;sKj zB#b5E_TG}{I5q@fyG7|;ehjUCms*bzl?`}5xEhG|Bz>g**z_4WScN-cHtcCH5PhTI zc`5{%kDe?71M-hI?+Xi9naAvA!oKTWtyafJyv>O}V}6Da5RS&M>2;c{`-7)f>U};Z ze{Yrj@OlsQpw}uuMMI>6Xw5&zM}$X+kU_s&{|xNVhY}M;S715dAdFEerFafiY59>m zCW(SewD}qG3_p;oW+V(ib5Jdmr^*DaQZkS#e^xs{p)TOYd_so-{-?zMUjFZR{?DNP zcYy}}tKffclfwdJ|KFGYKKae-{Me`{;FufbTy!? zNF}w+*R`=chw2b%J;StG85b+#yUG|4xx0IO# zcHGZ-I>TYX(CUd;uD0`ZA^~W^XbycdZ)W{gGpvjUuEU121*|B0?|mho|Lf%&c|prw z$5|E)RP(n_=Ol(Qr%})*?0h)xpU1jtl3Xz>DR}Rp2i-yyj=qO#cz?RUm3&vtOsb51l!))MVQ)jSz^^Ge8E3 zf8ny@qu~C%#?4=&(Uq?mi*5U*Q+rYm(`!HMFAUR61w+Ftto%shC$2m2II^9T?`d1( z{p18m@C{>D23(nv0T*YGbe6{gEUe!2XOl#{K1hvmHzb@W- z|Ig9&;3B1i8JCv(W9``!2qE=-p2WBSwNrsVe2bHT&~PRd4HV(bX8FCd13^o_yp3Po zXct1 z-jiIncAW|XU~avKEWVuG)NEeN#jfY7|BC{G-pNhB+9D^O893MC^FIE){z8ncgBkjU z1gIEc*fY`~C!Ea|q9?vZe&OsoTBwpGoaVo^^xl3$g#a*80U%nGF&0&z%j{7?{`nd6 zUoiGSv10hVrrmg0!@3vaS2vfx(Z|wN9F5IhyJWz|y?2-Wyf(Ilu?Y^RH0X}z#S=cZ zk{;!*n03{VbiHrpRSis%j=h$abrpDtTr`TI&tee=-j&x6ZKHuS_CZxp2L%oqL;=Ob| zWDkEu1B@}%U}|(-j9|gyRoh)#J$i!*nV%92)*FTo0wFS)N73TB-VB7ieuMdV!LoAW zxbN4`VWN9tb2}oYywJc~c*J)`@NPSj>4Peszv(4p#W?^05XtqAVkTlc`?a;8O&7T2 ziT4j?^@P#&pSuIl(2<{0RPLO-3cKKe;p*L?m|mQD&K6%{sx*ah%RgfY1wBo#gvmOy zJ&8WbXxjX`8gdF>rFu7YNTGptOcl}Hl7LrYT+%x#>gt5I_4q#r^k{n(8&V2_PlWQ8 zWdCt<8+ba;80DtH^R}|Nt-2mvbmbusnQcF= zY~S9{5ho7O6s!BQY5fWj@Iln!bXev^1_=bbZM9A9Za>q+5D6OhWHD1s*pt6fP=VMS zJ2@}V%*?iXLvA=UJ}$)vP5fnyIxJF@&;B{tcuZMov%#REqnEl?Ct$6T+JWm zYip-4b*d%kAP>zmBC-T&V{)j|Jn_?lT7`vVNW>wXe{ZD4kr}%_8ml25#E9jYdX3Bl0AD;o8xuMKqz+2Mc zl#0shW~!`svTnekR$0Qj%Fpw@>=J`ylBjX8Lm-yC&bMAD5EA1peL88F3ju-}jMz5= zjnLnj0Atk;)yV_iBax9V02S3Pt|o^`WM{@NMVgi-4o)D{(d;4{zs`nI44Lq$2vI)d z%4N~sL);&x0%~;y{(>e`&c5=?WK>*qbR<-6j;aci^9TBaM(+7Ni<0jYk#WjOQ*_m0 zo3xFS4~e1_+;hoRrBpP)y0U`8#4r;RXaM7bV$TOc!lSXjOeBVAb&oRhzM{KdoU>44 z7&&s<>U0#aYKkiwSp*q5g@lBd*qC@3E0I>I_0fVAX*jvLpwUG*8>a(mAxhC^|A(S; zV63a@qVS2GG)ZGMO&i&CXxSZ!?Ewrw}IZGZRs2j|{1XJ+rU*Ludvuc@~8&6FqJ}dProPw~VrmTrKOE7&<)G{q~4hk*~V({RW#5f5pMrBJbB?B7_ zp|7x^rUhN<_>oNgxan;5MDc7u`rh7N^K$dkQBY)iZU{SMUK1%-gqW}jc0r)jm#o;> z_{=yh-Qe$nyn}_91O(GxSenAOxY#=?@LuX`f_uO23wqJyGh0}ru({(|OhbYfw24}_ zX0fpQ2`xDh)F>w6`kG`uvuOM8$TBLLUs4eNF_V&#va!%~)i%aSUyc}7ODwC#dJ~*z zx#fOiWv+oSJQ-x?%@{FNL~zC$u#nig+Qm$83@>HO-#`q1Lk57IAS-K1nsFHk30OU% zKe3rgewG8bvdOZ&xj6{RNrl{UfSUFys8n1Y8z03+5;LUR&&ULXjjg*{Xv&+?lMm5a zh8|1G+In&v9Y@V^A0FB&%s_Ue_m&?^1r1 zz1@<{SQNqm>d4Ibq%(Bgg|}25u#Gk39DI1noqp!V`+rmxjDDZ%GNpB+1A_F&ys0Q? z?^p{#q|6%KhFhglNQ$J`lE0)U7%E_#)QV0rWi2XcrlbS0N$Hu$%CcM0`v6xcLV?zj z;OTXI4M2Q*b<4Zzd9TL4p1m0z6V>gH>VnAkwV=RETFNe3^2Qo^2Dn&2ULe2laGu@3 zJfqZ^Ju0${jzL;VHh_bPrm49TX36tgfap(yQmGroc#Q6%BI7;m#6|y8vhH8`#!cgb0EC)H+uB+9&m^hpu0OV<|^qlG-U3Za5>y+ z!}r^Q0IHvqls5E8DiON$hodp8X4W6WePMv*Y)=i9_^kLucm_8IRr>6sBLPed!ME#% z{qqBcpJX&uwXia|&ef1<1HhT61!;B}u*pEmP0#eR41Pga-@!F*!uZQSP99tr$JgeM zE%=IbVr=Dkp`FcT`fth@{&}5%nTYzVuhCokjVP3Qn4bmh$dp6?QGa52ZL4YO@Hi8D zLXb7}#FV5oz$t)mC4eMFO#q?u0-ok$XQ-zTUN4^yw~E#cCP%YE508Ti-%p^-Dq+2* z1{_ubeplVJUv9%sZy3!K$h2p(TqIQ0Vcv}lsEML%O}N1ZZXazmuU=0VXxZK%#_Q<{ zG@5Sjq4%MnAo~@iX-?_5pNzgohGQGln8v2YLuF?2G*8&X|K!9V%VXNL{%gDJ{Sd9E z$fPNlRjqN?m|7mgpY&j@$2Ks!hWqqUtbo0!gkAB^<9@d(q8t9xFuWU9o^M_F0$3coDOzA7AGYZ@)yy77xSUw)+_F-f-=T z;m6=I^_oYvOd!8ni%$w%c^%hSCFSkX55055Bg#Wc21^KwcY5wYdtJDFVSRpQ z&LFzK8f=M@I*4Rp2^w}QUzm4B4ZVE!rMB$8;m?#I+Y@_+-2K;ZI$zfmSF+vXDo3JS z*F9-S%juJ#@OP}~!uyW87;io~<#T$?t(`gNLu^g!75 z!1NtXzY8HH=*nP!t+Krj`fx6y75X1Q7Un%$2dIbppYLS=Gx&irRbM^1P3 zW>M9$`3nNhj_apKZqv`o%;DtF06Cu<4&KLG+-WAA%i`a{>6_@r^jg!TI@@2;WYM-c zzbYC&iu|qD&%K^~lIfcI((!t3LJvjK`zS-68eg9pGB~~C(JUXS*uJ1S8$B4>A zhXQd83(yS`!GeQx%W_$%Gu#-jIWQ8#jb@zX$Yk`ss3c2*0^d&^&)K#ad-Kvi1GQDk zRZg^u#{FZ7kkkDbn}R|ff~fteH6Ma^%#{>`+wH(X-i54@dEoWsdfjjNVx7q< zKct?M5g0*dS-Mz9I?LbXUrNi0w*(f1ZAUw|eemVAP@|K^f-jAy)A)ItJ>Z{~uLa$x zHenE{QHjvsdQFy6N3c!BV&!F$K~2t=R8vU?LNN?sumJF1$p~7zeUE(~hE)X9mM!>C z$+YY;xtt;J**x{s&V}lp{X=E@?dRFe^rvT8_FeTgN(zo&3{gfU?-kwtO9HZ?h_v5S z%Da|nBncF?UP8?-#VVa%*QMyM@0mu8=JqjbsN7uKM4VT}d68swtS9eSX0gHaaR2=| zpjhj2aoJV$L{gH6j1<=x*KNFyTxvV>i2QO|JEE?9CtfAOqbgS$gxxdkw6n*R_Rz}z z68jemE!y`oZp@Z!tgVSqS^7Px=nz;x-m7;!HpY~pw9VaI=0a@~va#nrdf5`;57hI? zf*u-ranIW5TDK|vL&fQ16oD|;M9g_j|6POA97caXB*1uctf;Xv-HZzs!&PZ+gawC( zGwTLX*82Rqff)F;us`70+Ge9|$gwyN&1hR_L@`;f*Xq5w(E9L=AxixZ(fMoldv_&@ zW1$SL74yI0>0h?}$#@Zs>21e<)FXFDSowNRceXpCWna@Td?kN>9J!khy`=08K^$1^ z;YPI3G^O9W>1{|G&ZKq;G+)$Ot>0Z6iK7r%n(OmA&J40-lHA}|pSMtUFH2%VeS_sW zIR0egxj!XqdPh2^4Mk-qL@l;4y49d*((!z&E!NF09F+rrx)$cu%bcM}wg~d%Ktp3= z=24HA-V8WxZ+@>b>(d6L!@a-Z(-f|LD>7;N5NU##j((yXt(m^KDXL-zi?G0zWBI4M zpZmj^y}AWQqd+2ao&~q_9P0GK%C6gyn4oNv^(?r}2-At!c`KKB=^<`i!6>pFum-t7 zJSLAxKA>YJ%oEhm7K15F0Pqd6b!(RTDP72DA_wlz`c(829-uFOJ%FG`(oCe$<<`h` zrVAE}YBFjDj{7mYs#GSvODQm(BE{S2@z*&Qbbx{W($ci$)@Bv!4%~&=sO%!pP7=kN z=PcrcNfU5R3+9+2nBIMHMidOo`(76^%GeMNwHBOrO@}tIPdv0~rvK0|d@Gn-R$cx1 zw=$u`FQE^FW_xI3P&!W_ORJQo$e?ZD-wvKyZW?^6T#XHM4X>VeUz5f&+3_8|h^MSp zF8dsb$qTat_n=+d!!YGE$r7uxuYwoCmKRI+XL^@YUy9X-%=&(HB_u!&llJ!fjIV`6 z$3%*eG{dgre(H`5q56Ke_-E{(FKfBdeQmS`F0wUo`h1amI_p)&(M#En9FpL_0>zxJ z;iF@%Ds4{Zu-xgop9KdXKJ3(pg9X(2zsyqvL)NUyKZ4-$7^huE29nbUT`(clo5RPa zWC_d&ED?RRK(ixSy8}LAuCq+j{}LQK`RZ6^vF@=DR3>UFo4oLciHv?E!NsuS!<)`a zL}@hnq{J0xtr(+>j#5b>XdkrpL^T1ads-vtRjd|=v?DcwE z(;!1p3HB-A(!cuM=HtxAKs5+@w_9J4m(rLIr^b&?ImIH3%DZ2KD!?A%wO?V?l2mkq ziIfv~i#B=thSf!!jUufKw(9(aG{_U7`e($ejK3wW5>?c~NebvQn)U23Nrroa@uvco z?WYN`|4^&@2NzAbV?sdPPXn3u&h3}O2yL}9J^{rAxQBSUzm9v>>$2Y)-$}`}ufEk~ z@HuYkrXVplECXXHG)dA5im~Wk6^pSWub1R1_4k~WD+qwTVJ~qe^LZ7y<>-xwwCRTL zEezDTkHl6_4);xlWW&eeR0<`w`f1L9Mb!o04TtS>RhNcM6J8(_}2lkUSh*%CEoW97>j2rA%fbhN6O@3XTeQA5lo5 z;e;_E&(V2V|C0Ich(<=@A=)`5UYCuymkSK-lyLJzNBIY@{pG zt3G=gEJJZWU_h*jiC+_x<=3C;z2PjVGU?gnh5b7x0-UADB_zU;`187E(s%h=C^wXi z*zuHZuRnSa$hmv1zOmR1?gUQ*Y(p3ASaW=OsbQmSjn2wNuk?9FbttqUV>Deze=Ab+ zbAPaUFy+}Nbo9pC@rqab!D+{Tt@rLx=2MvZyO8C6Vk#VCDO;UFS0GVzxMCjW_I9UT zY59HeaBanQNlvIgDIZIvqAA@iV`;eVV6SOayi8IAa64K1E!K-+)_f2?-_8r^oekn%w3+!@=Tj>juBGF79(Ri1)kFbn!p2|Cz;c1@b-EBGO5om#seiPf}8u~Uo;&$r08Zo5Hs`->8n?)uz? zv_TINfcLKtT3eggrq4J|(k)03x-cr_Tlh0yu^4yYB#6_I0Jm^=NPxVP2}-%Y zvMN!tivKBl`tesl{+ce%_JX#CT?xG=U}yA1Y*pK~AB*EA4NLN3$!Zm6B~0_K=24_J zNAxM~*i}C$hGGdE!b0T z_H%q9vtF}7&sPQF9r)Gt%xl)n_SpDgj#XNjATMLQJSN%wb(BgM6rkEdWkl$-nL-9i z+S&zta5W!nyBKCw(3eB)hsrEJ(}!YS`Z~F&`C?hPVJziRlaiMBxI3%^>Z1Q_5F|?c z*VX6&a}Em;klH!F@5t^ylcseV(4L9lbwaE{a^t?b5E6%Qk2y-)3A1)Y-8?o@Q$~x^ z!0wIv(1HsrVUxV=$nPYTbXYNvm-B3A%5L*jc2~jsAf`#Rv%Z;Q=kmu`qG z;BvmkIReRkl8RYK=e!J)0dR8qlzr=Cr@Y-gFG)3o5|7mFdW~Hj7+b2;V7B zyKI`8NeX^Y)l~I)c;T~2s?_fAy55WHC{yF^dP#?STFjpnga>||pg2=vzykI0dGdJw z!LXrhLK*&^?Yu4cfGwF$ZzNssR ze9|)qW+;=!>Orse-0yXthB%3yP@vxGcoq|V<(`id;+rqOL0K6zzkA>AnF}l(d<(NL z=O+J@X4m2D!YMJ%6m8a61!)fd_`;!*mYm}>Hx#g}|9CzqX(*;T=St+z;Whwn1ZajH zDhP(0V<&LV!~M!}xbIO8q4f`2?d7M1RgJPIa%G~Y5&ZH_=K}DN3C5`{T1?>venghr z`c(9)6uzw4t)qklxQsJF$N?{5Qm9$2A-83HY8#?|At9wIQJWfq{%oIt3;@BZ&KiA0 zLhELHt%-@bUeT^D7Sm*Qvp6xC75BaI1%joitbeu~;S9ySa6mEJ#Vr>gr(t&0YYn%~ z$4j5d(+Ya~VnW5q&-?&(dSycTxfX2^?x>)~5P&CXZ3V1}3HQvlDj=d_N4o+&_GpfP zp3N``shG?Tr~T0aO#0{uY@3cJ#=pZKzoEp(uAEbHH~!G49B!vbNc#k3q@J$Od8VOS5LtNI0Mq6@AEe$*o2q=xxUOL8*&mL zLjzUOw-!+lg%PfVooDvX=GtZjybfgHRI3>?iK)U<%;Eosz5gYrLfWvpL1SzS?Lz}zSbA6bU5dDI~ z@}?uqkUVW7e~UTLh8qI4FEay)Jh`k7(uUdO{b4= zW#GJ>BPi3G2>4x9O}y7a#tZ|3)97EHu0Gr&yOc z0KV2pQD8kozt^8pvyX0(hp6KWY;brzmU$qo`<^#zyZteScTe=Ilzsbo_L|!JwHv72 z%&mB3@H?1VzrVUL8Po16ROx#mn{#bTPHb;ncw3*WyigO&i$Ti) zon2e$+q7ARrF3vv+v96HTk!j3&2CRWlsw(v-fm#3=L7@k;N)~W!272H92rz)7Mr<) zB4(&7<;1`v8m)helv)21-K)0$ai)N$*X_xG6uW?x$-4v~II#Gfr2%o9^n0Qm?$Yq2 z=PM<7@O0wc_K6qNu#z(Kh7b2wej-b{_eQgFQri5!BH9THax>AVWR#FxcoA~K$B16L zx!h;KZ!%1SBJ0OrHu)oD?2K9YR2RptjvzNZ%5s5|=~Kuj4!Ra00#Ky>fPm*vN>DF1 zMn+G*()4~w=1@|KV2GN}bZhLqW;cW(OUd?9l4CE9W{6AZ<-nfGE)`fWlO@+LMZC3S zd@^N4j1tQmons)@g$Q+%+dwUa{)BzQiaPx9%xqbg%R7~Y`b4O;GA&s+qp@|D#*%lz z5X3H}Xz(;hCUovks0(}}Ei&v_=L1i-1&yk4zbaoh)e#I@_LSu{Rm4NBFDH-o*PWJg zrcRju9oyY9R3>;r!pB;TETyHf`niLd*(MvHOCex)`k3yr{t+l-?&j$X2mPCMsm()W z$0OEBJ?o@)R`WOJQ+4Olo|Xwq^dvNUkbDNZcb`Eegc;jCs@qW9H(Uw;m=}|Ey+)?8 z=x6LE+-&TRIW$N?SHi71UxSmDV{s}zw&kw0FRDnb{@W=WwX??BPHyNKR(`^9Pe zI?+jzyq>4*q*fFHu?h4&bU zOc6r&dqYmH?q<3X7w(7gQ%D&XCFCpkLG)Y<{R<+YDTzuo-{tr`w3L^G3s`WSs4E+C znww$8Pe!W1l_{Oi1cJT`#ZHMLAee>Vj4Zzbo7orW!S=g(;5SO|7p_A0$w>I@>v!BcO&k&LoS?3#WlR zAy7F@v|Jg;428V%U@mRwkhoofx_t1<2(sWYBW09H3QmSTnvz50`k*Zlo)s@@cu@OC zA|C`o0jJ+H<#Ih*Ou0D9G5kgv$O~I7EQisLYTxHpixq)?FKP4khy}C{1L4=xPv;7G zd#VKyJer>{%F;=s$q$aQfNHjEj2EV!Lj6&?yg|rkACGlh9`8yp_;AuelAy70k2V7c zT0O*wXnxvr1x+l{o%u?GQHL*rf7HE>Obvb5l&2G-EsEdv9Np6qLIdHVcyu5HQP?A7 z2iXEzb{h09iIU+ZLY^C~EC$%j)vf9=mVLhhKyo|x>6_*xRlnp?nhEZ(M3GUzI?+=! z<10!s>)gjY%4Gm7G6^DBp$w~cWzMyKf0exPNLP?uP>Z20P^ zuOg=jcxj19NTB@H%7x3=zI3~Bu~QThAuwm~li0?m2_()U<_36iVq@pqiDF>;v%9%yzI(1O`@=;J zsCQt(MPs;;L6c6i+FBUgk1*lEg~Y?6!<>&jB7i-Qp2g`WVZ$Q6=hej_d*=8LY$5_5 zGah7z!b;BA1!N0-_JX7L`yB4%z_d4*Sd}acM1%rVrcVvv^K)}TG8k|u_zxfm|kD<2NLkZTGBy(j5gfg`(dds_J#V#N< zcmS457Hf6wND&r}HE1x^+(VUM%;yV=dQAjZSTWGS#;fZ*Gxh{r9}^TpkL0EU8#)r(2~Cc(~~G)K81D_h0H- zx*kcrd^1ozeJR0ThLAITwyizTMwMdYvsz>chkw&twmif1ol4f>C5PiK4J0UY7O}}5 zqx=VM`kQypPVv2lrp%$|9dVZVN5)qVG^ZCupu54>AsSvA`+I+zH`QKdhH=4|%(<%U?ec!;ErnYC}sb~OP z7t>HhF>IClITbMV*xxyX;XG`KbW*~Ew$J@*{ z2*8qzScZ8U@Z*3GL#5lB+Pne{!kWpm zsi%N=XJRNl&qXNt4K=2v`<2G>GdpqDkH*flq9<0`mlhT{fOg$Gzdqp$Qgu8hEv(en zcD)VtI}@gUlb7AYt|LzUGdp?Z7nJsomUf*S7KDA9h{7fc_e>P()2A@y$E|J;w>nTX zKe!6GhVmmFL*=Ifk=<%f8>{|+q4jH#m^5E{j?sSo7T|mJ=UQA%CaA#txa4qQ85MIR z7c+iCFC9{6M=7(G=SR~kJ$eqa!<@0wGKSO&34_gEf*p6w{agl=Shd5~IsS?JsV%g+ z&GdAH3^7d}zEYd#K=3;miX82#b;Q5{*0uoP%Dn91{v9*ni6u$p6@@Wt>yD|QaJQEm z4Tx1;BCs}LLCG&kppaoCE}eMK7|k!Bz$~@z(1QI6$c=ndrn??#aq~U@8}tkgnXsXj z;p(s9cGyj7?NDK0l?vFl_q6}5`Q)g z;HQdx3;I5OiK)sLRgnw986m|=o%j71ue<>Tl++Z~u?s?h>hSw{W%jwy}n1~)J z4>-M)ZXtKJ{XPc-y~75A{RngNVNA=1n4ij>!O_(0@cac&?sC5=P4SC6iyw-`ME%*@ zRu@F-NNKulc?{E>np)9lv?H2*gL?1kZ_SYQQXXCGt}g&-XFQT+Up3R>*91y(Nvb` zEgiIyQHPl-S9e8(9+M?XW4V9-<4Z&AA&f9-Ba>p{`&Dgm*8ab&U_M_s#9l9 zhDXomc1QNjw|`>U`2qP!7~uO0;DicrB5E3w_-(=h(!!%@R*ZH_ zbt?~~1(|xSE6~cBLyNxy0KddG2~4MYV>UP*H?vuFWMZA6+@?Z$JmlJv^wh@F*IHk2 zbrihW$bPVe6{tX?OYujc6$%(95mUQ?;u8B9@^lOp>D)Ij8s0I*Rt}*#i|1=XelARe z6*`|$#b&=mgYe6`hxo#x>0S}3=aZ7`@F+sax?^`JLzWmKTpAOQ08&Pw$oN$M&uG@2 zJx<0p+#g+}3;nO_cgt4yAK^mJgvsL)dkQRT?z3gp*JiGWxU7ms-YPyW*pxiSD+qB6 z)+XDDNACPJ&ccA8<<|6WLA!z;JOAF(cc^6u;?{yl4%va;AmUAw!yWa@M=>EY&UQdQ zdx3eg7||d3Yq!Mx1_#zd)8RR9+|Z2a_opJN*SW@(>NS+MYo?6<3TDi;1%hNnOuW}j z;GS)2F)v|FoZIZ_s4uSXmTbB1H{O-Z``kILymP^$8BSc z1M~2yirv1yP&nZ(Lnr&Orgq9!1d8?O|Dh?u$aU>wEs;C-ywxPzk!H6`#~#)>I2xss zrw%`2H8Rwr0^f4c1i@dqTIUa^yQRTgn1D#|O~Z?*@{mTG_+y!U8zNc~$&N`pCEeGR}cpMb4yGWE2ni!&)@gRjU zEMNr(3}TvjReX(OmnU$|aD3tc<5AdthfJ>3d2o9lSooc z63rLWxSkpLp>gw%0X+XlHIc}Qrq8f0E-1;VtSl@nEG<9@<+RhrZ#;=+@Yi}p;86$XPk9`FtV)}{diY`jRSV!3`Bi5vk zE<#$2Ze_P)gT!_)b#$BVX?$mI^es=F9fgQl2329&yin{~J4u~Mh=894k9Hljwih5c z_}nvU0sj5dd{GhA!*nAgd`r=63&9T%8!&7tCR})KTjXXWVom~Z;WIZ5hoe1T(D2IJ z*Js@gdWa$Y-gUE>gelnO2O~QO3j6dp&j|dBoFRduVl9@TGNI#`#n1rrj?I`oH9&v7 zv6?rr`$#Jy?|~uEAtQ<%=7R~``PZ8S@vnlcnPP1pRra{rJ~_bEWy|q9pSZfr@+Ef$ z%@0UgjF*Lpb#T~E`D<}mA$-H@*CZv?rIVo|=Z5-ulkB@+8Vf#f??|8EKHPScm(jf( zvPh~JoE*#yzK@d|8F*`f=z;`PU*}F3A=6iriRyb$TUm@xzUr*?L(-t<+0X@}`eTJw zaAAd^8#*I4-t><9LI7tzcP%pC;D^lL-3$b1Nl=^g`T*dM9ZBa;Si9QX(vWWQhdJdy znWDjJdtw8u^)(@Grt=A`3%cIU*;>StRF)WbXjLO<>c%>I6chiZ7+GSg;*y*kSOP{B zK_|}V%v=b+=Cjy8oo~Fdzi-qnq4mnw&L*lzEG(wdt?#+dz!SgZM%|zfGld#GFVtSW z>Qxuch=e=Zae>IU>C@XteWoONWd)r2_Y-P|*{h<1CaAeKPZYnuFHS?vLe-cxq;(RB zm{a8K0!&6gKCueU#?U(o`0;%QgjfN;-f3ED1U02}H?vcWOdjp{(Np4G1NaY2a9dx% zWpSUev{|MF@1%-G7ZrA&vqN1)A0le}^s;WNC5mf<-TL&3N-0xb^$~en#bSOJ;&}^V zBfT}NIlP~m^G;5;jdZ`dm3t2@2;Wxiw2LQCP_~<^z$KuuQr`S0*%zkOg zdGBEXCI+U$(i56ql8RjIkPyPgs3@(>>DoTov6omxR>9U=_^TRJm)Q6O90>;pk)leE zzd<`GoP2`~c{kBB^*>2Qq0@djfxB~-&c6|y!-Lo`(fcq!)G?}6VWZyE--J^qM$C+? z1)~zYm`1x3*JYh&cb?HKNPxYirbMJvY?G(e9}7}ATR%jRoNp| zWtYV)8w>`do!nG`0%4ZN?=M`X57Q(?3qYET=!=dQSq>?*?46{q^MsrNV;?<_wV8HM zNLo(rLtbwBo>{%9#nZsa?%&BqKaMS7Hv|FTh-YeBSr-%B+$#Tgl0C%&i(n0j|5c^( z__v{h1NArE{C=z1kN{Ak3syB=Jkyf8e=o622FIF@(*r;eWOyvJl2nE-Dv;?l2%oW2 z1HbP|_}B6s1Bj)OU3LKWLW+EIWfs6fMgI|z-Yram*S~NhRC=~guy=97vh3HtPA|*X zi?LzIwkqVyPToWQBQTHgzzqIzAZI~4O+Y0O4qzOS@qc{mrpP#r=EYDDj}etdX*L)E z12YF8QZ26(v`FmjHJ)XERdjVK2`bnEKnGS^`w2{0XpL5QpXoIeU87?@iqCtXqF|Od1%8 z#LM+a0taA(@^%@*0K9cS`@OT61b||>_H`cvbz$K~7OMr{`TPhy>Nb*Q(k3x}F6)v~ z+I8Iq*e~(??2ny$eFN;v(hj=)6{1F*xn%SZ>h_|`ekGJNLIsBZK>-MO&-XEP(8^jo zK(hBwN&WkOk7{6Gapxozktq6(py5GinOGMra2K!@{q;X8yp>5%SNq#?8;MezCuH}q zmvb*7{|-C923;%G*ZtF#l$Y2P<zVxhQ#FU%zJN?1?i<*db6minbnv<-&IIR4D!hl{Jw1> zv(SKHe47U>)bA?LZ3K5}+c3b^DbqfGC-Eask*uNYPSPQ00OuPzl~q@dBXs{^pNpdaZ256HDn)T!8kKr zK2);!Av#5GT!`n+l_q2g;YwKE-0<;9SLZYx5Unu7HIhbW>e+vPse8*_6k}-EUE^qd z0)JOW)_eyv#oL}}03+j1;Fo2+lCpRqt zFtYRnRdqE#2_ZP51rLN-pb+9~Qw_J?wc0v{2F4sC1B7ljFf`D>k&MPG$IAN)w4bJ< z&))*(uLYV8e9vgCKi**gMxDb&waVo(@N`-vbp?M;E3J?_e#ut`gq57N{MT0-#l0edptS>Pdo zo%mGM#=}fr^okSWbv;1_v3enX2vb$4lc_c{0mGZFjM??>6 z2V!qc8P`?+F9ac*(!zXNt=D5k(WT*BZA3%_%dWs#_1RY-Y{!=vup@l~GpRR_6TjU; z9o(-v;?&SX_z@t5^e7M)M1{(&yI;xATW+{--R4wxzPgrT^17y>`DsU9i_=_vKc}L) zJBk$gvP47Yc2kuFRGT-0HYqEvSTt=!HR()IUhDf;5C9NBUOO>=TkD# zqq=mT)9hJaQipI}f&)^xB;wqq4M_p{5)zQjvwH})OhBBE@LBl%7kJP?E=n8j+vTy1 z?5%^+EQnft_%evp2R?hH%V|;zevBebJ~P&?-Z7Px(4fKnQ{wC_9MqdPmho;l{p3h3@$a&NQU zUW;;cnzDRaaap8zT2AgU6N;$S(j>E?gPFSBi)tc4>wBEW%V+0ZZ6j`cG^M$muSeiH zEl+hLX|umlQ|808dV=VV)uGVknEU(!=&KF9R%XK6cE051$&I?vC)8Xm$gQzIK!UL; zzuOx|kSFcfUB)lozT*_U1^#ZtSI#jB^X=RsMdLpBxB|1k&X9p+B2Ut3UesiLN7?Cv z6+2q#?fEpf@55%_FM%%tgf%n%@r?6DI;8~<9;nmcZEb(jDj22T7aOQPo#h9mL2hCz zr?p+G>Keh-)rFxza1es)M!~YE>Lz>$I0Is1_{DVV5jSfygfgTHA^?_@ts81GikQ8R zlvU~KD(Ii)_0tn%4-XJDzCTR_?0>)>29Blp4wBd5B}Sr|ZF>=?Ve!O2Rpr)dLfI8kU%xpSyZp0F9Lx3HGPVH*{yW7!hyjYlXq}n zae#s3da4M}@Ce00G`;!_3H1N7N z=xl}WlM^8-$|sI0`JF{m!2zfC$*>zu!G{4x2J|M16mwTZAm{~nQvkZZ89`}pv+zf`r&VDiY1v>`u)Yi^%aT6^ zSZ#|&lH_k;vcL)-NX)!|WGD_|en+PiRzhMqEF^c{$kK-|6@B;R)h}2e0J61q591g# zVBosiHvxbUz2Dg9TAQ&?n6MX^O@&Rn_~|?)=v0CzFLTiLYzJtsIz48@MEw^x!b$`u z3X&Wvv*Kx35G2aa=D04M+SPGM=XS+R;ugbcVhjfSl5e_$huUY}Bo6Ny12R;t_&tBc|U%hX?nBV2Q9It33wAPsD=k{K9+WyQ}U%MljvKhJHzGL`7|n$75C} z2vF=mq}j+(rX(fO<3gWFJvE58kT-?_XS&8o_+4oUD{%X&C;MLFJ_sE6nsyY>&P3WY zR@8lggaR0E0;i-2A*QN7bwA5xF^8^FtehKwXQd;KtA4Z2Hbda^ zwT@hp^R+I(_y_dK9VnnOjUX9$WbjIXH|KCUvSY zd1xqoA_AZe)v%XP2q5q2^u3_^UM=;itJ_I z)*9{?HY0FUN3ix(8g9C01uZ*MB=|UZ0e&(xF9$|wMJ^@L_V>uPyL=jkGc<~Uf1?+^ zLIaVdM!Q?Hjim=^3^>0ZC_KD)rwY}`c>@<#8QU6c9l`s?uOVgPw8B>~P7Wn2@#=bz zahY^B%llY|y#g$toqqcO|KCT6!=9&H`%2;y?F5NKOXFdp$XzYRXeto3&hEiK@4*hA zf6R-0TfaoXtGqd4S>)V5>xd3b&3`-rqlBwWgR<#CmHoF2 z&ixfYW=^r&RRJO4=uB6$eV8@%4iVnGM?HEJ^r_Z-KNyUxN&jB5XocF3eZyX5tOQTT zm9-HnX4;FRt`XUYc}Tik+ZiWH6gl16mqhhn`{XYE&XzS5$r$t6i5$KxE)pBy@V;)dWJ8Sp zNwwPQ>!+pisRULwzWUh4;W_=C_YD|o`|mr2P?k*3qIbLNaysVx5jcZ3?)4G3fSE({ zWQbu(bKyg?<&K}=XWfTEx;k0x#I%5Z3AIdTGG~nwK9deWCCtYkxmu6v6LsgDzRvLj zbxoO5r9JhY3NUdHV=d>P5L)geg@{)P62MaA#Dl=QIxaTIsVl`(_ebKjvape%mgZGr z=2y@Y5(H59{o*;*{>E;ssID_kU6z@2OFz5IEvtTSzThhaFbUS~6kOM4;I7?ZDXJ#| z+JmwHKeX6@3mPgOXEPwZ4ysrc8%fgMY*A0gya161qL`jDSx0*ik z&k~$pR7oUHOGpA6tHZw?4yG1kSr_)QhVKK`yMzkffO&~-1ZSKxk@wITe=y|+MvSzV zqs(0%+_orR{o?q`+BZ+!D^%Q;TUC9srL&ou2HU9%=tY%a5i)sjpIp&yuva3~^PPgyMQMPmjOy^U4{ubzg!Bs;L|X zcTg5LamBBEcz~61rnFXbTqXF9bvyBjOQ_9UyYa-{*yz3Iru;Ec;bLeAPTd1d6Qi3LzcsVjT8MzTANSR|4|647+E z#-o}uepz?r41?2zKqHFIm30Nx8U4xfBtK@R;-)Tjh^P&suY(;1ApuzJwcAEPwkT2@kM&wYh?D=Vf(q zfgi7DY48w!{s}rPR$LWs`q$tIkSq8!8g70$34c*F^qh{J)pS@!L=-7OZFKxZ4H+7l zP|(|0Z$^!?)uuUK;#+NjSo!)`6uGNm=C{qXuXHZdI+9F3bf_U1Xn zMQvEM&q&DaHqCJmK8V?cu7Smi+HiO|NVC1RDEYlDFq;dak;FOpFz;gRv`79RG zmo?NOa4KQ*K1OCjS|$?ts^#3_AK$lv9H=)e?{uU_gT2`H2lyhmkq#x~_~@v1U(5VT z?n7wz8C8y|7zDhO-!mi^t+sW91O7ZA2^`)G|MhusH*rf{|y1J}986cYkZMBD{nF;`L zQoWr)O2B7RTOF0VcH(|bNW}O&@A;G02nz)PmGeOZ0A3~=VnsMvxpQ+$8(qzH#wVOM zdU{4nhv?SnrtTTekcB3%By37S$Z_=nmG?J}92er`h50`Qp!u7RYj5|O)-u(5y1oF_ zT8LejTE@L4{9HZ{8*Ni$@k+a$FrH_tHdf_*I*JB>{Qe+Sd?kq0^j+psZYD0vR_9Tc z3g#3YoK7qj5+4#2Pu`KFW}m#M$~DZ>1W?pof78X>W zn0)v+IYnfJ{6yjB5Wi;&4LdxHb7@4@!sk0Qq3$%qKuO2L!hF=ym%7580fxx16)`ky zsa{@Gb?ML5yiNt|D#q{TcDZ>rldRQDD$4qt))8+&n(Y!eOfl>>qX&v>5OqAWaaCuP6wfJL|*_ngQ4oy zlvbH-%O!Sl;W9&0tBy}Q_X%b?giBi2E|B0hLs0H!!(^nSfeEx<*%pT&k#niH?nyX5 zeuN6%g#uH{n_S3R(Cq>h%3Lx%Uk;=cEhVMi zj<*(ge6|&??Kk;#c{;}GyI?^?2mB-YOcEL-mk!V7-9OqUVsyQKNz1(54Bl=nimrVO zfEzP_bq9Af7>5L|zo3x9`_oSU)G)drZZW;(T~XJu&H2lS!1zmIk`#Hvs&>Kx4_b%Y z=TEAiY!9B*hZ#t1>~zFA0_S(T@Sv%BIjifW45g6K0Qjz|_S|!D(IS$kG^@1p-fmN# zW>PqzFjq*BMLzcwJ^c9%h*i3@t+RWl7a!8u@^!IYt#@gR3Qqhn1QV+`U!Cf^ERY}6 zgb!0QtS4&GUp`>va>?g**L;ewvyeNUj$9wX zs>^NKT@JME)sN>V%N6Mm4m#p0oAf&+xdzjnf8#j3M?g|}=AWkWdk88ps|4RB3`}gc zi8sY?r@zH(2n`zB&ikQp8^5BZJHEWUUn2Zw(u1tZT;nr{ZDeg?#{p;6i#nHWCrXq+ z)u7jkOZ(qh0EtylBIXtgp@hu`G^%QJpv;qtJWS zL}*1=4&O)G%BQ@wG7vp~M%lNwRgF3ft33XZ6eP@uUQ7fG(~O#CV(l(6Wv6(u19<)=XbAhLs?ej?&~CMIlM2i_7oj{ zp)a*Mf;ki&8y9~z*EAK&Gzdv0sG?`9NdV!d<$e{$lt8W#gFm{CLD%P;q_^OJe;BvH zjYowD;is&Jvzi6r7n5d+4;HyeXvK`|-&WWjpxn}b{bZ6*XQ#uq(J8`6{rihm|01fwS|CEM` zsQqPyRE+HRzjMT`kIs*$oC-{om+yW7v5Km5BrG<)ZjNMZKV>5nm~Po>*!DV?qwr$%+$F^;&W81dz?f?6paW2l?cenT0Rbv-cty*h6bN(h6593097c^}} zp9~M;rD>NdYs*o3(=Im}dnXB9k*=93)4(6U4}iW5rDnzTXEi)YjFJPN6*wSo zaAr}HEw3Y{6wfiKLO67=2uD2AdQ}%@C!hIlwbpAH8yIO}MdY*RV{Y)t4ICMIsy+pQ z^EFLi3URb*8V`qv#TQA};zAuZhmVvZ)@>49wInpvqNV$N*j+{-H4#SThOI1xva-gP zBR0$#4M?{c=g6uOX<7hFc=^a}}iZ@G};yc}dR>d)OI=DeCGo`T_x*1N6yQHy2-0t2;#bUKa1-S4+VRQ0e_}aU9B{pO-)V9ELYeLiGfT4$XID-5r|!}Z)_KaY zJ$Q>EV~w9p*;ka~7?gg=@%p{4JhBLz1aC3M6%l++L_x*FM}d_qLDzhyjN(;g{D^{G z)E~h*4({&4IS0kDF3{bZ$W37-*6;rQ`n$qaRlL&%C1xvR1dW7^8eAaJI4e})13Cbi zT??)WWh+)f;(OjBhuO%>wKW-Q8su;2T1Z`1+^D}9m~JJ#kh67i!G5YUWlX7R*|3a- zQpr5Cr$r)J5>mNBkix#+X^e0AC^UTa7XotCDCLsBs%@q8C3AXNo7sQXYdp!y2rRjBRUS^L zfb~SfyVaV_@Vky6AL?bChr<7?dXv6+(WZ5IjtPCXyZ+K18r7u3=D5aYFgu)5euPql zuY!v#i@GEzcC2^HM&O>kzUEmKw)Ap5y5Q^A{?B?aO=zPgBLbJzUo#2SYtZ&NN6BdP^Cr_R6HSgzslk>jhMbv{2is^@OIYz!p2i-Y^3}!wzX(3Y-r^Wk zy-&TAmJD7P`dFHE<9(YVZB+gZ$-B~GlYz`&A95e7Qp;&`42o)_6K-ZfYoNP7pA{-I zHbt1U9md&I#g7yoQslk1$@)>s*A>UAZM(J8C*l5DLi2!{T;GK~vW4}zB(q^oj-q^4 zJ$~~?`S<8Z2bY)G(s9el&DR`{=g^}a`PcoGYOtK(;+7x?0QTOs$!UE4E5G;7%W2da zEFHhlaZqzrlcq@Du**|xj0Jiff;{nq2HtS4LfYvlT3%=S&Asc@Q%zCw;_V^BCX9Ea z#7LP)gM7|l!P8)E`5e0sHLmTOil|!u!bHu6Y{y-^bZ{#OMG_A=om2Bjp6VWpuu(dw2UVu;Cld4UNOHdJE0)gB_*O|zTb+30$>y?JnZ8GrPgKI|2l+=s`7 z($Px6!1;RgI5#wQJ7U0)-92qB%tFVETk{hkMONQRPs!a{krg976|7QFU%w>8uipZf znvDxiJy_%~{Q?M2silNZgnICJR??K5+|(4U)7^H}d^bwo`JfxodKvG)`~qMLnQw(g z7j)?8_=#Co(uKbeo_r#zGw8Z*wns~iR9b&ygsg{0l$hlboNh*f8x@#1DzKDw~Ll z`teXuwTPw*<)Pi~M(~wTL4H+ocN8;S%DR;Ph4AGf^$^VmCi}S)`2$x+)wgh3bRNeP z4uBvfYqAr%_Q9#7_E*WRhWcHAst&(PqVvk@i5L=h7+=Hy{yo0-pK6@X+Rx+uQtm4@ z91vqluwr?MR$akSOy6b6eDm;%*i)wqDO|MJte2^+3)*KkBR&qcv%WQPMel1(WMJw@ zHIlF#GOJ!=(BzZmOvv^UCp=8Q54vL^^%Ozts#qB*gyAB%@Six%#$! z_8$tHDC#?+MFm*Wf;&psi8jqGQhKO$c^LBN6FBxD+GWv{jwfv7Bz-AK zj99VXnxRQL9%NN)ji{=_AAQ5_+oEo5u-A**9Vtb9IkYHAGt=QfFL^~Z2|d`T?CG#k z=}^zlmB$gZ7?mtu&+8XU8y5#NIoEd?>iLhPE}^0=nwwcca2+?kYsihO?_2MS#Sv-b z+yqxmIle|%=zZVFpm8)}Gau;A{67)0hcHBjKzcw=SA-Jh=BpgjOIVgT@Y-MJn`a#diN={DCO4C)3^Se-& zX8jL8c~jT^vCD*t*ht;mxTD%fsbu3?`EZC?v5km zq+$6-UQp9RP`^NzG(E6_Ml$$`s|%TgG3nu*uGrM?F&PFx)NHymb=1%>l0JFddi0V3 zJB5agl9^s?4hv%aRtAFUa+3R7SB^=AAbLE%U3+#b0R6L%=dW8SPYE;P=&^#A1rqZX z{AGJZB9I;T!IC+POq(hKI>7w~e<72wcUJ@MgUtPpktp3o#yYjVKT=c9t z(?SaWIc4n>tlRV3A^uM+838opC_Y;1vYc9sFG^kyq|A%PLeUeHrTuc)d>^nip=BaqvFQK>8DkF$&$oKwbQ+uI`N)WE;ZIl7N++yQ?iWAAhir&$6cM zud}1y<`=?ujSWCl@2@)o&tK;)qJjhpibw?>%40|FJMd`WcYB34q1&%+d|R&XlZzd? zZ+)L5KtMky7nTeRgStm;Q~PA(oc`7#+aqRbC}QfRi1ePb&ZYqfU{YB=$5;rZ$S=BR zrj1yTwz`Eg5HTuHJnvJV)`B%$!1|I<8tr{Q>JnB4sU5kOfFQBQ@bk$4vOSbb)<(OR z#4@C#vI7jC@=Pkt5K+YI|G>fnBw@nb8&+gx*tS2iazXC}qFzLhXtxTxn6T-k>{ z&e-Rl&A#tP`b_sh$X9k0&a$>R$PlC{;?FG07yC98d$RV|vrYByxXr({4zXE_k%-TG z0mv*mL5=C+jEc)#@&FNV-nhEsGkWpw#mVgDGxy2wmGw;QX&rR6K zna4%YI2~SvOcwzv4?B$fguCjA8*vn@>GR(%uj1V;PgN0@nB}|+1KH)fw>!M`7hM3K zjTcW|6WnN=K#_m%EPzq;V9k4mrT!iAwWCq*!!KqT0g>|gHnjVo_wU(vUyYgGw&36E}e z#x#riT0}h~C>RjwO@xz9t5$glfoflf|LC!QH^|(!lY_&91RfWLti7|B=aWcafhPvF z-i4Qy-uB$y@*@PAK@)ykhW!tJlG87lVW6Gft-prPJUrLrrKo#{-@|lh2a_2eBr7W` zDJS-O-)NVQk2EDF;5IrPQgGL*{s*D``x&hsm+)|N!L7Ca@&0PfeWEc|Z5a)V8!qq-)rK8E^#kvb7LQAIf+DM?A0Wp>$n-eO5nQ^L`RgAorM)AVxfcHb}-u7cP) zL7AoTOUfDFBOzucjjbdmp4yYQ{S?k#(8*}+%uHAqxw>_Nw6Uz1lw%@*GS6Hud-U0% zfA&9J3mc5+57+*xmJeZsoEr_&78?w8Zp+ zmiR$1;4dqW;p#6bpJ0&+nfFw937o* z!x0npbC*>Jl3^?Q@MSJSyPQHxm+TEBkRJA3&$t)@K-9LOX_f#9y>Z$3HIzU`cjV9S zz?TN*gsO|%pi(t;s0$6MT)ehvZ8v4U?hjeK-o`$beM) zb>S&9?iome{~Gv_HwG{b-_!^2E6 z%)v|8-Vw@%_TLG=z5);DY-1n52NW;GSo}*-_~X$T?6T8XPt?IzM&q{YBGnr4Rke-K z!{Rv_0-)|}VP<=-XnJgF{{smqQgp06feLgWmc6PLItKpJg~U%>35+Lnl~@O}3G5V( zMV+g1f&Xpc)1S0}E-UZKWwpie%svepK?{b^2WURcb8+DNtT1$Jj>2=(3To{h60-@e zC(}-=HEyM8H1?sO?oI{(l%;lxZZ!_0PpUXU`HF4Yw9Bl*JbwY2l!g0(GUhcKVg)>K2uon|AldbMWQF8Rqmz?Wc%Lhx00% zxS^82nEr>${T>bOLuA3-+E`v+-(KEc2(}7goWBbAJbC;`VJXXJy8ERI2hxviXg~b5 zhk*hEyeWVj;|{wzJXl_n_P+C4k+`dL#);zET2NBhPemHv>&;FGezy+LG+bO#U0`CQ z2>|WG1L&fAdo?>yvJ2ie7|)j32#$*lHL-S&t1Si;{D|fHKS=mGAZO9%7bt^qz#9S* zc)`nfQVjwCUY%O%IhPdry__@3+;6}ZNR*1*a>+3M19bOxJ8H>qKJRMfHo0(U#KOgB zN;x{HU#22IK0$(_BoS_HJ#a7|B&*|jmtR+?|Mf2)T0l2BTjJnQ|IpAtkueraJS2)X zT(RHLk;~R@etkrm2zb|_-;@{_uej(K?YAqaE7Rh*xkVW(B1c|3+6 zfOc(VM{P4f4-b7ieOn#@7eg0Cy{lU;7y(X?@%eQwV%o08KxuQDu_;KA^dudL0w!T_ z02euv5Y=Jqz5Vu^PsX}+ha{a)6H3gQe0pXqIu=oO#@l(n1I87y-=L3U@+LVM8Cbm7 z7>y;_Rf{g7x`s%9Tl$4@k1sxl-S&(B)=>mGctJcYMqNSUR_2uDBFW^|ql~7@+ljp% zU65+FcLN2e?9t7p@~iW)!|7lT^{Qove&bPs!F&hZ-jM0KV!q@@H~rvX(Oym(oS%Wg zY)vGFSoh&|iBW@8rt&wVS=`d_c;8@BGGQ1uM8X`f2o<@3Nj6SioF`L#aXn$4KoHD- zNm4{X?a$V1a8Wb?goxAKo>A9yKDmeS>8*c|wRrTC%i)Yza^IHZq#HMUg9m5OK(2y%T%X5O7JIWhTeHw%rMrlcQXFShg=h~;p@+No>U#hayN?k4 z@Aa&X=yHp%+kro9=RmlIBOykIM{)ExxC%%`mEvlNgkDD@Y)Bz2nCNvikC<@KfvB9*(xi)g3>sOXe+Iwy|k414bm? zUY=T4e_)B8A-8V0Kh#tcQs^UuAgNL1Tn!Bv?Rr;J{c<>Ia(3okiz0+l+j=4S96!N) zvCd|!9%&vdf11*M_@!rw^jM)Qvbs)1R+(cMVo`3rmCvkGq~&^ zV=fKYvf4*0Esfp=Oa8-V=X?jCZngtoQ_-##2)kU)CzAKFHz4#_R19DET9E0Z>uzi8 z4=>%Ge-|X{iniyDT2M|s9bLLUpN$y6M4xlG>^&6(>%j%G|9t#_OJ7$^L;hhre#$i& z|97|KTb(oaJ2u!Ad9{%%3wCAL_rIgJzyYM9s;fb|&9(tFluicbvFGYLdoV}z=AB2p z(((<{`xm5R7&CKahiQLvEaG>Ez0q}Jssc)QyWam|1m3-201IWKxb{;^RZ!K{AGE-v zxR~SX@8kW)p4Dw&9^T{QzWg8mmco|7`*E-)iHm>O-Aa|gM1=2DIr*w^9y@M!P=(uh z`|JY0j)sDkoPdC~wzhzpnuL3I%)ePDt@nT(1o1eXiaOj}zG2<^d0*!N@GN<&rHNxS zDaVGneF1q{Ma6$}3k3QtI{`zx6?j}r?h2?ZXv~b%B#9$S2tY^1RRsj#<=^i$_$<`hI40B# zfT|b=7QTVuP(w2U~s ziaJHvL1A%mx$U|5&E08kFVGUv8#FyWuaXpv?e=vrj~3JX1X36{a90BIVP>sv)0@yJ z+3oKHh*n1x!Ya|$kjj=@Ima?xhp}oNAC_7h#>tU&L5R3HC57d%6^M+#9Vm+f?Nz;_c}fBXmEZ zqUo8q-hhTKelVmFPb+e4W=>7hYmt**Si)m6Ts=>(a&yAyflL;eg7#qYeupY_fB#}y z++z?AWh84{yglr%y=j|kSi(GNeG^dQ@6e#sg9Vg|iU})ewSBrY{m%Xofehr7UOaJd z+a$+s=YXx4mBx&M|3Ru=xI%66mp|6JR{)8!u+cShKO3H7z`>eB>KdrcI3ez&B$GQN zN>G2eS(I#!xEe@7o12$X3A)M1sR?T-xZi;^pY|Lom2gT_R(OLDwVOH`Xwwp3?5Tn9 zTrQI%KhI<)Sxee4&eL5wI*?37R(vcRAsl4;N)FJ70r%&{MpN6FMq8!rRcApd_BR!5 z*Dl(+y?>Zh`ZHHKh*Z7l921=m6ldpf^i68_U)tR4C|>lo8m&tzt98QkN)|3OG2rYY+lbMT3_ZArG)W1n{ zoAhwDDLDqCpujZ^gE-Lgc@ZBSr4p48^ZQ&~;iw}7>4r%24bc8|N8V zxY1Nq-|m+YVF(&0Uzu}|2}6m=<;5r|F7G8mms8fzPZ^XU-LZu>P+Tf*9eL;-m*(%* z8Fr&MQe@spkvbnJPUGohEOF$_7NFK?*O2^;>O}wy(ZN#4NOsEPYpHJ;66E#ee zF3al`lakPT2t3J1e^01h^OluJbZSWTkBgCCnJdmI8VYmENUBTQ9*n3|7-l))^&}-V1luDc+i}*X=JbE;96$I7O8V%9 zLbg}GysaDp$>_?rq?jVRqv;-hC9{HzcY8cqBy`{07)TBG<{zFK<#3oi@-Fqlr5`0V z{|vVqyC4IU>@~(FjTHZRf$ zyT1`(VR523VAGfDPo?xHR346LujEW}ToCX+XN+U_4E8?PtoiM#MynjbW=n+L34-tU ztJQicSkZIwm#an5S4^Zvdzh_j4Etg^x%JAf1lSB=mfxgj34gu|z`;(Zm_hRZoAQ82{AZ&ZRu&`Vu6YmT@`&*1Pd{rm0;viin zlboEgri*LP#4>KeEUb40rEXJHX~I#k_*jWmhsuoLpC8A6jme!V<@yuI*Lv*cj0Y+d z%(uzx9z%~~1Tpiz{jh0h4J%JL!Vw)YjjH2Gn3u#VAj(%#Of>psCJnVO@$DELG&2B= zqVGPjK`F^->Tl5#0hy@-Tnx!OoEA8&Ln>*%&ymyHcceHMg$21 zcO2xhYUk=Um{H<=O$lALn`|OkL(5FgljUfTKs6H;P1T;whn^`(lyFg@S8HW1DT23d zorMB?nxIwbh^SadRH&Hf)0r7UAuv*WT*-b&ghoUJA?xu+i{wd_oZNHlix%AQ=QIm5 z-y?NpEPsEKB6O=YK@kldvMY6;^J^@};a&O4oXRS@!Ixx(YEF9w#6XgNR7?5Ji$f)p z4zxSg5I#AaJI_;+#RE_qGq5?|$6#c)zB(Cr0_XS#Q;HNz{r+&b7kNz6SH%e~wvoe4I z0HPI@(P@v~vVgB&BNyaj+l_ZKoU&S;SfcTI44cpgI2rs-JRTF}WwY#;X-a+h3%^YF zIHQzO_TuHYn5^F0?Nk{ICagF?ptM}1y);%%N#Ip8|D@-;c@8@!DIjIHup@5{ncz73 zZVa=YRxxpXjh;ZB<%+KyOa{g`f_$r1GPo`C<42wUA=qcc1jz6C#z6ng;OD@|tvN)H zC>irm2RD;hu`0odJMvEUsIe;dIjQxhULph(E1t3N*Vxfo5neS&Q=4$=EHJm zhvB|YG-|<3QCfYAp+xr(Rv%t*jn60DmcwbM>8-`Ce|bv?Nl9sL4lzD#jPkEOpLTtH z7yPcTZ{W*UWT^ZT#Aq7mi@^sa#4zE(3ohD2N((AaIvj=;L3K}4^{-^u6bZE2;U96> z^r%~d{<9RM{=?3xipU!A3$LQlfMb?d=-(wkL(Cu0+qC_V(qGi1g{~Yu-BC`In|0Fm z&eZblRq%OaE9&U_TTuzgBWl%q#?yk0S%8rkpY#O^{xaF#9tKRiBA|R{ZMU=g6DE+2 zzM`};@x6>`YKJ)bx{u{APvShm9(tCBM1HK?z%_*veL}o1k9r@CwF0arE3kok;3(^w zvL99_qY!3pV@Mr1mv;L+Qmp6p1ws@zgw`l2lgEqwdbA zsfn$!!cRk-aGAcNi{1zl8plD)mLJ?>15I7a&TA(XDA|48{Xz(V0!|AO6dZ$> zb*>5JPEu>uiqh$vfmmHaw|SX?UG^Om@=aW3vFFBD-!X!kE+*mWE)Vrm{P`59Z9C8X zkg#G4$6lP_Eq6qPg72sVHdG%yn)9zS)R8-TJD2DTdzmPTW|@LT?iVfeta1vsHR)SVF*4J(CisRd?a|N;;KS>QG|oo8;20nQ zH*X8VLiJkB^`l*uNMi2oHVV6CF$WlU4TckW)0m;~)gA2x_%PwZPlNO~``JM+1$}+y zTd(4e*={s(k4vTBcKb?4NZ9|mwVkqG30vq3RSs2}X2jE0xXSQiI+60#rAiHKzZO3F z=T(c;IeSl<8G=@f;GR*LwEXN`RC3>L=TX(|wt~Z28;AG=qSP560ClaI^kIEpW=nbD zarL%;HvDe4@#xwNjE@~$hhMJ|mDSWIiU3;|$XL&?@VHWK+6`Pn9ZF{wKEOSDnfo)wxO;~QICRHnLMSpMy77cH z!7m_zX#*?!Kg2~QJ1#%#Q&sX!ihr+0>~B@z^M0HReZ{W5K7oNt{m>v9xG|BIuV3`C z=TTjt^AA@?#RB_pvHueR0Olhm-#fKn?0SM$TA=>)p%SuI?8G!Qy68}K{21cv^oCq! zK38%lQuJ+2)k1aJ;Ky<>3szqP*2yrxZ7&zpR2Q;t;-+Z!={kOiU&DOaqbx5ucgh+! zBX$M_Ly~Q>POt?#KDIOYvVSm3nHf~BF0|b6K>)Q(jatLyyA#}cO-iH}0huAb@tHdL zx6N$7kby7s5aMO*JR6dz;+#L1pR*91sw^m22@>n)oS5+qc|VaP?TG(|TVMDw+3X!~ zxb5XVdoYlkqNJ$+lMc@*&dZ8{g`0$;;3f-B7uo`^t zTh3vtqQ}z=oT;lFv@g2nin7yCYO*IGjW3&Z1|wXN-g5p~vG^fX4acf9;+oo6c!1PF z8OoTS`n(ZS==BequFIm^&gLokXECqwbKBVwytj<-o%A!v0IAVk66X^F%dfsJO_)de zL_8)_8N#IHQ^04e*8)0IoOG)O+ozgcGc$QsQpx+sL*WckMT2aCsm%h_l}|%N~3G z{4hoTNf_);9&TSDpR1jz&VmTlLEI+2UGRU@v|9i=I!3MhCx}^7W#yg5#GN@#pDa6ocSSo37)<)>%Rv=u}gJ z%ZeGJ;c zF+YYil?isV_Iz7e7a826Ei?6BC;)MLLYPSW6m)2JFtgz8ZQj*(=$qfUaX9gT6$}tp z3m?1*=O$O)c&4=QC+_@ob6|-(P*ouT=V5!kuZ@i%)0qoFdf|NSxTCM%4Hc*s@3k7o zhYIcp#&3S}QK|KO_qfbl<=ObcyIT7oQ)yKt+?TH)yYIRwxWV1&{dyC4d$qK-9-T5G zdJ6`yQtcdA*&khp`8$!$>n?Z2G2oCjU_OVec1HO|iYG7C(n|h%ndNrJhQ}#F(#@?6So)HDHts!$@8^H2LT{UT z+YbuZQ5AXwnR8e4fA;}@rjI;7mV5K`n2x_;9d!TA9+7x3YMO?+>sv7Pd+`mVbI@eR z;qC7DqV3lV3#xide}Z@eh1=h=vV+$jaaOgMPQg@yvRvFV3*!>%+jl1V$;~wG5 zeRQ3#Eip@2?28(3_Q0Z_buoE^ z)bAdim8s%IfbLa&^ml1ugl`O zbL2fc3nBz?t2&vht8(mv%hCjaa z6DW$;C5C!ugR$b9)w0X36ATFZ_^X{AnTsr*ttEdh^r*DEd!C!S3C`s}vU3B<0Ha`ww0TE>pDx0~!Q!#iwvVf$Zo?js&2}J?j$z8G zWo#Dx#e>J1`Q`S8{jJp$FJtB(Itaj=mvcw^I|S-T=|W+!YZ&51lKrn993qhpU_bz^(4{LyB<@zvEU8 zBI-rrSzdPjZUQardX{D?il|~q0pR~|`6AwiwpgouCum5H8oyz;jEww*SJin}!OCWF zn;~~)lmfFIn2=q9U}pMOhd|F&9$C+&(US!ljSXmEM;=EvdL@#C#V(EeRflIFr8iMy zjtcM1qd3O}+(C3)T->Ow{GTE}(A_}PgBK}at!lqB=#y`TS+L?+8R{31@+SLA%N;(^ zE!<%f%x!NOY|rrXJ7FXd9Q0iSd2@rHh@V*TZA*Q@Iw-kv#i>;^jngr5Y+}z&(ik9q zzYi^`e#dtvt`YC|>}-YH96*C{ga#6R(=}r$lYXJh)%!P<336};sHgVq9+8k3m>N^K zvCdM+I6;$469YB@fKU5zuDecnz`MJq1*n^E;gH zsRpg+C+zv-jPk5)!j?U2owS$EV8@&=`w|~W zQ4dTC1AzJy;tpvL>jQ~xOas!Zw^Zsz$B3&q9LV9_-yekwTa%|46;WnNs#tF}SiInA zYnsC2lNBp;2KX&|3D^mF-45bH%;H3WFOQ`P0C5o`b-ug_&oM?96kzf+DD&u)YFqY7 zd5SGrtI=#V7PTG~)z(;rSF{K!0jHg{IOozI3KuRk&i+DpNI0&`%$2}PwdfWmr)cN4 zVoAA0gPQP7QaG$wuD4vY8scedlw^(BfdH86r#g`sB_w%oYE$_?3p}VwGy;_17<8Z2 zD4}YCfvpO(1YWW#gSJoqVQoJEXdVOu$jcan6^%XC*daPg4Q{zBGZtLIzi{5ZvvLtU z`9%cOuT|G5B$sbg6Btesgj*oZ@4LYOvZLTz_6iUP=`nV>qJZq%Jq4hqpY!(N2`>uKCD_sIhZ@CoWh8grr5*lkpbG!9A ztkl(+`}(d+6k#E=XS+KrvSON~?cM8_WcoOH1$%g!nqO|9nrJGPhh^grbZ|u-^n}o_ zrG8RVE~l(U&6>u5?(m$W^{gzP8zO)$B}M~s+JKi`idNb^C!|uju^v-V2{*7)c4s>n zV(uwZM)U1sNPLONsF{Y^1kI70P=Ml7WUr)ez2UuvE~drQSKxqd<#JV}6dt^r1MVRG zGRsnuB++n%e0_!!Wc%LYDxiCjI7|eBS)DcBB%s-ElV<C(1yfJjHf`d-w50p%uyvbMdN9ClyS3qjw-2OjY%uTT>&oqGcXGhmV&~Ln zYo$H18$@x<(=j-ghaOX5Gh{zuOUlRNs^82{WO;UJ+g=AHB0voU8VW!EL8N|KVjE%h z@%u12)OC97A=m_ja3U@Fp{+Vc!}RFmc^1_lqNv!8OjMaPm*Z)Q5m7%dd!5HQX4%EF z-@zbWm_utC8_fZiiOcC`rKf>bRrH>juA>=+Ed6kwDWEuZfePp=Q}a%_FSii6uL=B8 zY>`ZRHizV850-)()rC`BgsFnT&Uz7OVJaMR#l z6MECs^Zup2ii<&KzE0b{J)02L=ijb&%SP<{dsB+0t?VTxf+#z6 z-}f>nH89JiTS1DH)SPy$jehvoVFxepJ~Y{Om;1(t1xWR_+c>8YoR7r%hDc3&(n7GvQ+-8_wnNZhtF)&6;88-?@ezfGw4r5d+)fCURZAvR` zXB;E2t@;=BSGKqCY-RSl9)^*4>u*8Pl2;EesNA?MzKJqB4A!gX&7-3mYwE1HP4F+} z>yN)#7F6lLedglZA;+4g3lZemw%Dc|Oh_=ft3;^D#yT>(H+Ff%wLYTUH$k{K`4 z>!0kNk9X~!dHPN(Z5|Fxvmv^Sy+?zFG2@;$63kw_xBJtkzpISx6E(emt-akxtsg^< zySeCx;dS=jNr@YHFl*S3_`f&5cFq$=6C5&~Dpd|Fp5e_7!l|a%QafO8s1N2bbe6ho zUV7VjIVJ-pZqA&L(Sfs@%a3MOzu{R=zk5xaGIl$z7dQ(}mR)wG7Ejl25*e^Kcm#?m zrX8G$4E7m3TZ&Sd%Mxa^^BEk0f59I_A^n?EO zp~@yP$)P{S7gV!z*XsMcp6=y%!l7!6SBnIM^Gukjy1sCQfRpO-Af*Pn|1C*f9`A@R zy1R+L*3nsK3$=LhWz2aW8gILMi-+>*OtgFow3v@u(2B6B;m7c4z3$dC&Z^-u`=K^A zCN)aO*W@1heUy~tN|96OnCfP5G-Dkh$kdqwu{h`;N6rf+Olcfadwabq=s{o>^~*i< zGtohPr*YYo6?}b9M3ovUp8spES;?br@TNU49k#?Na=}3RBGDJ1jgt%@jXY!GLZ|=! zho>mJIc@gCtwu8{Nc}|-EN69Sn^S8bZ*rZ)pTibsx<%kfu%s$? z_)Lz$-~AU;Oxcd8$xS>Ts?cc>i{pS8m5vVXzVL{#Uay{!`AfLG=S@_=&yUX}te=+E zzRzp79*&W0pA=@BUT7s@Tc_y2em^d4tPL~nx(^#6Jr)glWz;n1hzEiJdMo8}MYhA9o3Pac&+;ZUz z^6X~P_r?qx#tqwwY;Z-rt2t@GW$502a59#N%s9!^}6Dt#<*h)@jmFb4`Y1~d=dJM10bZAlRf93zqxVM|35gbIx zjf6-J{hN2vTFh)dAw6wr=qpix+eIfIH}%l@rxgb9^<#|2wgV%zf`_%A&y0g_*RTN6 z%k-I-Vk?|x7fdo9iQ5V4RY#I-+r`y%fuwf4 zXP-4~g<6?+tVb2gkY9j?!ti)i@qrjkmIqHn*i_92avRRX`Oq$-ba~pMj!Y5g`mD8y zc{x2feKbQP*SaiyU;4?unG9S0c6oa-fs@7qk@S(OwQ&XS5Q3ew<&+g}J+DC`O z8bSu+&qKo03>q!$msRUb>miV|ZTW?)Bi++ua~7jDd;X~5{%1%?4h;=3k*SaFWxgAF zPrR3ZT20z&@9^VT88E@wS`?s+^J zBkH)#UuUXu>+%#GljXFN8@z68@(#S_SQ?_*`=91`=;W>mR&sbj zIA{miF1;54fT$S_5Ysa+>p@JO5>mvVOmcE`5}k$9{<>Au&x3d9#)X4@WNLn&dA}Yz zBfUqZAO;x}!3zFwG^w4E`oly&WAm3Yfz;*^>Q|-hyXFuatO614!JX+RAFud z!kx7O`~1ns9!k!`d0nLuyiP&i^9(jDqtlIK(MoKo)#=-S9xA;y*Cb?wq(A3F$;55w zQpn8o+zcMOo18=MNW9qg=1Q7==itf7iDxEv{A>yx-K{Mc;|ZDv5SFc(RVcbq{O29_l6@lxV_Nu|A%^aFA$RL(esBjZa7DO|e(o&c>}Up+j(|-Ym;ji4nNPs-ymv zSn|8qqy7nlp1ZK*Vzhho^<3?vXhE9(H$%$oyu5^z zoB-)V%lE!yVJysWdemB>+QdZfCYId^X6*uc8Osa2Hw2KSEnQ6$o1Ls6r+1KFJdO07 zcIG|Q6aN*KRcSi=z3xuaG@w_G0G<<@*ub;|!Qj;W(qVaN0}g@%9f0SEWqGrC71rrL zDoPpmCORuo7Z#-4x{t^CE^(<%S&vCL331iQOL{x#J*WtQu(B+$C#3@0bD?RZt0UhI z6Ct}(w>Ex(TXDeu(XR2Dtoq0}J5SyiZX29Z z9n{CV`Gw}0%3jS{U(h%WJ0=8j->vKv`=Q~K!zcmlPsNh7RP%xu*p<6AP5-De+mCaW z&o*KN5>Ki5uO_EBYWM21Jr8>ESJ!`i1e9G;;dox8ypl2*2Hy|Xy53pZdlV^jWhFybq<)6yn`j1Kz=W_qg`=m>)B!MHB2W1!S`OiE{-Qg84-x{L{e^yk24=bDv9FKJP3Waf^XOpyJ*;#(gQ7}QA zS7)~e>4GR^bjOB-_mH4Hr7Mb6C~ReG(RLk2pDJqg)Hy)DlgrQ5J7DYSygvvO_8Sj6Y#!8iF2P;g^$el ze(Gpdjat~$jxTR}aChJ%CX*(=i==MGCab~ zEvfIe8r5i`E68m+Ktt%C9PJ!3b+s$^n1DqO*WOx4g)Rwawn{3ACzaR0Bq+vCy@RycF=ZIi{c%CMEGOBD+I$TIGRtLrHr zOfhd=$Er&k_&EW-*Aqw07bol;bXc??RD}9=zLU4UFH_TiW6wF3GBHx!F!TKxB<=X`; z=40>Y6^Pvjwjo=_#3~ONe}*{5)%iE3XIWqLB*oZ^d0in?1>TCnyeJu1C(FqQa^X~u z+w3xNn~O(3T?3pOsfalqk5)Jk>XOF(7!q#l#xMWl)H0{xa zgCjCwo$kJ%e{nJ*wj0OGudQimMPx&*>A&w2wL*FLXzmM*;`G!}tX<#^Xu6^Oc#rBH zxHpbSwdJwvOYTQ%qE6GG3-c%j`+g5xGH}_?HWkl`CZCp0>es^jm7*%KkoCA?=qK$Eg(&SGpy4SDW9vxIDzWb{xPMSY)G9Oz@> zQnba=QZSL=W*X`0R>iDRrz!W+RAM&=N5p9+G6c$MBrmDH+GFm9Fg@83O-Una#T27{ z-S<;894TCSi2p2u*Ua9+w_pXfrCOBED$?A{{M_5kkG$Dd#BQx&+?t+Ay+EUHPRsZN zZw&;Ca~C{R)#nTJ_^1PoqdNI#(ylGvjkBV%$KBAnq(xsY&w0A^CNV!z-M732JX}~x zKNeR-TW@830x61`@gFRUCY=zA3wl#*rOl}RviAC;AJT9}O7vdy(1O0|jdT^;2=#3W zA(@;5B%|kVM=TciEMUV2{d7K5BIDJv74hm#G3-aSIk`HaqSSXyw2+oqgQCYV2I$cp zFZ<)}+Hu(WiXe#a{DE^m9xPQf?F3Dqp3N1EWECL}6K@;VmIs^@?v=gLNmCV@z^{mg ze{Z6&>GxTy_r03GL7hK!XMOj@F$zlDJQ4CK`?yHw=;Re)s z*{1@Za$2&5BQ7O$KO3K3vJAt8esM+a2w;*JTg+|6kn_sSn-g+=3NC|s4cM`s_*c6F z8Q$#`Gh;)Gn?R`m`|fxdyUMctQtO%Fq!>dO`LtsHeYywpj#8~$C8Ryxv%JNGHIFY7 zVBP5Ka@WuZp`<*2K+fWWM}kd0_=cGut8t2%QpM0N5<ey40rDz38eIB<@ z(-2&*y1}ibud2S5|JnV7c!rrRtHz6s50+)mX22s#3KWixb8#}wJOJJJ&I8Tv@3Gt) zQas7F_Cs|6^D&V14B>>&+PbOcjJjpF^u0>V&Cmp=Q8HxK<$79{oy*nts70~HDn{!g zw1KAv=hj7IPGR2TXHN%_qPT&oSnn@;ry;>LN`6b9#=gMe@Qw9biQ0t9`|oQZ$T8M> zL_{RZTv_tWH`QNpJ71%)T))u;yz8&nzz_TFx@UeXjej1TFJF^x+|e30LqnEQkBc6- zg$O(w@f2=Us@i#Ha|$$IvY$B$GHA0OqT$T5n)`=`A>K}WU8iG{2G1N3sJ_=<3|#QDI= zsy;0EpfELuP?0^Cc0MaSP#H+Kd>$c>nmirMpWACTTBrENg(nsPvDukJz|LGwJ7>#A-AvnosLqosowRbN9_CK^Qug=Nqp}i8V9j(uUFl_l;&CP}F))n*a(khK7 zr9nnPg{EU|b7GEifk1-~78HWs+rz>DMKPenpgFLiu3W4EzHbey$CW6Z-ZMycep6Q? zf_DY9YD&e2EvW-9Y|f1Q+d479K~M-((5)iiapvI8@xHE22UMTLy%Qr0o(`#*XfDqB zUeEVS-Rp`o?L;C^$qgzyc_2nRIU#j{m+*M1NU>h*5^oIBcoM5nEA9Wl*m3!in}f{$ z3}ZW6x8tKp1|TfVZrP5rALHN`06np*pv6SsDaYy?P=iC9?J-_Lt!cM6m&du26Mp5=d=a>}o%5)So| z^_7}%@Ljv$prBh6GW|rvdOc6JVJY}9CCkvA%XxjE-i@xC6+*~VF#d<+AgE`6T5q$L} z%|s%xs%on!`e=3rBRkdJi8Q78?l$L*YYt@oDE}xp?(i4>nllb{@oyFY@TZ-B(0?20 zht>a!V}G~)iT96c-W*!7d8Z6beQH{b^f=P;QARhSkX}(J9iIpkrvhlGsY4-Z7a(d- xdv#467)(b)4Wg#0qo($qJfi(S0>Pok0N>dEFK{mfo$+IQW=7Um>n?l#`X7dOShfHF literal 0 HcmV?d00001 diff --git a/index.html b/index.html index 176a90e..2167323 100644 --- a/index.html +++ b/index.html @@ -185,6 +185,12 @@ 9  Modelos jerárquicos + +

diff --git a/search.json b/search.json index e660a01..b0b5f2c 100644 --- a/search.json +++ b/search.json @@ -24,7 +24,7 @@ "href": "01-introduccion.html#diagramas-causales", "title": "1  Introducción", "section": "", - "text": "Causas y mecanismos\n\n\n\nLas razones de cómo hacemos análisis estadístico (que procedimiento o algoritmo seleccionamos, por ejemplo) en un problema dado no están en los datos observados, las causas de los datos.\n\n\n\n\n\nEjemplo (cálculos renales)\nEste es un estudio real acerca de tratamientos para cálculos renales (Julious y Mullee (1994)). Pacientes se asignaron de una forma no controlada a dos tipos de tratamientos para reducir cálculos renales. Para cada paciente, conocemos el tipo de ćalculos que tenía (grandes o chicos) y si el tratamiento tuvo éxito o no.\nLa tabla original tiene 700 renglones (cada renglón es un paciente)\n\ncalculos <- read_csv(\"../datos/kidney_stone_data.csv\")\nnames(calculos) <- c(\"tratamiento\", \"tamaño\", \"éxito\")\ncalculos <- calculos |> \n mutate(tamaño = ifelse(tamaño == \"large\", \"grandes\", \"chicos\")) |> \n mutate(resultado = ifelse(éxito == 1, \"mejora\", \"sin_mejora\")) |> \n select(tratamiento, tamaño, resultado)\nnrow(calculos)\n\n[1] 700\n\n\ny se ve como sigue (muestreamos algunos renglones):\n\ncalculos |> \n sample_n(10) |> kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nresultado\n\n\n\n\nA\nchicos\nsin_mejora\n\n\nB\ngrandes\nmejora\n\n\nB\nchicos\nmejora\n\n\nA\ngrandes\nmejora\n\n\nB\ngrandes\nsin_mejora\n\n\nB\nchicos\nmejora\n\n\nA\nchicos\nmejora\n\n\nA\ngrandes\nsin_mejora\n\n\nA\nchicos\nmejora\n\n\nA\ngrandes\nmejora\n\n\n\n\n\n\n\n\nAunque estos datos contienen información de 700 pacientes, los datos pueden resumirse sin pérdida de información contando como sigue:\n\ncalculos_agregada <- calculos |> \n group_by(tratamiento, tamaño, resultado) |> \n count()\ncalculos_agregada |> kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nresultado\nn\n\n\n\n\nA\nchicos\nmejora\n81\n\n\nA\nchicos\nsin_mejora\n6\n\n\nA\ngrandes\nmejora\n192\n\n\nA\ngrandes\nsin_mejora\n71\n\n\nB\nchicos\nmejora\n234\n\n\nB\nchicos\nsin_mejora\n36\n\n\nB\ngrandes\nmejora\n55\n\n\nB\ngrandes\nsin_mejora\n25\n\n\n\n\n\n\n\n\nComo en este caso nos interesa principalmente la tasa de éxito de cada tratamiento, podemos mejorar mostrando como sigue:\n\ncalculos_agregada |> pivot_wider(names_from = resultado, values_from = n) |> \n mutate(total = mejora + sin_mejora) |> \n mutate(prop_mejora = round(mejora / total, 2)) |> \n select(tratamiento, tamaño, total, prop_mejora) |> \n arrange(tamaño) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\ntotal\nprop_mejora\n\n\n\n\nA\nchicos\n87\n0.93\n\n\nB\nchicos\n270\n0.87\n\n\nA\ngrandes\n263\n0.73\n\n\nB\ngrandes\n80\n0.69\n\n\n\n\n\n\n\n\nEsta tabla descriptiva es una reescritura de los datos, y no hemos resumido nada todavía. Pero es apropiada para empezar a contestar la pregunta:\n\n¿Qué indican estos datos acerca de qué tratamiento es mejor? ¿Acerca del tamaño de cálculos grandes o chicos?\n\nSupongamos que otro analista decide comparar los pacientes que recibieron cada tratamiento, ignorando la variable de tamaño:\n\ncalculos |> group_by(tratamiento) |> \n summarise(prop_mejora = mean(resultado == \"mejora\") |> round(2)) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\nprop_mejora\n\n\n\n\nA\n0.78\n\n\nB\n0.83\n\n\n\n\n\n\n\n\ny parece ser que el tratamiento \\(B\\) es mejor que el \\(A\\). Esta es una paradoja (un ejemplo de la paradoja de Simpson) . Si un médico no sabe que tipo de cálculos tiene el paciente, ¿entonces debería recetar \\(B\\)? ¿Si sabe debería recetar \\(A\\)? Esta discusión parece no tener mucho sentido.\nPodemos investigar por qué está pasando esto considerando la siguiente tabla, que solo examina cómo se asignó el tratamiento dependiendo del tipo de cálculos de cada paciente:\n\ncalculos |> group_by(tratamiento, tamaño) |> count() |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nn\n\n\n\n\nA\nchicos\n87\n\n\nA\ngrandes\n263\n\n\nB\nchicos\n270\n\n\nB\ngrandes\n80\n\n\n\n\n\n\n\n\nNuestra hipótesis aquí es que la decisión de qué tratamiento usar depende del tamaño de los cálculos. En este caso, hay una decisión pues A es una cirugía y B es un procedimiento menos invasivo, y se prefiere utilizar el tratamiento \\(A\\) para cálculos grandes, y \\(B\\) para cálculos chicos. Esto quiere decir que en la tabla total el tratamiento \\(A\\) está en desventaja porque se usa en casos más difíciles, pero el tratamiento \\(A\\) parece ser en general mejor. La razón es probablemente un proceso de optimización de recursos y riesgo que hacen los doctores.\n\nEn este caso, una mejor respuesta a la pregunta de qué tratamiento es mejor es la que presenta los datos desagregados.\nLa tabla desagregada de asignación del tratamiento nos informa acerca de cómo se está distribuyendo el tratamiento en los pacientes.\n\n\n\n\n\n\n\nNota\n\n\n\nLos resúmenes descriptivos acompañados de hipótesis causales acerca del proceso generador de datos, nos guía hacia descripciones interpretables de los datos.\n\n\nLas explicaciones no son tan simples y, otra vez, interviene el comportamiento de doctores, tratamientos, y distintos tipos de padecimientos.\nPodemos codificar la información causal con un diagrama:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n T \n M \n C\n edge [minlen = 3]\n T -> M\n C -> T\n C -> M\n{ rank = same; M; T }\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEs decir, el tamaño de los cálculos es una causa común de tratamiento (T) y resultado (M). Veremos más adelante que la decisión de condicionar a el tipo de cálculos proviene de un análisis relativamente simple de este diagrama causal, independientemente de los métodos que usemos para estimar las proporciones de interés (en este ejemplo, examinar las tablas cruzadas es equivalente a hacer estimaciones de máxima verosimlitud).\n\n\nEjemplo (cálculos renales 2)\nContrastemos el ejemplo anterior usando exactamente la misma tabla de datos, pero con el supuesto de un proceso generador diferente. En este caso, los tratamientos son para mejorar alguna enfermedad del corazón. Sabemos que parte del efecto de este tratamiento ocurre gracias a una baja en presión arterial de los pacientes, así que después de administrar el tratamiento, se toma la presión arterial de los pacientes. Ahora tenemos la tabla agregada y desagregada como sigue:\n\ncorazon <- calculos |> \n select(tratamiento, presión = tamaño, resultado) |> \n mutate(presión = ifelse(presión == \"grandes\", \"alta\", \"baja\"))\ncorazon_agregada <- corazon |> \n group_by(tratamiento, presión, resultado) |> \n count()\ncorazon_agregada |> pivot_wider(names_from = resultado, values_from = n) |> \n mutate(total = mejora + sin_mejora) |> \n mutate(prop_mejora = round(mejora / total, 2)) |> \n select(tratamiento, presión, total, prop_mejora) |> \n arrange(presión) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\npresión\ntotal\nprop_mejora\n\n\n\n\nA\nalta\n263\n0.73\n\n\nB\nalta\n80\n0.69\n\n\nA\nbaja\n87\n0.93\n\n\nB\nbaja\n270\n0.87\n\n\n\n\n\n\n\n\n\ncorazon |> group_by(tratamiento) |> \n summarise(prop_mejora = mean(resultado == \"mejora\") |> round(2)) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\nprop_mejora\n\n\n\n\nA\n0.78\n\n\nB\n0.83\n\n\n\n\n\n\n\n\n¿Cuál creemos que es el mejor tratamiento en este caso? ¿Deberíamos usar la tabla agregada o la desagregada por presión?\n\nEn este caso, la tabla agregada es más apropiada (B es mejor tratamiento).\nLa razón es que presión en este caso es una consecuencia de tomar el tratamiento, y como las tablas muestran, B es más exitoso en bajar la presión de los pacientes.\nSi sólo comparamos dentro de los grupos de presión baja o de presión alta, ignoramos lo más importante del tratamiento en la probabilidad de mejorar.\n\nNuestros supuestos causales podemos mostrarlos con el siguiente diagrama:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n P\n T \n M \n edge [minlen = 3]\n T -> P\n P -> M\n T -> M\n{ rank = same; M; T}\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nNótese que el análisis más apropiado no está en los datos: en ambos casos la tabla de datos es exactamente la misma. Los supuestos acerca del proceso que genera los datos sin embargo nos lleva a respuestas opuestas.", + "text": "Causas y mecanismos\n\n\n\nLas razones de cómo hacemos análisis estadístico (que procedimiento o algoritmo seleccionamos, por ejemplo) en un problema dado no están en los datos observados, las causas de los datos.\n\n\n\n\n\nEjemplo (cálculos renales)\nEste es un estudio real acerca de tratamientos para cálculos renales (Julious y Mullee (1994)). Pacientes se asignaron de una forma no controlada a dos tipos de tratamientos para reducir cálculos renales. Para cada paciente, conocemos el tipo de ćalculos que tenía (grandes o chicos) y si el tratamiento tuvo éxito o no.\nLa tabla original tiene 700 renglones (cada renglón es un paciente)\n\ncalculos <- read_csv(\"../datos/kidney_stone_data.csv\")\nnames(calculos) <- c(\"tratamiento\", \"tamaño\", \"éxito\")\ncalculos <- calculos |> \n mutate(tamaño = ifelse(tamaño == \"large\", \"grandes\", \"chicos\")) |> \n mutate(resultado = ifelse(éxito == 1, \"mejora\", \"sin_mejora\")) |> \n select(tratamiento, tamaño, resultado)\nnrow(calculos)\n\n[1] 700\n\n\ny se ve como sigue (muestreamos algunos renglones):\n\ncalculos |> \n sample_n(10) |> kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nresultado\n\n\n\n\nB\nchicos\nmejora\n\n\nB\ngrandes\nsin_mejora\n\n\nB\nchicos\nmejora\n\n\nA\ngrandes\nmejora\n\n\nA\nchicos\nmejora\n\n\nB\nchicos\nsin_mejora\n\n\nB\ngrandes\nmejora\n\n\nB\nchicos\nmejora\n\n\nB\nchicos\nmejora\n\n\nB\nchicos\nsin_mejora\n\n\n\n\n\n\n\n\nAunque estos datos contienen información de 700 pacientes, los datos pueden resumirse sin pérdida de información contando como sigue:\n\ncalculos_agregada <- calculos |> \n group_by(tratamiento, tamaño, resultado) |> \n count()\ncalculos_agregada |> kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nresultado\nn\n\n\n\n\nA\nchicos\nmejora\n81\n\n\nA\nchicos\nsin_mejora\n6\n\n\nA\ngrandes\nmejora\n192\n\n\nA\ngrandes\nsin_mejora\n71\n\n\nB\nchicos\nmejora\n234\n\n\nB\nchicos\nsin_mejora\n36\n\n\nB\ngrandes\nmejora\n55\n\n\nB\ngrandes\nsin_mejora\n25\n\n\n\n\n\n\n\n\nComo en este caso nos interesa principalmente la tasa de éxito de cada tratamiento, podemos mejorar mostrando como sigue:\n\ncalculos_agregada |> pivot_wider(names_from = resultado, values_from = n) |> \n mutate(total = mejora + sin_mejora) |> \n mutate(prop_mejora = round(mejora / total, 2)) |> \n select(tratamiento, tamaño, total, prop_mejora) |> \n arrange(tamaño) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\ntotal\nprop_mejora\n\n\n\n\nA\nchicos\n87\n0.93\n\n\nB\nchicos\n270\n0.87\n\n\nA\ngrandes\n263\n0.73\n\n\nB\ngrandes\n80\n0.69\n\n\n\n\n\n\n\n\nEsta tabla descriptiva es una reescritura de los datos, y no hemos resumido nada todavía. Pero es apropiada para empezar a contestar la pregunta:\n\n¿Qué indican estos datos acerca de qué tratamiento es mejor? ¿Acerca del tamaño de cálculos grandes o chicos?\n\nSupongamos que otro analista decide comparar los pacientes que recibieron cada tratamiento, ignorando la variable de tamaño:\n\ncalculos |> group_by(tratamiento) |> \n summarise(prop_mejora = mean(resultado == \"mejora\") |> round(2)) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\nprop_mejora\n\n\n\n\nA\n0.78\n\n\nB\n0.83\n\n\n\n\n\n\n\n\ny parece ser que el tratamiento \\(B\\) es mejor que el \\(A\\). Esta es una paradoja (un ejemplo de la paradoja de Simpson) . Si un médico no sabe que tipo de cálculos tiene el paciente, ¿entonces debería recetar \\(B\\)? ¿Si sabe debería recetar \\(A\\)? Esta discusión parece no tener mucho sentido.\nPodemos investigar por qué está pasando esto considerando la siguiente tabla, que solo examina cómo se asignó el tratamiento dependiendo del tipo de cálculos de cada paciente:\n\ncalculos |> group_by(tratamiento, tamaño) |> count() |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\ntamaño\nn\n\n\n\n\nA\nchicos\n87\n\n\nA\ngrandes\n263\n\n\nB\nchicos\n270\n\n\nB\ngrandes\n80\n\n\n\n\n\n\n\n\nNuestra hipótesis aquí es que la decisión de qué tratamiento usar depende del tamaño de los cálculos. En este caso, hay una decisión pues A es una cirugía y B es un procedimiento menos invasivo, y se prefiere utilizar el tratamiento \\(A\\) para cálculos grandes, y \\(B\\) para cálculos chicos. Esto quiere decir que en la tabla total el tratamiento \\(A\\) está en desventaja porque se usa en casos más difíciles, pero el tratamiento \\(A\\) parece ser en general mejor. La razón es probablemente un proceso de optimización de recursos y riesgo que hacen los doctores.\n\nEn este caso, una mejor respuesta a la pregunta de qué tratamiento es mejor es la que presenta los datos desagregados.\nLa tabla desagregada de asignación del tratamiento nos informa acerca de cómo se está distribuyendo el tratamiento en los pacientes.\n\n\n\n\n\n\n\nNota\n\n\n\nLos resúmenes descriptivos acompañados de hipótesis causales acerca del proceso generador de datos, nos guía hacia descripciones interpretables de los datos.\n\n\nLas explicaciones no son tan simples y, otra vez, interviene el comportamiento de doctores, tratamientos, y distintos tipos de padecimientos.\nPodemos codificar la información causal con un diagrama:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n T \n M \n C\n edge [minlen = 3]\n T -> M\n C -> T\n C -> M\n{ rank = same; M; T }\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEs decir, el tamaño de los cálculos es una causa común de tratamiento (T) y resultado (M). Veremos más adelante que la decisión de condicionar a el tipo de cálculos proviene de un análisis relativamente simple de este diagrama causal, independientemente de los métodos que usemos para estimar las proporciones de interés (en este ejemplo, examinar las tablas cruzadas es equivalente a hacer estimaciones de máxima verosimlitud).\n\n\nEjemplo (cálculos renales 2)\nContrastemos el ejemplo anterior usando exactamente la misma tabla de datos, pero con el supuesto de un proceso generador diferente. En este caso, los tratamientos son para mejorar alguna enfermedad del corazón. Sabemos que parte del efecto de este tratamiento ocurre gracias a una baja en presión arterial de los pacientes, así que después de administrar el tratamiento, se toma la presión arterial de los pacientes. Ahora tenemos la tabla agregada y desagregada como sigue:\n\ncorazon <- calculos |> \n select(tratamiento, presión = tamaño, resultado) |> \n mutate(presión = ifelse(presión == \"grandes\", \"alta\", \"baja\"))\ncorazon_agregada <- corazon |> \n group_by(tratamiento, presión, resultado) |> \n count()\ncorazon_agregada |> pivot_wider(names_from = resultado, values_from = n) |> \n mutate(total = mejora + sin_mejora) |> \n mutate(prop_mejora = round(mejora / total, 2)) |> \n select(tratamiento, presión, total, prop_mejora) |> \n arrange(presión) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\npresión\ntotal\nprop_mejora\n\n\n\n\nA\nalta\n263\n0.73\n\n\nB\nalta\n80\n0.69\n\n\nA\nbaja\n87\n0.93\n\n\nB\nbaja\n270\n0.87\n\n\n\n\n\n\n\n\n\ncorazon |> group_by(tratamiento) |> \n summarise(prop_mejora = mean(resultado == \"mejora\") |> round(2)) |> \n kable() |> \n kable_paper(full_width = FALSE)\n\n\n\n\n\ntratamiento\nprop_mejora\n\n\n\n\nA\n0.78\n\n\nB\n0.83\n\n\n\n\n\n\n\n\n¿Cuál creemos que es el mejor tratamiento en este caso? ¿Deberíamos usar la tabla agregada o la desagregada por presión?\n\nEn este caso, la tabla agregada es más apropiada (B es mejor tratamiento).\nLa razón es que presión en este caso es una consecuencia de tomar el tratamiento, y como las tablas muestran, B es más exitoso en bajar la presión de los pacientes.\nSi sólo comparamos dentro de los grupos de presión baja o de presión alta, ignoramos lo más importante del tratamiento en la probabilidad de mejorar.\n\nNuestros supuestos causales podemos mostrarlos con el siguiente diagrama:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n P\n T \n M \n edge [minlen = 3]\n T -> P\n P -> M\n T -> M\n{ rank = same; M; T}\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nNótese que el análisis más apropiado no está en los datos: en ambos casos la tabla de datos es exactamente la misma. Los supuestos acerca del proceso que genera los datos sin embargo nos lleva a respuestas opuestas.", "crumbs": [ "1  Introducción" ] @@ -274,7 +274,7 @@ "href": "03-modelos-genericos.html#modelos-genéricos-para-ajustar-curvas", "title": "4  Componentes de modelación 1", "section": "4.9 Modelos genéricos para ajustar curvas", - "text": "4.9 Modelos genéricos para ajustar curvas\nOtra posibilidad es utilizar un modelo más flexible creando variables derivadas de la distancia. En este caso, quizá podemos ajustar una curva que sea aceptable desde el punto de vista predictivo, pero no podremos aprender mucho acerca de cómo funciona la probabilidad de éxitos de los tiros de putts\n\n\n\n\n\n\nSplines y ajuste de curvas\n\n\n\nLos splines nos dan una manera estándar de ajustar curvas más flexibles, de tipo polinomial por tramos. Usualmente son numéricamente más conveniente que polinomios.\n\n\nAunque hay muchos tipos de splines (los más comunes son B-splines), para este problema consideraremos una base de splines cuadráticos que resultan en curvas monótonas (I-splines). Puedes ver más detalles de splines en McElreath (2020)\nEn este caso, haremos expansión de entradas de las siguiente manera. Supongamos que tenemos la variable de distancia \\(d\\) que va de 0 a 750 cm, por ejemplo. Construimos entradas derivadas de la siguiente manera:\n\nlibrary(splines2)\nnudos <- c(25, 50, 100, 200, 400)\ndistancias <- seq(0, 750, 1)\nsplines_tbl <- iSpline(distancias, knots = nudos, \n Boundary.knots = c(0, 750), degree = 2, intercept = FALSE) |> \n as_tibble() |> \n mutate(d = distancias) |> \n pivot_longer(-d, names_to = \"spline\", values_to = \"valor\")\nggplot(splines_tbl) +\n geom_line(aes(x = d, y = valor, color = spline)) +\n geom_vline(xintercept = nudos, color = \"red\", linetype = 2) \n\n\n\n\n\n\n\n\nEsta gráfica muestra cómo para cada distancia \\(x\\) generamos valores \\(x_1,\\ldots, x_p\\) que son variables derivadas de \\(x\\). Podemos entonces obtener más flexibilidad hacer regresión en estas nuevas \\(p\\) variables en lugar de usar solamente \\(x\\). Por la elección de la base, obsérvese que siempre que \\(\\beta_1, \\ldots, \\beta_p\\) sean no negativos, entonces la función \\[\\alpha + \\beta_1 x_1 + \\cdots + \\beta_p x_p\\] será monótona no decreciente, que es lo que necesitamos para este problema.\nNuestra función generadora para este modelo puede ser:\n\nsimular_putts <- function(distancias, nudos) {\n # Simular intercepto\n alpha <- rnorm(1, 4, 2)\n # Simular coeficientes de splines\n beta <- - abs(rnorm(7, 0, 1.5))\n # Calcular splines para distancias dadas\n mat_splines <- splines2::iSpline(distancias, \n Boundary.knots = c(0, 750), knots = nudos, degree = 2, intercept = FALSE) \n # Calcular probabilidad de éxito con regresión logística\n p <- 1 / (1 + exp(- alpha - mat_splines %*% beta))\n tibble(y = rbinom(length(distancias), 1, p), p = p, d = distancias) |> \n select(d, p, y) |> \n mutate(alpha = alpha, beta = list(beta))\n}\n\n\nset.seed(8123)\ndistancias <- seq(1, 600, 5) |> rep(each = 5)\nsimular_putts(distancias, nudos) |> \n ggplot(aes(x = d, y = y)) +\n geom_jitter(height = 0.1) +\n labs(x = \"Distancia (cm)\", y = \"Éxito\") +\n geom_smooth(span = 1, se = FALSE)\n\n`geom_smooth()` using method = 'loess' and formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nY podemos hacer simulaciones a priori para entender nuestros supuestos:\n\nmap_df(1:100, \\(x) simular_putts(distancias, nudos) |> mutate(id = x)) |> \n ggplot(aes(x = d, y = p, group = id)) +\n geom_line(alpha = 0.2) +\n labs(x = \"Distancia (cm)\", y = \"Probabilidad de Éxito\")\n\n\n\n\n\n\n\n\nAhora construimos nuestro nuevo modelo en Stan, donde \\(x\\) será la matriz de splines (entradas derivadas como se explicó arriba):\n\n#! message: false\nlibrary(cmdstanr)\nmod_logistica_splines <- cmdstan_model(\"./src/golf-logistico-splines.stan\")\nprint(mod_logistica_splines)\n\ndata {\n int<lower=0> N;\n int<lower=0> p;\n array[N] int n;\n vector[N] d;\n matrix[N, p] x;\n array[N] int y;\n}\nparameters {\n real alpha;\n array[p] real<upper=0> beta;\n}\nmodel {\n for(i in 1:N){\n y[i] ~ binomial_logit(n[i], alpha + dot_product(x[i,], to_vector(beta)));\n }\n alpha ~ normal(4, 2);\n beta ~ normal(0, 1.5);\n}\n\n\n\nset.seed(1225)\nmat_splines <- splines2::iSpline(30.48 * datos_golf$x, \n Boundary.knots = c(0, 750), knots = nudos, degree = 2, intercept = FALSE) \najuste <- mod_logistica_splines$sample(\n data = list(N = nrow(datos_golf), p = ncol(mat_splines),\n d = 30.48 * datos_golf$x, \n x = mat_splines,\n y = datos_golf$y, n = datos_golf$n), \n refresh = 1000, init = 0.1, \n step_size = 0.1, adapt_delta = 0.99)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 3.0 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 3.2 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 3.2 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 4.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.4 seconds.\nTotal execution time: 14.0 seconds.\n\n\nWarning: 236 of 4000 (6.0%) transitions hit the maximum treedepth limit of 10.\nSee https://mc-stan.org/misc/warnings for details.\n\nsims <- ajuste$draws(c(\"alpha\", \"beta\"), format = \"df\")\n\nresumen <- ajuste$summary()\n\n\nresumen\n\n# A tibble: 9 × 10\n variable mean median sd mad q5 q95 rhat ess_bulk\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 lp__ -2911. -2911. 2.22 2.13 -2916. -2908. 1.00 1193.\n2 alpha 4.88 4.80 0.939 0.934 3.49 6.57 1.00 1575.\n3 beta[1] -0.974 -0.803 0.748 0.743 -2.39 -0.0803 1.00 1876.\n4 beta[2] -1.24 -1.12 0.796 0.839 -2.70 -0.156 1.00 1665.\n5 beta[3] -1.91 -1.92 0.269 0.268 -2.35 -1.46 1.00 1548.\n6 beta[4] -1.03 -1.03 0.226 0.229 -1.40 -0.669 1.00 1501.\n7 beta[5] -1.23 -1.24 0.265 0.264 -1.63 -0.758 1.00 1650.\n8 beta[6] -0.403 -0.350 0.289 0.292 -0.949 -0.0319 1.00 1718.\n9 beta[7] -0.645 -0.529 0.521 0.485 -1.69 -0.0490 1.00 2091.\n# ℹ 1 more variable: ess_tail <dbl>\n\n\nAhora simulamos la posterior y la contrastamos con los datos:\n\nd <- 30.48 * seq(0, 20, 0.5)\nmat_splines_pred <- splines2::iSpline(30.48 * seq(0, 20, 0.5), \n Boundary.knots = c(0, 750), knots = nudos, degree = 2,\n intercept = FALSE) \nsims_2 <- sims |> group_by(.draw, .chain, .iteration) |> nest() \ngrafs <- purrr::map(sims_2$data, function(pars){\n pars <- as.numeric(pars)\n alpha <- pars[1]\n beta <- pars[2:8]\n p <- 1/(1 + exp(- alpha - mat_splines_pred %*% beta))\n tibble(p = as.numeric(p), d = d)\n})\nsims_graf_tbl <- sims_2 |> add_column(graf = grafs) |> select(-data) |> \n ungroup() |> \n slice_sample(n = 100) |> \n select(.draw, graf) |> \n unnest(graf) \n\n\nsims_graf_tbl |> \n ggplot(aes(x = d, y = p)) +\n geom_line(aes(group = .draw), alpha = 0.1) +\n labs(x = \"Distancia (cm)\", y = \"Probabilidad de Éxito\") +\n geom_point(data = resumen_golf, color = \"red\") +\n geom_linerange(data = resumen_golf, \n aes(ymin = p - 2 * sqrt(p * (1 - p) / n), \n ymax = p + 2 * sqrt(p * (1 - p) / n)),\n color = \"red\")\n\n\n\n\n\n\n\n\nEste modelo ajusta mejor, y puede ser usado para hacer comparaciones de probabilidad de éxito a diferentes distancias. Su defecto es que no es interpetable como nuestro modelo anterior (aprendemos poco sobre cómo funcionan los putts), y es considerablemente más difícil de ajustar.\nPuedes ver más de splines en McElreath (2020), y en Hastie, Tibshirani, y Friedman (2017). Puedes revisar también este caso de Stan que explica cómo utilizar splines de forma más general en Stan.\n\n\n\n\nGelman, Andrew, y Deborah Nolan. 2002. «A Probability Model for Golf Putting». Teaching Statistics 24 (septiembre): 93-95. https://doi.org/10.1111/1467-9639.00097.\n\n\nHastie, Trevor, Robert Tibshirani, y Jerome Friedman. 2017. The Elements of Statistical Learning. Springer Series en Statistics. Springer New York Inc. http://web.stanford.edu/~hastie/ElemStatLearn/.\n\n\nHolmes, Brian W. 1991. «Putting: How a golf ball and hole interact». American Journal of Physics 59 (2): 129-36. https://doi.org/10.1119/1.16592.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.\n\n\nPenner, Albert. 2002. «The physics of putting». Canadian Journal of Physics 80 (febrero): 83-96. https://doi.org/10.1139/p01-137.", + "text": "4.9 Modelos genéricos para ajustar curvas\nOtra posibilidad es utilizar un modelo más flexible creando variables derivadas de la distancia. En este caso, quizá podemos ajustar una curva que sea aceptable desde el punto de vista predictivo, pero no podremos aprender mucho acerca de cómo funciona la probabilidad de éxitos de los tiros de putts\n\n\n\n\n\n\nSplines y ajuste de curvas\n\n\n\nLos splines nos dan una manera estándar de ajustar curvas más flexibles, de tipo polinomial por tramos. Usualmente son numéricamente más conveniente que polinomios.\n\n\nAunque hay muchos tipos de splines (los más comunes son B-splines), para este problema consideraremos una base de splines cuadráticos que resultan en curvas monótonas (I-splines). Puedes ver más detalles de splines en McElreath (2020)\nEn este caso, haremos expansión de entradas de las siguiente manera. Supongamos que tenemos la variable de distancia \\(d\\) que va de 0 a 750 cm, por ejemplo. Construimos entradas derivadas de la siguiente manera:\n\nlibrary(splines2)\nnudos <- c(25, 50, 100, 200, 400)\ndistancias <- seq(0, 750, 1)\nsplines_tbl <- iSpline(distancias, knots = nudos, \n Boundary.knots = c(0, 750), degree = 2, intercept = FALSE) |> \n as_tibble() |> \n mutate(d = distancias) |> \n pivot_longer(-d, names_to = \"spline\", values_to = \"valor\")\nggplot(splines_tbl) +\n geom_line(aes(x = d, y = valor, color = spline)) +\n geom_vline(xintercept = nudos, color = \"red\", linetype = 2) \n\n\n\n\n\n\n\n\nEsta gráfica muestra cómo para cada distancia \\(x\\) generamos valores \\(x_1,\\ldots, x_p\\) que son variables derivadas de \\(x\\). Podemos entonces obtener más flexibilidad hacer regresión en estas nuevas \\(p\\) variables en lugar de usar solamente \\(x\\). Por la elección de la base, obsérvese que siempre que \\(\\beta_1, \\ldots, \\beta_p\\) sean no negativos, entonces la función \\[\\alpha + \\beta_1 x_1 + \\cdots + \\beta_p x_p\\] será monótona no decreciente, que es lo que necesitamos para este problema.\nNuestra función generadora para este modelo puede ser:\n\nsimular_putts <- function(distancias, nudos) {\n # Simular intercepto\n alpha <- rnorm(1, 4, 2)\n # Simular coeficientes de splines\n beta <- - abs(rnorm(7, 0, 1.5))\n # Calcular splines para distancias dadas\n mat_splines <- splines2::iSpline(distancias, \n Boundary.knots = c(0, 750), knots = nudos, degree = 2, intercept = FALSE) \n # Calcular probabilidad de éxito con regresión logística\n p <- 1 / (1 + exp(- alpha - mat_splines %*% beta))\n tibble(y = rbinom(length(distancias), 1, p), p = p, d = distancias) |> \n select(d, p, y) |> \n mutate(alpha = alpha, beta = list(beta))\n}\n\n\nset.seed(8123)\ndistancias <- seq(1, 600, 5) |> rep(each = 5)\nsimular_putts(distancias, nudos) |> \n ggplot(aes(x = d, y = y)) +\n geom_jitter(height = 0.1) +\n labs(x = \"Distancia (cm)\", y = \"Éxito\") +\n geom_smooth(span = 1, se = FALSE)\n\n`geom_smooth()` using method = 'loess' and formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nY podemos hacer simulaciones a priori para entender nuestros supuestos:\n\nmap_df(1:100, \\(x) simular_putts(distancias, nudos) |> mutate(id = x)) |> \n ggplot(aes(x = d, y = p, group = id)) +\n geom_line(alpha = 0.2) +\n labs(x = \"Distancia (cm)\", y = \"Probabilidad de Éxito\")\n\n\n\n\n\n\n\n\nAhora construimos nuestro nuevo modelo en Stan, donde \\(x\\) será la matriz de splines (entradas derivadas como se explicó arriba):\n\n#! message: false\nlibrary(cmdstanr)\nmod_logistica_splines <- cmdstan_model(\"./src/golf-logistico-splines.stan\")\nprint(mod_logistica_splines)\n\ndata {\n int<lower=0> N;\n int<lower=0> p;\n array[N] int n;\n vector[N] d;\n matrix[N, p] x;\n array[N] int y;\n}\nparameters {\n real alpha;\n array[p] real<upper=0> beta;\n}\nmodel {\n for(i in 1:N){\n y[i] ~ binomial_logit(n[i], alpha + dot_product(x[i,], to_vector(beta)));\n }\n alpha ~ normal(4, 2);\n beta ~ normal(0, 1.5);\n}\n\n\n\nset.seed(1225)\nmat_splines <- splines2::iSpline(30.48 * datos_golf$x, \n Boundary.knots = c(0, 750), knots = nudos, degree = 2, intercept = FALSE) \najuste <- mod_logistica_splines$sample(\n data = list(N = nrow(datos_golf), p = ncol(mat_splines),\n d = 30.48 * datos_golf$x, \n x = mat_splines,\n y = datos_golf$y, n = datos_golf$n), \n refresh = 1000, init = 0.1, \n step_size = 0.1, adapt_delta = 0.99)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 3.0 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 3.1 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 3.2 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 4.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.4 seconds.\nTotal execution time: 13.9 seconds.\n\n\nWarning: 236 of 4000 (6.0%) transitions hit the maximum treedepth limit of 10.\nSee https://mc-stan.org/misc/warnings for details.\n\nsims <- ajuste$draws(c(\"alpha\", \"beta\"), format = \"df\")\n\nresumen <- ajuste$summary()\n\n\nresumen\n\n# A tibble: 9 × 10\n variable mean median sd mad q5 q95 rhat ess_bulk\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 lp__ -2911. -2911. 2.22 2.13 -2916. -2908. 1.00 1193.\n2 alpha 4.88 4.80 0.939 0.934 3.49 6.57 1.00 1575.\n3 beta[1] -0.974 -0.803 0.748 0.743 -2.39 -0.0803 1.00 1876.\n4 beta[2] -1.24 -1.12 0.796 0.839 -2.70 -0.156 1.00 1665.\n5 beta[3] -1.91 -1.92 0.269 0.268 -2.35 -1.46 1.00 1548.\n6 beta[4] -1.03 -1.03 0.226 0.229 -1.40 -0.669 1.00 1501.\n7 beta[5] -1.23 -1.24 0.265 0.264 -1.63 -0.758 1.00 1650.\n8 beta[6] -0.403 -0.350 0.289 0.292 -0.949 -0.0319 1.00 1718.\n9 beta[7] -0.645 -0.529 0.521 0.485 -1.69 -0.0490 1.00 2091.\n# ℹ 1 more variable: ess_tail <dbl>\n\n\nAhora simulamos la posterior y la contrastamos con los datos:\n\nd <- 30.48 * seq(0, 20, 0.5)\nmat_splines_pred <- splines2::iSpline(30.48 * seq(0, 20, 0.5), \n Boundary.knots = c(0, 750), knots = nudos, degree = 2,\n intercept = FALSE) \nsims_2 <- sims |> group_by(.draw, .chain, .iteration) |> nest() \ngrafs <- purrr::map(sims_2$data, function(pars){\n pars <- as.numeric(pars)\n alpha <- pars[1]\n beta <- pars[2:8]\n p <- 1/(1 + exp(- alpha - mat_splines_pred %*% beta))\n tibble(p = as.numeric(p), d = d)\n})\nsims_graf_tbl <- sims_2 |> add_column(graf = grafs) |> select(-data) |> \n ungroup() |> \n slice_sample(n = 100) |> \n select(.draw, graf) |> \n unnest(graf) \n\n\nsims_graf_tbl |> \n ggplot(aes(x = d, y = p)) +\n geom_line(aes(group = .draw), alpha = 0.1) +\n labs(x = \"Distancia (cm)\", y = \"Probabilidad de Éxito\") +\n geom_point(data = resumen_golf, color = \"red\") +\n geom_linerange(data = resumen_golf, \n aes(ymin = p - 2 * sqrt(p * (1 - p) / n), \n ymax = p + 2 * sqrt(p * (1 - p) / n)),\n color = \"red\")\n\n\n\n\n\n\n\n\nEste modelo ajusta mejor, y puede ser usado para hacer comparaciones de probabilidad de éxito a diferentes distancias. Su defecto es que no es interpetable como nuestro modelo anterior (aprendemos poco sobre cómo funcionan los putts), y es considerablemente más difícil de ajustar.\nPuedes ver más de splines en McElreath (2020), y en Hastie, Tibshirani, y Friedman (2017). Puedes revisar también este caso de Stan que explica cómo utilizar splines de forma más general en Stan.\n\n\n\n\nGelman, Andrew, y Deborah Nolan. 2002. «A Probability Model for Golf Putting». Teaching Statistics 24 (septiembre): 93-95. https://doi.org/10.1111/1467-9639.00097.\n\n\nHastie, Trevor, Robert Tibshirani, y Jerome Friedman. 2017. The Elements of Statistical Learning. Springer Series en Statistics. Springer New York Inc. http://web.stanford.edu/~hastie/ElemStatLearn/.\n\n\nHolmes, Brian W. 1991. «Putting: How a golf ball and hole interact». American Journal of Physics 59 (2): 129-36. https://doi.org/10.1119/1.16592.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.\n\n\nPenner, Albert. 2002. «The physics of putting». Canadian Journal of Physics 80 (febrero): 83-96. https://doi.org/10.1139/p01-137.", "crumbs": [ "4  Componentes de modelación 1" ] @@ -314,7 +314,7 @@ "href": "05-dags.html#regla-del-producto-y-simulación", "title": "5  Modelos gráficos y causalidad", "section": "5.3 Regla del producto y simulación", - "text": "5.3 Regla del producto y simulación\nEl orden del modelo gráfico también nos indica cómo simular las variables de la gráfica. Como cada modelo gráfico nos da una factorización de la conjunta, podemos utlizar esta para simular datos una vez que conocemos o estimamos las relaciones de dependencia directa. Empezamos con las variables exógenas (que no tienen padres) y vamos simulando hacia adelante.\n\nEjemplo\nEn nuestro ejemplo simulamos primero \\(X\\) y \\(D\\). A partir de \\(X\\) podemos simular \\(X_1\\) y \\(S_2\\), y a partir de \\(D\\), junto con \\(S_1\\) y \\(S_2\\), podemos simular \\(G\\). En nuestro ejemplo tendríamos\n\nsimular_juego <- function(N){\n x <- runif(N)\n d <- sample(c(\"lluvioso\",\"soleado\"), N, replace = TRUE, prob = c(0.3,0.7))\n s1 <- rbinom(N, 5, x)\n s2 <- rbinom(N, 5, x)\n g <- ifelse(d==\"lluvioso\", s1+s2, s1)\n tibble(x, d, s1, s2, g)\n}\nsimular_juego(5)\n\n# A tibble: 5 × 5\n x d s1 s2 g\n <dbl> <chr> <int> <int> <int>\n1 0.0907 lluvioso 3 0 3\n2 0.808 soleado 4 3 4\n3 0.410 soleado 1 4 1\n4 0.422 soleado 2 1 2\n5 0.253 soleado 2 0 2", + "text": "5.3 Regla del producto y simulación\nEl orden del modelo gráfico también nos indica cómo simular las variables de la gráfica. Como cada modelo gráfico nos da una factorización de la conjunta, podemos utlizar esta para simular datos una vez que conocemos o estimamos las relaciones de dependencia directa. Empezamos con las variables exógenas (que no tienen padres) y vamos simulando hacia adelante.\n\nEjemplo\nEn nuestro ejemplo simulamos primero \\(X\\) y \\(D\\). A partir de \\(X\\) podemos simular \\(X_1\\) y \\(S_2\\), y a partir de \\(D\\), junto con \\(S_1\\) y \\(S_2\\), podemos simular \\(G\\). En nuestro ejemplo tendríamos\n\nsimular_juego <- function(N){\n x <- runif(N)\n d <- sample(c(\"lluvioso\",\"soleado\"), N, replace = TRUE, prob = c(0.3,0.7))\n s1 <- rbinom(N, 5, x)\n s2 <- rbinom(N, 5, x)\n g <- ifelse(d==\"lluvioso\", s1+s2, s1)\n tibble(x, d, s1, s2, g)\n}\nsimular_juego(5)\n\n# A tibble: 5 × 5\n x d s1 s2 g\n <dbl> <chr> <int> <int> <int>\n1 0.737 soleado 4 3 4\n2 0.775 lluvioso 4 2 6\n3 0.184 soleado 0 1 0\n4 0.407 soleado 1 3 1\n5 0.328 soleado 1 1 1", "crumbs": [ "5  Modelos gráficos y causalidad" ] @@ -334,7 +334,7 @@ "href": "05-dags.html#bifurcaciones-o-causa-común", "title": "5  Modelos gráficos y causalidad", "section": "5.5 Bifurcaciones o causa común", - "text": "5.5 Bifurcaciones o causa común\nEn el siguiente ejemplo, llamamos a \\(Z\\) una causa que es común a \\(X\\) y \\(Y\\).\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n Z -> X\n Z -> Y\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEn este caso,\n\n\\(X\\) y \\(Y\\) tienen asociación\nSi condicionamos (o estratificamos) con \\(Z\\), entonces \\(X\\) y \\(Y\\) son condicionalmente independientes.\n\nEste tipo de estructura también se llama bifurcación, o decimos más tradicionalmente que \\(Z\\) es un confusor en esta gráfica. Variación en \\(Z\\) produce variación conjunta de \\(X\\) y \\(Y\\).\nPor ejemplo, podríamos encontrar que el uso de aspirina \\(X\\) está asociado a una mortalidad más alta \\(Y\\). Una causa común es enfermedad grave que produce dolor (\\(Z\\)). Sin embargo, si condicionamos a personas sanas, veríamos que no hay relación entre uso de aspirina y mortalidad, igualmente veríamos que entre las personas enfermas el uso de aspirina no les ayuda a vivir más tiempo.\nEn este caso, tenemos:\n\\[p(x, y, z) = p(z)p(x|z)p(y|z)\\] Y como el lado izquierdo es igual (en general) a \\(p(x,y|z)p(z)\\), obtenemos la independiencia condicional de \\(X\\) y \\(Y\\) dado \\(Z\\).\n\nEjemplo (simulación)\n\nrbern <- function(n, prob){\n rbinom(n, 1, prob = prob)\n} \nsimular_confusor <- function(n = 10){\n z <- rbern(n, p = 0.5) |> as.numeric()\n x <- rbern(n, p = z * 0.3 + (1 - z) * 0.8)\n y <- rbinom(n, 4, z * 0.9 + (1 - z) * 0.3)\n tibble(x, z, y)\n}\nsims_confusor <- simular_confusor(50000)\n\n\\(X\\) y \\(Y\\) están asociadas\n\nsims_confusor |> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\n\nLo cual lo vemos también si calculamos la correlación:\n\ncor(sims_confusor |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.418\ny -0.418 1.000\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1, vemos que \\(X\\) y \\(Y\\) son independientes, o dicho de otra manera, la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) sólo depende de \\(Z\\):\n\nsims_confusor |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nUna consecuencia es por ejemplo que la correlación debe ser cero:\n\ncor(sims_confusor |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.003\ny 0.003 1.000\n\ncor(sims_confusor |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.003\ny 0.003 1.000\n\n\nUn ejemplo con variables continuas podría ser como sigue:\n\nsimular_bifurcacion <- function(n = 10){\n z <- rbern(n, p = 0.5)\n x <- rnorm(n, 100 + 20 * z, 15)\n y <- rnorm(n, 100 + 30 * z, 20)\n tibble(x, z, y)\n}\nsims_bifurcacion <- simular_bifurcacion(5000)\n\n\\(X\\) y \\(Y\\) son dependientes (por ejemplo si vemos la media condicional de \\(Y\\) dado \\(X\\):\n\nggplot(sims_bifurcacion, aes(x = x, y = y, colour = z)) + \n geom_point(alpha = 0.2) +\n geom_smooth(span = 1, se = FALSE)\n\n\n\n\n\n\n\n\nSi condicionamos a \\(Z\\), no hay dependencia entre \\(X\\) y \\(Y\\)\n\nggplot(sims_bifurcacion, aes(x = x, y = y, colour = z, group = z)) + \n geom_point(alpha = 0.2) +\n geom_smooth(span = 2)\n\n\n\n\n\n\n\n\n\n\nEjemplo: matrimonio y divorcio\nEn este ejemplo de McElreath (2020), se muestra que regiones de Estados Unidos con tasas más altas de matrimonio también tienen tasas más altas de divorcio.\n\ndata(WaffleDivorce)\nWaffleDivorce |> \n ggplot(aes(x = Marriage, y = Divorce)) +\n geom_point() +\n geom_smooth(method = \"lm\")\n\n`geom_smooth()` using formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nAunque esta es una correlación clara, lo que nos interesa en este caso el efecto causal \\(M\\to D\\). Es importante notar que hay considerable variabilidad de la edad promedio al casarse a lo largo de los estados:\n\nWaffleDivorce |> \n ggplot(aes(sample = MedianAgeMarriage)) +\n geom_qq() +\n geom_qq_line()\n\n\n\n\n\n\n\n\nPara el modelo causal, tenemos que considerar las siguientes afirmaciones que no son muy difíciles de justificar:\n\nLa edad promedio al casarse de cada estado es un factor que influye en la tasa de divorcio (menor edad a casarse implica mayores tasas de divorcio, pues las parejas tienen más tiempo para divorciarse, porque la gente cambia más cuando es joven).\nAdicionalmente, si la gente tiende a casarse más joven, en cualquier momento hay más gente con probabilidad de casarse, por lo que esperaríamos que la edad al casarse también influye en la tasa de matrimonio.\n\nEsto implica que tenemos que considerar una causa común de la edad al casarse en nuestro diagrama causal:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n M\n D\n Edad\n edge [minlen = 3]\n Edad -> M\n Edad -> D\n M -> D\n{rank=same; M; D;}\n\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nPor la discusión de arriba, es claro que es necesario considerar la edad al casarse si queremos estimar el efecto de tasa de matrimonio en la tasa de divorcio. Es posible que la correlación entre estas dos tasas puede ser explicada solamente por la edad al casarse, y que en realidad al flecha \\(M\\to D\\) sea muy débil o inexistente.\nYa que tenemos este modelo causal básico, tendríamos que proponer un proceso generador, proponer un modelo estadístico, y probar nuestra estimación. Este paso nos lo saltaremos (ver sección anterior), aunque sigue siendo necesario.\nPor el momento recordemos que si condicionamos (se dice también estratificar) por edad al casarse, y no vemos relación condicional entre las dos tasas, la relación que vimos en los datos es factible que haya aparecido por la causa común que induce correlación. Una manera en que estratificamos o condicionamos a una variable continua en un modelo lineal, como sigue:\n\\[D_i\\sim N(\\mu_i, \\sigma)\\] donde \\[\\mu_i = \\alpha + \\beta_M M_i + \\beta_E Edad_i\\] ¿De qué manera estamos estratificando por edad en este ejemplo? Obsérvese que para cada Edad que fijemos, la relación entre \\(M\\) y \\(D\\) es:\n\\[\\mu_i = (\\alpha + \\beta_E Edad) + \\beta_M M_i \\] Cada valor de \\(E\\) produce una relación diferente entre \\(M\\) y \\(D\\) (en este caso particular, una recta diferente con distinta altura).\nAhora tenemos que poner iniciales para terminar nuestro modelo estadístico. En este punto poner iniciales informadas para estos coeficientes puede ser complicado (depende de cuánta demografía sabemos). Podemos usar un enfoque más simple, considerando las variables estandarizadas. De esta forma podemos poner iniciales más estándar. Utilizaremos\n\nescalar <- function(x){\n (x - mean(x))/sd(x)\n}\nWaffleDivorce <- WaffleDivorce |> \n mutate(Marriage_est = escalar(Marriage), \n Divorce_est = escalar(Divorce), \n MedianAgeMarriage_est = escalar(MedianAgeMarriage))\ndatos_lista <- list(\n N = nrow(WaffleDivorce),\n d_est = WaffleDivorce$Divorce_est, \n m_est = WaffleDivorce$Marriage_est, \n edad_est = WaffleDivorce$MedianAgeMarriage_est)\n\n\nmod_mat_div <- cmdstan_model(\"./src/matrimonio-divorcio-1.stan\")\nprint(mod_mat_div)\n\ndata {\n int<lower=0> N;\n vector[N] d_est;\n vector[N] m_est;\n vector[N] edad_est;\n}\n\nparameters {\n real alpha;\n real beta_M;\n real beta_E;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] w_media;\n // determinístico dado parámetros\n w_media = alpha + beta_M * m_est + beta_E * edad_est;\n}\n\nmodel {\n // partes no determinísticas\n d_est ~ normal(w_media, sigma);\n alpha ~ normal(0, 1);\n beta_M ~ normal(0, 0.5);\n beta_E ~ normal(0, 0.5);\n sigma ~ normal(0, 1);\n}\n\ngenerated quantities {\n real dif;\n {\n //simulamos 50 estados\n int M = 50;\n array[M] real dif_sim;\n for(i in 1:M){\n real edad_sim_est = normal_rng(0, 1);\n // fijamos el valor de M en 0 y 1 para el modelo con do(M)\n real M_sim_0 = normal_rng(alpha * beta_M * 0 + beta_E * edad_sim_est, sigma);\n real M_sim_1 = normal_rng(alpha * beta_M * 1 + beta_E * edad_sim_est, sigma);\n dif_sim[i] = M_sim_1 - M_sim_0;\n }\n dif = mean(dif_sim);\n }\n\n}\n\n\n\nsims_mod <- mod_mat_div$sample(data = datos_lista, \n chains = 4, \n init = 0.1, step_size = 0.1,\n iter_warmup = 1000, \n iter_sampling = 1000,\n refresh = 0)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 finished in 0.1 seconds.\nChain 2 finished in 0.1 seconds.\nChain 3 finished in 0.1 seconds.\nChain 4 finished in 0.1 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.1 seconds.\nTotal execution time: 0.6 seconds.\n\n\n\nresumen <- sims_mod$summary(c(\"alpha\", \"beta_M\", \"beta_E\", \"sigma\"))\n\n\nresumen |> \n ggplot(aes(x = variable, y = mean, ymin = q5, ymax = q95)) +\n geom_hline(yintercept = 0, color = \"red\") +\n geom_point() +\n geom_linerange() +\n coord_flip()\n\n\n\n\n\n\n\n\nY el resultado que obtenemos es que no observamos un efecto considerable de las tasas de matrimonio en las tasas de divorcio, una vez que estratificamos por la causa común de edad de matrimonio. Este ejemplo es simple y podemos ver el efecto causal directo en un sólo coeficiente \\(\\beta_M\\), pero de todas formas haremos contrastes como hicimos en la parte anterior.\n\n\n5.5.1 Simulando intervenciones\nLa manera más directa de definir efecto causal, bajo nuestros supuestos causales, es a través de intervenciones (imaginarias o reales).\n\n\n\n\n\n\nNota\n\n\n\nEntendemos saber una causa como poder predecir correctamente las consecuencias de una intervención en el sistema generador de datos.\n\n\nEn nuestro caso, el diagrama de arriba muestra nuestro modelo causal. Si nosotros alteramos este proceso causal, interviniendo en la tasa de matrimonio, la distribución de matrimonio ya no depende de la Edad (pues está bajo nuestro control). Esto quiere decir que ahora consideramos el siguiente diagrama, en donde la nueva dependendencia del divorcio del matrimonio la escribiremos como \\(p(D|do(M))\\):\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n M\n D\n Edad\n edge [minlen = 3]\n Edad -> D\n M -> D\n{rank=same; M; D;}\n\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEs decir, borramos todas las flechas que caen en \\(M\\) (pues la estamos interveniendo al valor que queramos), y luego simulando \\(D\\).\nEn nuestro ejemplo (ve el código de Stan de arriba, la parte de generated quantities) simularemos los 50 estados bajo dos intervenciones: todos tienen la tasa promedio de matrimonio vs. los 50 estados con tasa de matrimonio un error estándar por encima de la tasa promedio. Repetimos esta comparación sobre todas las simulaciones de la posterior:\n\nsims_tbl <- sims_mod$draws(format = \"df\") |> \n select(dif) \nsims_tbl |> summarize(\n q5 = quantile(dif, 0.05),\n q95 = quantile(dif, 0.95)\n)\n\n# A tibble: 1 × 2\n q5 q95\n <dbl> <dbl>\n1 -0.272 0.269\n\n\n\nggplot(sims_tbl, aes(x = dif)) +\n geom_histogram(bins = 50) +\n geom_vline(xintercept = 0, color = \"red\")\n\n\n\n\n\n\n\n\nEn este caso, vemos que el resultado de la intervención no tienen una tendencia clara hacia incrementar o disminuir la tasa de divorcio, aunque existe variabilidad por la incertidumbre que tenemos acerca de las relaciones modeladas.\n\n\n\n\n\n\nTip\n\n\n\nLa relación que vimos entre matrimonio y divorcio en nuestro ejemplo es probablemente producida por la causa común Edad, y no necesariamente es causal.\n\n\nFinalmente, antes de terminar sería apropiado hacer chequeos predictivos posteriores, pero por el momento los omitiremos para avanzar en los otros tipos de estructuras básicas en los DAGs.", + "text": "5.5 Bifurcaciones o causa común\nEn el siguiente ejemplo, llamamos a \\(Z\\) una causa que es común a \\(X\\) y \\(Y\\).\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n Z -> X\n Z -> Y\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEn este caso,\n\n\\(X\\) y \\(Y\\) tienen asociación\nSi condicionamos (o estratificamos) con \\(Z\\), entonces \\(X\\) y \\(Y\\) son condicionalmente independientes.\n\nEste tipo de estructura también se llama bifurcación, o decimos más tradicionalmente que \\(Z\\) es un confusor en esta gráfica. Variación en \\(Z\\) produce variación conjunta de \\(X\\) y \\(Y\\).\nPor ejemplo, podríamos encontrar que el uso de aspirina \\(X\\) está asociado a una mortalidad más alta \\(Y\\). Una causa común es enfermedad grave que produce dolor (\\(Z\\)). Sin embargo, si condicionamos a personas sanas, veríamos que no hay relación entre uso de aspirina y mortalidad, igualmente veríamos que entre las personas enfermas el uso de aspirina no les ayuda a vivir más tiempo.\nEn este caso, tenemos:\n\\[p(x, y, z) = p(z)p(x|z)p(y|z)\\] Y como el lado izquierdo es igual (en general) a \\(p(x,y|z)p(z)\\), obtenemos la independiencia condicional de \\(X\\) y \\(Y\\) dado \\(Z\\).\n\nEjemplo (simulación)\n\nrbern <- function(n, prob){\n rbinom(n, 1, prob = prob)\n} \nsimular_confusor <- function(n = 10){\n z <- rbern(n, p = 0.5) |> as.numeric()\n x <- rbern(n, p = z * 0.3 + (1 - z) * 0.8)\n y <- rbinom(n, 4, z * 0.9 + (1 - z) * 0.3)\n tibble(x, z, y)\n}\nsims_confusor <- simular_confusor(50000)\n\n\\(X\\) y \\(Y\\) están asociadas\n\nsims_confusor |> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\n\nLo cual lo vemos también si calculamos la correlación:\n\ncor(sims_confusor |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.428\ny -0.428 1.000\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1, vemos que \\(X\\) y \\(Y\\) son independientes, o dicho de otra manera, la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) sólo depende de \\(Z\\):\n\nsims_confusor |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nUna consecuencia es por ejemplo que la correlación debe ser cero:\n\ncor(sims_confusor |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.011\ny -0.011 1.000\n\ncor(sims_confusor |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.012\ny -0.012 1.000\n\n\nUn ejemplo con variables continuas podría ser como sigue:\n\nsimular_bifurcacion <- function(n = 10){\n z <- rbern(n, p = 0.5)\n x <- rnorm(n, 100 + 20 * z, 15)\n y <- rnorm(n, 100 + 30 * z, 20)\n tibble(x, z, y)\n}\nsims_bifurcacion <- simular_bifurcacion(5000)\n\n\\(X\\) y \\(Y\\) son dependientes (por ejemplo si vemos la media condicional de \\(Y\\) dado \\(X\\):\n\nggplot(sims_bifurcacion, aes(x = x, y = y, colour = z)) + \n geom_point(alpha = 0.2) +\n geom_smooth(span = 1, se = FALSE)\n\n\n\n\n\n\n\n\nSi condicionamos a \\(Z\\), no hay dependencia entre \\(X\\) y \\(Y\\)\n\nggplot(sims_bifurcacion, aes(x = x, y = y, colour = z, group = z)) + \n geom_point(alpha = 0.2) +\n geom_smooth(span = 2)\n\n\n\n\n\n\n\n\n\n\nEjemplo: matrimonio y divorcio\nEn este ejemplo de McElreath (2020), se muestra que regiones de Estados Unidos con tasas más altas de matrimonio también tienen tasas más altas de divorcio.\n\ndata(WaffleDivorce)\nWaffleDivorce |> \n ggplot(aes(x = Marriage, y = Divorce)) +\n geom_point() +\n geom_smooth(method = \"lm\")\n\n`geom_smooth()` using formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nAunque esta es una correlación clara, lo que nos interesa en este caso el efecto causal \\(M\\to D\\). Es importante notar que hay considerable variabilidad de la edad promedio al casarse a lo largo de los estados:\n\nWaffleDivorce |> \n ggplot(aes(sample = MedianAgeMarriage)) +\n geom_qq() +\n geom_qq_line()\n\n\n\n\n\n\n\n\nPara el modelo causal, tenemos que considerar las siguientes afirmaciones que no son muy difíciles de justificar:\n\nLa edad promedio al casarse de cada estado es un factor que influye en la tasa de divorcio (menor edad a casarse implica mayores tasas de divorcio, pues las parejas tienen más tiempo para divorciarse, porque la gente cambia más cuando es joven).\nAdicionalmente, si la gente tiende a casarse más joven, en cualquier momento hay más gente con probabilidad de casarse, por lo que esperaríamos que la edad al casarse también influye en la tasa de matrimonio.\n\nEsto implica que tenemos que considerar una causa común de la edad al casarse en nuestro diagrama causal:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n M\n D\n Edad\n edge [minlen = 3]\n Edad -> M\n Edad -> D\n M -> D\n{rank=same; M; D;}\n\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nPor la discusión de arriba, es claro que es necesario considerar la edad al casarse si queremos estimar el efecto de tasa de matrimonio en la tasa de divorcio. Es posible que la correlación entre estas dos tasas puede ser explicada solamente por la edad al casarse, y que en realidad al flecha \\(M\\to D\\) sea muy débil o inexistente.\nYa que tenemos este modelo causal básico, tendríamos que proponer un proceso generador, proponer un modelo estadístico, y probar nuestra estimación. Este paso nos lo saltaremos (ver sección anterior), aunque sigue siendo necesario.\nPor el momento recordemos que si condicionamos (se dice también estratificar) por edad al casarse, y no vemos relación condicional entre las dos tasas, la relación que vimos en los datos es factible que haya aparecido por la causa común que induce correlación. Una manera en que estratificamos o condicionamos a una variable continua en un modelo lineal, como sigue:\n\\[D_i\\sim N(\\mu_i, \\sigma)\\] donde \\[\\mu_i = \\alpha + \\beta_M M_i + \\beta_E Edad_i\\] ¿De qué manera estamos estratificando por edad en este ejemplo? Obsérvese que para cada Edad que fijemos, la relación entre \\(M\\) y \\(D\\) es:\n\\[\\mu_i = (\\alpha + \\beta_E Edad) + \\beta_M M_i \\] Cada valor de \\(E\\) produce una relación diferente entre \\(M\\) y \\(D\\) (en este caso particular, una recta diferente con distinta altura).\nAhora tenemos que poner iniciales para terminar nuestro modelo estadístico. En este punto poner iniciales informadas para estos coeficientes puede ser complicado (depende de cuánta demografía sabemos). Podemos usar un enfoque más simple, considerando las variables estandarizadas. De esta forma podemos poner iniciales más estándar. Utilizaremos\n\nescalar <- function(x){\n (x - mean(x))/sd(x)\n}\nWaffleDivorce <- WaffleDivorce |> \n mutate(Marriage_est = escalar(Marriage), \n Divorce_est = escalar(Divorce), \n MedianAgeMarriage_est = escalar(MedianAgeMarriage))\ndatos_lista <- list(\n N = nrow(WaffleDivorce),\n d_est = WaffleDivorce$Divorce_est, \n m_est = WaffleDivorce$Marriage_est, \n edad_est = WaffleDivorce$MedianAgeMarriage_est)\n\n\nmod_mat_div <- cmdstan_model(\"./src/matrimonio-divorcio-1.stan\")\nprint(mod_mat_div)\n\ndata {\n int<lower=0> N;\n vector[N] d_est;\n vector[N] m_est;\n vector[N] edad_est;\n}\n\nparameters {\n real alpha;\n real beta_M;\n real beta_E;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] w_media;\n // determinístico dado parámetros\n w_media = alpha + beta_M * m_est + beta_E * edad_est;\n}\n\nmodel {\n // partes no determinísticas\n d_est ~ normal(w_media, sigma);\n alpha ~ normal(0, 1);\n beta_M ~ normal(0, 0.5);\n beta_E ~ normal(0, 0.5);\n sigma ~ normal(0, 1);\n}\n\ngenerated quantities {\n real dif;\n {\n //simulamos 50 estados\n int M = 50;\n array[M] real dif_sim;\n for(i in 1:M){\n real edad_sim_est = normal_rng(0, 1);\n // fijamos el valor de M en 0 y 1 para el modelo con do(M)\n real M_sim_0 = normal_rng(alpha * beta_M * 0 + beta_E * edad_sim_est, sigma);\n real M_sim_1 = normal_rng(alpha * beta_M * 1 + beta_E * edad_sim_est, sigma);\n dif_sim[i] = M_sim_1 - M_sim_0;\n }\n dif = mean(dif_sim);\n }\n\n}\n\n\n\nsims_mod <- mod_mat_div$sample(data = datos_lista, \n chains = 4, \n init = 0.1, step_size = 0.1,\n iter_warmup = 1000, \n iter_sampling = 1000,\n refresh = 0)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 finished in 0.1 seconds.\nChain 2 finished in 0.1 seconds.\nChain 3 finished in 0.1 seconds.\nChain 4 finished in 0.1 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.1 seconds.\nTotal execution time: 0.6 seconds.\n\n\n\nresumen <- sims_mod$summary(c(\"alpha\", \"beta_M\", \"beta_E\", \"sigma\"))\n\n\nresumen |> \n ggplot(aes(x = variable, y = mean, ymin = q5, ymax = q95)) +\n geom_hline(yintercept = 0, color = \"red\") +\n geom_point() +\n geom_linerange() +\n coord_flip()\n\n\n\n\n\n\n\n\nY el resultado que obtenemos es que no observamos un efecto considerable de las tasas de matrimonio en las tasas de divorcio, una vez que estratificamos por la causa común de edad de matrimonio. Este ejemplo es simple y podemos ver el efecto causal directo en un sólo coeficiente \\(\\beta_M\\), pero de todas formas haremos contrastes como hicimos en la parte anterior.\n\n\n5.5.1 Simulando intervenciones\nLa manera más directa de definir efecto causal, bajo nuestros supuestos causales, es a través de intervenciones (imaginarias o reales).\n\n\n\n\n\n\nNota\n\n\n\nEntendemos saber una causa como poder predecir correctamente las consecuencias de una intervención en el sistema generador de datos.\n\n\nEn nuestro caso, el diagrama de arriba muestra nuestro modelo causal. Si nosotros alteramos este proceso causal, interviniendo en la tasa de matrimonio, la distribución de matrimonio ya no depende de la Edad (pues está bajo nuestro control). Esto quiere decir que ahora consideramos el siguiente diagrama, en donde la nueva dependendencia del divorcio del matrimonio la escribiremos como \\(p(D|do(M))\\):\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n M\n D\n Edad\n edge [minlen = 3]\n Edad -> D\n M -> D\n{rank=same; M; D;}\n\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEs decir, borramos todas las flechas que caen en \\(M\\) (pues la estamos interveniendo al valor que queramos), y luego simulando \\(D\\).\nEn nuestro ejemplo (ve el código de Stan de arriba, la parte de generated quantities) simularemos los 50 estados bajo dos intervenciones: todos tienen la tasa promedio de matrimonio vs. los 50 estados con tasa de matrimonio un error estándar por encima de la tasa promedio. Repetimos esta comparación sobre todas las simulaciones de la posterior:\n\nsims_tbl <- sims_mod$draws(format = \"df\") |> \n select(dif) \nsims_tbl |> summarize(\n q5 = quantile(dif, 0.05),\n q95 = quantile(dif, 0.95)\n)\n\n# A tibble: 1 × 2\n q5 q95\n <dbl> <dbl>\n1 -0.271 0.273\n\n\n\nggplot(sims_tbl, aes(x = dif)) +\n geom_histogram(bins = 50) +\n geom_vline(xintercept = 0, color = \"red\")\n\n\n\n\n\n\n\n\nEn este caso, vemos que el resultado de la intervención no tienen una tendencia clara hacia incrementar o disminuir la tasa de divorcio, aunque existe variabilidad por la incertidumbre que tenemos acerca de las relaciones modeladas.\n\n\n\n\n\n\nTip\n\n\n\nLa relación que vimos entre matrimonio y divorcio en nuestro ejemplo es probablemente producida por la causa común Edad, y no necesariamente es causal.\n\n\nFinalmente, antes de terminar sería apropiado hacer chequeos predictivos posteriores, pero por el momento los omitiremos para avanzar en los otros tipos de estructuras básicas en los DAGs.", "crumbs": [ "5  Modelos gráficos y causalidad" ] @@ -344,7 +344,7 @@ "href": "05-dags.html#cadenas-o-mediación", "title": "5  Modelos gráficos y causalidad", "section": "5.6 Cadenas o mediación", - "text": "5.6 Cadenas o mediación\nEn este caso tenemos:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir=LR]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n X -> Z\n Z -> Y\n}\n\", width = 150, height = 20)\n\n\n\n\n\n\nEn este caso,\n\nExiste asociación entre \\(X\\) y \\(Y\\), pero no existe relación directa entre ellas. Decimos que \\(Z\\) es un mediador del efecto de \\(X\\) sobre \\(Y\\).\nSi condicionamos a un valor de \\(Z\\), \\(X\\) y \\(Y\\) son condicionalmente independientes.\n\nPodemos pensar en \\(Z\\) como un mediador del efecto de \\(X\\) sobre \\(Y\\). Si no permitimos que \\(Z\\) varíe, entonces la información de \\(X\\) no fluye a \\(Y\\).\nPor ejemplo, si \\(X\\) tomar o no una medicina para el dolor de cabeza, \\(Z\\) es dolor de cabeza y \\(Y\\) es bienestar general, \\(X\\) y \\(Y\\) están relacionadas. Sin embargo, si condicionamos a un valor fijo de dolor de cabeza, no hay relación entre tomar la medicina y bienestar general.\nEn términos de factorización, podemos checar la independencia condicional: como \\(p(x,y,z) = p(x)p(z|x)p(y|z)\\), entonces\n\\[p(x, y | z) = p(x,y,z) / p(z) = (p(x)(z|x)) (p(y|z) / p(z))\\] y vemos que el lado izquierdo se factoriza en una parte que sólo involucra a \\(x\\) y \\(z\\) y otro factor que sólo tiene a \\(y\\) y \\(z\\): no hay términos que incluyan conjuntamente a \\(x\\), \\(y\\) y \\(z\\). Podemos de cualquier forma continuar notando\n\\[p(x)p(z|x)/p(z) = p(x,z)/p(z) = p(x | z)\\] de modo que\n\\[p(x, y | z) = p(x|z) p(y|z) \\]\nY mostramos un ejemplo simulado:\n\nrbern <- function(n, prob){\n rbinom(n, 1, prob = prob)\n} \nsimular_mediador <- function(n = 10){\n x <- rbern(n, p = 0.5) |> as.numeric()\n z <- rbern(n, p = x * 0.8 + (1 - x) * 0.3)\n y <- rbinom(n, 2, z * 0.7 + (1 - z) * 0.5)\n tibble(x, z, y)\n}\nsims_mediador <- simular_mediador(50000)\n\n\\(X\\) y \\(Y\\) son dependientes:\n\nsims_mediador |> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1:\n\nsims_mediador |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nY vemos que la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) sólo depende de \\(Z\\). Una consecuencia es por ejemplo que la correlación debe ser cero:\n\ncor(sims_mediador |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.007\ny -0.007 1.000\n\ncor(sims_mediador |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.005\ny 0.005 1.000\n\n\nPodemos también hacer un ejemplo continuo:\n\nsimular_mediador <- function(n = 10){\n x <- rnorm(n, 100, 10)\n prob <- 1 / (1 + exp(-(x - 100)/5))\n z <- rbern(n, p = prob)\n y <- rnorm(n, 100 + 30 * z, 15)\n tibble(x, z, y)\n}\nsims_mediador <- simular_mediador(2000)\n\n\\(X\\) y \\(Y\\) son dependientes (por ejemplo si vemos la media condicional de \\(Y\\) dado \\(X\\):\n\nggplot(sims_mediador, aes(x = x, y = y, colour = z)) + geom_point() +\n geom_smooth(span = 1, se = FALSE)\n\n`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = \"cs\")'\n\n\nWarning: The following aesthetics were dropped during statistical transformation: colour\nℹ This can happen when ggplot fails to infer the correct grouping structure in\n the data.\nℹ Did you forget to specify a `group` aesthetic or to convert a numerical\n variable into a factor?\n\n\n\n\n\n\n\n\n\nSi condicionamos a \\(Z\\), no hay dependencia entre \\(X\\) y \\(Y\\)\n\nggplot(sims_mediador, aes(x = x, y = y, colour = z, group = z)) + \n geom_point() +\n geom_smooth(span = 2)\n\n`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = \"cs\")'\n\n\n\n\n\n\n\n\n\nNótese que en este ejemplo sí hay un efecto causal de \\(X\\) sobre \\(Y\\), pero está mediado por otra variable \\(Z\\). Si condicionamos a \\(Z\\), no hay relación entre \\(X\\) y \\(Y\\). El análisis condicionado podría llevarnos a una conclusión errónea de que \\(X\\) no influye sobre \\(Y\\).\n\n\n\n\n\n\nTip\n\n\n\nNota que no existe una diferencia estadística entre una bifurcación y una cadena: en ambos casos, las variables \\(X\\) y \\(Y\\) están correlacionadas, y son independientes una vez que condicionamos o estratificamos por \\(Z\\). Sin embargo, su tratamiento en inferencia causal es muy diferente.\n\n\n\nSesgo post-tratamiento\nEn McElreath (2020) se discute que en algunos estudios experimentales, se estratifica por variables que son consecuencia del tratamiento. Esto induce sesgo post-tratamiento, lo cual puede llevar a equivocaciones en donde parece que el tratamiento no tiene efecto cuando sí lo tiene. Incluso bajo condiciones de experimento (donde el tratamiento es asignado al azar) estratificar por mediadores es una mala idea. Ver más en McElreath (2020), donde por ejemplo cita una fuente que en estudios experimentales de Ciencia Política, casi la mitad de ellos sufre de este tipo de sesgo por estratificación por mediadores.\n\n\nEjemplo: Burks\nEste ejemplo es de Pearl y Mackenzie (2018). En 1926 Burks recolectó datos sobre qué tanto podría esperarse que la inteligencia de padres se hereda a los hijos (medido según una prueba de IQ). Construyó un diagrama parecido al de abajo:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape = circle]\n U\n node [shape=plaintext]\n edge [minlen = 3]\n IntPadres -> NSE\n NSE -> IntHijos\n U -> NSE\n U -> IntHijos\n IntPadres -> IntHijos\n{rank = same; U}\n}\n\")\n\n\n\n\n\n\nComo el NSE es del hogar (una medida general de estatus social), se consideró en principio como una variable pre-tratamiento a la inteligencia de los niños por la que tradicionalmente se controlaba. Burks notó que hacer esto tenía no era apropiado, pues tiene como consecuencia cortar parte del efecto total de la inteligencia sobre el la inteligencia de los hijos. En otras palabras: la inteligencia de los padres hace más probable mejor NSE, y mejor NSE presenta mejores condiciones de desarrollo para sus hijos. Estatificar por esta variable bloquea este efecto.\nAdicionalmente, como veremos, condicionar a NSE abre un camino no causal entre Inteligencia de Padres e Hijos.", + "text": "5.6 Cadenas o mediación\nEn este caso tenemos:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir=LR]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n X -> Z\n Z -> Y\n}\n\", width = 150, height = 20)\n\n\n\n\n\n\nEn este caso,\n\nExiste asociación entre \\(X\\) y \\(Y\\), pero no existe relación directa entre ellas. Decimos que \\(Z\\) es un mediador del efecto de \\(X\\) sobre \\(Y\\).\nSi condicionamos a un valor de \\(Z\\), \\(X\\) y \\(Y\\) son condicionalmente independientes.\n\nPodemos pensar en \\(Z\\) como un mediador del efecto de \\(X\\) sobre \\(Y\\). Si no permitimos que \\(Z\\) varíe, entonces la información de \\(X\\) no fluye a \\(Y\\).\nPor ejemplo, si \\(X\\) tomar o no una medicina para el dolor de cabeza, \\(Z\\) es dolor de cabeza y \\(Y\\) es bienestar general, \\(X\\) y \\(Y\\) están relacionadas. Sin embargo, si condicionamos a un valor fijo de dolor de cabeza, no hay relación entre tomar la medicina y bienestar general.\nEn términos de factorización, podemos checar la independencia condicional: como \\(p(x,y,z) = p(x)p(z|x)p(y|z)\\), entonces\n\\[p(x, y | z) = p(x,y,z) / p(z) = (p(x)(z|x)) (p(y|z) / p(z))\\] y vemos que el lado izquierdo se factoriza en una parte que sólo involucra a \\(x\\) y \\(z\\) y otro factor que sólo tiene a \\(y\\) y \\(z\\): no hay términos que incluyan conjuntamente a \\(x\\), \\(y\\) y \\(z\\). Podemos de cualquier forma continuar notando\n\\[p(x)p(z|x)/p(z) = p(x,z)/p(z) = p(x | z)\\] de modo que\n\\[p(x, y | z) = p(x|z) p(y|z) \\]\nY mostramos un ejemplo simulado:\n\nrbern <- function(n, prob){\n rbinom(n, 1, prob = prob)\n} \nsimular_mediador <- function(n = 10){\n x <- rbern(n, p = 0.5) |> as.numeric()\n z <- rbern(n, p = x * 0.8 + (1 - x) * 0.3)\n y <- rbinom(n, 2, z * 0.7 + (1 - z) * 0.5)\n tibble(x, z, y)\n}\nsims_mediador <- simular_mediador(50000)\n\n\\(X\\) y \\(Y\\) son dependientes:\n\nsims_mediador |> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1:\n\nsims_mediador |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nY vemos que la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) sólo depende de \\(Z\\). Una consecuencia es por ejemplo que la correlación debe ser cero:\n\ncor(sims_mediador |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.007\ny 0.007 1.000\n\ncor(sims_mediador |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.002\ny 0.002 1.000\n\n\nPodemos también hacer un ejemplo continuo:\n\nsimular_mediador <- function(n = 10){\n x <- rnorm(n, 100, 10)\n prob <- 1 / (1 + exp(-(x - 100)/5))\n z <- rbern(n, p = prob)\n y <- rnorm(n, 100 + 30 * z, 15)\n tibble(x, z, y)\n}\nsims_mediador <- simular_mediador(2000)\n\n\\(X\\) y \\(Y\\) son dependientes (por ejemplo si vemos la media condicional de \\(Y\\) dado \\(X\\):\n\nggplot(sims_mediador, aes(x = x, y = y, colour = z)) + geom_point() +\n geom_smooth(span = 1, se = FALSE)\n\n`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = \"cs\")'\n\n\nWarning: The following aesthetics were dropped during statistical transformation: colour\nℹ This can happen when ggplot fails to infer the correct grouping structure in\n the data.\nℹ Did you forget to specify a `group` aesthetic or to convert a numerical\n variable into a factor?\n\n\n\n\n\n\n\n\n\nSi condicionamos a \\(Z\\), no hay dependencia entre \\(X\\) y \\(Y\\)\n\nggplot(sims_mediador, aes(x = x, y = y, colour = z, group = z)) + \n geom_point() +\n geom_smooth(span = 2)\n\n`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = \"cs\")'\n\n\n\n\n\n\n\n\n\nNótese que en este ejemplo sí hay un efecto causal de \\(X\\) sobre \\(Y\\), pero está mediado por otra variable \\(Z\\). Si condicionamos a \\(Z\\), no hay relación entre \\(X\\) y \\(Y\\). El análisis condicionado podría llevarnos a una conclusión errónea de que \\(X\\) no influye sobre \\(Y\\).\n\n\n\n\n\n\nTip\n\n\n\nNota que no existe una diferencia estadística entre una bifurcación y una cadena: en ambos casos, las variables \\(X\\) y \\(Y\\) están correlacionadas, y son independientes una vez que condicionamos o estratificamos por \\(Z\\). Sin embargo, su tratamiento en inferencia causal es muy diferente.\n\n\n\nSesgo post-tratamiento\nEn McElreath (2020) se discute que en algunos estudios experimentales, se estratifica por variables que son consecuencia del tratamiento. Esto induce sesgo post-tratamiento, lo cual puede llevar a equivocaciones en donde parece que el tratamiento no tiene efecto cuando sí lo tiene. Incluso bajo condiciones de experimento (donde el tratamiento es asignado al azar) estratificar por mediadores es una mala idea. Ver más en McElreath (2020), donde por ejemplo cita una fuente que en estudios experimentales de Ciencia Política, casi la mitad de ellos sufre de este tipo de sesgo por estratificación por mediadores.\n\n\nEjemplo: Burks\nEste ejemplo es de Pearl y Mackenzie (2018). En 1926 Burks recolectó datos sobre qué tanto podría esperarse que la inteligencia de padres se hereda a los hijos (medido según una prueba de IQ). Construyó un diagrama parecido al de abajo:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape = circle]\n U\n node [shape=plaintext]\n edge [minlen = 3]\n IntPadres -> NSE\n NSE -> IntHijos\n U -> NSE\n U -> IntHijos\n IntPadres -> IntHijos\n{rank = same; U}\n}\n\")\n\n\n\n\n\n\nComo el NSE es del hogar (una medida general de estatus social), se consideró en principio como una variable pre-tratamiento a la inteligencia de los niños por la que tradicionalmente se controlaba. Burks notó que hacer esto tenía no era apropiado, pues tiene como consecuencia cortar parte del efecto total de la inteligencia sobre el la inteligencia de los hijos. En otras palabras: la inteligencia de los padres hace más probable mejor NSE, y mejor NSE presenta mejores condiciones de desarrollo para sus hijos. Estatificar por esta variable bloquea este efecto.\nAdicionalmente, como veremos, condicionar a NSE abre un camino no causal entre Inteligencia de Padres e Hijos.", "crumbs": [ "5  Modelos gráficos y causalidad" ] @@ -354,7 +354,7 @@ "href": "05-dags.html#colisionador-o-causas-alternativas", "title": "5  Modelos gráficos y causalidad", "section": "5.7 Colisionador o causas alternativas", - "text": "5.7 Colisionador o causas alternativas\nEn este caso, a \\(Z\\) también le llamamos un colisionador. Este es el caso que puede ser más difícil de entender en un principio. Consiste de la siguiente estructura:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n X -> Z\n Y -> Z\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\n\nEn este caso \\(X\\) y \\(Y\\) son independientes. Tanto \\(X\\) como \\(Y\\) influyen en \\(Z\\).\nSin embargo, si condicionamos a \\(Z\\) entonces \\(X\\) y \\(Y\\) están asociados.\n\nPor ejemplo, si observamos que el pasto está mojado, entonces saber que no llovió implica que probablemente se encendieron los aspersores.\nComo la conjunta se factoriza como:\n\\[p(x,y,z) = p(x)p(y)p(z|x,y)\\] Entonces integrando sobre \\(Z\\):\n\\[p(x,y) = \\int p(x,y,z)dz = p(x)p(y)\\int p(z|x,y)\\, dz\\] pero \\(p(z|x,y)\\) integra uno porque es una densidad, de forma que \\(x\\) y \\(y\\) son independientes.\nMostramos un ejemplo simulado:\n\nsimular_colisionador <- function(n = 10){\n x <- rbern(n, 0.5) \n y <- rbinom(n, 2, 0.7)\n z <- rbern(n, p = 0.1 + 0.7 * x * (y > 1)) \n tibble(x, z, y)\n}\nsims_colisionador <- simular_colisionador(50000)\n\n\\(X\\) y \\(Y\\) son independientes:\n\nsims_colisionador|> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\ncor(sims_colisionador |> select(x,y))\n\n x y\nx 1.000000e+00 -8.144566e-06\ny -8.144566e-06 1.000000e+00\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1:\n\nsims_colisionador |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nY vemos que la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) depende de \\(X\\) y de \\(Z\\).\nLas correlaciones condicionales, por ejemplo, no son cero:\n\nprint(\"Dado Z = 0\")\n\n[1] \"Dado Z = 0\"\n\ncor(sims_colisionador |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.274\ny -0.274 1.000\n\nprint(\"Dado Z = 1\")\n\n[1] \"Dado Z = 1\"\n\ncor(sims_colisionador |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 0.346\ny 0.346 1.000\n\n\nOtro ejemplo con variables continuas:\n\nsimular_colisionador_2 <- function(n = 10){\n x <- rnorm(n, 100, 20) \n y <- rnorm(n, 100, 20)\n z <- rbern(n, p = 0.92 * ((x + y) > 220) + 0.05) \n tibble(x, z, y)\n}\nsims_colisionador <- simular_colisionador_2(1000)\n\n\\(X\\) y \\(Y\\) son independientes:\n\nggplot(sims_colisionador, aes(x = x, y = y)) + geom_point()\n\n\n\n\n\n\n\n\nSin embargo, si condicionamos a un valor de \\(Z\\), \\(X\\) y \\(Y\\) ya no son independientes:\n\nggplot(sims_colisionador, aes(x = x, y = y, group = z, colour = factor(z))) + \n geom_point() + geom_smooth(method = \"lm\", se = FALSE) \n\n`geom_smooth()` using formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nY vemos que condicional a \\(Z\\), \\(X\\) y \\(Y\\) están correlacionadas, aunque no hay relación causal entre \\(X\\) y \\(Y\\).\n\n5.7.1 Ejemplos de colisionadores\nExisten muchos ejemplos de colisionadores en análisis de datos. Algunos ejemplos se deben a sesgo de selección (puedes dibujar diagramas para cada uno de estos):\n\nPodemos observar correlaciones entre habilidades que en realidad son independientes si observamos muestras de estudiantes seleccionados por un examen de admisión (por ejemplo, para entrar es necesario tener alta habilidad atlética y/o alta habilidad académica).\nEntre los artículos científicos publicados (ver McElreath (2020)), aquellos que son más tomados por las noticias son los menos confiables. Esta correlación puede aparecer aunque no exista relación en proyectos científicos entre confiabilidad e interés de los medios, pues lo que se fondea o publica puede tener dos razones: ser trabajo muy confiable, o ser trabajo que “está de moda” o atrae la atención de los medios.\n\nPero también puede ser consecuencia de condicionar a variables endógenos (que resultan ser colisionadores), y ocurren como parte del procesamiento o construcción de modelos. Un ejemplo interesante de McElreath (2020) es el siguiente:\n\nNos interesa saber si la edad influye en la felicidad o bienestar de las personas.\nAlgún investigador puede pensar que es necesario controlar por sí las personas están casadas o no, por ejemplo, para “quitar” ese efecto o algo así.\nEsto puede ser mala idea si consideramos que un diagrama apropiado puede ser \\(F \\rightarrow Matrim \\leftarrow Edad\\), que se basa en las observaciones de que personas más felices generalmente tienen mayor posibilidad de casarse, y también conforme pasa el tiempo, hay más oportunidades para casarse.\nEsto induce una correlación no causal entre edad y felicidad dentro de los grupos de casados y no casados, y puede llevar a conclusiones incorrectas.", + "text": "5.7 Colisionador o causas alternativas\nEn este caso, a \\(Z\\) también le llamamos un colisionador. Este es el caso que puede ser más difícil de entender en un principio. Consiste de la siguiente estructura:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n edge [minlen = 3]\n X -> Z\n Y -> Z\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\n\nEn este caso \\(X\\) y \\(Y\\) son independientes. Tanto \\(X\\) como \\(Y\\) influyen en \\(Z\\).\nSin embargo, si condicionamos a \\(Z\\) entonces \\(X\\) y \\(Y\\) están asociados.\n\nPor ejemplo, si observamos que el pasto está mojado, entonces saber que no llovió implica que probablemente se encendieron los aspersores.\nComo la conjunta se factoriza como:\n\\[p(x,y,z) = p(x)p(y)p(z|x,y)\\] Entonces integrando sobre \\(Z\\):\n\\[p(x,y) = \\int p(x,y,z)dz = p(x)p(y)\\int p(z|x,y)\\, dz\\] pero \\(p(z|x,y)\\) integra uno porque es una densidad, de forma que \\(x\\) y \\(y\\) son independientes.\nMostramos un ejemplo simulado:\n\nsimular_colisionador <- function(n = 10){\n x <- rbern(n, 0.5) \n y <- rbinom(n, 2, 0.7)\n z <- rbern(n, p = 0.1 + 0.7 * x * (y > 1)) \n tibble(x, z, y)\n}\nsims_colisionador <- simular_colisionador(50000)\n\n\\(X\\) y \\(Y\\) son independientes:\n\nsims_colisionador|> select(x, y) |> \n count(x, y) |> \n group_by(x) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") +\n labs(subtitle = \"Condicional de Y dada X\")\n\n\n\n\n\n\n\ncor(sims_colisionador |> select(x,y))\n\n x y\nx 1.00000000 0.00312845\ny 0.00312845 1.00000000\n\n\nSin embargo, si condicionamos a \\(Z\\), que puede tomar los valores 0 o 1:\n\nsims_colisionador |> \n count(x, y, z) |> \n group_by(x, z) |> \n mutate(p_cond = n / sum(n)) |>\n select(x, y, z, p_cond) |> \nggplot(aes(x = y, y = p_cond, fill = factor(x))) +\n geom_col(position = \"dodge\") + facet_wrap(~ z) +\n labs(subtitle = \"Condicional de Y dada X y Z\")\n\n\n\n\n\n\n\n\nY vemos que la condicional de \\(Y\\) dada \\(Z\\) y \\(X\\) depende de \\(X\\) y de \\(Z\\).\nLas correlaciones condicionales, por ejemplo, no son cero:\n\nprint(\"Dado Z = 0\")\n\n[1] \"Dado Z = 0\"\n\ncor(sims_colisionador |> filter(z == 0) |> select(x,y)) |> round(3)\n\n x y\nx 1.000 -0.281\ny -0.281 1.000\n\nprint(\"Dado Z = 1\")\n\n[1] \"Dado Z = 1\"\n\ncor(sims_colisionador |> filter(z == 1) |> select(x,y)) |> round(3)\n\n x y\nx 1.00 0.37\ny 0.37 1.00\n\n\nOtro ejemplo con variables continuas:\n\nsimular_colisionador_2 <- function(n = 10){\n x <- rnorm(n, 100, 20) \n y <- rnorm(n, 100, 20)\n z <- rbern(n, p = 0.92 * ((x + y) > 220) + 0.05) \n tibble(x, z, y)\n}\nsims_colisionador <- simular_colisionador_2(1000)\n\n\\(X\\) y \\(Y\\) son independientes:\n\nggplot(sims_colisionador, aes(x = x, y = y)) + geom_point()\n\n\n\n\n\n\n\n\nSin embargo, si condicionamos a un valor de \\(Z\\), \\(X\\) y \\(Y\\) ya no son independientes:\n\nggplot(sims_colisionador, aes(x = x, y = y, group = z, colour = factor(z))) + \n geom_point() + geom_smooth(method = \"lm\", se = FALSE) \n\n`geom_smooth()` using formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nY vemos que condicional a \\(Z\\), \\(X\\) y \\(Y\\) están correlacionadas, aunque no hay relación causal entre \\(X\\) y \\(Y\\).\n\n5.7.1 Ejemplos de colisionadores\nExisten muchos ejemplos de colisionadores en análisis de datos. Algunos ejemplos se deben a sesgo de selección (puedes dibujar diagramas para cada uno de estos):\n\nPodemos observar correlaciones entre habilidades que en realidad son independientes si observamos muestras de estudiantes seleccionados por un examen de admisión (por ejemplo, para entrar es necesario tener alta habilidad atlética y/o alta habilidad académica).\nEntre los artículos científicos publicados (ver McElreath (2020)), aquellos que son más tomados por las noticias son los menos confiables. Esta correlación puede aparecer aunque no exista relación en proyectos científicos entre confiabilidad e interés de los medios, pues lo que se fondea o publica puede tener dos razones: ser trabajo muy confiable, o ser trabajo que “está de moda” o atrae la atención de los medios.\n\nPero también puede ser consecuencia de condicionar a variables endógenos (que resultan ser colisionadores), y ocurren como parte del procesamiento o construcción de modelos. Un ejemplo interesante de McElreath (2020) es el siguiente:\n\nNos interesa saber si la edad influye en la felicidad o bienestar de las personas.\nAlgún investigador puede pensar que es necesario controlar por sí las personas están casadas o no, por ejemplo, para “quitar” ese efecto o algo así.\nEsto puede ser mala idea si consideramos que un diagrama apropiado puede ser \\(F \\rightarrow Matrim \\leftarrow Edad\\), que se basa en las observaciones de que personas más felices generalmente tienen mayor posibilidad de casarse, y también conforme pasa el tiempo, hay más oportunidades para casarse.\nEsto induce una correlación no causal entre edad y felicidad dentro de los grupos de casados y no casados, y puede llevar a conclusiones incorrectas.", "crumbs": [ "5  Modelos gráficos y causalidad" ] @@ -364,7 +364,7 @@ "href": "05-dags.html#razonamiento-de-descendientes", "title": "5  Modelos gráficos y causalidad", "section": "5.8 Razonamiento de descendientes", - "text": "5.8 Razonamiento de descendientes\nCondicionar a un descendiente puede entenderse como “condicionar parcialmente” o “débilmente” a los padres de ese descendiente.\nPor ejemplo, condicionar a un colisionador también produce dependencias condicionales:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n A\n edge [minlen = 3]\n X -> Z\n Y -> Z\n Z -> A\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEn este caso,\n\n\\(X\\) y \\(Y\\) son independientes\n\\(X\\) y \\(Y\\) son dependientes si condicionamos a \\(A\\).\n\nDependiendo de la naturaleza de la asociación entre el colisionador \\(Z\\) y su descendiente \\(A\\), esta dependencia puede ser más fuerte o más débil.\nPor ejemplo, en nuestro ejemplo donde el pasto mojado es un colisionador entre cuánta agua dieron los aspersores y cuánta lluvia cayó, un descendiente del pasto mojado es el estado de las plantas del jardín. Aunque los aspersores trabajan independientemente de la lluvia, si observamos que las plantas se secaron entonces lluvia y aspersores están correlacionados: por ejemplo, si noto que los aspersores están descompuestos, entonces concluimos que no hubo lluvia.\n\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X [label = lluvia]\n Y [label = aspersores]\n Z [label = humedad]\n A [label = plantas]\n edge [minlen = 3]\n X -> Z\n Y -> Z\n Z -> A\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEjemplo\n\nsimular_desc <- function(n = 10){\n x <- rbern(n, 0.5) \n y <- rbinom(n, 2, 0.7)\n z <- rbern(n, p = 0.1 + 0.7 * x * (y > 1)) \n a <- rbern(n, p = 0.5 + 0.5 * z)\n tibble(x, z, y, a)\n}\nsims_colisionador <- simular_desc(50000)\n# No hay correlación\ncor(sims_colisionador$x, sims_colisionador$y)\n\n[1] -0.002451927\n\n\nSin embargo,\n\ncor(sims_colisionador |> filter(a ==0) |> select(x,y))\n\n x y\nx 1.0000000 -0.2728071\ny -0.2728071 1.0000000\n\n\n\ncor(sims_colisionador |> filter(a ==1) |> select(x,y))\n\n x y\nx 1.0000000 0.1076825\ny 0.1076825 1.0000000\n\n\n\n\n5.8.1 Ejemplo: dependencias de colisionador\nVerificamos que en nuestro modelo de Santa Clara, efectivamente nuestro modelo no implica ninguna dependencia no condicional entre sensibilidad de la prueba y prevalencia. Eso debería ser claro de la simulación, pero de todas formas lo checamos\n\nlibrary(cmdstanr)\nmod_sc <- cmdstan_model(\"./src/sclara.stan\")\nprint(mod_sc)\n\ndata {\n int<lower=0> N;\n int<lower=0> n;\n int<lower=0> kit_pos;\n int<lower=0> n_kit_pos;\n int<lower=0> kit_neg;\n int<lower=0> n_kit_neg;\n}\n\nparameters {\n real<lower=0, upper=1> theta; //seroprevalencia\n real<lower=0, upper=1> sens; //sensibilidad\n real<lower=0, upper=1> esp; //especificidad\n}\n\ntransformed parameters {\n real<lower=0, upper=1> prob_pos;\n\n prob_pos = theta * sens + (1 - theta) * (1 - esp);\n\n}\nmodel {\n // modelo de número de positivos\n n ~ binomial(N, prob_pos);\n // modelos para resultados del kit\n kit_pos ~ binomial(n_kit_pos, sens);\n kit_neg ~ binomial(n_kit_neg, esp);\n // iniciales para cantidades no medidas\n theta ~ beta(1.0, 10.0);\n sens ~ beta(2.0, 1.0);\n esp ~ beta(2.0, 1.0);\n}\n\n\nEn este caso, no pondremos información acerca de positivos en la prueba:\n\ndatos_lista <- list(N = 0, n = 0,\n kit_pos = 103, n_kit_pos = 122,\n kit_neg = 399, n_kit_neg = 401)\najuste <- mod_sc$sample(data = datos_lista, refresh = 1000, iter_sampling = 400)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 1 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 1 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 2 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 2 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 2 finished in 0.0 seconds.\nChain 3 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 3 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 3 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 3 finished in 0.0 seconds.\nChain 4 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 4 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 4 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.5 seconds.\n\nsims <- ajuste$draws(c(\"theta\", \"sens\", \"esp\"), format = \"df\")\nresumen <- ajuste$summary(c(\"theta\"))\n\n\nggplot(sims, aes(x = theta, y = sens)) + geom_point() +\n scale_x_sqrt()\n\n\n\n\n\n\n\n\nNo vemos ninguna asocación entre estas dos variables.\nSin embargo, al condicionar al valor de Positivos, creamos una relación que no podemos interpretar como casual. En este caso particular supondremos prácticamente fija la sensibilidad para ver solamente lo que sucede en el colisionador de especificidad y número de positivos (la especificidad en este ejemplo es más crítica):\n\ndatos_lista <- list(N = 3300, n = 50,\n kit_pos = 1030000, n_kit_pos = 1220000, # números grandes para que esté practicamente\n# fija la sensibilidad\n kit_neg = 399, n_kit_neg = 401)\najuste <- mod_sc$sample(data = datos_lista, refresh = 1000, iter_sampling = 400)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 1 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 1 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 2 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 2 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 2 finished in 0.0 seconds.\nChain 3 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 3 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 3 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 3 finished in 0.0 seconds.\nChain 4 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 4 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 4 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.5 seconds.\n\nsims <- ajuste$draws(c(\"theta\", \"sens\", \"esp\"), format = \"df\")\nresumen <- ajuste$summary(c(\"theta\"))\n\n\nggplot(sims, aes(x = theta, y = esp)) + geom_point() \n\n\n\n\n\n\n\n\nY vemos que condiconando al colisionador, obtenemos una relación fuerte entre prevalencia y especificidad de la prueba: necesitaríamos más datos de especificidad para obtener una estimación útil.\n\nLa razón de que la especificidad es más importante en este ejemplo es que la prevalencia es muy baja al momento del estudio, y los falsos positivos pueden introducir más error en la estimación\nTambién repetimos nótese que el análisis correcto de estos datos no se puede hacer con intervalos separados para cada cantidad, sino que debe examinarse la conjunta de estos parámetros.\n\n\nCon estas tres estructuras elementales podemos entender de manera abstracta la existencia o no de asociaciones entre nodos de cualquier gráfica dirigida.", + "text": "5.8 Razonamiento de descendientes\nCondicionar a un descendiente puede entenderse como “condicionar parcialmente” o “débilmente” a los padres de ese descendiente.\nPor ejemplo, condicionar a un colisionador también produce dependencias condicionales:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X\n Y\n Z\n A\n edge [minlen = 3]\n X -> Z\n Y -> Z\n Z -> A\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEn este caso,\n\n\\(X\\) y \\(Y\\) son independientes\n\\(X\\) y \\(Y\\) son dependientes si condicionamos a \\(A\\).\n\nDependiendo de la naturaleza de la asociación entre el colisionador \\(Z\\) y su descendiente \\(A\\), esta dependencia puede ser más fuerte o más débil.\nPor ejemplo, en nuestro ejemplo donde el pasto mojado es un colisionador entre cuánta agua dieron los aspersores y cuánta lluvia cayó, un descendiente del pasto mojado es el estado de las plantas del jardín. Aunque los aspersores trabajan independientemente de la lluvia, si observamos que las plantas se secaron entonces lluvia y aspersores están correlacionados: por ejemplo, si noto que los aspersores están descompuestos, entonces concluimos que no hubo lluvia.\n\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n X [label = lluvia]\n Y [label = aspersores]\n Z [label = humedad]\n A [label = plantas]\n edge [minlen = 3]\n X -> Z\n Y -> Z\n Z -> A\n}\n\", width = 200, height = 50)\n\n\n\n\n\n\nEjemplo\n\nsimular_desc <- function(n = 10){\n x <- rbern(n, 0.5) \n y <- rbinom(n, 2, 0.7)\n z <- rbern(n, p = 0.1 + 0.7 * x * (y > 1)) \n a <- rbern(n, p = 0.5 + 0.5 * z)\n tibble(x, z, y, a)\n}\nsims_colisionador <- simular_desc(50000)\n# No hay correlación\ncor(sims_colisionador$x, sims_colisionador$y)\n\n[1] 0.0006861783\n\n\nSin embargo,\n\ncor(sims_colisionador |> filter(a ==0) |> select(x,y))\n\n x y\nx 1.0000000 -0.2785747\ny -0.2785747 1.0000000\n\n\n\ncor(sims_colisionador |> filter(a ==1) |> select(x,y))\n\n x y\nx 1.0000000 0.1112747\ny 0.1112747 1.0000000\n\n\n\n\n5.8.1 Ejemplo: dependencias de colisionador\nVerificamos que en nuestro modelo de Santa Clara, efectivamente nuestro modelo no implica ninguna dependencia no condicional entre sensibilidad de la prueba y prevalencia. Eso debería ser claro de la simulación, pero de todas formas lo checamos\n\nlibrary(cmdstanr)\nmod_sc <- cmdstan_model(\"./src/sclara.stan\")\nprint(mod_sc)\n\ndata {\n int<lower=0> N;\n int<lower=0> n;\n int<lower=0> kit_pos;\n int<lower=0> n_kit_pos;\n int<lower=0> kit_neg;\n int<lower=0> n_kit_neg;\n}\n\nparameters {\n real<lower=0, upper=1> theta; //seroprevalencia\n real<lower=0, upper=1> sens; //sensibilidad\n real<lower=0, upper=1> esp; //especificidad\n}\n\ntransformed parameters {\n real<lower=0, upper=1> prob_pos;\n\n prob_pos = theta * sens + (1 - theta) * (1 - esp);\n\n}\nmodel {\n // modelo de número de positivos\n n ~ binomial(N, prob_pos);\n // modelos para resultados del kit\n kit_pos ~ binomial(n_kit_pos, sens);\n kit_neg ~ binomial(n_kit_neg, esp);\n // iniciales para cantidades no medidas\n theta ~ beta(1.0, 10.0);\n sens ~ beta(2.0, 1.0);\n esp ~ beta(2.0, 1.0);\n}\n\n\nEn este caso, no pondremos información acerca de positivos en la prueba:\n\ndatos_lista <- list(N = 0, n = 0,\n kit_pos = 103, n_kit_pos = 122,\n kit_neg = 399, n_kit_neg = 401)\najuste <- mod_sc$sample(data = datos_lista, refresh = 1000, iter_sampling = 400)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 1 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 1 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 2 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 2 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 2 finished in 0.0 seconds.\nChain 3 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 3 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 3 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 3 finished in 0.0 seconds.\nChain 4 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 4 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 4 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.5 seconds.\n\nsims <- ajuste$draws(c(\"theta\", \"sens\", \"esp\"), format = \"df\")\nresumen <- ajuste$summary(c(\"theta\"))\n\n\nggplot(sims, aes(x = theta, y = sens)) + geom_point() +\n scale_x_sqrt()\n\n\n\n\n\n\n\n\nNo vemos ninguna asocación entre estas dos variables.\nSin embargo, al condicionar al valor de Positivos, creamos una relación que no podemos interpretar como casual. En este caso particular supondremos prácticamente fija la sensibilidad para ver solamente lo que sucede en el colisionador de especificidad y número de positivos (la especificidad en este ejemplo es más crítica):\n\ndatos_lista <- list(N = 3300, n = 50,\n kit_pos = 1030000, n_kit_pos = 1220000, # números grandes para que esté practicamente\n# fija la sensibilidad\n kit_neg = 399, n_kit_neg = 401)\najuste <- mod_sc$sample(data = datos_lista, refresh = 1000, iter_sampling = 400)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 1 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 1 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 2 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 2 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 2 finished in 0.0 seconds.\nChain 3 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 3 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 3 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 3 finished in 0.0 seconds.\nChain 4 Iteration: 1 / 1400 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 1400 [ 71%] (Warmup) \nChain 4 Iteration: 1001 / 1400 [ 71%] (Sampling) \nChain 4 Iteration: 1400 / 1400 [100%] (Sampling) \nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.5 seconds.\n\nsims <- ajuste$draws(c(\"theta\", \"sens\", \"esp\"), format = \"df\")\nresumen <- ajuste$summary(c(\"theta\"))\n\n\nggplot(sims, aes(x = theta, y = esp)) + geom_point() \n\n\n\n\n\n\n\n\nY vemos que condiconando al colisionador, obtenemos una relación fuerte entre prevalencia y especificidad de la prueba: necesitaríamos más datos de especificidad para obtener una estimación útil.\n\nLa razón de que la especificidad es más importante en este ejemplo es que la prevalencia es muy baja al momento del estudio, y los falsos positivos pueden introducir más error en la estimación\nTambién repetimos nótese que el análisis correcto de estos datos no se puede hacer con intervalos separados para cada cantidad, sino que debe examinarse la conjunta de estos parámetros.\n\n\nCon estas tres estructuras elementales podemos entender de manera abstracta la existencia o no de asociaciones entre nodos de cualquier gráfica dirigida.", "crumbs": [ "5  Modelos gráficos y causalidad" ] @@ -444,7 +444,7 @@ "href": "06-calculo-do.html#bloqueando-puertas-traseras", "title": "6  Identificación y cálculo-do", "section": "6.5 Bloqueando puertas traseras", - "text": "6.5 Bloqueando puertas traseras\nEn las partes anteriores vimos que estratificando por los padres de la variable de tratamiento \\(X\\) podemos construir un estimador del efecto de \\(X\\) sobre otra variable \\(Y\\), pasando de una distribución observacional a una conceptualmente experimental (dado que los supuestos causales sean aproximadamente correctos).\nSin embargo, esta aplicación de la fórmula de ajuste no funciona si existen padres que no fueron observados, y por tanto no podemos estratificar por ellos. El siguiente método (ajuste por “puerta trasera”) nos da una generalización que podemos usar dado ciertos tipos de estructura en nuestro modelo causal (veremos también por ejemplo, que a veces podemos usar menos variables que padres de la variable de interés). Nótese que una vez más, este criterio sólo depende de la gráfica causal \\(G\\) asociada a nuestro modelo, y no los modelos locales que utilizemos para modelar la condicional de cada nodo.\n\n\n\n\n\n\nAjuste de puerta trasera (Pearl)\n\n\n\nSi tenemos dos variables \\(T\\) y \\(Y\\) en una gráfica \\(G\\), un conjunto \\(Z\\) de variables satisface el criterio de puerta trasera relativo a \\(T\\) y \\(Y\\) cuando \\(Z\\) bloquea cualquier camino entre \\(T\\) y \\(Y\\) que tenga una arista que incida en \\(T\\), y ninguna variable de \\(Z\\) es descendiente de \\(T\\).\nEn tal caso, podemos utilizar la fórmula de ajuste, pero en lugar de estratificar por los padres de \\(T\\), estratificamos por las variables en \\(Z\\)\n\n\nLa idea es:\n\nQueremos bloquear todos los caminos no causales entre \\(T\\) y \\(Y\\).\nQueremos no perturbar todos los caminos dirigidos de \\(T\\) a \\(Y\\) (caminos causales).\nNo queremos activar caminos no causales entre \\(T\\) y \\(Y\\) al condicionar.\n\nCumplimos 1 al estratificar por variables que bloquean los caminos que son causas de \\(T\\), pues estos caminos no son causales y distorsionan la relación entre \\(T\\) y \\(Y\\). Al mismo tiempo, no bloqueamos caminos causales porque ningúna variable de \\(Z\\) es descendiente de \\(T\\), de modo que se satisface el criterio 2 (todos los caminos causales comienzan con \\(T\\to\\)). Finalmente, al excluir descendientes de \\(T\\) también implica que no condicionamos a colisionadores del tipo \\(T\\to \\cdots \\to Z_1\\gets Y\\), pues esto activa un camino no causal entre \\(T\\) y \\(Y\\) (se cumple 3).\n\nEjemplo (Pearl)\nConsideramos primero este ejemplo simple, donde queremos evaluar la efectividad de un tratamiento en cierta enfermedad. Los datos que tenemos disponibles son si una persona recibió o no un tratamiento, y si se recuperó o no. No se registró el nivel socioeconómico, pero sabemos que el tratamiento es caro, de forma que fue accedido más por gente de NSE más alto. También que sabemos que para este tipo de tratamiento, el peso de la persona es un factor importante. Nuestros supuestos están en la siguiente gráfica:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Trata\n Res\n node [shape = circle]\n NSE\n Peso\n U\n edge [minlen = 3]\n NSE -> Peso\n NSE -> Trata\n Trata -> Res\n Peso -> Res\n U -> NSE\n U -> Peso\n}\n\")\n\n\n\n\n\n\nObservamos que no podemos directamente usar la fórmula de ajuste pues NSE no es una variable observada.\nEn esta circunstancia no podríamos identificar el efecto causal, pues existen un caminos abiertos no causales. Quizá el tratamiento no es muy efectivo, y parece ser bueno pues fue aplicado a personas con menor peso que las que no recibieron el tratamiento, a través del efecto de NSE. Sin embargo, supón que tuviéramos disponible la variable Peso:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Trata\n Res\n Peso\n node [shape = circle]\n NSE\n U\n edge [minlen = 3]\n NSE -> Peso\n NSE -> Trata\n Trata -> Res\n Peso -> Res\n U -> NSE\n U -> Peso\n}\n\")\n\n\n\n\n\n\nEn este caso, todavía no podemos aplicar la fórmula original de ajuste pues no conocemos \\(NSE\\). Sin embargo, podemos bloquear los caminos no causales estratificando por Peso, y entonces podemos usar el criterio de puerta trasera para identificar el efecto del tratamiento, aún cuando no tengamos NSE.\n\n\nEjemplo\nPrimero consideramos un modelo generador:\n\ninv_logit <- function(x) 1 / (1 + exp(-x))\nsimular_bd <- function(n = 10){\n nse <- sample(c(0, 1), n, replace = TRUE)\n peso <- rnorm(n, 70 - 7 * nse, 12 + 2 * nse)\n trata <- rbinom(n, 1, 0.8 * nse + 0.2 * (1 - nse))\n p_trata <- inv_logit(1 * trata - 0.2 * (peso - 70))\n res <- rbinom(n, 1, p_trata)\n tibble(nse, peso, trata, res)\n}\ndatos_bd <- simular_bd(10000)\nhead(datos_bd)\n\n# A tibble: 6 × 4\n nse peso trata res\n <dbl> <dbl> <int> <int>\n1 1 71.9 0 0\n2 0 45.0 0 1\n3 0 73.5 0 0\n4 0 66.1 0 1\n5 1 49.4 1 1\n6 0 69.0 1 1\n\n\nVeamos qué sucede si cruzamos tratamiento con resultado (es una muestra grande y el error de estimación no es importante):\n\ndatos_bd |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 2678 0.533 NA \n2 1 1 3686 0.741 0.208\n\n\nSabemos que esta diferencia en respuesta puede estar confundida por un camino no causal. El verdadero efecto casual podemos calcularlo en nuestras simulaciones como sigue a partir de nuestro modelo (igualmente, usamos una muestra muy grande):\n\nsimular_efecto <- function(n = 10, peso = NULL){\n # cómo es la población\n nse <- sample(c(0, 1), n, replace = TRUE)\n if(is.null(peso)){\n peso <- rnorm(n, 70 - 7 * nse, 12 + 2 * nse)\n }\n # asignar al azar\n trata <- rbinom(n, 1, 0.5)\n p_trata <- inv_logit(1 * trata - 0.2 * (peso - 70))\n res <- rbinom(n, 1, p_trata)\n tibble(nse, peso, trata, res)\n}\nsims_efecto <- simular_efecto(20000)\nresumen <- sims_efecto |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\ndif_real <- resumen$dif[2]\nresumen\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 5929 0.590 NA \n2 1 1 6996 0.703 0.113\n\n\nLa estimación ingenua del cruce simple es mucho más grande que el verdadero efecto.\nPodemos también calcular el efecto para un peso particular:\n\nsims_efecto <- simular_efecto(20000, peso = 70)\nres_70 <- sims_efecto |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\ndif_70 <- res_70$dif[2]\nres_70\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 5002 0.500 NA \n2 1 1 7344 0.735 0.235\n\n\nSuponiendo nuestro diagrama, queremos estimar estratificando por peso. Podríamos usar un sólo modelo logístico, pero pueden ser más simples los cálculos si construimos nuestro modelo en stan. En este caso, podríamos calcular las diferencias para un peso particular, por ejemplo 70 kg (en lugar de modelar estaturas para producir una estimación de diferencia promedio).\nUsaremos una muestra de 2 mil personas:\n\nmod_trata <- cmdstan_model(\"./src/trata-backdoor.stan\")\nprint(mod_trata)\n\ndata {\n int<lower=0> N;\n vector[N] trata;\n array[N] int res;\n vector[N] peso;\n\n}\n\ntransformed data {\n real media_peso;\n\n // centrar\n media_peso = mean(peso);\n}\n\nparameters {\n real gamma_0;\n real gamma_1;\n real gamma_2;\n}\n\ntransformed parameters {\n vector[N] p_logit_res;\n\n p_logit_res = gamma_0 + gamma_1 * trata + gamma_2 * (peso - media_peso);\n\n}\n\nmodel {\n // modelo de resultado\n res ~ bernoulli_logit(p_logit_res);\n gamma_0 ~ normal(0, 2);\n gamma_1 ~ normal(0, 1);\n gamma_2 ~ normal(0, 0.2);\n\n\n}\ngenerated quantities {\n real dif_trata;\n real p_trata;\n real p_no_trata;\n\n real peso_sim = 70;\n {\n array[2000] int res_trata;\n array[2000] int res_no_trata;\n for(k in 1:2000){\n res_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 1 +\n gamma_2 * (peso_sim - media_peso)));\n res_no_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 0 +\n gamma_2 * (peso_sim - media_peso)));\n }\n dif_trata = mean(res_trata) - mean(res_no_trata);\n }\n}\n\n\n\nset.seed(915)\ndatos_bd <- simular_bd(2000)\ndatos_lista <- list(N = nrow(datos_bd),\n trata = datos_bd$trata, res = datos_bd$res,\n peso = datos_bd$peso)\najuste <- mod_trata$sample(data = datos_lista, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 1.9 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 2.0 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 1.9 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 2.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 2.0 seconds.\nTotal execution time: 8.2 seconds.\n\nsims <- ajuste$draws( format = \"df\")\nresumen <- ajuste$summary(c( \"dif_trata\"))\n\n\nresumen |> select(variable, mean, q5, q95)\n\n# A tibble: 1 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n1 dif_trata 0.214 0.162 0.268\n\nsims |> select(dif_trata) |> \n ggplot(aes(x = dif_trata)) + geom_histogram() +\n geom_vline(xintercept = dif_70, colour = \"red\")\n\nWarning: Dropping 'draws_df' class as required metadata was removed.\n\n\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY obtenemos una estimación correcta del efecto en 70 kg. Podríamos también calcular el efecto en distintos pesos (nuestro estimador es una curva), promediar estimando una distribución de pesos modelada, o tomar una distribución fija de pesos para modelar (cada una de estas estrategias tiene propósitos diferentes).\nSi queremos tener un efecto promedio, podemos modelar los pesos. Otra estrategia es promediar sobre los valores observados de la muestra. Nótese que esto ignora una parte de la incertidumbre proveniente de la muestra particular usada.\n\nmod_trata <- cmdstan_model(\"./src/trata-backdoor-promedio.stan\")\nprint(mod_trata)\n\ndata {\n int<lower=0> N;\n vector[N] trata;\n array[N] int res;\n vector[N] peso;\n\n}\n\ntransformed data {\n real media_peso;\n\n // centrar\n media_peso = mean(peso);\n}\n\nparameters {\n real gamma_0;\n real gamma_1;\n real gamma_2;\n}\n\ntransformed parameters {\n vector[N] p_logit_res;\n\n p_logit_res = gamma_0 + gamma_1 * trata + gamma_2 * (peso - media_peso);\n\n}\n\nmodel {\n // modelo de resultado\n res ~ bernoulli_logit(p_logit_res);\n gamma_0 ~ normal(0, 2);\n gamma_1 ~ normal(0, 1);\n gamma_2 ~ normal(0, 0.2);\n\n\n}\ngenerated quantities {\n real dif_trata;\n real p_trata;\n real p_no_trata;\n vector[N] probs;\n\n for(i in 1:N){\n probs[i] = 1.0 / N;\n }\n\n {\n array[2000] int res_trata;\n array[2000] int res_no_trata;\n for(k in 1:2000){\n real peso_sim = peso[categorical_rng(probs)];\n res_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 1 +\n gamma_2 * (peso_sim - media_peso)));\n res_no_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 0 +\n gamma_2 * (peso_sim - media_peso)));\n }\n p_trata = mean(res_trata);\n p_no_trata = mean(res_no_trata);\n }\n dif_trata = p_trata - p_no_trata;\n\n}\n\n\n\ndatos_lista <- list(N = nrow(datos_bd),\n trata = datos_bd$trata, res = datos_bd$res,\n peso = datos_bd$peso)\najuste <- mod_trata$sample(data = datos_lista, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 11.0 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 10.9 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 11.0 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 10.9 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 10.9 seconds.\nTotal execution time: 44.0 seconds.\n\nsims <- ajuste$draws(c(\"dif_trata\"), format = \"df\")\n\n\nresumen <- ajuste$summary(c( \"dif_trata\"))\nresumen |> select(variable, mean, q5, q95)\n\n# A tibble: 1 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n1 dif_trata 0.111 0.0805 0.141\n\nsims |> select(dif_trata) |> \n ggplot(aes(x = dif_trata)) + geom_histogram() +\n geom_vline(xintercept = dif_real, colour = \"red\")\n\nWarning: Dropping 'draws_df' class as required metadata was removed.\n\n\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY recuperamos nuevamente el efecto verdadero que mostramos arriba.", + "text": "6.5 Bloqueando puertas traseras\nEn las partes anteriores vimos que estratificando por los padres de la variable de tratamiento \\(X\\) podemos construir un estimador del efecto de \\(X\\) sobre otra variable \\(Y\\), pasando de una distribución observacional a una conceptualmente experimental (dado que los supuestos causales sean aproximadamente correctos).\nSin embargo, esta aplicación de la fórmula de ajuste no funciona si existen padres que no fueron observados, y por tanto no podemos estratificar por ellos. El siguiente método (ajuste por “puerta trasera”) nos da una generalización que podemos usar dado ciertos tipos de estructura en nuestro modelo causal (veremos también por ejemplo, que a veces podemos usar menos variables que padres de la variable de interés). Nótese que una vez más, este criterio sólo depende de la gráfica causal \\(G\\) asociada a nuestro modelo, y no los modelos locales que utilizemos para modelar la condicional de cada nodo.\n\n\n\n\n\n\nAjuste de puerta trasera (Pearl)\n\n\n\nSi tenemos dos variables \\(T\\) y \\(Y\\) en una gráfica \\(G\\), un conjunto \\(Z\\) de variables satisface el criterio de puerta trasera relativo a \\(T\\) y \\(Y\\) cuando \\(Z\\) bloquea cualquier camino entre \\(T\\) y \\(Y\\) que tenga una arista que incida en \\(T\\), y ninguna variable de \\(Z\\) es descendiente de \\(T\\).\nEn tal caso, podemos utilizar la fórmula de ajuste, pero en lugar de estratificar por los padres de \\(T\\), estratificamos por las variables en \\(Z\\)\n\n\nLa idea es:\n\nQueremos bloquear todos los caminos no causales entre \\(T\\) y \\(Y\\).\nQueremos no perturbar todos los caminos dirigidos de \\(T\\) a \\(Y\\) (caminos causales).\nNo queremos activar caminos no causales entre \\(T\\) y \\(Y\\) al condicionar.\n\nCumplimos 1 al estratificar por variables que bloquean los caminos que son causas de \\(T\\), pues estos caminos no son causales y distorsionan la relación entre \\(T\\) y \\(Y\\). Al mismo tiempo, no bloqueamos caminos causales porque ningúna variable de \\(Z\\) es descendiente de \\(T\\), de modo que se satisface el criterio 2 (todos los caminos causales comienzan con \\(T\\to\\)). Finalmente, al excluir descendientes de \\(T\\) también implica que no condicionamos a colisionadores del tipo \\(T\\to \\cdots \\to Z_1\\gets Y\\), pues esto activa un camino no causal entre \\(T\\) y \\(Y\\) (se cumple 3).\n\nEjemplo (Pearl)\nConsideramos primero este ejemplo simple, donde queremos evaluar la efectividad de un tratamiento en cierta enfermedad. Los datos que tenemos disponibles son si una persona recibió o no un tratamiento, y si se recuperó o no. No se registró el nivel socioeconómico, pero sabemos que el tratamiento es caro, de forma que fue accedido más por gente de NSE más alto. También que sabemos que para este tipo de tratamiento, el peso de la persona es un factor importante. Nuestros supuestos están en la siguiente gráfica:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Trata\n Res\n node [shape = circle]\n NSE\n Peso\n U\n edge [minlen = 3]\n NSE -> Peso\n NSE -> Trata\n Trata -> Res\n Peso -> Res\n U -> NSE\n U -> Peso\n}\n\")\n\n\n\n\n\n\nObservamos que no podemos directamente usar la fórmula de ajuste pues NSE no es una variable observada.\nEn esta circunstancia no podríamos identificar el efecto causal, pues existen un caminos abiertos no causales. Quizá el tratamiento no es muy efectivo, y parece ser bueno pues fue aplicado a personas con menor peso que las que no recibieron el tratamiento, a través del efecto de NSE. Sin embargo, supón que tuviéramos disponible la variable Peso:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Trata\n Res\n Peso\n node [shape = circle]\n NSE\n U\n edge [minlen = 3]\n NSE -> Peso\n NSE -> Trata\n Trata -> Res\n Peso -> Res\n U -> NSE\n U -> Peso\n}\n\")\n\n\n\n\n\n\nEn este caso, todavía no podemos aplicar la fórmula original de ajuste pues no conocemos \\(NSE\\). Sin embargo, podemos bloquear los caminos no causales estratificando por Peso, y entonces podemos usar el criterio de puerta trasera para identificar el efecto del tratamiento, aún cuando no tengamos NSE.\n\n\nEjemplo\nPrimero consideramos un modelo generador:\n\ninv_logit <- function(x) 1 / (1 + exp(-x))\nsimular_bd <- function(n = 10){\n nse <- sample(c(0, 1), n, replace = TRUE)\n peso <- rnorm(n, 70 - 7 * nse, 12 + 2 * nse)\n trata <- rbinom(n, 1, 0.8 * nse + 0.2 * (1 - nse))\n p_trata <- inv_logit(1 * trata - 0.2 * (peso - 70))\n res <- rbinom(n, 1, p_trata)\n tibble(nse, peso, trata, res)\n}\ndatos_bd <- simular_bd(10000)\nhead(datos_bd)\n\n# A tibble: 6 × 4\n nse peso trata res\n <dbl> <dbl> <int> <int>\n1 1 71.9 0 0\n2 0 45.0 0 1\n3 0 73.5 0 0\n4 0 66.1 0 1\n5 1 49.4 1 1\n6 0 69.0 1 1\n\n\nVeamos qué sucede si cruzamos tratamiento con resultado (es una muestra grande y el error de estimación no es importante):\n\ndatos_bd |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 2678 0.533 NA \n2 1 1 3686 0.741 0.208\n\n\nSabemos que esta diferencia en respuesta puede estar confundida por un camino no causal. El verdadero efecto casual podemos calcularlo en nuestras simulaciones como sigue a partir de nuestro modelo (igualmente, usamos una muestra muy grande):\n\nsimular_efecto <- function(n = 10, peso = NULL){\n # cómo es la población\n nse <- sample(c(0, 1), n, replace = TRUE)\n if(is.null(peso)){\n peso <- rnorm(n, 70 - 7 * nse, 12 + 2 * nse)\n }\n # asignar al azar\n trata <- rbinom(n, 1, 0.5)\n p_trata <- inv_logit(1 * trata - 0.2 * (peso - 70))\n res <- rbinom(n, 1, p_trata)\n tibble(nse, peso, trata, res)\n}\nsims_efecto <- simular_efecto(20000)\nresumen <- sims_efecto |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\ndif_real <- resumen$dif[2]\nresumen\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 5929 0.590 NA \n2 1 1 6996 0.703 0.113\n\n\nLa estimación ingenua del cruce simple es mucho más grande que el verdadero efecto.\nPodemos también calcular el efecto para un peso particular:\n\nsims_efecto <- simular_efecto(20000, peso = 70)\nres_70 <- sims_efecto |> \n count(trata, res) |>\n group_by(trata) |> \n mutate(p = n / sum(n)) |> \n filter(res == 1) |> \n ungroup() |> \n mutate(dif = p - lag(p))\ndif_70 <- res_70$dif[2]\nres_70\n\n# A tibble: 2 × 5\n trata res n p dif\n <int> <int> <int> <dbl> <dbl>\n1 0 1 5002 0.500 NA \n2 1 1 7344 0.735 0.235\n\n\nSuponiendo nuestro diagrama, queremos estimar estratificando por peso. Podríamos usar un sólo modelo logístico, pero pueden ser más simples los cálculos si construimos nuestro modelo en stan. En este caso, podríamos calcular las diferencias para un peso particular, por ejemplo 70 kg (en lugar de modelar estaturas para producir una estimación de diferencia promedio).\nUsaremos una muestra de 2 mil personas:\n\nmod_trata <- cmdstan_model(\"./src/trata-backdoor.stan\")\nprint(mod_trata)\n\ndata {\n int<lower=0> N;\n vector[N] trata;\n array[N] int res;\n vector[N] peso;\n\n}\n\ntransformed data {\n real media_peso;\n\n // centrar\n media_peso = mean(peso);\n}\n\nparameters {\n real gamma_0;\n real gamma_1;\n real gamma_2;\n}\n\ntransformed parameters {\n vector[N] p_logit_res;\n\n p_logit_res = gamma_0 + gamma_1 * trata + gamma_2 * (peso - media_peso);\n\n}\n\nmodel {\n // modelo de resultado\n res ~ bernoulli_logit(p_logit_res);\n gamma_0 ~ normal(0, 2);\n gamma_1 ~ normal(0, 1);\n gamma_2 ~ normal(0, 0.2);\n\n\n}\ngenerated quantities {\n real dif_trata;\n real p_trata;\n real p_no_trata;\n\n real peso_sim = 70;\n {\n array[2000] int res_trata;\n array[2000] int res_no_trata;\n for(k in 1:2000){\n res_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 1 +\n gamma_2 * (peso_sim - media_peso)));\n res_no_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 0 +\n gamma_2 * (peso_sim - media_peso)));\n }\n dif_trata = mean(res_trata) - mean(res_no_trata);\n }\n}\n\n\n\nset.seed(915)\ndatos_bd <- simular_bd(2000)\ndatos_lista <- list(N = nrow(datos_bd),\n trata = datos_bd$trata, res = datos_bd$res,\n peso = datos_bd$peso)\najuste <- mod_trata$sample(data = datos_lista, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 1.9 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 1.9 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 1.9 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 2.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 1.9 seconds.\nTotal execution time: 8.2 seconds.\n\nsims <- ajuste$draws( format = \"df\")\nresumen <- ajuste$summary(c( \"dif_trata\"))\n\n\nresumen |> select(variable, mean, q5, q95)\n\n# A tibble: 1 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n1 dif_trata 0.214 0.162 0.268\n\nsims |> select(dif_trata) |> \n ggplot(aes(x = dif_trata)) + geom_histogram() +\n geom_vline(xintercept = dif_70, colour = \"red\")\n\nWarning: Dropping 'draws_df' class as required metadata was removed.\n\n\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY obtenemos una estimación correcta del efecto en 70 kg. Podríamos también calcular el efecto en distintos pesos (nuestro estimador es una curva), promediar estimando una distribución de pesos modelada, o tomar una distribución fija de pesos para modelar (cada una de estas estrategias tiene propósitos diferentes).\nSi queremos tener un efecto promedio, podemos modelar los pesos. Otra estrategia es promediar sobre los valores observados de la muestra. Nótese que esto ignora una parte de la incertidumbre proveniente de la muestra particular usada.\n\nmod_trata <- cmdstan_model(\"./src/trata-backdoor-promedio.stan\")\nprint(mod_trata)\n\ndata {\n int<lower=0> N;\n vector[N] trata;\n array[N] int res;\n vector[N] peso;\n\n}\n\ntransformed data {\n real media_peso;\n\n // centrar\n media_peso = mean(peso);\n}\n\nparameters {\n real gamma_0;\n real gamma_1;\n real gamma_2;\n}\n\ntransformed parameters {\n vector[N] p_logit_res;\n\n p_logit_res = gamma_0 + gamma_1 * trata + gamma_2 * (peso - media_peso);\n\n}\n\nmodel {\n // modelo de resultado\n res ~ bernoulli_logit(p_logit_res);\n gamma_0 ~ normal(0, 2);\n gamma_1 ~ normal(0, 1);\n gamma_2 ~ normal(0, 0.2);\n\n\n}\ngenerated quantities {\n real dif_trata;\n real p_trata;\n real p_no_trata;\n vector[N] probs;\n\n for(i in 1:N){\n probs[i] = 1.0 / N;\n }\n\n {\n array[2000] int res_trata;\n array[2000] int res_no_trata;\n for(k in 1:2000){\n real peso_sim = peso[categorical_rng(probs)];\n res_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 1 +\n gamma_2 * (peso_sim - media_peso)));\n res_no_trata[k] = bernoulli_rng(\n inv_logit(gamma_0 + gamma_1 * 0 +\n gamma_2 * (peso_sim - media_peso)));\n }\n p_trata = mean(res_trata);\n p_no_trata = mean(res_no_trata);\n }\n dif_trata = p_trata - p_no_trata;\n\n}\n\n\n\ndatos_lista <- list(N = nrow(datos_bd),\n trata = datos_bd$trata, res = datos_bd$res,\n peso = datos_bd$peso)\najuste <- mod_trata$sample(data = datos_lista, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 10.9 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 10.9 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 10.9 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 10.9 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 10.9 seconds.\nTotal execution time: 44.0 seconds.\n\nsims <- ajuste$draws(c(\"dif_trata\"), format = \"df\")\n\n\nresumen <- ajuste$summary(c( \"dif_trata\"))\nresumen |> select(variable, mean, q5, q95)\n\n# A tibble: 1 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n1 dif_trata 0.111 0.0805 0.141\n\nsims |> select(dif_trata) |> \n ggplot(aes(x = dif_trata)) + geom_histogram() +\n geom_vline(xintercept = dif_real, colour = \"red\")\n\nWarning: Dropping 'draws_df' class as required metadata was removed.\n\n\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY recuperamos nuevamente el efecto verdadero que mostramos arriba.", "crumbs": [ "6  Identificación y cálculo-do" ] @@ -464,7 +464,7 @@ "href": "06-calculo-do.html#el-criterio-de-puerta-delantera", "title": "6  Identificación y cálculo-do", "section": "6.7 El criterio de puerta delantera", - "text": "6.7 El criterio de puerta delantera\nEn algunos casos, puede ser que no sea posible bloquear algún camino no causal con variables observadas. Un ejemplo clásico es el de la discusión acerca de la relación de fumar con cáncer de pulmón. Algunos estadísticos plantearon que los estudios de asociación entre fumar y cáncer de pulmón podrían tener efectos gravemente confundidos, por ejemplo, por aspectos genéticos que hacen a una persona propensa a fumar al mismo tiempo que aumenta su probabilidad de fumar:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n F\n C\n node [shape = circle]\n U\n edge [minlen = 3]\n U -> F\n U -> C\n F -> C\n{rank= same; C; F}\n}\n\")\n\n\n\n\n\n\nEn este caso, el efecto de fumar (\\(F\\)) sobre cáncer (\\(C\\)) no es identificable pues no podemos condicionar a la variable de Genotipo (\\(U\\)). Supongamos que tenemos una medida adicional, que es la cantidad de depósitos de alquitrán den los pulmones de los pacientes. Este es es afectado por \\(F\\), y a su vez, el alquitrán incrementa la probabilidad de cáncer:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n F\n C\n A\n node [shape = circle]\n U\n edge [minlen = 3]\n U -> F\n U -> C\n F -> A\n A -> C\n{rank= same; C; F; A}\n}\n\")\n\n\n\n\n\n\nLa idea es primero estimar el efecto de \\(F\\) sobre \\(A\\), y después estimar el efecto de \\(A\\) sobre \\(C\\). La “composición” de estos dos efectos, dado el diagrama, debe darnos el estimador correcto. Primero consideramos el efecto de \\(F\\) sobre \\(A\\), y tenemos que (regla 2)\n\\[p(a|do(f)) = p(a|f),\\] La igualdad se debe a que una vez que condicionamos a \\(F\\) no hay puertas traseras entre \\(F\\) y \\(A\\) (pues no condicionamos a \\(C\\)). Esta dependencia causal la podemos entonces estimar de los datos.\nEl efecto de \\(A\\) sobre \\(C\\) también es identificable, pues el camino no causal se bloquea cuando condicionamos a \\(F\\), de forma que por la fórmula de ajuste:\n\\[p(c|do(a)) = \\int p(c|a, f') p(f')\\, df'\\]\nAhora encadenamos estas dos ecuaciones:\n\\[p(c|do(f)) = \\int p(c|do(a))p(a|f)\\,da\\]\nque equivale en simulación a: dado un valor de \\(F\\), simulamos \\(A\\) con nuestro modelo ajustado con datos naturales. Ahora intervenimos \\(A\\) con el valor \\(a\\) que obtuvimos y simulamos \\(C\\). Sin embargo, para hacer este último paso con datos naturales, necesitamos usar el criterio de puerta trasera como explicamos arriba: simulamos entonces \\(f´\\) de \\(p(f)\\), y después simulamos \\(C\\) en función de \\(a\\) y \\(f´\\) (con una distribución construida a partir de datos).\nRequerimos en este caso construir y estimar la condicional \\(p(c|a, f)\\) basado en los datos.\nEn fórmula, en general, se escribe como:\n\n\n\n\n\n\nCriterio de fuerta delantera (Pearl)\n\n\n\nDecimos que un conjunto de variables \\(A\\) satisface el criterio de puerta delantera en relación a las variables \\(F\\) y \\(C\\) cuando:\n\n\\(A\\) intercepta todos las cadenas dirigidos de \\(F\\) a \\(C\\)\nNo hay ningún camino activo de puerta trasera de \\(F\\) a \\(A\\)\nTodos los caminos de puerta trasera de \\(A\\) a \\(C\\) están bloqueados por \\(F\\).\n\nSi \\(A\\) satisface el criterio de puerta delantera en relación a \\(F\\) y \\(C\\), entonces el efecto causal de \\(F\\) en \\(C\\) es identificable y está dado por la fórmula:\n\\[p(c|do(f)) = \\int \\left [ \\int p(c|a,f´)p(f´)\\,df´ \\right ] p(a|f)\\,da\\]\n\n\nTodas estas cantidades puede estimarse de los datos.\n\nEjemplo: proceso generador\nAntes de aplicar este nuevo procedimiento, describamos el proceso generador que utilizaremos:\n\n# simular distribución natural\nsimular_fd <- function(n = 10, efecto_a = 0.3){\n ## causa común\n u <- rnorm(n, 0, 1);\n # cantidad que fuma\n f <- exp(rnorm(n, 1 + 0.2 * u, 0.1))\n # acumulación de alquitrán\n a <- rnorm(n, 4 * f, 2)\n # probabilidad de cancer\n p_c <- inv_logit(-6 + efecto_a * a + 2 * u)\n c <- rbinom(n, 1, p_c)\n tibble(f, a, c, u)\n}\n# simular datos intervenidos (suponiendo que conocemos todo)\nsim_int_f <- function(n = 100, do_f = 0.3, efecto_a = 0.3){\n a <- rnorm(n, 4 * do_f, 2)\n u <- rnorm(n, 0, 1)\n p_c <- inv_logit(-6 + efecto_a * a + 2 * u)\n c <- rbinom(n, 1, p_c)\n tibble(do_f = do_f, media_c = mean(c))\n}\n\n\nset.seed(4481)\nsims_fd <- simular_fd(5000)\nsims_fd_1 <- simular_fd(10000)\nqplot(sims_fd$f, sims_fd$a)\n\nWarning: `qplot()` was deprecated in ggplot2 3.4.0.\n\n\n\n\n\n\n\n\n\n¿Cómo se ve la relación de fumador con cáncer? En esta gráfica mostramos también el valor de la variable no observada \\(U\\). Nótese que parte de la correlación positiva que existe es debido a esta variable \\(U\\).\n\nggplot(sims_fd, aes(x = f, y = c, colour = u)) + \n geom_jitter() + scale_colour_continuous(type = \"viridis\")\n\n\n\n\n\n\n\n\nAhora veamos cómo se ve el efecto de \\(F\\) sobre \\(C\\) y también cómo se ve el cruce de \\(F\\) y \\(C\\) en los datos naturales:\n\nsims_1 <- map_df(seq(1, 4, 0.5), ~ sim_int_f(100000, .x))\n\nsims_1 |> \n ggplot() + geom_line(aes(x = do_f, y = media_c)) +\n geom_smooth(data = sims_fd_1, aes(x = f, y = c), method = \"loess\", span = 0.3, se = FALSE, colour =\"red\") + xlab(\"Grado de tabaquismo\") +\n xlim(c(1,4))\n\n`geom_smooth()` using formula = 'y ~ x'\n\n\nWarning: Removed 376 rows containing non-finite values (`stat_smooth()`).\n\n\n\n\n\n\n\n\n\nEn efecto causal promedio de fumar, en cada nivel, sobre la incidencia de cáncer de pulmón, suponiendo nuestro proceso generador. Nótese que la relación no es tan fuerte como observamos en los datos naturales (en rojo). Esto se debe a que en los datos naturales, las personas existe una causa común entre no fumar y prevenir cáncer de pulmón.\n\n\nEjemplo: estimación con puerta delantera\nVeamos cómo sería la estimación si tuviéramos datos disponible, y si es que podemos recuperar el efecto correcto dados los datos observados y la técnica de puerta delantera.\nNótese que sólo necesitamos \\(p(c|a, f), p(a|f)\\) y \\(p(f)\\). Estos son modelos estadísticos con el que podemos identificar el efecto que nos interesa. Una vez que los estimemos, podemos usar simulación:\n\nFijamos una \\(f\\).\nSimulamos una \\(a\\) del modelo \\(p(a|f)\\)\nPara calcular \\(\\int p(c|a,f')p(f')\\), tenemos que simular un valor \\(f'\\) de la marginal de \\(p(f)\\), y luego, sustituir junto la \\(a\\) de 1 para simular una \\(c\\) de \\(p(c|a, f')\\).\nConsideramos solamente \\(c\\) y \\(f\\) para resumir el efecto.\n\n\nset.seed(481)\nsims_fd <- simular_fd(2000)\nmod_front_door <- cmdstan_model(\"./src/front-door.stan\")\nprint(mod_front_door)\n\ndata {\n int<lower=0> N;\n int<lower=0> n_f;\n vector[N] f;\n vector[N] a;\n array[N] int<lower=0, upper=1> c;\n array[n_f] real do_f;\n\n}\n\ntransformed data {\n real media_a;\n real media_f;\n\n media_a = mean(a);\n media_f = mean(f);\n}\n\nparameters {\n real<lower=0> alpha;\n real alpha_a;\n real<lower=0> alpha_f;\n real int_a;\n real beta_0;\n real<lower=0> beta_1;\n real<lower=0> beta;\n real<lower=0> a_f;\n real<lower=0> b_f;\n real<lower=0> sigma_a;\n real<lower=0> sigma_f;\n\n}\n\n\n\ntransformed parameters {\n\n\n}\n\nmodel {\n f ~ gamma(a_f, b_f);\n a ~ normal(beta * f, sigma_a);\n c ~ bernoulli_logit(int_a + alpha_a * a + alpha_f * f);\n alpha_a ~ normal(0, 1);\n alpha_f ~ normal(0, 1);\n int_a ~ normal(0, 3);\n sigma_a ~ normal(0, 1);\n sigma_f ~ normal(0, 0.1);\n alpha ~ normal(0, 1);\n beta ~ normal(0, 1);\n beta_0 ~ normal(0, 3);\n beta_1 ~ normal(0, 1);\n\n}\ngenerated quantities {\n array[n_f] real mean_c;\n\n for(i in 1:n_f){\n array[2000] real res_sim;\n for(j in 1:2000){\n real a_sim = normal_rng(beta * (do_f[i]), sigma_a);\n real f_sim = gamma_rng(a_f, b_f);\n res_sim[j] = bernoulli_rng(inv_logit(int_a + alpha_a * a_sim + alpha_f * f_sim));\n }\n mean_c[i] = mean(res_sim);\n }\n\n}\n\n\n\ndo_f <- seq(1, 4, 0.1)\nn_f <- length(do_f)\nsims <- mod_front_door$sample(data = list(N = nrow(sims_fd),\n f = sims_fd$f, a = sims_fd$a,\n c = sims_fd$c, do_f = do_f, n_f = n_f),\n init = 0.01, step_size = 0.01, \n refresh = 1000,\n parallel_chains = 4)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 42.9 seconds.\nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 43.0 seconds.\nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 44.3 seconds.\nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 44.5 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 43.7 seconds.\nTotal execution time: 44.5 seconds.\n\n\n\nsims_efecto_tbl <- sims$draws(\"mean_c\", format = \"df\") |> \n pivot_longer(cols = contains(\"mean_c\"), values_to = \"media_c\") |> \n separate(name, c(\"nom\", \"id\"), \n sep = \"[\\\\[\\\\]]\", convert = TRUE, extra = \"drop\") |> \n left_join(tibble(f = do_f) |> \n mutate(id = seq_along(f))) \nresumen_tbl <- sims_efecto_tbl |> \n group_by(id, f) |> \n summarise(media = mean(media_c), \n q5 = quantile(media_c, 0.05),\n q95 = quantile(media_c, 0.95))\n\n\nggplot(resumen_tbl) + \n geom_linerange(aes(x= f, ymax = q95, ymin = q5), colour = \"red\") + \n geom_point(aes(x = f, y = media), colour = \"red\") +\n geom_line(data = sims_1, aes(x = do_f, y = media_c)) +\n xlab(\"Nivel de tabaquismo\") + ylab(\"Prop afectada\")\n\n\n\n\n\n\n\n\nY parece que hemos obtenido una estimación razonable del efecto causal de fumar sobre cáncer. Recordemos también que debemos ser cuidadosos al comparar intervalos que salen del mismo modelo por su nivel de traslape.\nPor ejemplo, si quisiéramos calcular contrastes con el nivel 2 de tabaquismo:\n\nefecto_2 <- sims_efecto_tbl |> filter(f == 2) |> \n select(.draw, efecto_2 = media_c)\ncomp_tbl <- left_join(sims_efecto_tbl, efecto_2) |> \n mutate(dif_2 = media_c - efecto_2)\n\nJoining with `by = join_by(.draw)`\n\ncomp_tbl |> group_by(f) |> \n summarise(media = mean(dif_2), q5 = quantile(dif_2, 0.05),\n q95 = quantile(dif_2, 0.95)) |> \nggplot() + geom_linerange(aes(x= f, ymax = q95, ymin = q5)) + geom_point(aes(x = f, y = media)) +\n xlab(\"Nivel de tabaquismo\") + ylab(\"Prop afectada\")\n\n\n\n\n\n\n\n\nNota: nótese como en este ejemplo hemos evitado incluir en nuestro modelo la variable no observada \\(U\\), gracias al procedimiento de puerta delantera descrito arriba.\nEs posible sin embargo intentar un modelo completo bayesiano, sin necesidad de recordar la fórmula. El procedimiento, que es más difícil de ajustar: considera una variable latente \\(U\\) no observada, y es necesario definir cómo puede ser su relación con sus descendientes. Es necesario más cuidado en definir formas funcionales e iniciales apropiadas para que los muestreadores funcionen apropiadamente.\n\n\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", + "text": "6.7 El criterio de puerta delantera\nEn algunos casos, puede ser que no sea posible bloquear algún camino no causal con variables observadas. Un ejemplo clásico es el de la discusión acerca de la relación de fumar con cáncer de pulmón. Algunos estadísticos plantearon que los estudios de asociación entre fumar y cáncer de pulmón podrían tener efectos gravemente confundidos, por ejemplo, por aspectos genéticos que hacen a una persona propensa a fumar al mismo tiempo que aumenta su probabilidad de fumar:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n F\n C\n node [shape = circle]\n U\n edge [minlen = 3]\n U -> F\n U -> C\n F -> C\n{rank= same; C; F}\n}\n\")\n\n\n\n\n\n\nEn este caso, el efecto de fumar (\\(F\\)) sobre cáncer (\\(C\\)) no es identificable pues no podemos condicionar a la variable de Genotipo (\\(U\\)). Supongamos que tenemos una medida adicional, que es la cantidad de depósitos de alquitrán den los pulmones de los pacientes. Este es es afectado por \\(F\\), y a su vez, el alquitrán incrementa la probabilidad de cáncer:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n node [shape=plaintext]\n F\n C\n A\n node [shape = circle]\n U\n edge [minlen = 3]\n U -> F\n U -> C\n F -> A\n A -> C\n{rank= same; C; F; A}\n}\n\")\n\n\n\n\n\n\nLa idea es primero estimar el efecto de \\(F\\) sobre \\(A\\), y después estimar el efecto de \\(A\\) sobre \\(C\\). La “composición” de estos dos efectos, dado el diagrama, debe darnos el estimador correcto. Primero consideramos el efecto de \\(F\\) sobre \\(A\\), y tenemos que (regla 2)\n\\[p(a|do(f)) = p(a|f),\\] La igualdad se debe a que una vez que condicionamos a \\(F\\) no hay puertas traseras entre \\(F\\) y \\(A\\) (pues no condicionamos a \\(C\\)). Esta dependencia causal la podemos entonces estimar de los datos.\nEl efecto de \\(A\\) sobre \\(C\\) también es identificable, pues el camino no causal se bloquea cuando condicionamos a \\(F\\), de forma que por la fórmula de ajuste:\n\\[p(c|do(a)) = \\int p(c|a, f') p(f')\\, df'\\]\nAhora encadenamos estas dos ecuaciones:\n\\[p(c|do(f)) = \\int p(c|do(a))p(a|f)\\,da\\]\nque equivale en simulación a: dado un valor de \\(F\\), simulamos \\(A\\) con nuestro modelo ajustado con datos naturales. Ahora intervenimos \\(A\\) con el valor \\(a\\) que obtuvimos y simulamos \\(C\\). Sin embargo, para hacer este último paso con datos naturales, necesitamos usar el criterio de puerta trasera como explicamos arriba: simulamos entonces \\(f´\\) de \\(p(f)\\), y después simulamos \\(C\\) en función de \\(a\\) y \\(f´\\) (con una distribución construida a partir de datos).\nRequerimos en este caso construir y estimar la condicional \\(p(c|a, f)\\) basado en los datos.\nEn fórmula, en general, se escribe como:\n\n\n\n\n\n\nCriterio de fuerta delantera (Pearl)\n\n\n\nDecimos que un conjunto de variables \\(A\\) satisface el criterio de puerta delantera en relación a las variables \\(F\\) y \\(C\\) cuando:\n\n\\(A\\) intercepta todos las cadenas dirigidos de \\(F\\) a \\(C\\)\nNo hay ningún camino activo de puerta trasera de \\(F\\) a \\(A\\)\nTodos los caminos de puerta trasera de \\(A\\) a \\(C\\) están bloqueados por \\(F\\).\n\nSi \\(A\\) satisface el criterio de puerta delantera en relación a \\(F\\) y \\(C\\), entonces el efecto causal de \\(F\\) en \\(C\\) es identificable y está dado por la fórmula:\n\\[p(c|do(f)) = \\int \\left [ \\int p(c|a,f´)p(f´)\\,df´ \\right ] p(a|f)\\,da\\]\n\n\nTodas estas cantidades puede estimarse de los datos.\n\nEjemplo: proceso generador\nAntes de aplicar este nuevo procedimiento, describamos el proceso generador que utilizaremos:\n\n# simular distribución natural\nsimular_fd <- function(n = 10, efecto_a = 0.3){\n ## causa común\n u <- rnorm(n, 0, 1);\n # cantidad que fuma\n f <- exp(rnorm(n, 1 + 0.2 * u, 0.1))\n # acumulación de alquitrán\n a <- rnorm(n, 4 * f, 2)\n # probabilidad de cancer\n p_c <- inv_logit(-6 + efecto_a * a + 2 * u)\n c <- rbinom(n, 1, p_c)\n tibble(f, a, c, u)\n}\n# simular datos intervenidos (suponiendo que conocemos todo)\nsim_int_f <- function(n = 100, do_f = 0.3, efecto_a = 0.3){\n a <- rnorm(n, 4 * do_f, 2)\n u <- rnorm(n, 0, 1)\n p_c <- inv_logit(-6 + efecto_a * a + 2 * u)\n c <- rbinom(n, 1, p_c)\n tibble(do_f = do_f, media_c = mean(c))\n}\n\n\nset.seed(4481)\nsims_fd <- simular_fd(5000)\nsims_fd_1 <- simular_fd(10000)\nqplot(sims_fd$f, sims_fd$a)\n\nWarning: `qplot()` was deprecated in ggplot2 3.4.0.\n\n\n\n\n\n\n\n\n\n¿Cómo se ve la relación de fumador con cáncer? En esta gráfica mostramos también el valor de la variable no observada \\(U\\). Nótese que parte de la correlación positiva que existe es debido a esta variable \\(U\\).\n\nggplot(sims_fd, aes(x = f, y = c, colour = u)) + \n geom_jitter() + scale_colour_continuous(type = \"viridis\")\n\n\n\n\n\n\n\n\nAhora veamos cómo se ve el efecto de \\(F\\) sobre \\(C\\) y también cómo se ve el cruce de \\(F\\) y \\(C\\) en los datos naturales:\n\nsims_1 <- map_df(seq(1, 4, 0.5), ~ sim_int_f(100000, .x))\n\nsims_1 |> \n ggplot() + geom_line(aes(x = do_f, y = media_c)) +\n geom_smooth(data = sims_fd_1, aes(x = f, y = c), method = \"loess\", span = 0.3, se = FALSE, colour =\"red\") + xlab(\"Grado de tabaquismo\") +\n xlim(c(1,4))\n\n`geom_smooth()` using formula = 'y ~ x'\n\n\nWarning: Removed 376 rows containing non-finite values (`stat_smooth()`).\n\n\n\n\n\n\n\n\n\nEn efecto causal promedio de fumar, en cada nivel, sobre la incidencia de cáncer de pulmón, suponiendo nuestro proceso generador. Nótese que la relación no es tan fuerte como observamos en los datos naturales (en rojo). Esto se debe a que en los datos naturales, las personas existe una causa común entre no fumar y prevenir cáncer de pulmón.\n\n\nEjemplo: estimación con puerta delantera\nVeamos cómo sería la estimación si tuviéramos datos disponible, y si es que podemos recuperar el efecto correcto dados los datos observados y la técnica de puerta delantera.\nNótese que sólo necesitamos \\(p(c|a, f), p(a|f)\\) y \\(p(f)\\). Estos son modelos estadísticos con el que podemos identificar el efecto que nos interesa. Una vez que los estimemos, podemos usar simulación:\n\nFijamos una \\(f\\).\nSimulamos una \\(a\\) del modelo \\(p(a|f)\\)\nPara calcular \\(\\int p(c|a,f')p(f')\\), tenemos que simular un valor \\(f'\\) de la marginal de \\(p(f)\\), y luego, sustituir junto la \\(a\\) de 1 para simular una \\(c\\) de \\(p(c|a, f')\\).\nConsideramos solamente \\(c\\) y \\(f\\) para resumir el efecto.\n\n\nset.seed(481)\nsims_fd <- simular_fd(2000)\nmod_front_door <- cmdstan_model(\"./src/front-door.stan\")\nprint(mod_front_door)\n\ndata {\n int<lower=0> N;\n int<lower=0> n_f;\n vector[N] f;\n vector[N] a;\n array[N] int<lower=0, upper=1> c;\n array[n_f] real do_f;\n\n}\n\ntransformed data {\n real media_a;\n real media_f;\n\n media_a = mean(a);\n media_f = mean(f);\n}\n\nparameters {\n real<lower=0> alpha;\n real alpha_a;\n real<lower=0> alpha_f;\n real int_a;\n real beta_0;\n real<lower=0> beta_1;\n real<lower=0> beta;\n real<lower=0> a_f;\n real<lower=0> b_f;\n real<lower=0> sigma_a;\n real<lower=0> sigma_f;\n\n}\n\n\n\ntransformed parameters {\n\n\n}\n\nmodel {\n f ~ gamma(a_f, b_f);\n a ~ normal(beta * f, sigma_a);\n c ~ bernoulli_logit(int_a + alpha_a * a + alpha_f * f);\n alpha_a ~ normal(0, 1);\n alpha_f ~ normal(0, 1);\n int_a ~ normal(0, 3);\n sigma_a ~ normal(0, 1);\n sigma_f ~ normal(0, 0.1);\n alpha ~ normal(0, 1);\n beta ~ normal(0, 1);\n beta_0 ~ normal(0, 3);\n beta_1 ~ normal(0, 1);\n\n}\ngenerated quantities {\n array[n_f] real mean_c;\n\n for(i in 1:n_f){\n array[2000] real res_sim;\n for(j in 1:2000){\n real a_sim = normal_rng(beta * (do_f[i]), sigma_a);\n real f_sim = gamma_rng(a_f, b_f);\n res_sim[j] = bernoulli_rng(inv_logit(int_a + alpha_a * a_sim + alpha_f * f_sim));\n }\n mean_c[i] = mean(res_sim);\n }\n\n}\n\n\n\ndo_f <- seq(1, 4, 0.1)\nn_f <- length(do_f)\nsims <- mod_front_door$sample(data = list(N = nrow(sims_fd),\n f = sims_fd$f, a = sims_fd$a,\n c = sims_fd$c, do_f = do_f, n_f = n_f),\n init = 0.01, step_size = 0.01, \n refresh = 1000,\n parallel_chains = 4)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 42.9 seconds.\nChain 4 finished in 42.9 seconds.\nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 44.3 seconds.\nChain 2 finished in 44.3 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 43.6 seconds.\nTotal execution time: 44.4 seconds.\n\n\n\nsims_efecto_tbl <- sims$draws(\"mean_c\", format = \"df\") |> \n pivot_longer(cols = contains(\"mean_c\"), values_to = \"media_c\") |> \n separate(name, c(\"nom\", \"id\"), \n sep = \"[\\\\[\\\\]]\", convert = TRUE, extra = \"drop\") |> \n left_join(tibble(f = do_f) |> \n mutate(id = seq_along(f))) \nresumen_tbl <- sims_efecto_tbl |> \n group_by(id, f) |> \n summarise(media = mean(media_c), \n q5 = quantile(media_c, 0.05),\n q95 = quantile(media_c, 0.95))\n\n\nggplot(resumen_tbl) + \n geom_linerange(aes(x= f, ymax = q95, ymin = q5), colour = \"red\") + \n geom_point(aes(x = f, y = media), colour = \"red\") +\n geom_line(data = sims_1, aes(x = do_f, y = media_c)) +\n xlab(\"Nivel de tabaquismo\") + ylab(\"Prop afectada\")\n\n\n\n\n\n\n\n\nY parece que hemos obtenido una estimación razonable del efecto causal de fumar sobre cáncer. Recordemos también que debemos ser cuidadosos al comparar intervalos que salen del mismo modelo por su nivel de traslape.\nPor ejemplo, si quisiéramos calcular contrastes con el nivel 2 de tabaquismo:\n\nefecto_2 <- sims_efecto_tbl |> filter(f == 2) |> \n select(.draw, efecto_2 = media_c)\ncomp_tbl <- left_join(sims_efecto_tbl, efecto_2) |> \n mutate(dif_2 = media_c - efecto_2)\n\nJoining with `by = join_by(.draw)`\n\ncomp_tbl |> group_by(f) |> \n summarise(media = mean(dif_2), q5 = quantile(dif_2, 0.05),\n q95 = quantile(dif_2, 0.95)) |> \nggplot() + geom_linerange(aes(x= f, ymax = q95, ymin = q5)) + geom_point(aes(x = f, y = media)) +\n xlab(\"Nivel de tabaquismo\") + ylab(\"Prop afectada\")\n\n\n\n\n\n\n\n\nNota: nótese como en este ejemplo hemos evitado incluir en nuestro modelo la variable no observada \\(U\\), gracias al procedimiento de puerta delantera descrito arriba.\nEs posible sin embargo intentar un modelo completo bayesiano, sin necesidad de recordar la fórmula. El procedimiento, que es más difícil de ajustar: considera una variable latente \\(U\\) no observada, y es necesario definir cómo puede ser su relación con sus descendientes. Es necesario más cuidado en definir formas funcionales e iniciales apropiadas para que los muestreadores funcionen apropiadamente.\n\n\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", "crumbs": [ "6  Identificación y cálculo-do" ] @@ -554,7 +554,7 @@ "href": "08-mcmc.html#monte-carlo-hamiltoniano", "title": "8  Markov Chain Monte Carlo", "section": "8.2 Monte Carlo Hamiltoniano", - "text": "8.2 Monte Carlo Hamiltoniano\nUna manera de mejorar la exploración de Metropolis es utilizar una distribución de propuestas más apropiada. La intuición en el caso anterior es:\n\nHay direcciones de más curvatura de la posterior que otras: movimientos relativamente chicos en las direcciones de alta curvatura nos llevan a regiones de probabilidad demasiado baja, y entonces tendemos a rechazar. Pero hacer movimientos aún más chicos para evitar rechazos nos lleva a explorar muy lentamente el espacio de parámetros.\nPodríamos evitar esto si nuestros saltos siguieran la curvatura natural de la distribución, como una pelota que rueda por la superficie de la distribución objetivo (con signo negativo, de forma que regiones de probabilidad alta sean valles o regiones bajas).\n\nLa idea de HMC es considerar el problema de muestrear de una distribución como un problema físico, donde introducimos aleatoridad solamente en cuanto a la “energía” de la pelota que va a explorar la posterior. Inicialmente impartimos un momento tomado al azar a la pelota, seguimos su trayectoria por un tiempo y el lugar a donde llega es nuestra nueva simulación. Esto permite que podamos dar saltos más grandes, sin “despeñarnos” en regiones de probabilidad muy baja y así evitar rechazos.\nAdicionalmente, veremos que si definimos el sistema físico apropiadamente, es posible obtener ecuaciones de balance detallado, lo cual en teoría nos garantiza una manera de transicionar que resultará a largo plazo en una muestra de la distribución objetivo.\n\nFormulación Hamiltoniana 1: introducción\nPrimero veremos cuál es la formulación Hamiltoniana (muy simple) de un sistema físico que nos sirve para encontrar la trayectoria de partículas del sistema. Consideremos una sola partícula cuya posición está dada por \\(q\\), que suponemos en una sola dimensión. La partícula rueda en una superficie cuya altura describimos como \\(V(q)\\), y tiene en cada instante tiene momento \\(p = m\\dot{q}\\).\nEl Hamiltoniano es la energía total de este sistema, en el espacio fase que describe el estado de cada partícula dadas su posición y momento \\((p,q)\\), y es la suma de energía cinética más energía potencial:\n\\(H(p,q) = T(p) + V(q)\\)\ndonde \\(V(q) = q^2/2\\) está dada y \\(T(p) = \\frac{p^2}{2m}\\), de modo que\n\\[H(p, q) = \\frac{p^2}{2m} + V(q) = \\frac{p^2}{2m} + \\frac{q^2}{2}\\]\nAhora consideremos las curvas de nivel de \\(H\\) (energía total constante), que en este caso se conservan a lo largo del movimiento de la partícula. Como sabemos por cálculo, estas curvas son perpendiculares al gradiente del Hamiltoniano, que es \\((\\partial{H}/\\partial{p}, \\partial{H}/\\partial{q})\\). El movimiento de las partículas, sin embargo, es a lo largo de las curvas de nivel, de manera que el flujo instantáneo debe estar dado por el gradiente de \\(H\\) rotado 90 grados, es decir, por \\((\\partial{H}/\\partial{q}, -\\partial{H}/\\partial{p})\\).\nEntonces tenemos que el movimiento de la partícula debe cumplir las ecuaciones de Hamilton:\n\\[\\frac{dp}{dt} = \\frac{\\partial{H}}{\\partial{q}}, \\frac{dq}{dt} = -\\frac{\\partial{H}}{\\partial{p}}\\] Simplificando y usando la definición de \\(H\\), obtenemos que \\[\\frac{dq}{dt} = \\frac{p}{m}, \\frac{dp}{dt} = -\\frac{\\partial{V}}{\\partial{q}} = -q\\] Ilustramos este campo vectorial en la siguiente gráfica, donde escogemos \\(V(q) = q^2/2\\), \\(m=1\\), y dibujamos algunas curvas de nivel del Hamiltoniano:\n\n\nCódigo\nespacio_fase_1 <- tibble(p = seq(-3, 3, length.out = 1000), q = seq(-3, 3, length.out = 1000)) |> \n expand(p, q) |> \n mutate(dq = p, dp = -q) |> \n mutate(H = p^2/2 + q^2/2)\nespacio_fase <- tibble(p = seq(-3, 3, length.out = 10), q = seq(-3, 3, length.out = 10)) |> \n expand(p, q) |> \n mutate(dq = p, dp = -q)\nespacio_fase |> \n ggplot(aes(p, q)) +\n geom_contour(data = espacio_fase_1, aes(x = p, y = q, z = H)) +\n geom_segment(aes(xend = p + dp/5, yend = q + dq/5), \n arrow = arrow(length = unit(0.1, \"inches\"))) +\n theme_minimal() +\n labs(subtitle = \"Movimiento en espacio fase: 1 dimensión\")\n\n\n\n\n\n\n\n\n\nOjo: este no es le movimiento de una partícula en dimensión 2: es el movimiento de la partícula en el espacio fase \\((p,q)\\), y la variable de posición \\(q\\) es de dimensión 1. Los ciclos de la gráfica muestran como conforme la partícula se mueve, energía potencial y cinética se intercambian a lo largo de su trayectoria en un “hilo”.\n\n\nFormulación Hamiltoniana 2: densidades de probabilidad\nConsideremos una partícula en el espacio de parámetros \\(\\theta\\). En esta formulación, si \\(\\theta\\) son los parámetros de interés, consideramos la energía potencial del sistema como \\(V(p) = -\\log p(\\theta)\\), donde \\(p(\\theta)\\) es la distribución objetivo.\nBuscamos simular del sistema con ecuaciones de movimiento para \\(\\theta\\). Como hicimos antes, vamos a “levantar” al espacio fase incluyendo el momento, que denotaremos como \\(\\rho\\). La energía cinética, en el caso más simple, podemos definirla (en la práctica existen reescalamientos) como como \\(T(\\rho) =\\frac{1}{2}\\sum_i \\rho_i^2\\) (la energía cinética es proporcional al momento cuadrado, pues el momento es masa por velocidad).\nEl Hamiltoniano por definición \\(H(\\rho, \\theta) = T(\\rho) + V(\\theta)\\), y las ecuaciones de Hamilton son las mismas que arriba, que en este caso nos dan\n\\[\\frac{d\\theta}{dt} = \\rho, \\frac{d\\rho}{dt} = \\nabla(\\log(p(\\theta)).\\]\nSi resolvemos estas ecuaciones, podemos entonces simular del sistema como sigue:\n\nDado un punto inicial \\(\\theta\\), escogemos un momento inicial \\(\\rho\\) al azar, por ejemplo cada componente normal \\(N(0,1)\\) (en la práctica existe un reescalamiento, pero en general queremos que \\(p(\\rho) = p(-\\rho)\\)). Es decir, agregamos inicialmente una cantidad aleatoria de energía a la partícula.\nUsando las ecuaciones de Hamilton, actualizamos la posición \\(\\theta\\) y el momento de la partícula un cierto tiempo \\(t\\) fijo, de manera que no quedemos muy cerca del valor inicial, pero tampoco hagamos demasiado trabajo computacional.\nLa posición nueva \\(\\theta^*\\) es aceptada como nuestra nueva simulación (si el paso 2 es exacto, pero frecuentemente no lo es).\nRepetimos los pasos 1-3 un número suficiente de veces para obtener simulaciones de la posterior.\n\nEste método produce simulaciones de la distribución objetivo bajo condiciones de regularidad. Podemos demostrar por ejemplo, que se cumple el balance detallado.\n\n\nBalance detallado para HMC\nSupongamos que las transiciones que da este sistema son \\(q(y|x)\\). Nótese que dado el momento simulado, tenemos el estado \\((\\rho, x)\\), y la transición \\(x\\to\\y\\) es determinista, gobernada por las ecuaciones de Hamilton. Escribimos la transición como \\[(\\rho, x) \\to (\\rho^*, y).\\] Nótese que \\(\\rho\\) y \\(x\\) determinan la transición, de modo que\n\\[p(x)q(y|x) = p(x)p(\\rho) = \\exp(-H(\\rho, x)) = \\exp(-H(\\rho^*, y))\\] Que es cierto por conservación de la energía total y la transición sigue exactamente trayectorias del Hamiltoniano. Esta última cantidad, usando un argumento similar, es igual a\n\\[p(y)p(\\rho^*) = p(y)p(-\\rho^*) = p(y) q(x|y)\\] La segunda igualdad se da porque \\(p(\\rho)\\) es Gaussiana (simétrica). Y finalmente, la última igualdad se da porque si necesitamos momento \\(\\rho\\) para llegar de \\(x\\) a \\((\\rho^*, y)\\), entonces necesitamos \\(-\\rho^*\\) (volteamos la velocidad ifnal) para llegar de \\(y\\) a \\((\\rho, x)\\), pues el sistema físico es reversible.\nNótese que este argumento se rompe si por ejemplo si es imposible transicionar de un punto a otro (por ejemplo, cuando la distribución objetivo \\(p\\) tiene dos regiones separadas de probabilidad positiva).\n\n\nIntegración de las ecuaciones de Hamilton\nPara aproximar soluciones de estas ecuaciones diferenciales utilizamos el integrador leapfrog, en el que hacemos actualizaciones alternadas de posición y momento con un tamaño de paso \\(\\epsilon\\) chico. Hacemos este paso un número \\(L\\) de veces, para no quedar muy cerca del valor inicial.\nEn nuestro ejemplo, actualizaríamos por ejemplo el momento a la mitad del paso:\n\\[\\rho_{t+\\epsilon/2} = \\rho_t - \\frac{\\epsilon}{2}\\nabla(\\log(p(\\theta_t)))\\] Seguido de una actualización de la posición:\n\\[\\theta_{t+\\epsilon} = \\theta_t + \\epsilon \\rho_{t+\\epsilon/2}\\] y finalmente otra actualización del momento:\n\\[\\rho_{t+\\epsilon} = \\rho_{t+\\epsilon/2} - \\frac{\\epsilon}{2}\\nabla(\\log(p(\\theta_{t+\\epsilon})))\\] Al final de este proceso, encontraremos que por errores numéricos, quizá el Hamiltoniano varió un poco. Si esto sucede, podemos hacer un paso de aceptación y rechazo como en Metropolis Hastings, donde la probabilidad de aceptar es\n\\[\\min\\left(1, \\exp(H(\\rho,\\theta) - H(\\rho^{*},\\theta^{*}))\\right)\\] donde \\(\\rho^{*}\\) y \\(\\theta^{*}\\) son los valores de momento y posición nuevos y \\(H(\\rho,\\theta)\\) es el Hamiltoniano en el paso anterior.\nObservaciones:\n\nUn caso posible obtengamos desbordes o casi desbordes numéricos del momento o la posición (el Hamiltoniano en el punto inicial es órdenes de magnitud diferente que el inicial, ver el manual de Stan ). Esto indica problemas graves con el algoritmo de integración, y en general marcamos estas iteraciones como divergentes. Estas fallas pueden producir, como veremos, exploración insuficiente de la distribución objetivo.\nSi queremos usar HMC directamente, es delicado afinar el tamaño de paso, la distribución de propuesta para el momento, y el número de saltos \\(L\\). En Stan, que usa una variación de HMC, estos valores son ajustados en el periodo de calentamiento o warmup, antes de\n\n\n\nEjemplo: HMC en una distribución normal bivariada\nPrimero calculamos el gradiente que requerimos. En este caso, podemos hacerlo analíticamente:\n\nconstruir_log_p <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(z){\n - 0.5 * (t(z-m) %*% Sigma_inv %*% (z-m))\n }\n}\nSigma <- matrix(c(1, 0.8, 0.8, 1), nrow = 2)\nm <- c(2, 3)\nlog_p <- construir_log_p(m, Sigma)\n# en diferenciación automática, el siguiente constructor\n# puede tomar como argumento log_p, pero aquí la escribimos\n# explícitamente\nconstruir_grad_log_p <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(theta){\n - Sigma_inv %*% (theta-m)\n }\n}\ngrad_log_p <- construir_grad_log_p(m, Sigma)\nconstruir_H <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(theta, rho){\n - log_p(theta) + 0.5 * sum(rho^2)\n }\n}\nH <- construir_H(m, Sigma)\nlog_p(c(1,3))\n\n [,1]\n[1,] -1.388889\n\ngrad_log_p(c(1,3))\n\n [,1]\n[1,] 2.777778\n[2,] -2.222222\n\n\nAhora, implementamos el algoritmo de HMC. Primero, definimos una función\n\nhamilton_mc <- function(n, theta_0 = c(0,0), log_p, grad_log_p, epsilon, L){\n p <- length(theta_0)\n theta <- matrix(0, n, p)\n theta[1, ] <- theta_0\n rho <- matrix(0, n, p)\n theta_completa <- matrix(0, n*L, p)\n theta_completa[1, 0] <- theta_0\n rho_completa <- matrix(0, n*L, p) \n indice_completa <- 2\n rechazo <- 0\n for(i in 2:n){\n prop_rho <- rnorm(p)\n rho[i-1, ] <- prop_rho\n prop_theta <- theta[i-1, ]\n for(t in 1:L){\n prop_rho <- prop_rho + 0.5 * epsilon * grad_log_p(prop_theta)\n prop_theta <- prop_theta + epsilon * prop_rho \n prop_rho <- prop_rho + 0.5 * epsilon * grad_log_p(prop_theta)\n theta_completa[indice_completa,] <- prop_theta\n rho_completa[indice_completa,] <- prop_rho\n indice_completa <- indice_completa + 1\n }\n \n q <- min(1, exp(H(theta[i-1, ], rho[i-1, ]) - \n H(prop_theta, prop_rho))) \n if(runif(1) < q){\n theta[i, ] <- prop_theta\n } else {\n rechazo <- rechazo + 1\n theta[i, ] <- theta[i-1, ]\n rho[i, ] <- rho[i-1, ]\n theta_completa[indice_completa - 1,] <- theta[i-1, ]\n rho_completa[indice_completa - 1,] <- rho[i-1, ]\n } \n }\n print(rechazo / n)\n list(sims = tibble(x = theta[,1], y = theta[,2]),\n trayectorias = tibble(x = theta_completa[,1], y = theta_completa[,2]) |>\n mutate(iteracion = rep(1:n, each = L), paso = rep(1:L, times = n)))\n}\n\nRevisamos que la muestra aproxima apropiadamente nuestra distribución\n\nset.seed(10)\nhmc_salida <- hamilton_mc(1000, c(0,0), log_p, grad_log_p, 0.2, 12)\n\n[1] 0.016\n\nggplot(hmc_salida$sims, aes(x = x, y = y)) + geom_point() +\n stat_ellipse(data = sims_normal, aes(x, y), \n level = c(0.9), type = \"norm\", colour = \"salmon\") +\n stat_ellipse(data = sims_normal, aes(x, y), \n level = c( 0.5), type = \"norm\", colour = \"salmon\") +\n stat_ellipse(level = c( 0.9), colour = \"green\", type = \"norm\") +\n stat_ellipse(level = c( 0.5), colour = \"green\", type = \"norm\") \n\n\n\n\n\n\n\n\n\ntray_tbl <- hmc_salida$trayectorias\nhead(tray_tbl)\n\n# A tibble: 6 × 4\n x y iteracion paso\n <dbl> <dbl> <int> <int>\n1 0 0 1 1\n2 -0.0185 0.0409 1 2\n3 -0.0757 0.231 1 3\n4 -0.148 0.545 1 4\n5 -0.201 0.940 1 5\n6 -0.192 1.37 1 6\n\n\n\nlibrary(gganimate)\nanim_hmc <- ggplot(tray_tbl |> mutate(iter = 4*as.numeric(paso == 1), \n s = as.numeric(paso == 2)) |> \n filter(iteracion < 30) |> \n mutate(tiempo = row_number()) |> \n mutate(tiempo = tiempo + cumsum(50 * s)), \n aes(x = x, y = y)) + \n geom_point(aes(colour = iter, alpha = iter, size = iter, group = tiempo)) +\n geom_path(colour = \"gray\", alpha = 0.5) +\n transition_reveal(tiempo) +\n elipses_normal +\n theme(legend.position = \"none\") \nanim_save(animation = anim_hmc, filename = \"figuras/hmc-normal.gif\", \n renderer = gifski_renderer())\n\n\n\n\nHMC\n\n\nObservaciones:\n\nNótese que ahora podemos dar pasos más grandes a lo largo de los lugares donde concentra mayor probabilidad.\nEsto implica dos cosas: evitamos el comportamiento de caminata aleatoria (pasos muy cortos), y también tasas de rechazo alto (cuando los pasos son muy grandes en HMC)\nEl algoritmo utiliza información adicional: además de calcular la posterior, como en metropolis, es necesario calcular también el gradiente de la posterior.\nEste algoritmo hace más trabajo para cada iteración (requiere la integración leapfrog), pero cada iteración es más informativa\nBien afinado, funciona para problemas de dimensión alta (cientos o miles de parámetros), donde geométricamente la densidad está concentrada en un espacio geométricamente chico. Existen todavía dificultades que discutiremos en otros modelos más adelante.\n\n\n\n\n\n\n\nTip\n\n\n\nObservamos que hasta ahora no hemos aplicado estos algoritmos para simular de la posterior de un modelo: hemos tomado distribuciones fijas y usamos MCMC para simular de ellas. El proceso para una posterior es el mismo, pero usualmente más complicado pues generalmente involucra mucho más parámetros y una posterior que no tiene una forma analítica conocida.\nSin embargo, la aplicación para una posterior es la misma: siempre podemos calcular el logaritmo de la posterior (al menos hasta una constante de proporcionalidad), y siempre podemos usar diferenciación automática para calcular el gradiente de la log posterior. Podemos aplicar entonces HMC o Metropolis.\n\n\n\n\nComparación de HMC y Metropolis\nFinalmente, haremos una comparación entre el desempeño de HMC y Metropolis en el caso de la distribución normal. Utilizaremos otra normal bivariada con más correlación.\n\nset.seed(737)\nSigma <- matrix(c(1, -0.9, -0.9, 1), nrow = 2)\nm <- c(1, 1)\nlog_p <- construir_log_p(m, Sigma)\ngrad_log_p <- construir_grad_log_p(m, Sigma)\nsystem.time(hmc_1 <- hamilton_mc(1000, c(1,2), log_p, grad_log_p, 0.2, 12))\n\n[1] 0.042\n\n\n user system elapsed \n 0.065 0.000 0.064 \n\nsystem.time(metropolis_1 <- metropolis_mc(1000, c(1,2), log_p, 0.2, 0.2))\n\n[1] 0.204\n\n\n user system elapsed \n 0.018 0.000 0.018 \n\nsystem.time(metropolis_2 <- metropolis_mc(1000, c(1,2), log_p, 1, 1))\n\n[1] 0.692\n\n\n user system elapsed \n 0.018 0.000 0.018 \n\n\n\nsims_hmc <- hmc_1$sims |> mutate(n_sim = row_number()) |> \n mutate(algoritmo = \"hmc\")\nsims_metropolis_1 <- metropolis_1 |> \n mutate(algoritmo = \"metropolis (corto)\") \nsims_metropolis_2 <- metropolis_2 |> \n mutate(algoritmo = \"metropolis (largo)\") \nsims_comp <- bind_rows(sims_hmc, sims_metropolis_1, sims_metropolis_2)\nanim_comp <- ggplot(sims_comp |> filter(n_sim < 200)) + \n transition_reveal(n_sim) +\n theme(legend.position = \"none\") +\n geom_path(aes(x, y), colour = \"gray\", alpha = 0.2) + \n geom_point(aes(x, y, group = n_sim)) +\n facet_wrap(~algoritmo)\nanim_save(animation = anim_comp, filename = \"figuras/comparacion-normal.gif\", height = 250, width = 500,\n units = \"px\",\n renderer = gifski_renderer())\n\n\n\n\nComparación\n\n\n\n\nHMC en Stan\nEn Stan se incluyen tres componentes adicionales importantes para estimar posteriores de manera eficiente:\n\nPeriodos de warm-up (calentamiento) y sampling (muestreo). En el periodo de calentamiento, el muestreador afina tamaños de paso, escalamiento de la distribución de propuesta (normal multivariada), y otros parámetros de manera automática.\nImplementación de diferenciación automática para no tener que calcular el grandiente de la log posterior directamente. A partir del código que damos, se crean automáticamente funciones que calculan el grandiente (no es una aproximación numérica).\nImplementación de HMC sin vueltas en U (NUTS): una afinación adicional es dinámicamente adaptar el número de pasos de integración para evitar “regresos”, como vimos que sucedía en los ejemplos de arriba. Ver por ejemplo aquí, o la documentación de Stan.", + "text": "8.2 Monte Carlo Hamiltoniano\nUna manera de mejorar la exploración de Metropolis es utilizar una distribución de propuestas más apropiada. La intuición en el caso anterior es:\n\nHay direcciones de más curvatura de la posterior que otras: movimientos relativamente chicos en las direcciones de alta curvatura nos llevan a regiones de probabilidad demasiado baja, y entonces tendemos a rechazar. Pero hacer movimientos aún más chicos para evitar rechazos nos lleva a explorar muy lentamente el espacio de parámetros.\nPodríamos evitar esto si nuestros saltos siguieran la curvatura natural de la distribución, como una pelota que rueda por la superficie de la distribución objetivo (con signo negativo, de forma que regiones de probabilidad alta sean valles o regiones bajas).\n\nLa idea de HMC es considerar el problema de muestrear de una distribución como un problema físico, donde introducimos aleatoridad solamente en cuanto a la “energía” de la pelota que va a explorar la posterior. Inicialmente impartimos un momento tomado al azar a la pelota, seguimos su trayectoria por un tiempo y el lugar a donde llega es nuestra nueva simulación. Esto permite que podamos dar saltos más grandes, sin “despeñarnos” en regiones de probabilidad muy baja y así evitar rechazos.\nAdicionalmente, veremos que si definimos el sistema físico apropiadamente, es posible obtener ecuaciones de balance detallado, lo cual en teoría nos garantiza una manera de transicionar que resultará a largo plazo en una muestra de la distribución objetivo.\n\nFormulación Hamiltoniana 1: introducción\nPrimero veremos cuál es la formulación Hamiltoniana (muy simple) de un sistema físico que nos sirve para encontrar la trayectoria de partículas del sistema. Consideremos una sola partícula cuya posición está dada por \\(q\\), que suponemos en una sola dimensión. La partícula rueda en una superficie cuya altura describimos como \\(V(q)\\), y tiene en cada instante tiene momento \\(p = m\\dot{q}\\).\nEl Hamiltoniano es la energía total de este sistema, en el espacio fase que describe el estado de cada partícula dadas su posición y momento \\((p,q)\\), y es la suma de energía cinética más energía potencial:\n\\(H(p,q) = T(p) + V(q)\\)\ndonde \\(V(q) = q^2/2\\) está dada y \\(T(p) = \\frac{p^2}{2m}\\), de modo que\n\\[H(p, q) = \\frac{p^2}{2m} + V(q) = \\frac{p^2}{2m} + \\frac{q^2}{2}\\]\nAhora consideremos las curvas de nivel de \\(H\\) (energía total constante), que en este caso se conservan a lo largo del movimiento de la partícula. Como sabemos por cálculo, estas curvas son perpendiculares al gradiente del Hamiltoniano, que es \\((\\partial{H}/\\partial{p}, \\partial{H}/\\partial{q})\\). El movimiento de las partículas, sin embargo, es a lo largo de las curvas de nivel, de manera que el flujo instantáneo debe estar dado por el gradiente de \\(H\\) rotado 90 grados, es decir, por \\((\\partial{H}/\\partial{q}, -\\partial{H}/\\partial{p})\\).\nEntonces tenemos que el movimiento de la partícula debe cumplir las ecuaciones de Hamilton:\n\\[\\frac{dp}{dt} = \\frac{\\partial{H}}{\\partial{q}}, \\frac{dq}{dt} = -\\frac{\\partial{H}}{\\partial{p}}\\] Simplificando y usando la definición de \\(H\\), obtenemos que \\[\\frac{dq}{dt} = \\frac{p}{m}, \\frac{dp}{dt} = -\\frac{\\partial{V}}{\\partial{q}} = -q\\] Ilustramos este campo vectorial en la siguiente gráfica, donde escogemos \\(V(q) = q^2/2\\), \\(m=1\\), y dibujamos algunas curvas de nivel del Hamiltoniano:\n\n\nCódigo\nespacio_fase_1 <- tibble(p = seq(-3, 3, length.out = 1000), q = seq(-3, 3, length.out = 1000)) |> \n expand(p, q) |> \n mutate(dq = p, dp = -q) |> \n mutate(H = p^2/2 + q^2/2)\nespacio_fase <- tibble(p = seq(-3, 3, length.out = 10), q = seq(-3, 3, length.out = 10)) |> \n expand(p, q) |> \n mutate(dq = p, dp = -q)\nespacio_fase |> \n ggplot(aes(p, q)) +\n geom_contour(data = espacio_fase_1, aes(x = p, y = q, z = H)) +\n geom_segment(aes(xend = p + dp/5, yend = q + dq/5), \n arrow = arrow(length = unit(0.1, \"inches\"))) +\n theme_minimal() +\n labs(subtitle = \"Movimiento en espacio fase: 1 dimensión\")\n\n\n\n\n\n\n\n\n\nOjo: este no es le movimiento de una partícula en dimensión 2: es el movimiento de la partícula en el espacio fase \\((p,q)\\), y la variable de posición \\(q\\) es de dimensión 1. Los ciclos de la gráfica muestran como conforme la partícula se mueve, energía potencial y cinética se intercambian a lo largo de su trayectoria en un “hilo”.\n\n\nFormulación Hamiltoniana 2: densidades de probabilidad\nConsideremos una partícula en el espacio de parámetros \\(\\theta\\). En esta formulación, si \\(\\theta\\) son los parámetros de interés, consideramos la energía potencial del sistema como \\(V(p) = -\\log p(\\theta)\\), donde \\(p(\\theta)\\) es la distribución objetivo.\nBuscamos simular del sistema con ecuaciones de movimiento para \\(\\theta\\). Como hicimos antes, vamos a “levantar” al espacio fase incluyendo el momento, que denotaremos como \\(\\rho\\). La energía cinética, en el caso más simple, podemos definirla (en la práctica existen reescalamientos) como como \\(T(\\rho) =\\frac{1}{2}\\sum_i \\rho_i^2\\) (la energía cinética es proporcional al momento cuadrado, pues el momento es masa por velocidad).\nEl Hamiltoniano por definición \\(H(\\rho, \\theta) = T(\\rho) + V(\\theta)\\), y las ecuaciones de Hamilton son las mismas que arriba, que en este caso nos dan\n\\[\\frac{d\\theta}{dt} = \\rho, \\frac{d\\rho}{dt} = \\nabla(\\log(p(\\theta)).\\]\nSi resolvemos estas ecuaciones, podemos entonces simular del sistema como sigue:\n\nDado un punto inicial \\(\\theta\\), escogemos un momento inicial \\(\\rho\\) al azar, por ejemplo cada componente normal \\(N(0,1)\\) (en la práctica existe un reescalamiento, pero en general queremos que \\(p(\\rho) = p(-\\rho)\\)). Es decir, agregamos inicialmente una cantidad aleatoria de energía a la partícula.\nUsando las ecuaciones de Hamilton, actualizamos la posición \\(\\theta\\) y el momento de la partícula un cierto tiempo \\(t\\) fijo, de manera que no quedemos muy cerca del valor inicial, pero tampoco hagamos demasiado trabajo computacional.\nLa posición nueva \\(\\theta^*\\) es aceptada como nuestra nueva simulación (si el paso 2 es exacto, pero frecuentemente no lo es).\nRepetimos los pasos 1-3 un número suficiente de veces para obtener simulaciones de la posterior.\n\nEste método produce simulaciones de la distribución objetivo bajo condiciones de regularidad. Podemos demostrar por ejemplo, que se cumple el balance detallado.\n\n\nBalance detallado para HMC\nSupongamos que las transiciones que da este sistema son \\(q(y|x)\\). Nótese que dado el momento simulado, tenemos el estado \\((\\rho, x)\\), y la transición \\(x\\to\\y\\) es determinista, gobernada por las ecuaciones de Hamilton. Escribimos la transición como \\[(\\rho, x) \\to (\\rho^*, y).\\] Nótese que \\(\\rho\\) y \\(x\\) determinan la transición, de modo que\n\\[p(x)q(y|x) = p(x)p(\\rho) = \\exp(-H(\\rho, x)) = \\exp(-H(\\rho^*, y))\\] Que es cierto por conservación de la energía total y la transición sigue exactamente trayectorias del Hamiltoniano. Esta última cantidad, usando un argumento similar, es igual a\n\\[p(y)p(\\rho^*) = p(y)p(-\\rho^*) = p(y) q(x|y)\\] La segunda igualdad se da porque \\(p(\\rho)\\) es Gaussiana (simétrica). Y finalmente, la última igualdad se da porque si necesitamos momento \\(\\rho\\) para llegar de \\(x\\) a \\((\\rho^*, y)\\), entonces necesitamos \\(-\\rho^*\\) (volteamos la velocidad ifnal) para llegar de \\(y\\) a \\((\\rho, x)\\), pues el sistema físico es reversible.\nNótese que este argumento se rompe si por ejemplo si es imposible transicionar de un punto a otro (por ejemplo, cuando la distribución objetivo \\(p\\) tiene dos regiones separadas de probabilidad positiva).\n\n\nIntegración de las ecuaciones de Hamilton\nPara aproximar soluciones de estas ecuaciones diferenciales utilizamos el integrador leapfrog, en el que hacemos actualizaciones alternadas de posición y momento con un tamaño de paso \\(\\epsilon\\) chico. Hacemos este paso un número \\(L\\) de veces, para no quedar muy cerca del valor inicial.\nEn nuestro ejemplo, actualizaríamos por ejemplo el momento a la mitad del paso:\n\\[\\rho_{t+\\epsilon/2} = \\rho_t - \\frac{\\epsilon}{2}\\nabla(\\log(p(\\theta_t)))\\] Seguido de una actualización de la posición:\n\\[\\theta_{t+\\epsilon} = \\theta_t + \\epsilon \\rho_{t+\\epsilon/2}\\] y finalmente otra actualización del momento:\n\\[\\rho_{t+\\epsilon} = \\rho_{t+\\epsilon/2} - \\frac{\\epsilon}{2}\\nabla(\\log(p(\\theta_{t+\\epsilon})))\\] Al final de este proceso, encontraremos que por errores numéricos, quizá el Hamiltoniano varió un poco. Si esto sucede, podemos hacer un paso de aceptación y rechazo como en Metropolis Hastings, donde la probabilidad de aceptar es\n\\[\\min\\left(1, \\exp(H(\\rho,\\theta) - H(\\rho^{*},\\theta^{*}))\\right)\\] donde \\(\\rho^{*}\\) y \\(\\theta^{*}\\) son los valores de momento y posición nuevos y \\(H(\\rho,\\theta)\\) es el Hamiltoniano en el paso anterior.\nObservaciones:\n\nUn caso posible obtengamos desbordes o casi desbordes numéricos del momento o la posición (el Hamiltoniano en el punto inicial es órdenes de magnitud diferente que el inicial, ver el manual de Stan ). Esto indica problemas graves con el algoritmo de integración, y en general marcamos estas iteraciones como divergentes. Estas fallas pueden producir, como veremos, exploración insuficiente de la distribución objetivo.\nSi queremos usar HMC directamente, es delicado afinar el tamaño de paso, la distribución de propuesta para el momento, y el número de saltos \\(L\\). En Stan, que usa una variación de HMC, estos valores son ajustados en el periodo de calentamiento o warmup, antes de\n\n\n\nEjemplo: HMC en una distribución normal bivariada\nPrimero calculamos el gradiente que requerimos. En este caso, podemos hacerlo analíticamente:\n\nconstruir_log_p <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(z){\n - 0.5 * (t(z-m) %*% Sigma_inv %*% (z-m))\n }\n}\nSigma <- matrix(c(1, 0.8, 0.8, 1), nrow = 2)\nm <- c(2, 3)\nlog_p <- construir_log_p(m, Sigma)\n# en diferenciación automática, el siguiente constructor\n# puede tomar como argumento log_p, pero aquí la escribimos\n# explícitamente\nconstruir_grad_log_p <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(theta){\n - Sigma_inv %*% (theta-m)\n }\n}\ngrad_log_p <- construir_grad_log_p(m, Sigma)\nconstruir_H <- function(m, Sigma){\n Sigma_inv <- solve(Sigma)\n function(theta, rho){\n - log_p(theta) + 0.5 * sum(rho^2)\n }\n}\nH <- construir_H(m, Sigma)\nlog_p(c(1,3))\n\n [,1]\n[1,] -1.388889\n\ngrad_log_p(c(1,3))\n\n [,1]\n[1,] 2.777778\n[2,] -2.222222\n\n\nAhora, implementamos el algoritmo de HMC. Primero, definimos una función\n\nhamilton_mc <- function(n, theta_0 = c(0,0), log_p, grad_log_p, epsilon, L){\n p <- length(theta_0)\n theta <- matrix(0, n, p)\n theta[1, ] <- theta_0\n rho <- matrix(0, n, p)\n theta_completa <- matrix(0, n*L, p)\n theta_completa[1, 0] <- theta_0\n rho_completa <- matrix(0, n*L, p) \n indice_completa <- 2\n rechazo <- 0\n for(i in 2:n){\n prop_rho <- rnorm(p)\n rho[i-1, ] <- prop_rho\n prop_theta <- theta[i-1, ]\n for(t in 1:L){\n prop_rho <- prop_rho + 0.5 * epsilon * grad_log_p(prop_theta)\n prop_theta <- prop_theta + epsilon * prop_rho \n prop_rho <- prop_rho + 0.5 * epsilon * grad_log_p(prop_theta)\n theta_completa[indice_completa,] <- prop_theta\n rho_completa[indice_completa,] <- prop_rho\n indice_completa <- indice_completa + 1\n }\n \n q <- min(1, exp(H(theta[i-1, ], rho[i-1, ]) - \n H(prop_theta, prop_rho))) \n if(runif(1) < q){\n theta[i, ] <- prop_theta\n } else {\n rechazo <- rechazo + 1\n theta[i, ] <- theta[i-1, ]\n rho[i, ] <- rho[i-1, ]\n theta_completa[indice_completa - 1,] <- theta[i-1, ]\n rho_completa[indice_completa - 1,] <- rho[i-1, ]\n } \n }\n print(rechazo / n)\n list(sims = tibble(x = theta[,1], y = theta[,2]),\n trayectorias = tibble(x = theta_completa[,1], y = theta_completa[,2]) |>\n mutate(iteracion = rep(1:n, each = L), paso = rep(1:L, times = n)))\n}\n\nRevisamos que la muestra aproxima apropiadamente nuestra distribución\n\nset.seed(10)\nhmc_salida <- hamilton_mc(1000, c(0,0), log_p, grad_log_p, 0.2, 12)\n\n[1] 0.016\n\nggplot(hmc_salida$sims, aes(x = x, y = y)) + geom_point() +\n stat_ellipse(data = sims_normal, aes(x, y), \n level = c(0.9), type = \"norm\", colour = \"salmon\") +\n stat_ellipse(data = sims_normal, aes(x, y), \n level = c( 0.5), type = \"norm\", colour = \"salmon\") +\n stat_ellipse(level = c( 0.9), colour = \"green\", type = \"norm\") +\n stat_ellipse(level = c( 0.5), colour = \"green\", type = \"norm\") \n\n\n\n\n\n\n\n\n\ntray_tbl <- hmc_salida$trayectorias\nhead(tray_tbl)\n\n# A tibble: 6 × 4\n x y iteracion paso\n <dbl> <dbl> <int> <int>\n1 0 0 1 1\n2 -0.0185 0.0409 1 2\n3 -0.0757 0.231 1 3\n4 -0.148 0.545 1 4\n5 -0.201 0.940 1 5\n6 -0.192 1.37 1 6\n\n\n\nlibrary(gganimate)\nanim_hmc <- ggplot(tray_tbl |> mutate(iter = 4*as.numeric(paso == 1), \n s = as.numeric(paso == 2)) |> \n filter(iteracion < 30) |> \n mutate(tiempo = row_number()) |> \n mutate(tiempo = tiempo + cumsum(50 * s)), \n aes(x = x, y = y)) + \n geom_point(aes(colour = iter, alpha = iter, size = iter, group = tiempo)) +\n geom_path(colour = \"gray\", alpha = 0.5) +\n transition_reveal(tiempo) +\n elipses_normal +\n theme(legend.position = \"none\") \nanim_save(animation = anim_hmc, filename = \"figuras/hmc-normal.gif\", \n renderer = gifski_renderer())\n\n\n\n\nHMC\n\n\nObservaciones:\n\nNótese que ahora podemos dar pasos más grandes a lo largo de los lugares donde concentra mayor probabilidad.\nEsto implica dos cosas: evitamos el comportamiento de caminata aleatoria (pasos muy cortos), y también tasas de rechazo alto (cuando los pasos son muy grandes en HMC)\nEl algoritmo utiliza información adicional: además de calcular la posterior, como en metropolis, es necesario calcular también el gradiente de la posterior.\nEste algoritmo hace más trabajo para cada iteración (requiere la integración leapfrog), pero cada iteración es más informativa\nBien afinado, funciona para problemas de dimensión alta (cientos o miles de parámetros), donde geométricamente la densidad está concentrada en un espacio geométricamente chico. Existen todavía dificultades que discutiremos en otros modelos más adelante.\n\n\n\n\n\n\n\nTip\n\n\n\nObservamos que hasta ahora no hemos aplicado estos algoritmos para simular de la posterior de un modelo: hemos tomado distribuciones fijas y usamos MCMC para simular de ellas. El proceso para una posterior es el mismo, pero usualmente más complicado pues generalmente involucra mucho más parámetros y una posterior que no tiene una forma analítica conocida.\nSin embargo, la aplicación para una posterior es la misma: siempre podemos calcular el logaritmo de la posterior (al menos hasta una constante de proporcionalidad), y siempre podemos usar diferenciación automática para calcular el gradiente de la log posterior. Podemos aplicar entonces HMC o Metropolis.\n\n\n\n\nComparación de HMC y Metropolis\nFinalmente, haremos una comparación entre el desempeño de HMC y Metropolis en el caso de la distribución normal. Utilizaremos otra normal bivariada con más correlación.\n\nset.seed(737)\nSigma <- matrix(c(1, -0.9, -0.9, 1), nrow = 2)\nm <- c(1, 1)\nlog_p <- construir_log_p(m, Sigma)\ngrad_log_p <- construir_grad_log_p(m, Sigma)\nsystem.time(hmc_1 <- hamilton_mc(1000, c(1,2), log_p, grad_log_p, 0.2, 12))\n\n[1] 0.042\n\n\n user system elapsed \n 0.064 0.000 0.063 \n\nsystem.time(metropolis_1 <- metropolis_mc(1000, c(1,2), log_p, 0.2, 0.2))\n\n[1] 0.204\n\n\n user system elapsed \n 0.018 0.000 0.017 \n\nsystem.time(metropolis_2 <- metropolis_mc(1000, c(1,2), log_p, 1, 1))\n\n[1] 0.692\n\n\n user system elapsed \n 0.018 0.000 0.018 \n\n\n\nsims_hmc <- hmc_1$sims |> mutate(n_sim = row_number()) |> \n mutate(algoritmo = \"hmc\")\nsims_metropolis_1 <- metropolis_1 |> \n mutate(algoritmo = \"metropolis (corto)\") \nsims_metropolis_2 <- metropolis_2 |> \n mutate(algoritmo = \"metropolis (largo)\") \nsims_comp <- bind_rows(sims_hmc, sims_metropolis_1, sims_metropolis_2)\nanim_comp <- ggplot(sims_comp |> filter(n_sim < 200)) + \n transition_reveal(n_sim) +\n theme(legend.position = \"none\") +\n geom_path(aes(x, y), colour = \"gray\", alpha = 0.2) + \n geom_point(aes(x, y, group = n_sim)) +\n facet_wrap(~algoritmo)\nanim_save(animation = anim_comp, filename = \"figuras/comparacion-normal.gif\", height = 250, width = 500,\n units = \"px\",\n renderer = gifski_renderer())\n\n\n\n\nComparación\n\n\n\n\nHMC en Stan\nEn Stan se incluyen tres componentes adicionales importantes para estimar posteriores de manera eficiente:\n\nPeriodos de warm-up (calentamiento) y sampling (muestreo). En el periodo de calentamiento, el muestreador afina tamaños de paso, escalamiento de la distribución de propuesta (normal multivariada), y otros parámetros de manera automática.\nImplementación de diferenciación automática para no tener que calcular el grandiente de la log posterior directamente. A partir del código que damos, se crean automáticamente funciones que calculan el grandiente (no es una aproximación numérica).\nImplementación de HMC sin vueltas en U (NUTS): una afinación adicional es dinámicamente adaptar el número de pasos de integración para evitar “regresos”, como vimos que sucedía en los ejemplos de arriba. Ver por ejemplo aquí, o la documentación de Stan.", "crumbs": [ "8  Markov Chain Monte Carlo" ] @@ -564,7 +564,7 @@ "href": "08-mcmc.html#diagnósticos-de-convergencia", "title": "8  Markov Chain Monte Carlo", "section": "8.3 Diagnósticos de convergencia", - "text": "8.3 Diagnósticos de convergencia\nAunque casi nunca es posible demostrar rigurosamente que las simulaciones de un algoritmo MCMC dan buena aproximación de la distribución posterior de interés, especialmente con HMC y NUTS, tenemos muchos diagnósticos que fallan cuando existen problemas serios.\nEn primer lugar, será útil correr distintas cadenas con valores iniciales aleatorios diferentes, analizamos cada una y las comparamos entre sí. Recordamos que cada una de estas cadenas tiene como distribución estacionaria límite la distribución posterior. Diagnósticos que indican que las cadenas se comportan de manera muy distinta, explorando distintas regiones del espacio de parámetros, o que no han convergido porque exploran lentamente el espacio de parámetros, son señales de problemas.\nLos diagnósticos más comunes son:\n\nTraza de cadenas\nMedida R-hat de convergencia: mide la variabilidad entre cadenas y dentro de cadenas.\nNúmero de muestras efectivas (ESS) y autocorrelación.\nTransiciones divergentes.\n\n\nModelos con variables latentes\nVeremos el ejemplo de calificación de vinos de distintos países de McElreath (2020), sus diagnósticos, y aprovecharemos para introducir variables no observadas o latentes para enriquecer nuestras herramientas de modelación.\nNuestra pregunta general es si el país de origen de los vinos influye en su calidad. Los datos que tenemos son calificaciones de vinos de distintos países por distintos jueces. La calidad del vino no la observamos directamente, sino que es causa de las calificaciones que recibe. Para construir nuestro diagrama, las consideraciones básicas son:\n\nEl origen del vino es una causa del calidad del vino (es nuestra cantidad a estimar).\nLos jueces tienen distintas maneras de calificar, de manera que son causa de variación en las calificaciones (hay jueces más duros, otros más barcos, etc.) No observamos directamente que tan “duro” es cada juez.\nLos jueces califican vinos de distintos países de manera ciega. Sin embargo es posible que reconozcan el país de origen por las características de los vinos, de manera que puede existir un efecto directo de Origen en Calificación (no pasa por Calidad).\nEs posible que Jueces de distintos países tienen distintos estándares de calificación.\n\n\n\nCódigo\nlibrary(DiagrammeR)\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Origen\n Score\n Origen_Juez\n node [shape = circle]\n Q\n J\n edge [minlen = 3]\n Origen -> Q\n Origen -> Score\n Q -> Score\n J -> Score\n Origen_Juez -> J\n}\n\")\n\n\n\n\n\n\nY vemos, por nuestro análisis del DAG, que podemos identificar el efecto de Origen sobre Calidad sin necesidad de estratificar por ninguna variable (no hay puertas traseras). Sin embaergo, podemos estratificar por Juez para obtener más precisión (ver sección anterior de buenos y malos controles).\n\n8.3.0.1 Primera iteración: modelo simple\nComenzamos con un modelo simple, y lo iremos construyendo para obtener la mejor estimación posible de la influencia del país de origen en la calidad del vino. Nuestro primer modelo consideramos que la calificación de cada vino depende de su calidad, y modelamos con una normal:\n\\[S_i \\sim \\text{Normal}(\\mu_i, \\sigma)\\] donde \\[\\mu_i = Q_{vino(i)}\\]. Nuestra medida de calidad tiene escala arbitaria. Como usaremos la calificación estandarizada, podemos poner \\[Q_j \\sim \\text{Normal}(0, 1).\\] finalmente, ponemos una inicial para \\(\\sigma\\), por ejemplo \\(\\sigma \\sim \\text{Exponential}(1)\\) (puedes experimentar con una normal truncada también)\n\nlibrary(cmdstanr)\n\nThis is cmdstanr version 0.7.1\n\n\n- CmdStanR documentation and vignettes: mc-stan.org/cmdstanr\n\n\n- CmdStan path: /home/runner/.cmdstan/cmdstan-2.34.0\n\n\n- CmdStan version: 2.34.0\n\n\n\nA newer version of CmdStan is available. See ?install_cmdstan() to install it.\nTo disable this check set option or environment variable CMDSTANR_NO_VER_CHECK=TRUE.\n\nmod_vinos_1 <- cmdstan_model(\"./src/vinos-1.stan\")\nprint(mod_vinos_1)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n}\n\nparameters {\n vector[n_vinos] Q;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = Q[vino[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n sigma ~ exponential(1);\n}\n\n\n\n# Wines 2022 de Statistical Rethinking\nwines_2012 <- read_csv(\"../datos/wines_2012.csv\")\n\nRows: 180 Columns: 6\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\nchr (3): judge, flight, wine\ndbl (3): score, wine.amer, judge.amer\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n\nglimpse(wines_2012)\n\nRows: 180\nColumns: 6\n$ judge <chr> \"Jean-M Cardebat\", \"Jean-M Cardebat\", \"Jean-M Cardebat\", \"J…\n$ flight <chr> \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"whit…\n$ wine <chr> \"A1\", \"B1\", \"C1\", \"D1\", \"E1\", \"F1\", \"G1\", \"H1\", \"I1\", \"J1\",…\n$ score <dbl> 10.0, 13.0, 14.0, 15.0, 8.0, 13.0, 15.0, 11.0, 9.0, 12.0, 1…\n$ wine.amer <dbl> 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0,…\n$ judge.amer <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…\n\nwines_2012 <- wines_2012 |> \n mutate(juez_num = as.numeric(factor(judge)),\n vino_num = as.numeric(factor(wine))) |> \n mutate(score_est = (score - mean(score))/sd(score))\n\n\nn_jueces <- length(unique(wines_2012$juez_num))\nn_vinos <- length(unique(wines_2012$vino_num))\nc(\"num_vinos\" = n_jueces, \"num_jueces\" = n_vinos, \"num_datos\" = nrow(wines_2012))\n\n num_vinos num_jueces num_datos \n 9 20 180 \n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num\n)\najuste_vinos_1 <- mod_vinos_1$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 finished in 0.4 seconds.\nChain 2 finished in 0.4 seconds.\nChain 3 finished in 0.3 seconds.\nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 finished in 0.4 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.4 seconds.\nTotal execution time: 0.7 seconds.\n\n\nVemos que hay variabilidad en los vinos:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n filter(variable != \"lp__\") |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\n\n\n\n8.3.1 Diagnóstico: Trazas de cadenas\nPara hacer diagnósticos, podemos comenzar con las trazas de una cadena para todas las estimaciones de calidad de vino. Cada cadena se inicia con distintos valores aleatorios, pero cumplen en teoría que su distribución de equilibrio es la posterior de interés pues sus transiciones usan el mismo mecanismo.\n\nlibrary(bayesplot)\nmcmc_trace(ajuste_vinos_1$draws(\"Q\", format = \"df\") |> filter(.chain == 1))\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nTip\n\n\n\nLa traza de una cadena es la gráfica de las simulaciones de cada parámetro. Generalmente buscamos que: no tenga tendencia, que no se quede “atorada” en algunos valores, y que no muestre oscilaciones de baja frecuencia (la cadena “vaga” por los valores que explora).\n\n\nSi incluímos todas las cadenas, nos fijemos en que todas ellas exploren regiones similares del espacio de parámetros:\n\ncolor_scheme_set(\"viridis\")\nmcmc_trace(ajuste_vinos_1$draws(\"Q\", format = \"df\")) \n\n\n\n\n\n\n\n\nLo que no queremos ver es lo siguiente, por ejemplo:\n\najuste_vinos_malo <- mod_vinos_1$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 5,\n iter_sampling = 100,\n refresh = 1000,\n step_size =1 ,\n seed = 123\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 WARNING: No variance estimation is \nChain 1 performed for num_warmup < 20 \nChain 1 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 1 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 1 Iteration: 105 / 105 [100%] (Sampling) \nChain 2 WARNING: No variance estimation is \nChain 2 performed for num_warmup < 20 \nChain 2 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 2 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 2 Iteration: 105 / 105 [100%] (Sampling) \nChain 3 WARNING: No variance estimation is \nChain 3 performed for num_warmup < 20 \nChain 3 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 3 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 3 Iteration: 105 / 105 [100%] (Sampling) \n\n\nChain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmp112fow/model-27112f177c06.stan', line 25, column 2 to column 33)\n\n\nChain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 3 \n\n\nChain 4 WARNING: No variance estimation is \nChain 4 performed for num_warmup < 20 \nChain 4 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 4 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 4 Iteration: 105 / 105 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 finished in 0.0 seconds.\nChain 3 finished in 0.0 seconds.\nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.2 seconds.\n\n\nWarning: 324 of 400 (81.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 2 of 4 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\n\ncolor_scheme_set(\"viridisA\")\nmcmc_trace(ajuste_vinos_malo$draws(\"Q\", format = \"df\")) \n\n\n\n\n\n\n\n\nHay varios problemas graves:\n\nAlgunas cadenas parecen “atoradas” en ciertos valores\nAlgunas cadenas parecen caminatas aleatorias (oscilaciones de baja frecuencia)\nLas cadenas no exploran de manera similar el espacio de parámetros\n\n\n\n\n\n\n\nTraza de cadenas\n\n\n\nEl diagnóstico de traza consiste en graficar las cadenas de los parámetros en el orden de la iteración. Buscamos ver que:\n\nLas cadenas no tienen tendencia o oscilaciones de frecuencia muy baja.\nLas cadenas no se atoran en valores específicos.\nLas distintas cadenas exploran de manera similar el espacio de parámetros.\n\nCuando falla alguna de estas, en el mejor de los casos las cadenas son ineficientes (veremos que requerimos un número mucho mayor de iteraciones), y en el peor de los casos dan resultados sesgados que no son confiables.\n\n\n\n\n8.3.2 Diagnóstico: valores R-hat\nCuando nuestro método de simulación converge a la distribución posterior, esperamos que las cadenas, durante todo su proceso, exploran la misma región del espacio de parámetros.\nPodemos entonces considerar, para cada parámetro:\n\nCuánta variación hay en cada cadena.\nQué tan distintas son las cadenas entre ellas.\n\nEsperamos que la variación entre cadenas es chica, y la variación dentro de cada cadena es similar para todas las cadenas. Calculamos entonces un cociente de varianzas: la varianza total sobre todas las simulaciones de todas las cadenas, y el promedio de varianzas de las cadenas. Si las cadenas están explorando regiones similares, esperamos que este cociente de varianzas sea cercano a 1.\nEscribiremos ahora esta idea para entender cómo se calculan estas cantidades. Supongamos que cada cadena se denota por \\(\\theta_m\\), para \\(M\\) cadenas, y las iteraciones de cada cadena son \\(\\theta_m^{(i)}\\) para \\(i=1,\\ldots, N\\) iteraciones. Definimos (ver el manual de Stan o Brooks et al. (2011) por ejemplo) primero la varianza entre cadenas, que es (ojo: usaremos definiciones aproximadas para entender más fácilmente):\n\\[b=\\frac{1}{M-1}\\sum_{m=1}^M (\\bar{\\theta}_m - \\bar{\\theta})^2\\] donde \\(\\bar{\\theta}_m\\) es el promedio de las iteraciones de la cadena \\(m\\), y \\(\\bar{\\theta}\\) es el promedio del las \\(\\bar{\\theta}_m\\).\nDefinimos también la varianza dentro de las cadenas, que es el promedio de la varianza de cada cadena:\n\\[w=\\frac{1}{M}\\sum_{m=1}^M \\frac{1}{N}\\sum_{i=1}^N (\\theta_m^{(i)} - \\bar{\\theta}_m)^2\\] Finalmente, la \\(R\\)-hat, o estadística de potencial de reducción de escala, es (para \\(N\\) grande),\n\\[\\hat{R} = \\sqrt{\\frac{b+w}{w}}\\]\nBuscamos entonces que este valor sea cercano a 1. Si es mayor a 1.05, es señal de posibles problemas de convergencia (pocas iteraciones u otras fallas en la convergencia). Si es menor que 1.01, generalmente decimos que “pasamos” esta prueba. Esto no es garantía de que la convergencia se ha alcanzado: la primera razón es que este diagnóstico, por ejemplo, sólo considera media y varianza, de forma que en principio podríamos pasar esta prueba aún cuando las cadenas tengan comportamiento distinto en otras estadísticas de orden más alto (por ejemplo, una cadena que oscila poco y de vez en cuando salta a un atípico vs otra que tiene variación moderada pueden ser similares en medias y varianzas).\nEn Stan, adicionalmente, se divide cada cadena en dos mitades, y el análisis se hace sobre \\(2M\\) medias cadenas. Esto ayuda a detectar por ejemplo problemas donde una cadena sube y luego baja, por ejemplo, de modo que puede tener el mismo promedio que otras que exploran correctamente.\nNota: Estas fórmulas pretenden explicar de manera simple el concepto de \\(R\\)-hat, y son correctas para \\(N\\) grande, lo cual casi siempre es el caso (al menos \\(N\\geq 100\\)). Puedes consultar una definición más estándar con correcciones por grados de libertad en el manual de Stan o cualquier libro de MCMC.\n\n\n\n\n\n\nDiagnóstico de R-hat\n\n\n\nEl diagnóstico de R-hat compara la varianza dentro de las cadenas y de cadena a cadena. Cuando este valor es relativamente grande (por ejemplo mayor a 1.05), es señal de que las cadenas no han explorado apropiadamente el espacio de parámetros (o decimos que no están “mezclando”). En general, buscamos que este valor sea menor a 1.02.\nSe llama también potencial de reducción a escala porque busca indicar cuánto se podría reducir la varianza de la distribución actual si dejáramos correr las cadenas por más iteraciones (pues a largo plazo no debe haber varianza entre cadenas).\n\n\nEn nuestro ejemplo apropiado, observamos valores muy cercanos a 1 para todos los parámetros:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\nEn nuestro ejemplo “malo”, obtenemos valores no aceptabels de R-hat para varios parámetros.\n\najuste_vinos_malo$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n-0.167\n0.345\n-0.538\n0.427\n2.367\n5.335\n4.502\n\n\nQ[2]\n-0.012\n0.289\n-0.306\n0.556\n1.633\n7.010\n4.670\n\n\nQ[3]\n0.226\n0.246\n-0.188\n0.596\n1.379\n9.802\n14.937\n\n\nQ[4]\n0.651\n0.385\n0.032\n1.088\n1.596\n7.207\n12.047\n\n\nQ[5]\n-0.173\n0.253\n-0.547\n0.191\n1.441\n8.933\n58.601\n\n\nQ[6]\n-0.387\n0.626\n-1.277\n0.704\n2.367\n5.372\n4.348\n\n\nQ[7]\n0.084\n0.364\n-0.291\n0.812\n1.340\n10.165\n27.683\n\n\nQ[8]\n0.272\n0.254\n-0.180\n0.558\n1.372\n9.580\n18.466\n\n\nQ[9]\n-0.117\n0.188\n-0.377\n0.247\n1.689\n13.208\n30.165\n\n\nQ[10]\n0.004\n0.347\n-0.460\n0.496\n1.557\n7.600\n25.190\n\n\nQ[11]\n0.068\n0.618\n-1.137\n0.840\n2.724\n5.072\n7.003\n\n\nQ[12]\n0.119\n0.270\n-0.245\n0.625\n1.237\n14.834\n42.161\n\n\nQ[13]\n0.089\n0.491\n-0.489\n1.235\n1.868\n6.388\n28.327\n\n\nQ[14]\n0.172\n0.736\n-0.780\n1.299\n2.064\n5.741\n18.739\n\n\nQ[15]\n0.082\n0.407\n-0.491\n0.605\n2.109\n5.718\n17.270\n\n\nQ[16]\n-0.055\n0.339\n-0.548\n0.394\n1.711\n6.843\n25.826\n\n\nQ[17]\n0.104\n0.310\n-0.444\n0.502\n1.811\n6.325\n20.519\n\n\nQ[18]\n-0.562\n0.429\n-1.076\n0.479\n1.959\n6.022\n28.327\n\n\nQ[19]\n-0.162\n0.281\n-0.600\n0.248\n1.561\n7.410\n41.928\n\n\nQ[20]\n0.122\n0.737\n-1.036\n0.922\n1.949\n6.030\n4.348\n\n\nsigma\n0.958\n0.239\n0.751\n1.092\n1.571\n7.369\n8.522\n\n\n\n\n\n\n\n\nNota: si algunos parámetros tienen valores R-hat cercanos a 1 pero otros no, en general no podemos confiar en los resultados de las simulaciones. Esto es señal de problemas de convergencia y deben ser diagnosticados.\n\n\n8.3.3 Diagnóstico: Tamaño de muestra efectivo\nLas simulaciones de MCMC típicamente están autocorrelacionadas (pues comenzamos en una región y muchas veces nos movemos poco). Esto significa que la cantidad de información de \\(N\\) simulaciones MCMC no es la misma que la que obtendríamos con \\(N\\) simulaciones independientes de la posterior.\nEste concepto también se usa en muestreo: por ejemplo, existe menos información en una muestra de 100 personas que fueron muestreadas por conglomerados de 50 casas (por ejemplo, seleccionando al azar hogares y luego a dos adultos dentro de cada hogar) que seleccionar 100 hogares y escoger a un al azar un adulto de cada hogar. La segunda muestra tienen más información de la población, pues en la primera muestra parte de la información es “compartida” por el hecho de vivir en el mismo hogar. Para encontrar un número “efectivo” de muestra que haga comparables estos dos diseños, comparamos la varianza que obtendríamos del estimador de interes en cada caso. Si consideramos como base el segundo diseño (muestro aleatorio independiente), el primer diseño tendrá más varianza. Eso quiere decir que para que hubiera la misma varianza en los dos diseños, bastaría una muestra más chica (digamos 60 hogares) del segundo diseño independiente. Decimos que el tamaño efectivo de muestra del primer diseño es de 60 personas (el caso donde las varianzas de los dos diseños son iguales).\nEn el caso de series de tiempo, tenemos que considerar autocorrelación en la serie. Supongamos que quisiéramos estimar la media de una serie de tiempo (suponemos que a largo plazo el promedio de la serie de tiempo es una constante finita). Una muestra con autocorrelación alta produce malos estimadores de esta media incluso para tamaños de muestra relativamente grande:\n\nset.seed(123)\nmu_verdadera <- 10\nsimular_series <- function(T = 500, num_series = 100, ar = 0.9){\n map_df(1:num_series, function(rep){\n serie <- 10 + arima.sim(n = T, list(ar = ar), n.start = 200, sd = sqrt(1-ar^2))\n tibble(t = 1:T, serie = serie, serie_id = rep, ar = ar)\n })\n}\nseries_1_tbl <- simular_series(T= 200, n = 4, ar = 0.80)\nseries_2_tbl <- simular_series(T= 200, n = 4, ar = 0.00001)\nseries_tbl <- bind_rows(series_1_tbl, series_2_tbl)\nseries_tbl |> \n ggplot(aes(t, serie, group = serie_id, colour = factor(serie_id))) + \n geom_line(alpha = 0.9) + \n geom_hline(yintercept = mu_verdadera, linetype = 2) + \n facet_wrap(~ar, ncol = 1)\n\n\n\n\n\n\n\n\nCalculamos las medias para un ejemplo con autocorrelación y otro sin ellas:\n\nseries_95_tbl <- simular_series(T= 300, n = 500, ar = 0.80) \nseries_05_tbl <- simular_series(T= 300, n = 500, ar = 0.00001) \nseries_tbl <- bind_rows(series_95_tbl, series_05_tbl)\nseries_tbl |> group_by(serie_id, ar) |> \n summarise(media = mean(serie)) |> \n ggplot(aes(media)) + geom_histogram() + \n geom_vline(xintercept = mu_verdadera, linetype = 2) + \n labs(title = \"Distribución de medias de series de tiempo\") +\n facet_wrap(~ar)\n\n`summarise()` has grouped output by 'serie_id'. You can override using the\n`.groups` argument.\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY vemos que la precisión de la estimación cuando la correlación es relativamente baja es mucho más alta que cuando la correlación es alta. ¿Cuál es el tamaño efectivo de muestra para series con autocorrelación ar= 0.8? Vemos que es aproximadamente 35, o dicho de otra manera, la serie sin correlación nos da casi 10 veces más información por observación que la correlacionada:\n\nseries_95_tbl <- simular_series(T= 300, n = 1000, ar = 0.8) \nseries_05_tbl <- simular_series(T= 35, n = 1000, ar = 0.00001) \nseries_tbl <- bind_rows(series_95_tbl, series_05_tbl)\nseries_tbl |> group_by(serie_id, ar) |> \n summarise(media = mean(serie)) |> \n ggplot(aes(media)) + geom_histogram() + \n geom_vline(xintercept = mu_verdadera, linetype = 2) + \n labs(title = \"Distribución de medias de series de tiempo\") +\n facet_wrap(~ar)\n\n`summarise()` has grouped output by 'serie_id'. You can override using the\n`.groups` argument.\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nEs posible hacer una estimación teórica del tamaño efectivo de muestra. Para esto, podemos notar que la varianza del promedio de una serie de tiempo depende de la estructura de autocorrelación. Supondremos que la serie de tiempo es estacionaria y cada \\(y_t\\) tiene varianza \\(\\sigma^2\\) y correlación \\(\\rho\\) con \\(y_{t-1}\\). Entonces:\n\\[Var(\\bar{y})=\\frac{1}{n^2}\\text{Var} \\left(\\sum_{t=1}^n y_t \\right) =\n\\frac{n\\sigma^2}{n^2}\\sum_{t=1}^n \\text{Var}(y_t) + \\frac{2\\sigma^2}{n^2}\\sum_{t=1}^{n-1}\\sum_{s=t+1}^n\\text{Corr}(y_t, y_s)\\]\nQue se simplifica a (para \\(n\\) grande):\n\\[\\text{Var}(\\bar{y}) = \\frac{\\sigma^2}{n} + \\frac{2\\sigma^2}{n}\\sum_{h=1}^{n-1}(1-h/n)\\rho_{h} \\approx \\frac{\\sigma^2}{n}\\left (1+2\\sum_{h=1}^{n-1}\\rho_t\\right )\\] Si suponemos \\(\\rho_h = \\text{corr}(y_t, y_{t+h})\\) para cualquier \\(t\\). En nuestro caso anterior, el factor de corrección es aproximadamente:\n\n1 + 2*(0.8)^(1:1000) |> sum()\n\n[1] 9\n\n\n\n\n\n\n\n\nTamaño efectivo de muestra\n\n\n\nSi hacemos \\(N\\) iteraciones en una cadena estacionaria con función de autocorrelación \\(\\rho_h\\), el tamaño efectivo de muestra teórico se define como\n\\[N_{eff} = \\frac{N}{1 + 2\\sum_{h=1}^{\\infty}\\rho_h}\\]\nSi pudiéramos hacer simulaciones independientes de la posterior, \\(N_{eff}\\) es el tamaño de muestra requerido para obtener la misma información que la cadena autocorrelacionada de tamaño \\(N\\). Usualmente, aunque no siempre, \\(N_{eff}<N\\) para cadenas de MCMC.\n\n\nObservaciones:\n\nEsta es una definición teórica para entender el concepto. Para ver cómo se estima en la práctica puedes consultar el manual de Stan o (Brooks et al. 2011).\nEn algunos muestreadores que dan pasos cortos como en los ejemplos de Metropolis-Hastings que vimos, a veces es necesario hacer cientos de miles de iteraciones para obtener un tamaño efectivo de muestra apropiado para hacer inferencia. Stan generalmente obtiene tamaños efectivos de muestra mucho más altos con menos iteraciones (aunque cada iteración es más costosa).\nConsiderando experiencia y teoría, tamaños efectivos de muestra mínimos se considera de 400 o más (ver aquí).\n\nEn nuestro ejemplo, tenemos tamaños de muestra efectivos satisfactorios:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\n\nNótese que versiones más recientes de Stan reportan dos tamaños efectivos de muestra (ESS), uno para cantidades que dependen del centro de la distribución, como la media y mediana (bulk ESS, que es similar a la definición que vimos arriba, pero usando valores normalizados por rango), y otro para cantidades que dependen de las colas, como percentiles extremos (tail ESS, que estima el tamaño de muestra efectivo para los percentiles 5% y 95% ). En este caso, ambos son altos.\n\nFinalmente, podemos checar el error montecarlo, que es error de estimación usual\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483", + "text": "8.3 Diagnósticos de convergencia\nAunque casi nunca es posible demostrar rigurosamente que las simulaciones de un algoritmo MCMC dan buena aproximación de la distribución posterior de interés, especialmente con HMC y NUTS, tenemos muchos diagnósticos que fallan cuando existen problemas serios.\nEn primer lugar, será útil correr distintas cadenas con valores iniciales aleatorios diferentes, analizamos cada una y las comparamos entre sí. Recordamos que cada una de estas cadenas tiene como distribución estacionaria límite la distribución posterior. Diagnósticos que indican que las cadenas se comportan de manera muy distinta, explorando distintas regiones del espacio de parámetros, o que no han convergido porque exploran lentamente el espacio de parámetros, son señales de problemas.\nLos diagnósticos más comunes son:\n\nTraza de cadenas\nMedida R-hat de convergencia: mide la variabilidad entre cadenas y dentro de cadenas.\nNúmero de muestras efectivas (ESS) y autocorrelación.\nTransiciones divergentes.\n\n\nModelos con variables latentes\nVeremos el ejemplo de calificación de vinos de distintos países de McElreath (2020), sus diagnósticos, y aprovecharemos para introducir variables no observadas o latentes para enriquecer nuestras herramientas de modelación.\nNuestra pregunta general es si el país de origen de los vinos influye en su calidad. Los datos que tenemos son calificaciones de vinos de distintos países por distintos jueces. La calidad del vino no la observamos directamente, sino que es causa de las calificaciones que recibe. Para construir nuestro diagrama, las consideraciones básicas son:\n\nEl origen del vino es una causa del calidad del vino (es nuestra cantidad a estimar).\nLos jueces tienen distintas maneras de calificar, de manera que son causa de variación en las calificaciones (hay jueces más duros, otros más barcos, etc.) No observamos directamente que tan “duro” es cada juez.\nLos jueces califican vinos de distintos países de manera ciega. Sin embargo es posible que reconozcan el país de origen por las características de los vinos, de manera que puede existir un efecto directo de Origen en Calificación (no pasa por Calidad).\nEs posible que Jueces de distintos países tienen distintos estándares de calificación.\n\n\n\nCódigo\nlibrary(DiagrammeR)\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir = LR]\n node [shape=plaintext]\n Origen\n Score\n Origen_Juez\n node [shape = circle]\n Q\n J\n edge [minlen = 3]\n Origen -> Q\n Origen -> Score\n Q -> Score\n J -> Score\n Origen_Juez -> J\n}\n\")\n\n\n\n\n\n\nY vemos, por nuestro análisis del DAG, que podemos identificar el efecto de Origen sobre Calidad sin necesidad de estratificar por ninguna variable (no hay puertas traseras). Sin embaergo, podemos estratificar por Juez para obtener más precisión (ver sección anterior de buenos y malos controles).\n\n8.3.0.1 Primera iteración: modelo simple\nComenzamos con un modelo simple, y lo iremos construyendo para obtener la mejor estimación posible de la influencia del país de origen en la calidad del vino. Nuestro primer modelo consideramos que la calificación de cada vino depende de su calidad, y modelamos con una normal:\n\\[S_i \\sim \\text{Normal}(\\mu_i, \\sigma)\\] donde \\[\\mu_i = Q_{vino(i)}\\]. Nuestra medida de calidad tiene escala arbitaria. Como usaremos la calificación estandarizada, podemos poner \\[Q_j \\sim \\text{Normal}(0, 1).\\] finalmente, ponemos una inicial para \\(\\sigma\\), por ejemplo \\(\\sigma \\sim \\text{Exponential}(1)\\) (puedes experimentar con una normal truncada también)\n\nlibrary(cmdstanr)\n\nThis is cmdstanr version 0.7.1\n\n\n- CmdStanR documentation and vignettes: mc-stan.org/cmdstanr\n\n\n- CmdStan path: /home/runner/.cmdstan/cmdstan-2.34.0\n\n\n- CmdStan version: 2.34.0\n\n\n\nA newer version of CmdStan is available. See ?install_cmdstan() to install it.\nTo disable this check set option or environment variable CMDSTANR_NO_VER_CHECK=TRUE.\n\nmod_vinos_1 <- cmdstan_model(\"./src/vinos-1.stan\")\nprint(mod_vinos_1)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n}\n\nparameters {\n vector[n_vinos] Q;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = Q[vino[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n sigma ~ exponential(1);\n}\n\n\n\n# Wines 2022 de Statistical Rethinking\nwines_2012 <- read_csv(\"../datos/wines_2012.csv\")\n\nRows: 180 Columns: 6\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\nchr (3): judge, flight, wine\ndbl (3): score, wine.amer, judge.amer\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n\nglimpse(wines_2012)\n\nRows: 180\nColumns: 6\n$ judge <chr> \"Jean-M Cardebat\", \"Jean-M Cardebat\", \"Jean-M Cardebat\", \"J…\n$ flight <chr> \"white\", \"white\", \"white\", \"white\", \"white\", \"white\", \"whit…\n$ wine <chr> \"A1\", \"B1\", \"C1\", \"D1\", \"E1\", \"F1\", \"G1\", \"H1\", \"I1\", \"J1\",…\n$ score <dbl> 10.0, 13.0, 14.0, 15.0, 8.0, 13.0, 15.0, 11.0, 9.0, 12.0, 1…\n$ wine.amer <dbl> 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0,…\n$ judge.amer <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…\n\nwines_2012 <- wines_2012 |> \n mutate(juez_num = as.numeric(factor(judge)),\n vino_num = as.numeric(factor(wine))) |> \n mutate(score_est = (score - mean(score))/sd(score))\n\n\nn_jueces <- length(unique(wines_2012$juez_num))\nn_vinos <- length(unique(wines_2012$vino_num))\nc(\"num_vinos\" = n_jueces, \"num_jueces\" = n_vinos, \"num_datos\" = nrow(wines_2012))\n\n num_vinos num_jueces num_datos \n 9 20 180 \n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num\n)\najuste_vinos_1 <- mod_vinos_1$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 1 finished in 0.3 seconds.\nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 finished in 0.4 seconds.\nChain 3 finished in 0.4 seconds.\nChain 4 finished in 0.4 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.4 seconds.\nTotal execution time: 0.6 seconds.\n\n\nVemos que hay variabilidad en los vinos:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n filter(variable != \"lp__\") |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\n\n\n\n8.3.1 Diagnóstico: Trazas de cadenas\nPara hacer diagnósticos, podemos comenzar con las trazas de una cadena para todas las estimaciones de calidad de vino. Cada cadena se inicia con distintos valores aleatorios, pero cumplen en teoría que su distribución de equilibrio es la posterior de interés pues sus transiciones usan el mismo mecanismo.\n\nlibrary(bayesplot)\nmcmc_trace(ajuste_vinos_1$draws(\"Q\", format = \"df\") |> filter(.chain == 1))\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nTip\n\n\n\nLa traza de una cadena es la gráfica de las simulaciones de cada parámetro. Generalmente buscamos que: no tenga tendencia, que no se quede “atorada” en algunos valores, y que no muestre oscilaciones de baja frecuencia (la cadena “vaga” por los valores que explora).\n\n\nSi incluímos todas las cadenas, nos fijemos en que todas ellas exploren regiones similares del espacio de parámetros:\n\ncolor_scheme_set(\"viridis\")\nmcmc_trace(ajuste_vinos_1$draws(\"Q\", format = \"df\")) \n\n\n\n\n\n\n\n\nLo que no queremos ver es lo siguiente, por ejemplo:\n\najuste_vinos_malo <- mod_vinos_1$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 5,\n iter_sampling = 100,\n refresh = 1000,\n step_size =1 ,\n seed = 123\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 WARNING: No variance estimation is \nChain 1 performed for num_warmup < 20 \nChain 1 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 1 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 1 Iteration: 105 / 105 [100%] (Sampling) \nChain 2 WARNING: No variance estimation is \nChain 2 performed for num_warmup < 20 \nChain 2 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 2 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 2 Iteration: 105 / 105 [100%] (Sampling) \nChain 3 WARNING: No variance estimation is \nChain 3 performed for num_warmup < 20 \nChain 3 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 3 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 3 Iteration: 105 / 105 [100%] (Sampling) \n\n\nChain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpecaSsk/model-29e611095069.stan', line 25, column 2 to column 33)\n\n\nChain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 3 \n\n\nChain 4 WARNING: No variance estimation is \nChain 4 performed for num_warmup < 20 \nChain 4 Iteration: 1 / 105 [ 0%] (Warmup) \nChain 4 Iteration: 6 / 105 [ 5%] (Sampling) \nChain 4 Iteration: 105 / 105 [100%] (Sampling) \nChain 1 finished in 0.0 seconds.\nChain 2 finished in 0.0 seconds.\nChain 3 finished in 0.0 seconds.\nChain 4 finished in 0.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.0 seconds.\nTotal execution time: 0.2 seconds.\n\n\nWarning: 324 of 400 (81.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 2 of 4 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\n\ncolor_scheme_set(\"viridisA\")\nmcmc_trace(ajuste_vinos_malo$draws(\"Q\", format = \"df\")) \n\n\n\n\n\n\n\n\nHay varios problemas graves:\n\nAlgunas cadenas parecen “atoradas” en ciertos valores\nAlgunas cadenas parecen caminatas aleatorias (oscilaciones de baja frecuencia)\nLas cadenas no exploran de manera similar el espacio de parámetros\n\n\n\n\n\n\n\nTraza de cadenas\n\n\n\nEl diagnóstico de traza consiste en graficar las cadenas de los parámetros en el orden de la iteración. Buscamos ver que:\n\nLas cadenas no tienen tendencia o oscilaciones de frecuencia muy baja.\nLas cadenas no se atoran en valores específicos.\nLas distintas cadenas exploran de manera similar el espacio de parámetros.\n\nCuando falla alguna de estas, en el mejor de los casos las cadenas son ineficientes (veremos que requerimos un número mucho mayor de iteraciones), y en el peor de los casos dan resultados sesgados que no son confiables.\n\n\n\n\n8.3.2 Diagnóstico: valores R-hat\nCuando nuestro método de simulación converge a la distribución posterior, esperamos que las cadenas, durante todo su proceso, exploran la misma región del espacio de parámetros.\nPodemos entonces considerar, para cada parámetro:\n\nCuánta variación hay en cada cadena.\nQué tan distintas son las cadenas entre ellas.\n\nEsperamos que la variación entre cadenas es chica, y la variación dentro de cada cadena es similar para todas las cadenas. Calculamos entonces un cociente de varianzas: la varianza total sobre todas las simulaciones de todas las cadenas, y el promedio de varianzas de las cadenas. Si las cadenas están explorando regiones similares, esperamos que este cociente de varianzas sea cercano a 1.\nEscribiremos ahora esta idea para entender cómo se calculan estas cantidades. Supongamos que cada cadena se denota por \\(\\theta_m\\), para \\(M\\) cadenas, y las iteraciones de cada cadena son \\(\\theta_m^{(i)}\\) para \\(i=1,\\ldots, N\\) iteraciones. Definimos (ver el manual de Stan o Brooks et al. (2011) por ejemplo) primero la varianza entre cadenas, que es (ojo: usaremos definiciones aproximadas para entender más fácilmente):\n\\[b=\\frac{1}{M-1}\\sum_{m=1}^M (\\bar{\\theta}_m - \\bar{\\theta})^2\\] donde \\(\\bar{\\theta}_m\\) es el promedio de las iteraciones de la cadena \\(m\\), y \\(\\bar{\\theta}\\) es el promedio del las \\(\\bar{\\theta}_m\\).\nDefinimos también la varianza dentro de las cadenas, que es el promedio de la varianza de cada cadena:\n\\[w=\\frac{1}{M}\\sum_{m=1}^M \\frac{1}{N}\\sum_{i=1}^N (\\theta_m^{(i)} - \\bar{\\theta}_m)^2\\] Finalmente, la \\(R\\)-hat, o estadística de potencial de reducción de escala, es (para \\(N\\) grande),\n\\[\\hat{R} = \\sqrt{\\frac{b+w}{w}}\\]\nBuscamos entonces que este valor sea cercano a 1. Si es mayor a 1.05, es señal de posibles problemas de convergencia (pocas iteraciones u otras fallas en la convergencia). Si es menor que 1.01, generalmente decimos que “pasamos” esta prueba. Esto no es garantía de que la convergencia se ha alcanzado: la primera razón es que este diagnóstico, por ejemplo, sólo considera media y varianza, de forma que en principio podríamos pasar esta prueba aún cuando las cadenas tengan comportamiento distinto en otras estadísticas de orden más alto (por ejemplo, una cadena que oscila poco y de vez en cuando salta a un atípico vs otra que tiene variación moderada pueden ser similares en medias y varianzas).\nEn Stan, adicionalmente, se divide cada cadena en dos mitades, y el análisis se hace sobre \\(2M\\) medias cadenas. Esto ayuda a detectar por ejemplo problemas donde una cadena sube y luego baja, por ejemplo, de modo que puede tener el mismo promedio que otras que exploran correctamente.\nNota: Estas fórmulas pretenden explicar de manera simple el concepto de \\(R\\)-hat, y son correctas para \\(N\\) grande, lo cual casi siempre es el caso (al menos \\(N\\geq 100\\)). Puedes consultar una definición más estándar con correcciones por grados de libertad en el manual de Stan o cualquier libro de MCMC.\n\n\n\n\n\n\nDiagnóstico de R-hat\n\n\n\nEl diagnóstico de R-hat compara la varianza dentro de las cadenas y de cadena a cadena. Cuando este valor es relativamente grande (por ejemplo mayor a 1.05), es señal de que las cadenas no han explorado apropiadamente el espacio de parámetros (o decimos que no están “mezclando”). En general, buscamos que este valor sea menor a 1.02.\nSe llama también potencial de reducción a escala porque busca indicar cuánto se podría reducir la varianza de la distribución actual si dejáramos correr las cadenas por más iteraciones (pues a largo plazo no debe haber varianza entre cadenas).\n\n\nEn nuestro ejemplo apropiado, observamos valores muy cercanos a 1 para todos los parámetros:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\nEn nuestro ejemplo “malo”, obtenemos valores no aceptabels de R-hat para varios parámetros.\n\najuste_vinos_malo$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, ess_bulk, ess_tail) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n-0.167\n0.345\n-0.538\n0.427\n2.367\n5.335\n4.502\n\n\nQ[2]\n-0.012\n0.289\n-0.306\n0.556\n1.633\n7.010\n4.670\n\n\nQ[3]\n0.226\n0.246\n-0.188\n0.596\n1.379\n9.802\n14.937\n\n\nQ[4]\n0.651\n0.385\n0.032\n1.088\n1.596\n7.207\n12.047\n\n\nQ[5]\n-0.173\n0.253\n-0.547\n0.191\n1.441\n8.933\n58.601\n\n\nQ[6]\n-0.387\n0.626\n-1.277\n0.704\n2.367\n5.372\n4.348\n\n\nQ[7]\n0.084\n0.364\n-0.291\n0.812\n1.340\n10.165\n27.683\n\n\nQ[8]\n0.272\n0.254\n-0.180\n0.558\n1.372\n9.580\n18.466\n\n\nQ[9]\n-0.117\n0.188\n-0.377\n0.247\n1.689\n13.208\n30.165\n\n\nQ[10]\n0.004\n0.347\n-0.460\n0.496\n1.557\n7.600\n25.190\n\n\nQ[11]\n0.068\n0.618\n-1.137\n0.840\n2.724\n5.072\n7.003\n\n\nQ[12]\n0.119\n0.270\n-0.245\n0.625\n1.237\n14.834\n42.161\n\n\nQ[13]\n0.089\n0.491\n-0.489\n1.235\n1.868\n6.388\n28.327\n\n\nQ[14]\n0.172\n0.736\n-0.780\n1.299\n2.064\n5.741\n18.739\n\n\nQ[15]\n0.082\n0.407\n-0.491\n0.605\n2.109\n5.718\n17.270\n\n\nQ[16]\n-0.055\n0.339\n-0.548\n0.394\n1.711\n6.843\n25.826\n\n\nQ[17]\n0.104\n0.310\n-0.444\n0.502\n1.811\n6.325\n20.519\n\n\nQ[18]\n-0.562\n0.429\n-1.076\n0.479\n1.959\n6.022\n28.327\n\n\nQ[19]\n-0.162\n0.281\n-0.600\n0.248\n1.561\n7.410\n41.928\n\n\nQ[20]\n0.122\n0.737\n-1.036\n0.922\n1.949\n6.030\n4.348\n\n\nsigma\n0.958\n0.239\n0.751\n1.092\n1.571\n7.369\n8.522\n\n\n\n\n\n\n\n\nNota: si algunos parámetros tienen valores R-hat cercanos a 1 pero otros no, en general no podemos confiar en los resultados de las simulaciones. Esto es señal de problemas de convergencia y deben ser diagnosticados.\n\n\n8.3.3 Diagnóstico: Tamaño de muestra efectivo\nLas simulaciones de MCMC típicamente están autocorrelacionadas (pues comenzamos en una región y muchas veces nos movemos poco). Esto significa que la cantidad de información de \\(N\\) simulaciones MCMC no es la misma que la que obtendríamos con \\(N\\) simulaciones independientes de la posterior.\nEste concepto también se usa en muestreo: por ejemplo, existe menos información en una muestra de 100 personas que fueron muestreadas por conglomerados de 50 casas (por ejemplo, seleccionando al azar hogares y luego a dos adultos dentro de cada hogar) que seleccionar 100 hogares y escoger a un al azar un adulto de cada hogar. La segunda muestra tienen más información de la población, pues en la primera muestra parte de la información es “compartida” por el hecho de vivir en el mismo hogar. Para encontrar un número “efectivo” de muestra que haga comparables estos dos diseños, comparamos la varianza que obtendríamos del estimador de interes en cada caso. Si consideramos como base el segundo diseño (muestro aleatorio independiente), el primer diseño tendrá más varianza. Eso quiere decir que para que hubiera la misma varianza en los dos diseños, bastaría una muestra más chica (digamos 60 hogares) del segundo diseño independiente. Decimos que el tamaño efectivo de muestra del primer diseño es de 60 personas (el caso donde las varianzas de los dos diseños son iguales).\nEn el caso de series de tiempo, tenemos que considerar autocorrelación en la serie. Supongamos que quisiéramos estimar la media de una serie de tiempo (suponemos que a largo plazo el promedio de la serie de tiempo es una constante finita). Una muestra con autocorrelación alta produce malos estimadores de esta media incluso para tamaños de muestra relativamente grande:\n\nset.seed(123)\nmu_verdadera <- 10\nsimular_series <- function(T = 500, num_series = 100, ar = 0.9){\n map_df(1:num_series, function(rep){\n serie <- 10 + arima.sim(n = T, list(ar = ar), n.start = 200, sd = sqrt(1-ar^2))\n tibble(t = 1:T, serie = serie, serie_id = rep, ar = ar)\n })\n}\nseries_1_tbl <- simular_series(T= 200, n = 4, ar = 0.80)\nseries_2_tbl <- simular_series(T= 200, n = 4, ar = 0.00001)\nseries_tbl <- bind_rows(series_1_tbl, series_2_tbl)\nseries_tbl |> \n ggplot(aes(t, serie, group = serie_id, colour = factor(serie_id))) + \n geom_line(alpha = 0.9) + \n geom_hline(yintercept = mu_verdadera, linetype = 2) + \n facet_wrap(~ar, ncol = 1)\n\n\n\n\n\n\n\n\nCalculamos las medias para un ejemplo con autocorrelación y otro sin ellas:\n\nseries_95_tbl <- simular_series(T= 300, n = 500, ar = 0.80) \nseries_05_tbl <- simular_series(T= 300, n = 500, ar = 0.00001) \nseries_tbl <- bind_rows(series_95_tbl, series_05_tbl)\nseries_tbl |> group_by(serie_id, ar) |> \n summarise(media = mean(serie)) |> \n ggplot(aes(media)) + geom_histogram() + \n geom_vline(xintercept = mu_verdadera, linetype = 2) + \n labs(title = \"Distribución de medias de series de tiempo\") +\n facet_wrap(~ar)\n\n`summarise()` has grouped output by 'serie_id'. You can override using the\n`.groups` argument.\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nY vemos que la precisión de la estimación cuando la correlación es relativamente baja es mucho más alta que cuando la correlación es alta. ¿Cuál es el tamaño efectivo de muestra para series con autocorrelación ar= 0.8? Vemos que es aproximadamente 35, o dicho de otra manera, la serie sin correlación nos da casi 10 veces más información por observación que la correlacionada:\n\nseries_95_tbl <- simular_series(T= 300, n = 1000, ar = 0.8) \nseries_05_tbl <- simular_series(T= 35, n = 1000, ar = 0.00001) \nseries_tbl <- bind_rows(series_95_tbl, series_05_tbl)\nseries_tbl |> group_by(serie_id, ar) |> \n summarise(media = mean(serie)) |> \n ggplot(aes(media)) + geom_histogram() + \n geom_vline(xintercept = mu_verdadera, linetype = 2) + \n labs(title = \"Distribución de medias de series de tiempo\") +\n facet_wrap(~ar)\n\n`summarise()` has grouped output by 'serie_id'. You can override using the\n`.groups` argument.\n`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n\n\n\n\n\n\n\n\n\nEs posible hacer una estimación teórica del tamaño efectivo de muestra. Para esto, podemos notar que la varianza del promedio de una serie de tiempo depende de la estructura de autocorrelación. Supondremos que la serie de tiempo es estacionaria y cada \\(y_t\\) tiene varianza \\(\\sigma^2\\) y correlación \\(\\rho\\) con \\(y_{t-1}\\). Entonces:\n\\[Var(\\bar{y})=\\frac{1}{n^2}\\text{Var} \\left(\\sum_{t=1}^n y_t \\right) =\n\\frac{n\\sigma^2}{n^2}\\sum_{t=1}^n \\text{Var}(y_t) + \\frac{2\\sigma^2}{n^2}\\sum_{t=1}^{n-1}\\sum_{s=t+1}^n\\text{Corr}(y_t, y_s)\\]\nQue se simplifica a (para \\(n\\) grande):\n\\[\\text{Var}(\\bar{y}) = \\frac{\\sigma^2}{n} + \\frac{2\\sigma^2}{n}\\sum_{h=1}^{n-1}(1-h/n)\\rho_{h} \\approx \\frac{\\sigma^2}{n}\\left (1+2\\sum_{h=1}^{n-1}\\rho_t\\right )\\] Si suponemos \\(\\rho_h = \\text{corr}(y_t, y_{t+h})\\) para cualquier \\(t\\). En nuestro caso anterior, el factor de corrección es aproximadamente:\n\n1 + 2*(0.8)^(1:1000) |> sum()\n\n[1] 9\n\n\n\n\n\n\n\n\nTamaño efectivo de muestra\n\n\n\nSi hacemos \\(N\\) iteraciones en una cadena estacionaria con función de autocorrelación \\(\\rho_h\\), el tamaño efectivo de muestra teórico se define como\n\\[N_{eff} = \\frac{N}{1 + 2\\sum_{h=1}^{\\infty}\\rho_h}\\]\nSi pudiéramos hacer simulaciones independientes de la posterior, \\(N_{eff}\\) es el tamaño de muestra requerido para obtener la misma información que la cadena autocorrelacionada de tamaño \\(N\\). Usualmente, aunque no siempre, \\(N_{eff}<N\\) para cadenas de MCMC.\n\n\nObservaciones:\n\nEsta es una definición teórica para entender el concepto. Para ver cómo se estima en la práctica puedes consultar el manual de Stan o (Brooks et al. 2011).\nEn algunos muestreadores que dan pasos cortos como en los ejemplos de Metropolis-Hastings que vimos, a veces es necesario hacer cientos de miles de iteraciones para obtener un tamaño efectivo de muestra apropiado para hacer inferencia. Stan generalmente obtiene tamaños efectivos de muestra mucho más altos con menos iteraciones (aunque cada iteración es más costosa).\nConsiderando experiencia y teoría, tamaños efectivos de muestra mínimos se considera de 400 o más (ver aquí).\n\nEn nuestro ejemplo, tenemos tamaños de muestra efectivos satisfactorios:\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483\n\n\n\n\n\n\n\n\n\nNótese que versiones más recientes de Stan reportan dos tamaños efectivos de muestra (ESS), uno para cantidades que dependen del centro de la distribución, como la media y mediana (bulk ESS, que es similar a la definición que vimos arriba, pero usando valores normalizados por rango), y otro para cantidades que dependen de las colas, como percentiles extremos (tail ESS, que estima el tamaño de muestra efectivo para los percentiles 5% y 95% ). En este caso, ambos son altos.\n\nFinalmente, podemos checar el error montecarlo, que es error de estimación usual\n\najuste_vinos_1$summary(c(\"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nQ[1]\n0.137\n0.317\n-0.396\n0.672\n1.001\n20694.09\n5373.128\n\n\nQ[2]\n0.103\n0.321\n-0.425\n0.629\n1.001\n20994.93\n5362.172\n\n\nQ[3]\n0.271\n0.318\n-0.247\n0.798\n1.000\n20676.69\n5913.964\n\n\nQ[4]\n0.555\n0.313\n0.043\n1.069\n1.000\n18730.09\n5575.563\n\n\nQ[5]\n-0.120\n0.315\n-0.636\n0.390\n1.001\n19760.24\n5848.199\n\n\nQ[6]\n-0.370\n0.312\n-0.880\n0.145\n1.000\n16654.60\n5972.842\n\n\nQ[7]\n0.286\n0.314\n-0.231\n0.795\n1.001\n17442.52\n6084.769\n\n\nQ[8]\n0.271\n0.319\n-0.256\n0.805\n1.000\n18199.26\n5596.789\n\n\nQ[9]\n0.080\n0.314\n-0.438\n0.584\n1.000\n19534.73\n5983.451\n\n\nQ[10]\n0.118\n0.308\n-0.386\n0.626\n1.000\n21143.80\n5814.923\n\n\nQ[11]\n-0.010\n0.321\n-0.546\n0.510\n1.000\n20940.00\n5531.936\n\n\nQ[12]\n-0.029\n0.322\n-0.560\n0.500\n1.001\n18276.46\n5849.228\n\n\nQ[13]\n-0.105\n0.312\n-0.609\n0.414\n1.003\n20575.88\n5957.570\n\n\nQ[14]\n0.005\n0.313\n-0.505\n0.525\n1.001\n17541.60\n5723.524\n\n\nQ[15]\n-0.215\n0.318\n-0.740\n0.312\n1.001\n17150.01\n5412.980\n\n\nQ[16]\n-0.201\n0.315\n-0.722\n0.315\n1.001\n17596.06\n5120.461\n\n\nQ[17]\n-0.142\n0.316\n-0.665\n0.379\n1.000\n20718.38\n6172.910\n\n\nQ[18]\n-0.860\n0.314\n-1.384\n-0.343\n1.000\n18745.31\n6126.091\n\n\nQ[19]\n-0.161\n0.311\n-0.666\n0.343\n1.000\n18166.25\n6352.717\n\n\nQ[20]\n0.380\n0.313\n-0.127\n0.896\n1.000\n21072.45\n5060.363\n\n\nsigma\n0.997\n0.054\n0.912\n1.092\n1.000\n13245.07\n6385.483", "crumbs": [ "8  Markov Chain Monte Carlo" ] @@ -574,7 +574,7 @@ "href": "08-mcmc.html#extendiendo-el-modelo-de-variable-latente", "title": "8  Markov Chain Monte Carlo", "section": "8.4 Extendiendo el modelo de variable latente", - "text": "8.4 Extendiendo el modelo de variable latente\nAhora continuamos con nuestro modelo de calidad de vinos. Incluímos el origen del vino (que tiene dos niveles):\n\nwines_2012 <- wines_2012 |> mutate(origen_num = as.numeric(factor(wine.amer)))\nwines_2012 |> select(wine.amer, origen_num) |> unique()\n\n# A tibble: 2 × 2\n wine.amer origen_num\n <dbl> <dbl>\n1 1 2\n2 0 1\n\nn_jueces <- length(unique(wines_2012$juez_num))\nn_vinos <- length(unique(wines_2012$vino_num))\nn_origen <- length(unique(wines_2012$origen_num))\nc(\"num_vinos\" = n_jueces, \"num_jueces\" = n_vinos, \"num_datos\" = nrow(wines_2012))\n\n num_vinos num_jueces num_datos \n 9 20 180 \n\n\n\nmod_vinos_2 <-cmdstan_model(\"./src/vinos-2.stan\")\nprint(mod_vinos_2)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n int<lower=0> n_origen; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n array[N] int origen;\n}\n\nparameters {\n vector[n_vinos] Q;\n vector[n_origen] O;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = Q[vino[i]] + O[origen[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n O ~ std_normal();\n sigma ~ exponential(1);\n}\n\ngenerated quantities {\n real dif_origen;\n dif_origen = O[1] - O[2];\n}\n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n n_origen = n_origen,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num,\n origen = wines_2012$origen_num\n)\najuste_vinos_2 <- mod_vinos_2$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 1 finished in 0.6 seconds.\nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 finished in 0.6 seconds.\nChain 3 finished in 0.6 seconds.\nChain 4 finished in 0.6 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.6 seconds.\nTotal execution time: 0.8 seconds.\n\n\n\najuste_vinos_2$summary(c(\"O\", \"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nO[1]\n0.099\n0.350\n-0.476\n0.681\n1.002\n2412.789\n4204.645\n\n\nO[2]\n-0.075\n0.298\n-0.569\n0.420\n1.001\n1894.755\n3151.806\n\n\nQ[1]\n0.206\n0.412\n-0.468\n0.882\n1.000\n3592.155\n5240.623\n\n\nQ[2]\n0.009\n0.447\n-0.734\n0.747\n1.001\n4003.812\n5697.399\n\n\nQ[3]\n0.338\n0.418\n-0.354\n1.031\n1.000\n3308.706\n5152.561\n\n\nQ[4]\n0.458\n0.448\n-0.278\n1.194\n1.001\n4037.965\n5292.574\n\n\nQ[5]\n-0.212\n0.442\n-0.935\n0.508\n1.001\n3648.474\n4531.175\n\n\nQ[6]\n-0.298\n0.418\n-0.982\n0.395\n1.001\n3439.901\n4588.545\n\n\nQ[7]\n0.197\n0.443\n-0.544\n0.925\n1.001\n3844.284\n5522.440\n\n\nQ[8]\n0.337\n0.414\n-0.347\n1.014\n1.001\n3470.029\n4716.944\n\n\nQ[9]\n0.152\n0.414\n-0.526\n0.834\n1.001\n3398.534\n5020.712\n\n\nQ[10]\n0.185\n0.412\n-0.496\n0.872\n1.001\n3476.594\n4876.944\n\n\nQ[11]\n0.060\n0.414\n-0.615\n0.745\n1.001\n3467.460\n4832.557\n\n\nQ[12]\n0.038\n0.414\n-0.641\n0.727\n1.000\n3244.006\n4972.325\n\n\nQ[13]\n-0.039\n0.413\n-0.721\n0.636\n1.001\n3434.090\n5449.640\n\n\nQ[14]\n-0.081\n0.450\n-0.818\n0.667\n1.001\n3721.005\n4902.528\n\n\nQ[15]\n-0.308\n0.446\n-1.034\n0.424\n1.001\n3871.176\n4955.067\n\n\nQ[16]\n-0.132\n0.416\n-0.822\n0.543\n1.000\n3254.726\n5149.031\n\n\nQ[17]\n-0.072\n0.415\n-0.741\n0.613\n1.001\n3582.440\n4455.786\n\n\nQ[18]\n-0.793\n0.423\n-1.500\n-0.095\n1.000\n3485.233\n4641.234\n\n\nQ[19]\n-0.253\n0.448\n-1.007\n0.474\n1.002\n3771.965\n5226.927\n\n\nQ[20]\n0.297\n0.443\n-0.436\n1.015\n1.001\n3595.291\n5448.456\n\n\nsigma\n0.998\n0.055\n0.912\n1.093\n1.000\n10061.554\n5795.223\n\n\n\n\n\n\n\n\nTodo parece bien con los diagnósticos. Podemos graficar las estimaciones (nota: aquí estan intervalos de 50% y 90%):\n\nlibrary(bayesplot)\ncolor_scheme_set(\"red\")\nmcmc_intervals(ajuste_vinos_2$draws(c(\"Q\", \"O\", \"sigma\")))\n\n\n\n\n\n\n\n\n\nParece no haber mucha diferencia en calidad debida origen del vinos (tienen relativamente poca variabilidad y están traslapadas: aunque podríamos mejor calcular el contraste si queremos examinar esto con más cuidado).\n\nTodo parece ir bien, así que podemos expandir el modelo para incluir la forma de calificar de los jueces. En primer lugar, definimos un nivel general \\(H\\) que indica qué tan alto o bajo califica un juez en general. Adicionalmente, incluímos un parámetro de discriminación \\(D\\) de los jueces, que indica qué tanto del rango de la escala usa cada juez El modelo para el valor esperado del Score de un vino \\(i\\) calificado por el juez \\(j\\) es:\n\\[\\mu_{i} = Q_{vino(i)} + U_{origen(i)} - H_{juez(i)}\\] Podemos pensar que el valor \\(H\\) de cada juez es qué tan duro es en sus calificaciones. Para cada vino, un juez con valor alto de \\(H\\) tendrá a calificar más bajo un vino de misma calidad y origen que otro juez con un valor más bajo de \\(H\\). Podemos incluír un parámetro de discriminación \\(D\\) para cada juez, que indica qué tanto del rango de la escala usa cada juez de la siguiente forma:\n\\[\\mu_{i} = (Q_{vino(i)} + U_{origen(i)} - H_{juez(i)})D_{juez(i)}\\] Un juez con valor alto de \\(D\\) es más extremo en sus calificaciones: un vino por arriba de su promedio lo califica más alto en la escala, y un vino por debajo de su promedio lo califica más bajo. El extremo es que \\(D=0\\), que quiere decir que el juez tiende a calificar a todos los vinos con un score.\n\nmod_vinos_3 <-cmdstan_model(\"./src/vinos-3.stan\")\nprint(mod_vinos_3)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n int<lower=0> n_origen; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n array[N] int origen;\n}\n\nparameters {\n vector[n_vinos] Q;\n vector[n_origen] O;\n vector[n_jueces] H;\n vector<lower=0>[n_jueces] D;\n\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = (Q[vino[i]] + O[origen[i]] - H[juez[i]]) * D[juez[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n O ~ std_normal();\n H ~ std_normal();\n D ~ std_normal();\n sigma ~ exponential(1);\n}\n\ngenerated quantities {\n real dif_origen;\n dif_origen = O[1] - O[2];\n}\n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n n_origen = n_origen,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num,\n origen = wines_2012$origen_num\n)\najuste_vinos_3 <- mod_vinos_3$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 1 finished in 1.5 seconds.\nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 finished in 1.5 seconds.\nChain 3 finished in 1.5 seconds.\nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 finished in 1.6 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 1.5 seconds.\nTotal execution time: 1.7 seconds.\n\n\nChecamos diagnósticos:\n\najuste_vinos_3$summary(c(\"O\", \"Q\", \"H\", \"D\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nO[1]\n0.181\n0.476\n-0.615\n0.956\n1.001\n3765.989\n4950.363\n\n\nO[2]\n-0.127\n0.444\n-0.851\n0.603\n1.001\n3813.505\n4494.836\n\n\nQ[1]\n0.368\n0.556\n-0.525\n1.304\n1.000\n5727.932\n6428.301\n\n\nQ[2]\n0.166\n0.570\n-0.759\n1.108\n1.000\n5663.956\n5912.333\n\n\nQ[3]\n0.515\n0.538\n-0.365\n1.400\n1.001\n6728.405\n6116.070\n\n\nQ[4]\n0.833\n0.570\n-0.075\n1.779\n1.000\n6969.773\n5395.361\n\n\nQ[5]\n-0.479\n0.556\n-1.372\n0.437\n1.001\n6477.503\n5430.105\n\n\nQ[6]\n-0.824\n0.594\n-1.797\n0.165\n1.001\n3820.716\n4280.100\n\n\nQ[7]\n0.211\n0.590\n-0.739\n1.185\n1.000\n5341.614\n5699.260\n\n\nQ[8]\n0.623\n0.552\n-0.274\n1.525\n1.001\n5797.117\n5654.560\n\n\nQ[9]\n0.292\n0.553\n-0.631\n1.191\n1.000\n6851.184\n5645.657\n\n\nQ[10]\n0.341\n0.534\n-0.550\n1.196\n1.000\n6961.356\n5808.247\n\n\nQ[11]\n0.205\n0.541\n-0.711\n1.082\n1.001\n6051.072\n5165.780\n\n\nQ[12]\n-0.091\n0.545\n-0.961\n0.821\n1.001\n5718.268\n5309.599\n\n\nQ[13]\n0.072\n0.551\n-0.849\n0.955\n1.001\n6459.464\n5836.498\n\n\nQ[14]\n-0.148\n0.541\n-1.030\n0.728\n1.000\n7359.575\n5321.920\n\n\nQ[15]\n-0.510\n0.563\n-1.446\n0.401\n1.000\n5951.653\n5523.262\n\n\nQ[16]\n-0.128\n0.559\n-1.046\n0.800\n1.001\n4795.742\n5328.219\n\n\nQ[17]\n0.105\n0.562\n-0.836\n0.992\n1.000\n5704.539\n5511.541\n\n\nQ[18]\n-1.504\n0.559\n-2.440\n-0.606\n1.000\n6210.482\n5604.212\n\n\nQ[19]\n-0.359\n0.535\n-1.245\n0.521\n1.000\n6851.111\n6289.493\n\n\nQ[20]\n0.496\n0.568\n-0.440\n1.435\n1.000\n6488.383\n6042.595\n\n\nH[1]\n0.595\n0.590\n-0.297\n1.600\n1.001\n4890.795\n5083.860\n\n\nH[2]\n-0.277\n0.430\n-0.987\n0.412\n1.001\n4067.421\n4471.063\n\n\nH[3]\n-0.487\n0.752\n-1.690\n0.755\n1.001\n6634.445\n5038.125\n\n\nH[4]\n1.230\n0.604\n0.334\n2.282\n1.000\n5810.318\n5565.047\n\n\nH[5]\n-1.789\n0.614\n-2.861\n-0.845\n1.001\n5710.315\n5603.079\n\n\nH[6]\n-1.176\n0.658\n-2.289\n-0.172\n1.001\n5852.321\n4696.880\n\n\nH[7]\n-0.237\n0.570\n-1.187\n0.624\n1.000\n4864.331\n4506.914\n\n\nH[8]\n1.220\n0.565\n0.358\n2.210\n1.000\n4741.553\n5182.626\n\n\nH[9]\n0.849\n0.802\n-0.532\n2.101\n1.000\n7080.074\n4764.104\n\n\nD[1]\n0.470\n0.253\n0.104\n0.922\n1.001\n3175.320\n3157.776\n\n\nD[2]\n0.935\n0.355\n0.359\n1.537\n1.001\n2500.634\n2606.835\n\n\nD[3]\n0.248\n0.184\n0.023\n0.605\n1.001\n3663.955\n3477.833\n\n\nD[4]\n0.445\n0.194\n0.176\n0.805\n1.001\n4330.755\n3565.457\n\n\nD[5]\n0.450\n0.151\n0.240\n0.728\n1.000\n5467.003\n4588.211\n\n\nD[6]\n0.341\n0.171\n0.094\n0.648\n1.002\n3379.508\n2023.933\n\n\nD[7]\n0.595\n0.409\n0.052\n1.339\n1.002\n1855.105\n2665.182\n\n\nD[8]\n0.620\n0.248\n0.283\n1.084\n1.000\n3914.767\n4854.722\n\n\nD[9]\n0.198\n0.142\n0.017\n0.464\n1.001\n4130.257\n3929.585\n\n\nsigma\n0.822\n0.050\n0.744\n0.909\n1.000\n4920.030\n5690.416\n\n\n\n\n\n\n\n\nY vemos efectivamente que el uso de la escala de los jueces es considerablemente diferente, y que hemos absorbido parte de la variación con los parámetros \\(H\\) y \\(D\\) (\\(sigma\\) es más baja que en los modelos anteriores):\n\nmcmc_intervals(ajuste_vinos_3$draws(c(\"H\", \"D\", \"sigma\")))\n\n\n\n\n\n\n\n\n\nmcmc_intervals(ajuste_vinos_3$draws(c(\"Q\")))\n\n\n\n\n\n\n\nmcmc_intervals(ajuste_vinos_1$draws(c(\"Q\")))\n\n\n\n\n\n\n\n\nCon el modelo completo, examinamos ahora el contraste de interés: ¿hay diferencias en las calificaciones de vinos de diferentes orígenes? La respuesta es que no hay mucha evidencia de que haya una diferencia, aunque hay variación considerable en este contraste:\n\najuste_vinos_3$summary(c(\"dif_origen\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) \n\n# A tibble: 1 × 8\n variable mean sd q5 q95 rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 dif_origen 0.308 0.499 -0.521 1.12 1 4346. 5291.", + "text": "8.4 Extendiendo el modelo de variable latente\nAhora continuamos con nuestro modelo de calidad de vinos. Incluímos el origen del vino (que tiene dos niveles). La idea es que el origen, si vemos en el diagrama original, puede ser una variable de confusión entre calidad y score (pues afecta a calidad y también potencialmente al score). Adicionalmente, el origen no tiene puerta trasera, así que podemos examinar su efecto total sobre el score de los vinos. Estratificamos de la manera más simple, incluyendo origen en nuestra regresión:\n\nwines_2012 <- wines_2012 |> mutate(origen_num = ifelse(wine.amer == 1, 1, 2))\nwines_2012 |> select(wine.amer, origen_num) |> unique()\n\n# A tibble: 2 × 2\n wine.amer origen_num\n <dbl> <dbl>\n1 1 1\n2 0 2\n\nn_jueces <- length(unique(wines_2012$juez_num))\nn_vinos <- length(unique(wines_2012$vino_num))\nn_origen <- length(unique(wines_2012$origen_num))\nc(\"num_vinos\" = n_vinos, \"num_jueces\" = n_jueces, \"num_datos\" = nrow(wines_2012))\n\n num_vinos num_jueces num_datos \n 20 9 180 \n\n\n\nmod_vinos_2 <-cmdstan_model(\"./src/vinos-2.stan\")\nprint(mod_vinos_2)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n int<lower=0> n_origen; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n array[N] int origen;\n}\n\nparameters {\n vector[n_vinos] Q;\n vector[n_origen] O;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = Q[vino[i]] + O[origen[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n O ~ std_normal();\n sigma ~ exponential(1);\n}\n\ngenerated quantities {\n real dif_origen;\n dif_origen = O[1] - O[2];\n}\n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n n_origen = n_origen,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num,\n origen = wines_2012$origen_num\n)\najuste_vinos_2 <- mod_vinos_2$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 1 finished in 0.6 seconds.\nChain 2 finished in 0.6 seconds.\nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 finished in 0.6 seconds.\nChain 4 finished in 0.6 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.6 seconds.\nTotal execution time: 0.8 seconds.\n\n\n\najuste_vinos_2$summary(c(\"O\", \"Q\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nO[1]\n-0.066\n0.290\n-0.543\n0.421\n1.002\n2287.306\n3321.151\n\n\nO[2]\n0.106\n0.351\n-0.465\n0.679\n1.001\n2484.077\n3858.430\n\n\nQ[1]\n0.197\n0.409\n-0.471\n0.878\n1.001\n3942.153\n5029.018\n\n\nQ[2]\n0.007\n0.447\n-0.729\n0.725\n1.001\n3855.171\n5170.915\n\n\nQ[3]\n0.332\n0.415\n-0.364\n1.006\n1.001\n4170.358\n5201.923\n\n\nQ[4]\n0.458\n0.447\n-0.276\n1.180\n1.001\n3678.397\n5085.397\n\n\nQ[5]\n-0.223\n0.448\n-0.952\n0.514\n1.001\n3854.360\n5259.621\n\n\nQ[6]\n-0.307\n0.412\n-0.976\n0.366\n1.001\n4109.770\n5083.645\n\n\nQ[7]\n0.198\n0.446\n-0.534\n0.928\n1.001\n3981.338\n5487.974\n\n\nQ[8]\n0.330\n0.410\n-0.344\n1.015\n1.000\n4160.583\n5196.431\n\n\nQ[9]\n0.140\n0.411\n-0.536\n0.821\n1.001\n3925.106\n5383.750\n\n\nQ[10]\n0.182\n0.409\n-0.489\n0.871\n1.000\n4198.558\n4953.803\n\n\nQ[11]\n0.051\n0.409\n-0.626\n0.711\n1.001\n3835.440\n5195.758\n\n\nQ[12]\n0.028\n0.414\n-0.648\n0.707\n1.001\n4066.563\n4891.343\n\n\nQ[13]\n-0.046\n0.414\n-0.733\n0.619\n1.000\n3731.818\n4772.284\n\n\nQ[14]\n-0.083\n0.448\n-0.814\n0.656\n1.001\n3660.288\n4800.175\n\n\nQ[15]\n-0.315\n0.448\n-1.052\n0.423\n1.000\n4042.565\n5126.763\n\n\nQ[16]\n-0.139\n0.416\n-0.818\n0.540\n1.000\n3953.433\n5064.421\n\n\nQ[17]\n-0.083\n0.414\n-0.770\n0.595\n1.000\n4124.527\n5544.165\n\n\nQ[18]\n-0.799\n0.409\n-1.464\n-0.126\n1.001\n4042.865\n4892.500\n\n\nQ[19]\n-0.259\n0.447\n-0.996\n0.480\n1.001\n3741.120\n5044.906\n\n\nQ[20]\n0.287\n0.445\n-0.439\n1.027\n1.001\n3701.595\n5366.897\n\n\nsigma\n0.998\n0.056\n0.911\n1.094\n1.000\n9688.425\n6351.040\n\n\n\n\n\n\n\n\nTodo parece bien con los diagnósticos. Podemos graficar las estimaciones (nota: aquí estan intervalos de 50% y 90%):\n\nlibrary(bayesplot)\ncolor_scheme_set(\"red\")\nmcmc_intervals(ajuste_vinos_2$draws(c(\"Q\", \"O\", \"sigma\")))\n\n\n\n\n\n\n\n\n\nParece no haber mucha diferencia en calidad debida origen del vinos (tienen relativamente poca variabilidad y están traslapadas: aunque podríamos mejor calcular el contraste si queremos examinar esto con más cuidado).\n\nTodo parece ir bien, así que podemos expandir el modelo para incluir la forma de calificar de los jueces. Esto no es necesario (los jueces son una causa adicional que afecta el score), pero puede mejorar nuestras estimaciones.\nPara estratificar por estas variables, tenemos que separarnos un poco de efectos adivitivos. Una razón importante por la que varían las calificaciones es que hay jueces que son más duros que otros, o que discriminan más qué otros. Esto es usual también cuando pensamos que los jueces son reactivos que las personas contestan: existen reactivos más difíciles que otros, y también discriminan de diferente manera.\nEn primer lugar, definimos un nivel general \\(H\\) que indica qué tan alto o bajo califica un juez en general. Adicionalmente, incluímos un parámetro de discriminación \\(D\\) de los jueces, que indica qué tanto del rango de la escala usa cada juez El modelo para el valor esperado del Score de un vino \\(i\\) calificado por el juez \\(j\\) es:\n\\[\\mu_{i} = Q_{vino(i)} + O_{origen(i)} - H_{juez(i)}\\] Podemos pensar que el valor \\(H\\) de cada juez es qué tan duro es en sus calificaciones. Para cada vino, un juez con valor alto de \\(H\\) tendrá a calificar más bajo un vino de misma calidad y origen que otro juez con un valor más bajo de \\(H\\). Podemos incluír un parámetro de discriminación \\(D\\) para cada juez, que indica qué tanto del rango de la escala usa cada juez de la siguiente forma:\n\\[\\mu_{i} = (Q_{vino(i)} + O_{origen(i)} - H_{juez(i)})D_{juez(i)}\\] Un juez con valor alto de \\(D\\) es más extremo en sus calificaciones: un vino por arriba de su promedio lo califica más alto en la escala, y un vino por debajo de su promedio lo califica más bajo. El extremo es que \\(D=0\\), que quiere decir que el juez tiende a calificar a todos los vinos con un score.\n\nmod_vinos_3 <-cmdstan_model(\"./src/vinos-3.stan\")\nprint(mod_vinos_3)\n\ndata {\n int<lower=0> N; //número de calificaciones\n int<lower=0> n_vinos; //número de vinos\n int<lower=0> n_jueces; //número de jueces\n int<lower=0> n_origen; //número de jueces\n vector[N] S;\n array[N] int juez;\n array[N] int vino;\n array[N] int origen;\n}\n\nparameters {\n vector[n_vinos] Q;\n vector[n_origen] O;\n vector[n_jueces] H;\n vector<lower=0>[n_jueces] D;\n\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n vector[N] media_score;\n // determinístico dado parámetros\n for (i in 1:N){\n media_score[i] = (Q[vino[i]] + O[origen[i]] - H[juez[i]]) * D[juez[i]];\n }\n}\n\nmodel {\n // partes no determinísticas\n S ~ normal(media_score, sigma);\n Q ~ std_normal();\n O ~ std_normal();\n H ~ std_normal();\n D ~ std_normal();\n sigma ~ exponential(1);\n}\n\ngenerated quantities {\n real dif_origen;\n dif_origen = O[1] - O[2];\n}\n\n\n\ndatos_lst <- list(\n N = nrow(wines_2012),\n n_vinos = n_vinos,\n n_jueces = n_jueces,\n n_origen = n_origen,\n S = wines_2012$score_est,\n vino = wines_2012$vino_num,\n juez = wines_2012$juez_num,\n origen = wines_2012$origen_num\n)\najuste_vinos_3 <- mod_vinos_3$sample(\n data = datos_lst,\n chains = 4,\n parallel_chains = 4,\n iter_warmup = 1000,\n iter_sampling = 2000,\n refresh = 1000,\n step_size = 0.1,\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 3000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 1 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 2 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 2 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 3 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 3 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 4 Iteration: 1000 / 3000 [ 33%] (Warmup) \nChain 4 Iteration: 1001 / 3000 [ 33%] (Sampling) \nChain 1 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 3 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 4 Iteration: 2000 / 3000 [ 66%] (Sampling) \nChain 2 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 2 finished in 1.5 seconds.\nChain 1 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 3 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 4 Iteration: 3000 / 3000 [100%] (Sampling) \nChain 1 finished in 1.5 seconds.\nChain 3 finished in 1.5 seconds.\nChain 4 finished in 1.5 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 1.5 seconds.\nTotal execution time: 1.6 seconds.\n\n\nChecamos diagnósticos:\n\najuste_vinos_3$summary(c(\"O\", \"Q\", \"H\", \"D\", \"sigma\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |>\n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) |> \n filter(variable != \"lp__\") |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nO[1]\n-0.115\n0.447\n-0.859\n0.629\n1.002\n3518.843\n4790.784\n\n\nO[2]\n0.198\n0.476\n-0.572\n0.986\n1.001\n3963.128\n5271.349\n\n\nQ[1]\n0.366\n0.562\n-0.543\n1.315\n1.000\n5657.887\n5719.280\n\n\nQ[2]\n0.168\n0.586\n-0.779\n1.132\n1.000\n5514.261\n5765.562\n\n\nQ[3]\n0.508\n0.537\n-0.369\n1.377\n1.000\n6854.468\n5604.398\n\n\nQ[4]\n0.825\n0.579\n-0.111\n1.800\n1.000\n6452.743\n5446.307\n\n\nQ[5]\n-0.483\n0.558\n-1.385\n0.451\n1.001\n6299.704\n5695.944\n\n\nQ[6]\n-0.830\n0.593\n-1.783\n0.171\n1.000\n4716.862\n5114.054\n\n\nQ[7]\n0.229\n0.602\n-0.753\n1.229\n1.000\n4749.244\n6033.222\n\n\nQ[8]\n0.618\n0.553\n-0.274\n1.552\n1.001\n6631.817\n5578.857\n\n\nQ[9]\n0.278\n0.556\n-0.642\n1.179\n1.000\n5940.039\n5748.859\n\n\nQ[10]\n0.313\n0.531\n-0.568\n1.172\n1.000\n6559.060\n5848.707\n\n\nQ[11]\n0.183\n0.535\n-0.708\n1.054\n1.000\n6569.389\n6443.012\n\n\nQ[12]\n-0.079\n0.537\n-0.941\n0.807\n1.000\n6281.310\n5903.469\n\n\nQ[13]\n0.052\n0.549\n-0.860\n0.940\n1.001\n6563.927\n5507.827\n\n\nQ[14]\n-0.158\n0.558\n-1.077\n0.753\n1.001\n6874.838\n5893.450\n\n\nQ[15]\n-0.521\n0.584\n-1.498\n0.422\n1.001\n5853.924\n5734.059\n\n\nQ[16]\n-0.121\n0.565\n-1.036\n0.815\n1.001\n5233.317\n5555.469\n\n\nQ[17]\n0.103\n0.562\n-0.845\n1.007\n1.001\n5025.607\n5096.996\n\n\nQ[18]\n-1.507\n0.552\n-2.424\n-0.608\n1.000\n5907.052\n5459.271\n\n\nQ[19]\n-0.367\n0.561\n-1.292\n0.545\n1.001\n6738.238\n6061.758\n\n\nQ[20]\n0.482\n0.569\n-0.445\n1.408\n1.001\n5687.180\n5521.888\n\n\nH[1]\n0.619\n0.586\n-0.269\n1.601\n1.000\n6123.319\n4979.950\n\n\nH[2]\n-0.274\n0.437\n-0.998\n0.424\n1.001\n4060.809\n4583.991\n\n\nH[3]\n-0.469\n0.734\n-1.656\n0.745\n1.000\n6648.205\n5243.692\n\n\nH[4]\n1.233\n0.601\n0.322\n2.271\n1.000\n5632.281\n5695.773\n\n\nH[5]\n-1.779\n0.618\n-2.853\n-0.815\n1.000\n6082.938\n5816.825\n\n\nH[6]\n-1.169\n0.649\n-2.268\n-0.170\n1.000\n6714.764\n5139.543\n\n\nH[7]\n-0.234\n0.588\n-1.195\n0.672\n1.002\n5076.004\n5060.476\n\n\nH[8]\n1.213\n0.570\n0.355\n2.218\n1.001\n4389.700\n5537.353\n\n\nH[9]\n0.823\n0.824\n-0.577\n2.108\n1.001\n5338.110\n4003.320\n\n\nD[1]\n0.461\n0.253\n0.097\n0.932\n1.000\n2983.543\n2565.263\n\n\nD[2]\n0.925\n0.350\n0.359\n1.529\n1.001\n2810.568\n3022.820\n\n\nD[3]\n0.251\n0.186\n0.022\n0.613\n1.001\n3483.762\n2882.873\n\n\nD[4]\n0.446\n0.198\n0.169\n0.804\n1.000\n3765.231\n3179.683\n\n\nD[5]\n0.450\n0.151\n0.243\n0.725\n1.000\n5896.061\n5536.056\n\n\nD[6]\n0.342\n0.167\n0.104\n0.641\n1.001\n3743.613\n2423.599\n\n\nD[7]\n0.573\n0.411\n0.044\n1.324\n1.000\n1909.202\n3066.287\n\n\nD[8]\n0.621\n0.245\n0.285\n1.069\n1.001\n3828.092\n4701.569\n\n\nD[9]\n0.196\n0.143\n0.016\n0.463\n1.000\n3181.170\n2733.067\n\n\nsigma\n0.824\n0.050\n0.745\n0.909\n1.001\n5443.715\n5411.834\n\n\n\n\n\n\n\n\nY vemos efectivamente que el uso de la escala de los jueces es considerablemente diferente, y que hemos absorbido parte de la variación con los parámetros \\(H\\) y \\(D\\) (\\(sigma\\) es más baja que en los modelos anteriores):\n\nmcmc_intervals(ajuste_vinos_3$draws(c(\"H\", \"D\", \"sigma\")))\n\n\n\n\n\n\n\n\n\nmcmc_intervals(ajuste_vinos_3$draws(c(\"Q\")))\n\n\n\n\n\n\n\nmcmc_intervals(ajuste_vinos_1$draws(c(\"Q\")))\n\n\n\n\n\n\n\n\nCon el modelo completo, examinamos ahora el contraste de interés: ¿hay diferencias en las calificaciones de vinos de diferentes orígenes? La respuesta es que no hay mucha evidencia de que haya una diferencia, aunque hay variación considerable en este contraste:\n\najuste_vinos_3$summary(c(\"dif_origen\")) |> \n select(variable, mean, sd, q5, q95, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, sd, q5, q95, rhat, ess_bulk, ess_tail), ~round(., 3))) \n\n# A tibble: 1 × 8\n variable mean sd q5 q95 rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 dif_origen -0.312 0.497 -1.12 0.495 1.00 4087. 4952.\n\n\n\nmcmc_hist(ajuste_vinos_3$draws(\"dif_origen\"), binwidth = 0.07)", "crumbs": [ "8  Markov Chain Monte Carlo" ] @@ -584,7 +584,7 @@ "href": "08-mcmc.html#transiciones-divergentes", "title": "8  Markov Chain Monte Carlo", "section": "8.5 Transiciones divergentes", - "text": "8.5 Transiciones divergentes\nFinalmente, discutiremos otro tipo de diagnósticos de Stan. Cuando una trayectoria tuvo un cambio grande en energía \\(H\\) desde su valor actual a la propuesta final, usualmente del orden de 10^3 por ejemplo, esto implica un rechazo “fuerte” en el nuevo punto de la trayectoria, e implica que la el integrador numérico falló de manera grave.\n\n\n\n\n\n\nTransiciones divergentes\n\n\n\nCuando en Stan obtenemos un número considerable de transiciones divergentes, generalmente esto indica que el integrador numérico de Stan no está funcionando bien, y por lo tanto la exploración puede ser deficiente y/o puede estar sesgada al espacio de parámetros donde no ocurren estos rechazos.\n\n\nEsto puede pasar cuando encontramos zonas de alta curvatura en el espacio de parámetros. Que una posterior esté altamente concentrada o más dispersa generalmente no es un problema, pero si la concentración varía fuertemente (curvatura) entonces puede ser difícil encontrar la escala correcta para que el integrador funcione apropiadamente.\n\n8.5.1 El embudo de Neal\nPara ver un ejemplo, consideremos un ejemplo de una distribución cuya forma aparecerá más tarde en modelos jerárquicos. Primero, la marginal de \\(y\\) es normal con media 0 y desviación estándar 3. La distribución condicional \\(p(x|y)\\) de \\(x = c(x_1,\\ldots, x_9)\\) dado \\(y\\) es normal multivariada, todas con media cero y desviación estándar \\(e^{y/2}\\). Veamos qué pasa si intentamos simular de esta distribución en Stan:\n\nmod_embudo <- cmdstan_model(\"./src/embudo-neal.stan\")\najuste_embudo <- mod_embudo$sample(\n chains = 1,\n iter_warmup = 1000,\n iter_sampling = 3000,\n refresh = 1000)\n\nRunning MCMC with 1 chain...\n\nChain 1 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 1 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 1 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 1 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 1 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 1 finished in 0.1 seconds.\n\n\nWarning: 86 of 3000 (3.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 1 of 1 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nY vemos que aparecen algunos problemas.\n\nsimulaciones <- ajuste_embudo$draws(format = \"df\")\ndiagnosticos <- ajuste_embudo$sampler_diagnostics(format = \"df\")\nsims_diag <- simulaciones |> inner_join(diagnosticos, by = c(\".draw\", \".iteration\", \".chain\"))\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) \n\n# A tibble: 11 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -5.55 1.35 2.45 NA \n 2 y 0.189 1.34 2.46 2.23\n 3 x[1] 0.208 1.28 2494. 417. \n 4 x[2] -0.0835 1.25 1208. 346. \n 5 x[3] -0.0653 1.18 294. 300. \n 6 x[4] -0.0787 1.28 1015. 288. \n 7 x[5] -0.0731 1.28 1912. 251. \n 8 x[6] 0.0298 1.34 2737. 266. \n 9 x[7] 0.0539 1.17 452. 248. \n10 x[8] -0.0301 1.30 2469. 313. \n11 x[9] 0.0600 1.23 1814. 348. \n\nggplot(sims_diag, aes(y = y, x = `x[1]`)) +\n geom_point(alpha = 0.1) +\n geom_point(data = sims_diag |> filter(divergent__ == 1), color = \"red\", size = 2) +\n geom_hline(yintercept = -2.5, linetype = 2) \n\n\n\n\n\n\n\n\nY vemos que hay transiciones divergentes. Cuando el muestreador entra en el cuello del embudo, es muy fácil que se “despeñe” en probabilidad y que no pueda explorar correctamente la forma del cuello. Esto lo podemos ver, por ejemplo, si hacemos más simulaciones:\n\nmod_embudo <- cmdstan_model(\"./src/embudo-neal.stan\")\nprint(mod_embudo)\n\nparameters {\n real y;\n vector[9] x;\n}\nmodel {\n y ~ normal(0, 3);\n x ~ normal(0, exp(y/2));\n}\n\najuste_embudo <- mod_embudo$sample(\n chains = 1,\n iter_warmup = 1000,\n iter_sampling = 30000,\n refresh = 10000)\n\nRunning MCMC with 1 chain...\n\nChain 1 Iteration: 1 / 31000 [ 0%] (Warmup) \nChain 1 Iteration: 1001 / 31000 [ 3%] (Sampling) \nChain 1 Iteration: 11000 / 31000 [ 35%] (Sampling) \nChain 1 Iteration: 21000 / 31000 [ 67%] (Sampling) \nChain 1 Iteration: 31000 / 31000 [100%] (Sampling) \nChain 1 finished in 0.8 seconds.\n\n\nWarning: 1200 of 30000 (4.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 16 of 30000 (0.0%) transitions hit the maximum treedepth limit of 10.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 1 of 1 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) \n\n# A tibble: 11 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -14.2 1.01 55.4 13.7\n 2 y 2.08 1.01 57.6 27.2\n 3 x[1] 0.227 1.00 13728. 2727. \n 4 x[2] 0.175 1.00 10467. 2770. \n 5 x[3] -0.0281 1.01 6702. 2551. \n 6 x[4] -0.112 1.01 7941. 2514. \n 7 x[5] -0.0890 1.01 6287. 2346. \n 8 x[6] 0.0658 1.00 10519. 2765. \n 9 x[7] -0.121 1.00 12467. 2538. \n10 x[8] -0.107 1.00 7124. 2443. \n11 x[9] 0.00905 1.00 2954. 2351. \n\nsimulaciones <- ajuste_embudo$draws(format = \"df\")\ndiagnosticos <- ajuste_embudo$sampler_diagnostics(format = \"df\")\nsims_diag <- simulaciones |> inner_join(diagnosticos, by = c(\".draw\", \".iteration\", \".chain\"))\nggplot(sims_diag, aes(y = y, x = `x[1]`)) +\n geom_point(alpha = 0.1) +\n geom_point(data = sims_diag |> filter(divergent__ == 1), color = \"red\", size = 2) +\n geom_hline(yintercept = -2.5, linetype = 2) \n\n\n\n\n\n\n\n\nY vemos que ahora que en el primer ejemplo estábamos probablemente sobreestimando la media de \\(y\\). Las divergencias indican que esto puede estar ocurriendo. En este ejemplo particular, también vemos que las R-hat y los tamaños efectivos de muestra son bajos.\nEste es un ejemplo extremo. Sin embargo, podemos reparametrizar para hacer las cosas más fáciles para el muestreador. Podemos simular \\(y\\), y después, simular \\(x\\) como \\(x \\sim e^{y/2} z\\) donde \\(z\\) es normal estándar.\n\nmod_embudo_reparam <- cmdstan_model(\"./src/embudo-neal-reparam.stan\")\nprint(mod_embudo_reparam)\n\nparameters {\n real y;\n vector[9] z;\n}\n\ntransformed parameters {\n vector[9] x;\n\n x = exp(y/2) * z;\n\n}\n\nmodel {\n y ~ normal(0, 3);\n z ~ std_normal();\n}\n\najuste_embudo <- mod_embudo_reparam$sample(\n chains = 4,\n iter_warmup = 1000,\n iter_sampling = 10000,\n refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 1 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 1 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 1 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 1 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 1 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 1 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 1 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 1 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 1 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 1 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 1 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 1 finished in 0.2 seconds.\nChain 2 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 2 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 2 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 2 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 2 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 2 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 2 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 2 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 2 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 2 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 2 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 2 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 2 finished in 0.2 seconds.\nChain 3 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 3 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 3 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 3 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 3 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 3 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 3 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 3 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 3 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 3 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 3 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 3 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 3 finished in 0.2 seconds.\nChain 4 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 4 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 4 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 4 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 4 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 4 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 4 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 4 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 4 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 4 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 4 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 4 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 4 finished in 0.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.2 seconds.\nTotal execution time: 1.0 seconds.\n\n\nY con este truco de reparametrización el muestreador funciona correctamente (observa que la media de \\(y\\) está estimada correctamente, y no hay divergencias).\n\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, rhat, ess_bulk, ess_tail), ~round(., 3))) \n\n# A tibble: 20 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -5.00 1 16285. 24865.\n 2 y 0.002 1 74705. 28688.\n 3 z[1] -0.001 1 85160. 29570.\n 4 z[2] -0.002 1 84329. 30159.\n 5 z[3] -0.006 1 83548. 29967.\n 6 z[4] 0.002 1 81672. 29573.\n 7 z[5] 0 1 81966. 31008.\n 8 z[6] -0.004 1 85319. 29486.\n 9 z[7] 0.001 1 85417. 28666.\n10 z[8] 0 1 83917. 28876.\n11 z[9] 0.004 1 83128. 30034.\n12 x[1] -0.022 1 41969. 31013.\n13 x[2] -0.036 1 39866. 29902.\n14 x[3] -0.133 1 40322. 30635.\n15 x[4] 0.023 1 41022. 29315.\n16 x[5] -0.008 1 41923. 31293.\n17 x[6] -0.116 1 41851. 29370.\n18 x[7] 0.005 1 42307. 30895.\n19 x[8] -0.043 1 40895. 29853.\n20 x[9] -0.021 1 39208. 28808.\n\n\n\n\n\n\nBrooks, Steve, Andrew Gelman, Galin Jones, y Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. CRC press.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", + "text": "8.5 Transiciones divergentes\nFinalmente, discutiremos otro tipo de diagnósticos de Stan. Cuando una trayectoria tuvo un cambio grande en energía \\(H\\) desde su valor actual a la propuesta final, usualmente del orden de 10^3 por ejemplo, esto implica un rechazo “fuerte” en el nuevo punto de la trayectoria, e implica que la el integrador numérico falló de manera grave.\n\n\n\n\n\n\nTransiciones divergentes\n\n\n\nCuando en Stan obtenemos un número considerable de transiciones divergentes, generalmente esto indica que el integrador numérico de Stan no está funcionando bien, y por lo tanto la exploración puede ser deficiente y/o puede estar sesgada al espacio de parámetros donde no ocurren estos rechazos.\n\n\nEsto puede pasar cuando encontramos zonas de alta curvatura en el espacio de parámetros. Que una posterior esté altamente concentrada o más dispersa generalmente no es un problema, pero si la concentración varía fuertemente (curvatura) entonces puede ser difícil encontrar la escala correcta para que el integrador funcione apropiadamente.\n\n8.5.1 El embudo de Neal\nPara ver un ejemplo, consideremos un ejemplo de una distribución cuya forma aparecerá más tarde en modelos jerárquicos. Primero, la marginal de \\(y\\) es normal con media 0 y desviación estándar 3. La distribución condicional \\(p(x|y)\\) de \\(x = c(x_1,\\ldots, x_9)\\) dado \\(y\\) es normal multivariada, todas con media cero y desviación estándar \\(e^{y/2}\\). Veamos qué pasa si intentamos simular de esta distribución en Stan:\n\nmod_embudo <- cmdstan_model(\"./src/embudo-neal.stan\")\najuste_embudo <- mod_embudo$sample(\n chains = 1,\n iter_warmup = 1000,\n iter_sampling = 3000,\n refresh = 1000)\n\nRunning MCMC with 1 chain...\n\nChain 1 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 1 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 1 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 1 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 1 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 1 finished in 0.1 seconds.\n\n\nWarning: 86 of 3000 (3.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 1 of 1 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nY vemos que aparecen algunos problemas.\n\nsimulaciones <- ajuste_embudo$draws(format = \"df\")\ndiagnosticos <- ajuste_embudo$sampler_diagnostics(format = \"df\")\nsims_diag <- simulaciones |> inner_join(diagnosticos, by = c(\".draw\", \".iteration\", \".chain\"))\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) \n\n# A tibble: 11 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -5.55 1.35 2.45 NA \n 2 y 0.189 1.34 2.46 2.23\n 3 x[1] 0.208 1.28 2494. 417. \n 4 x[2] -0.0835 1.25 1208. 346. \n 5 x[3] -0.0653 1.18 294. 300. \n 6 x[4] -0.0787 1.28 1015. 288. \n 7 x[5] -0.0731 1.28 1912. 251. \n 8 x[6] 0.0298 1.34 2737. 266. \n 9 x[7] 0.0539 1.17 452. 248. \n10 x[8] -0.0301 1.30 2469. 313. \n11 x[9] 0.0600 1.23 1814. 348. \n\nggplot(sims_diag, aes(y = y, x = `x[1]`)) +\n geom_point(alpha = 0.1) +\n geom_point(data = sims_diag |> filter(divergent__ == 1), color = \"red\", size = 2) +\n geom_hline(yintercept = -2.5, linetype = 2) \n\n\n\n\n\n\n\n\nY vemos que hay transiciones divergentes. Cuando el muestreador entra en el cuello del embudo, es muy fácil que se “despeñe” en probabilidad y que no pueda explorar correctamente la forma del cuello. Esto lo podemos ver, por ejemplo, si hacemos más simulaciones:\n\nmod_embudo <- cmdstan_model(\"./src/embudo-neal.stan\")\nprint(mod_embudo)\n\nparameters {\n real y;\n vector[9] x;\n}\nmodel {\n y ~ normal(0, 3);\n x ~ normal(0, exp(y/2));\n}\n\najuste_embudo <- mod_embudo$sample(\n chains = 1,\n iter_warmup = 1000,\n iter_sampling = 30000,\n refresh = 10000)\n\nRunning MCMC with 1 chain...\n\nChain 1 Iteration: 1 / 31000 [ 0%] (Warmup) \nChain 1 Iteration: 1001 / 31000 [ 3%] (Sampling) \nChain 1 Iteration: 11000 / 31000 [ 35%] (Sampling) \nChain 1 Iteration: 21000 / 31000 [ 67%] (Sampling) \nChain 1 Iteration: 31000 / 31000 [100%] (Sampling) \nChain 1 finished in 0.8 seconds.\n\n\nWarning: 1200 of 30000 (4.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 16 of 30000 (0.0%) transitions hit the maximum treedepth limit of 10.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 1 of 1 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) \n\n# A tibble: 11 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -14.2 1.01 55.4 13.7\n 2 y 2.08 1.01 57.6 27.2\n 3 x[1] 0.227 1.00 13728. 2727. \n 4 x[2] 0.175 1.00 10467. 2770. \n 5 x[3] -0.0281 1.01 6702. 2551. \n 6 x[4] -0.112 1.01 7941. 2514. \n 7 x[5] -0.0890 1.01 6287. 2346. \n 8 x[6] 0.0658 1.00 10519. 2765. \n 9 x[7] -0.121 1.00 12467. 2538. \n10 x[8] -0.107 1.00 7124. 2443. \n11 x[9] 0.00905 1.00 2954. 2351. \n\nsimulaciones <- ajuste_embudo$draws(format = \"df\")\ndiagnosticos <- ajuste_embudo$sampler_diagnostics(format = \"df\")\nsims_diag <- simulaciones |> inner_join(diagnosticos, by = c(\".draw\", \".iteration\", \".chain\"))\nggplot(sims_diag, aes(y = y, x = `x[1]`)) +\n geom_point(alpha = 0.1) +\n geom_point(data = sims_diag |> filter(divergent__ == 1), color = \"red\", size = 2) +\n geom_hline(yintercept = -2.5, linetype = 2) \n\n\n\n\n\n\n\n\nY vemos que ahora que en el primer ejemplo estábamos probablemente sobreestimando la media de \\(y\\). Las divergencias indican que esto puede estar ocurriendo. En este ejemplo particular, también vemos que las R-hat y los tamaños efectivos de muestra son bajos.\nEste es un ejemplo extremo. Sin embargo, podemos reparametrizar para hacer las cosas más fáciles para el muestreador. Podemos simular \\(y\\), y después, simular \\(x\\) como \\(x \\sim e^{y/2} z\\) donde \\(z\\) es normal estándar.\n\nmod_embudo_reparam <- cmdstan_model(\"./src/embudo-neal-reparam.stan\")\nprint(mod_embudo_reparam)\n\nparameters {\n real y;\n vector[9] z;\n}\n\ntransformed parameters {\n vector[9] x;\n\n x = exp(y/2) * z;\n\n}\n\nmodel {\n y ~ normal(0, 3);\n z ~ std_normal();\n}\n\najuste_embudo <- mod_embudo_reparam$sample(\n chains = 4,\n iter_warmup = 1000,\n iter_sampling = 10000,\n refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 1 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 1 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 1 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 1 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 1 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 1 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 1 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 1 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 1 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 1 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 1 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 1 finished in 0.2 seconds.\nChain 2 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 2 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 2 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 2 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 2 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 2 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 2 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 2 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 2 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 2 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 2 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 2 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 2 finished in 0.2 seconds.\nChain 3 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 3 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 3 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 3 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 3 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 3 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 3 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 3 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 3 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 3 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 3 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 3 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 3 finished in 0.2 seconds.\nChain 4 Iteration: 1 / 11000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 11000 [ 9%] (Warmup) \nChain 4 Iteration: 1001 / 11000 [ 9%] (Sampling) \nChain 4 Iteration: 2000 / 11000 [ 18%] (Sampling) \nChain 4 Iteration: 3000 / 11000 [ 27%] (Sampling) \nChain 4 Iteration: 4000 / 11000 [ 36%] (Sampling) \nChain 4 Iteration: 5000 / 11000 [ 45%] (Sampling) \nChain 4 Iteration: 6000 / 11000 [ 54%] (Sampling) \nChain 4 Iteration: 7000 / 11000 [ 63%] (Sampling) \nChain 4 Iteration: 8000 / 11000 [ 72%] (Sampling) \nChain 4 Iteration: 9000 / 11000 [ 81%] (Sampling) \nChain 4 Iteration: 10000 / 11000 [ 90%] (Sampling) \nChain 4 Iteration: 11000 / 11000 [100%] (Sampling) \nChain 4 finished in 0.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.2 seconds.\nTotal execution time: 0.9 seconds.\n\n\nY con este truco de reparametrización el muestreador funciona correctamente (observa que la media de \\(y\\) está estimada correctamente, y no hay divergencias).\n\najuste_embudo$summary() |> \n select(variable, mean, rhat, contains(\"ess\")) |> \n mutate(across(c(mean, rhat, ess_bulk, ess_tail), ~round(., 3))) \n\n# A tibble: 20 × 5\n variable mean rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl>\n 1 lp__ -5.00 1 16285. 24865.\n 2 y 0.002 1 74705. 28688.\n 3 z[1] -0.001 1 85160. 29570.\n 4 z[2] -0.002 1 84329. 30159.\n 5 z[3] -0.006 1 83548. 29967.\n 6 z[4] 0.002 1 81672. 29573.\n 7 z[5] 0 1 81966. 31008.\n 8 z[6] -0.004 1 85319. 29486.\n 9 z[7] 0.001 1 85417. 28666.\n10 z[8] 0 1 83917. 28876.\n11 z[9] 0.004 1 83128. 30034.\n12 x[1] -0.022 1 41969. 31013.\n13 x[2] -0.036 1 39866. 29902.\n14 x[3] -0.133 1 40322. 30635.\n15 x[4] 0.023 1 41022. 29315.\n16 x[5] -0.008 1 41923. 31293.\n17 x[6] -0.116 1 41851. 29370.\n18 x[7] 0.005 1 42307. 30895.\n19 x[8] -0.043 1 40895. 29853.\n20 x[9] -0.021 1 39208. 28808.\n\n\n\n\n\n\nBrooks, Steve, Andrew Gelman, Galin Jones, y Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. CRC press.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", "crumbs": [ "8  Markov Chain Monte Carlo" ] @@ -594,7 +594,7 @@ "href": "09-modelos-jerarquicos.html", "title": "9  Modelos jerárquicos", "section": "", - "text": "9.1 Primer ejemplo: construyendo un modelo jerárquico.\nConsideramos un ejemplo simple, donde queremos estimar el efecto del hospital en la tasa de mortalidad de pacientes de cirugía de corazón. Este ejemplo se puede encontrar en Albert (2009). Plantearemos 3 alternativas de modelación para resolver el problema: modelo de unidades iguales, modelo de unidades independientes y finalmente modelo jerárquico.\nTenemos datos todas las cirugías de transplante de corazón llevadas a cabo en Estados Unidos en un periodo de 24 meses, entre octubre de 1987 y diciembre de 1989. Para cada uno de los 131 hospitales, se registró el número de cirugías de transplante de corazón, y el número de muertes durante los 30 días posteriores a la cirugía \\(y\\). Además, se cuenta con una predicción de la probabilidad de muerte de cada paciente individual. Esta predicción esta basada en un modelo logístico que incluye información a nivel paciente como condición médica antes de la cirugía, género, sexo y raza. En cada hospital se suman las probabilidades de muerte de sus pacientes para calcular el número esperado de muertes \\(e\\), que llamamos como la exposición del hospital. \\(e\\) refleja el riesgo de muerte debido a la mezcla de pacientes que componen un hospital particular.\nEl diagrama simple que consideraremos es uno donde hospital es causa tanto de su exposición \\(e\\) (por su tamaño, tipo de casos que atrae, etc), como de el número de personas fallecidas. A su vez, la exposición \\(e\\) es causa del número de muertes \\(y\\). Nos interesa estimar el efecto directo de hospital en el número de muertes.\nCódigo\nlibrary(tidyverse)\nlibrary(kableExtra)\nlibrary(DiagrammeR)\nggplot2::theme_set(ggplot2::theme_light())\ndatos_hosp <- read_csv(\"../datos/hearttransplants.csv\") |> \n mutate(hospital = row_number())\nhead(datos_hosp)\n\n# A tibble: 6 × 3\n e y hospital\n <dbl> <dbl> <int>\n1 532 0 1\n2 584 0 2\n3 672 2 3\n4 722 1 4\n5 904 1 5\n6 1236 0 6\nConsideramos la cantidad \\(y/e\\) como una estimación cruda de la tasa de mortalidad. En la siguiente gráfica, observamos que parece ser la variabilidad es alta cuando el número de expuestos es relativamente baja. Nótese que la tasa de mortalidad no es muy alta en general, y que el número de muertes es relativamente bajo en muchos hospitales (puede tomar valores 0, 1, 2, etc.) Esto produce variabilidad alta para exposiciones bajas.\nggplot(datos_hosp, aes(x = e, y = 1000 * y / e, color = log(1 + y))) +\n geom_point() + scale_x_log10() + xlab(\"Número de expuestos e\")\nConsideramos primero un modelo donde consideramos que todos los hospitales tienen una misma tasa de mortalidad. Si \\(e_j\\) es la exposición del hospital \\(j\\) y \\(y_j\\) el número de muertes, entonces podemos considerar un modelo de la forma\n\\[y_j \\sim \\text{Poisson}(e_j \\lambda),\\] Es decir, el número de muertes es Poisson con valor esperado igual al número de expuestos multiplicado por la tasa común de mortalidad.\nlibrary(cmdstanr)\nmod_agregado <- cmdstan_model(\"./src/heart-agregado.stan\")\ndatos_agregado <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_agregado <- mod_agregado$sample(data = datos_agregado, chains = 4, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 0.1 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 0.1 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 0.1 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 0.1 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.1 seconds.\nTotal execution time: 0.6 seconds.\najuste_agregado$summary(\"lambda\")\n\n# A tibble: 1 × 10\n variable mean median sd mad q5 q95 rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 lambda 0.939 0.938 0.0555 0.0554 0.848 1.03 1.00 1406. 2195.\nLos diagnósticos básicos parecen ser apropiados. Procedemos a hacer un chequeo predictivo posterior:\nset.seed(912)\najuste_agregado$draws(\"y_sim\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"y_sim\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n filter(hospital %in% sample(1:94, 20)) |>\n ggplot(aes(x = value)) + geom_histogram(binwidth = 1) +\n facet_wrap(~ hospital) + \n geom_vline(aes(xintercept = y), color = \"red\")\nY vemos fallas en el ajuste del modelo, con varias observaciones en los extremos de las colas.\nPodemos considerar un modelo donde cada hospital tiene su propia tasa de mortalidad.\nlibrary(cmdstanr)\nmod_ind <- cmdstan_model(\"./src/heart-individual.stan\")\nprint(mod_ind)\n\ndata {\n int<lower=0> N;\n array[N] int e;\n array[N] int y;\n}\n\nparameters {\n vector<lower=0>[N] lambda;\n}\n\ntransformed parameters {\n vector[N] media_hospital;\n // lambda es por cada 1000 expuestos:\n for (i in 1:N){\n media_hospital[i] = lambda[i] * e[i] / 1000;\n }\n}\n\nmodel {\n // partes no determinísticas\n y ~ poisson(media_hospital);\n lambda ~ exponential(1);\n}\n\ngenerated quantities {\n array[N] int y_sim;\n for (i in 1:N){\n y_sim[i] = poisson_rng(media_hospital[i]);\n }\n}\n\ndatos_ind <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_ind <- mod_ind$sample(data = datos_ind, chains = 4, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 0.3 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 0.3 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 0.3 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 0.3 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.3 seconds.\nTotal execution time: 1.3 seconds.\n\nresumen <- ajuste_ind$summary(\"lambda\") |> \n select(variable, mean, sd, rhat, ess_bulk)\nresumen |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nrhat\ness_bulk\n\n\n\n\nlambda[1]\n0.6583536\n0.6586216\n1.0006192\n5165.406\n\n\nlambda[2]\n0.6275285\n0.6100568\n1.0006134\n5304.057\n\n\nlambda[3]\n1.7901338\n1.0150032\n1.0025797\n7752.468\n\n\nlambda[4]\n1.1631030\n0.8126933\n1.0029684\n6266.203\n\n\nlambda[5]\n1.0546849\n0.7280221\n1.0031314\n7189.272\n\n\nlambda[6]\n0.4379974\n0.4299703\n1.0009799\n5048.264\n\n\nlambda[7]\n0.4997928\n0.4831605\n1.0016690\n5114.259\n\n\nlambda[8]\n0.8132338\n0.5780811\n1.0020729\n7136.650\n\n\nlambda[9]\n2.2283861\n1.1061633\n0.9995477\n7795.995\n\n\nlambda[10]\n0.4943771\n0.4791999\n1.0015410\n6199.135\n\n\nlambda[11]\n0.5702635\n0.5669676\n0.9999858\n4844.867\n\n\nlambda[12]\n0.7276062\n0.5194843\n0.9996745\n7401.780\n\n\nlambda[13]\n0.5402685\n0.5416521\n1.0009094\n4667.626\n\n\nlambda[14]\n1.4168025\n0.8179681\n1.0001357\n8158.471\n\n\nlambda[15]\n1.8374637\n0.8959153\n1.0003162\n7266.626\n\n\nlambda[16]\n0.4686611\n0.4580127\n1.0018647\n5925.258\n\n\nlambda[17]\n0.4299892\n0.4270344\n1.0000900\n4716.068\n\n\nlambda[18]\n1.4398167\n0.7206289\n1.0014807\n7010.188\n\n\nlambda[19]\n0.4361010\n0.3004024\n1.0020841\n7361.362\n\n\nlambda[20]\n0.9095600\n0.6463542\n0.9999059\n6731.727\n\n\nlambda[21]\n0.8950893\n0.6226518\n1.0012198\n7102.283\n\n\nlambda[22]\n0.9026263\n0.6513811\n1.0023325\n7832.570\n\n\nlambda[23]\n2.0032715\n0.9300883\n1.0002577\n8627.692\n\n\nlambda[24]\n1.5902697\n0.8109377\n1.0013903\n8360.192\n\n\nlambda[25]\n1.3937997\n0.6810875\n1.0001507\n7706.375\n\n\nlambda[26]\n0.6984656\n0.5001702\n0.9999789\n6761.789\n\n\nlambda[27]\n0.4461970\n0.4635060\n1.0008701\n6028.760\n\n\nlambda[28]\n1.2594830\n0.6986847\n1.0012426\n7572.902\n\n\nlambda[29]\n1.1320465\n0.6506051\n1.0010134\n7522.168\n\n\nlambda[30]\n1.8764928\n0.8466750\n1.0000906\n8114.597\n\n\nlambda[31]\n1.7583001\n0.8069553\n1.0031715\n7914.872\n\n\nlambda[32]\n1.6035141\n0.7899954\n1.0008976\n8036.806\n\n\nlambda[33]\n1.1555324\n0.6697436\n1.0003042\n7501.702\n\n\nlambda[34]\n1.5264033\n0.6616486\n1.0025811\n7766.213\n\n\nlambda[35]\n0.7899508\n0.5578459\n0.9999789\n7090.187\n\n\nlambda[36]\n1.4532723\n0.7375873\n1.0007186\n9869.132\n\n\nlambda[37]\n0.4285978\n0.4199888\n0.9999393\n5751.457\n\n\nlambda[38]\n1.9897239\n0.8793718\n1.0003754\n9144.105\n\n\nlambda[39]\n0.7450916\n0.5182003\n0.9995554\n8130.725\n\n\nlambda[40]\n1.1374976\n0.6525920\n1.0017931\n8589.492\n\n\nlambda[41]\n1.4244404\n0.7006266\n1.0023593\n6858.366\n\n\nlambda[42]\n1.6637849\n0.7509851\n0.9996539\n7139.173\n\n\nlambda[43]\n1.8140081\n0.8307266\n1.0031303\n8294.113\n\n\nlambda[44]\n0.8571984\n0.4790812\n1.0023603\n7703.580\n\n\nlambda[45]\n1.0880935\n0.6318477\n1.0006352\n7566.251\n\n\nlambda[46]\n1.4361456\n0.6503897\n0.9994384\n8163.939\n\n\nlambda[47]\n0.8847706\n0.5167225\n1.0009238\n8324.206\n\n\nlambda[48]\n1.0750511\n0.5339827\n1.0016644\n8622.261\n\n\nlambda[49]\n0.3018790\n0.2959550\n1.0005851\n5793.900\n\n\nlambda[50]\n0.3197025\n0.3256233\n0.9994628\n5081.758\n\n\nlambda[51]\n0.7794332\n0.4571045\n1.0016552\n9014.116\n\n\nlambda[52]\n1.5544563\n0.6441122\n1.0010498\n9468.760\n\n\nlambda[53]\n1.4271320\n0.5891077\n1.0008465\n8036.982\n\n\nlambda[54]\n0.5978108\n0.4191586\n1.0009834\n7923.881\n\n\nlambda[55]\n0.5552029\n0.3868425\n0.9998611\n7153.238\n\n\nlambda[56]\n0.8218314\n0.4135715\n0.9999527\n8158.309\n\n\nlambda[57]\n0.5449502\n0.3894453\n0.9999776\n6458.686\n\n\nlambda[58]\n0.5348793\n0.3716342\n1.0007056\n6879.272\n\n\nlambda[59]\n0.9940355\n0.4830594\n1.0003936\n10337.022\n\n\nlambda[60]\n0.4437015\n0.3096729\n1.0029815\n6798.740\n\n\nlambda[61]\n0.8094635\n0.4614335\n0.9997315\n7392.990\n\n\nlambda[62]\n1.6002911\n0.6164370\n1.0024416\n7827.165\n\n\nlambda[63]\n0.2097533\n0.2161231\n1.0001642\n5961.516\n\n\nlambda[64]\n0.5998704\n0.3543889\n1.0010214\n7784.407\n\n\nlambda[65]\n0.8302986\n0.4806738\n1.0025724\n8145.229\n\n\nlambda[66]\n0.5185593\n0.3582384\n1.0000323\n6377.592\n\n\nlambda[67]\n0.5622628\n0.3337068\n1.0017643\n7154.676\n\n\nlambda[68]\n2.0368689\n0.6876336\n1.0055722\n9092.125\n\n\nlambda[69]\n1.5065795\n0.5699950\n1.0005292\n8331.294\n\n\nlambda[70]\n0.3844750\n0.2785353\n1.0024007\n6767.158\n\n\nlambda[71]\n1.4130430\n0.5030808\n1.0027316\n9470.380\n\n\nlambda[72]\n0.9854344\n0.4297633\n1.0011536\n9078.722\n\n\nlambda[73]\n0.3803165\n0.2642860\n0.9998781\n6647.621\n\n\nlambda[74]\n0.7987972\n0.3949402\n1.0025064\n8176.634\n\n\nlambda[75]\n1.0660119\n0.4160935\n1.0009367\n8879.975\n\n\nlambda[76]\n0.4578378\n0.2659640\n1.0003575\n8105.424\n\n\nlambda[77]\n0.6694614\n0.3042366\n1.0001769\n7553.550\n\n\nlambda[78]\n0.6279796\n0.3145321\n1.0010509\n8771.816\n\n\nlambda[79]\n0.9175721\n0.4044257\n1.0010852\n9683.504\n\n\nlambda[80]\n1.0506304\n0.4302338\n1.0022860\n7827.670\n\n\nlambda[81]\n0.5012500\n0.3018368\n1.0017463\n7269.050\n\n\nlambda[82]\n0.9981823\n0.3795039\n1.0020283\n8411.693\n\n\nlambda[83]\n1.4705479\n0.4957901\n1.0014892\n8909.492\n\n\nlambda[84]\n0.4915877\n0.1923660\n1.0009710\n8681.406\n\n\nlambda[85]\n0.1462425\n0.1448864\n1.0002353\n5320.621\n\n\nlambda[86]\n0.9944543\n0.3670536\n1.0001632\n9571.313\n\n\nlambda[87]\n1.3736207\n0.4610920\n1.0023358\n8707.553\n\n\nlambda[88]\n1.1210221\n0.3999280\n1.0004132\n11185.793\n\n\nlambda[89]\n0.5515533\n0.2814439\n1.0009379\n9472.479\n\n\nlambda[90]\n0.5020421\n0.2537327\n0.9997052\n7704.323\n\n\nlambda[91]\n1.1323293\n0.3517581\n1.0021811\n11321.426\n\n\nlambda[92]\n0.7582604\n0.2697603\n1.0006837\n9264.479\n\n\nlambda[93]\n1.4530631\n0.3388141\n1.0010033\n9858.270\n\n\nlambda[94]\n1.3687930\n0.3160478\n1.0007887\n8029.575\nEl problema en este caso es que tenemos intervalos que simplemente no son creíbles, en particular con aquellos hospitales que tienen poca exposición.\nset.seed(912)\najuste_ind$draws(\"lambda\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"lambda\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n mutate(hospital = factor(hospital)) |>\n group_by(hospital, e, y) |> \n summarise(inf = quantile(value, 0.1), sup = quantile(value, 0.9)) |>\n ggplot(aes(x = e)) + geom_linerange(aes(ymin = inf, ymax = sup)) +\n geom_point(aes(y = 1000 * y / e), color = \"red\") +\n scale_x_log10() + xlab(\"Número de expuestos e\") + ylab(\"Muertes por mil expuestos\")\nEn este caso, la variabilidad es muy alta para hospitales con poca exposición, tanto en los datos observados como en los intervalos. Los intervalos no aportan mucha información. En este punto utilizar iniciales fuertes para las \\(\\lambda_j\\) si tenemos la información disponible. Sin embargo, los resultados serán altamente sensible a esta información inicial.\nUna alternativa intermedia es poner una distribución inicial sobre las tasas que pueda adaptarse a los datos. Esta es una estrategia intermedia, donde permitimos variación en las \\(\\lambda_j\\) que sea consistente con la variación que observamos a lo largo de los hospitales.\nlibrary(cmdstanr)\nmod_jer <- cmdstan_model(\"./src/heart-jerarquico.stan\")\nprint(mod_jer)\n\ndata {\n int<lower=0> N;\n array[N] int e;\n array[N] int y;\n}\n\nparameters {\n vector<lower=0>[N] lambda;\n real<lower=0> alpha;\n real<lower=0> mu;\n}\n\ntransformed parameters {\n vector[N] media_hospital;\n // lambda es por cada 1000 expuestos:\n for (i in 1:N){\n media_hospital[i] = lambda[i] * e[i] /1000;\n }\n}\n\nmodel {\n // partes no determinísticas\n y ~ poisson(media_hospital);\n lambda ~ gamma(alpha, alpha / mu);\n mu ~ exponential(1);\n alpha ~ exponential(1);\n}\n\ngenerated quantities {\n array[N] int y_sim;\n for (i in 1:N){\n y_sim[i] = poisson_rng(media_hospital[i]);\n }\n}\n\ndatos_jer <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_jer <- mod_jer$sample(data = datos_ind, \n chains = 4, step_size = 0.5, iter_sampling = 3000, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 1 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 1 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 1 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 1 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 1 finished in 0.7 seconds.\nChain 2 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 2 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 2 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 2 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 2 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 2 finished in 0.7 seconds.\nChain 3 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 3 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 3 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 3 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 3 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 3 finished in 0.7 seconds.\nChain 4 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 4 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 4 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 4 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 4 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 4 finished in 0.7 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.7 seconds.\nTotal execution time: 3.3 seconds.\n\nresumen <- ajuste_jer$summary(c(\"alpha\", \"mu\")) |> \n select(variable, mean, sd, rhat, ess_bulk)\nresumen |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nrhat\ness_bulk\n\n\n\n\nalpha\n4.3771616\n1.3246645\n1.000421\n2640.041\n\n\nmu\n0.9626838\n0.0818993\n1.000104\n9910.558\nEl problema en este caso es que tenemos intervalos que simplemente no son creíbles, en particular con aquellos hospitales que tienen poca exposición.\nset.seed(912)\najuste_jer$draws(\"lambda\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"lambda\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n mutate(hospital = factor(hospital)) |>\n group_by(hospital, e, y) |> \n summarise(inf = quantile(value, 0.1), sup = quantile(value, 0.9), median = median(value)) |>\n ggplot(aes(x = e)) + geom_linerange(aes(ymin = inf, ymax = sup)) +\n geom_point(aes(y = 1000 * y / e), color = \"red\") +\n geom_point(aes(y = median)) +\n scale_x_log10() + xlab(\"Número de expuestos e\") + ylab(\"Muertes por mil expuestos\")\nLos resultados del chequo predictivo posterior da mejores resultados (compara con el modelo agregado):\nset.seed(912)\najuste_jer$draws(\"y_sim\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"y_sim\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n filter(hospital %in% sample(1:94, 20)) |>\n ggplot(aes(x = value)) + geom_histogram(binwidth = 1) +\n facet_wrap(~ hospital) + \n geom_vline(aes(xintercept = y), color = \"red\")", + "text": "9.1 Primer ejemplo: construyendo un modelo jerárquico.\nConsideramos un ejemplo simple, donde queremos estimar el efecto del hospital en la tasa de mortalidad de pacientes de cirugía de corazón. Este ejemplo se puede encontrar en Albert (2009). Plantearemos 3 alternativas de modelación para resolver el problema: modelo de unidades iguales, modelo de unidades independientes y finalmente modelo jerárquico.\nTenemos datos todas las cirugías de transplante de corazón llevadas a cabo en Estados Unidos en un periodo de 24 meses, entre octubre de 1987 y diciembre de 1989. Para cada uno de los 131 hospitales, se registró el número de cirugías de transplante de corazón, y el número de muertes durante los 30 días posteriores a la cirugía \\(y\\). Además, se cuenta con una predicción de la probabilidad de muerte de cada paciente individual. Esta predicción esta basada en un modelo logístico que incluye información a nivel paciente como condición médica antes de la cirugía, género, sexo y raza. En cada hospital se suman las probabilidades de muerte de sus pacientes para calcular el número esperado de muertes \\(e\\), que llamamos como la exposición del hospital. \\(e\\) refleja el riesgo de muerte debido a la mezcla de pacientes que componen un hospital particular.\nEl diagrama simple que consideraremos es uno donde hospital es causa tanto de su exposición \\(e\\) (por su tamaño, tipo de casos que atrae, etc), como de el número de personas fallecidas. A su vez, la exposición \\(e\\) es causa del número de muertes \\(y\\). Nos interesa estimar el efecto directo de hospital en el número de muertes.\nCódigo\nlibrary(tidyverse)\nlibrary(kableExtra)\nlibrary(DiagrammeR)\nggplot2::theme_set(ggplot2::theme_light())\ndatos_hosp <- read_csv(\"../datos/hearttransplants.csv\") |> \n mutate(hospital = row_number())\nhead(datos_hosp)\n\n# A tibble: 6 × 3\n e y hospital\n <dbl> <dbl> <int>\n1 532 0 1\n2 584 0 2\n3 672 2 3\n4 722 1 4\n5 904 1 5\n6 1236 0 6\nConsideramos la cantidad \\(y/e\\) como una estimación cruda de la tasa de mortalidad. En la siguiente gráfica, observamos que parece ser la variabilidad es alta cuando el número de expuestos es relativamente baja. Nótese que la tasa de mortalidad no es muy alta en general, y que el número de muertes es relativamente bajo en muchos hospitales (puede tomar valores 0, 1, 2, etc.) Esto produce variabilidad alta para exposiciones bajas.\nggplot(datos_hosp, aes(x = e, y = 1000 * y / e, color = log(1 + y))) +\n geom_point() + scale_x_log10() + xlab(\"Número de expuestos e\")\nConsideramos primero un modelo donde consideramos que todos los hospitales tienen una misma tasa de mortalidad. Si \\(e_j\\) es la exposición del hospital \\(j\\) y \\(y_j\\) el número de muertes, entonces podemos considerar un modelo de la forma\n\\[y_j \\sim \\text{Poisson}(e_j \\lambda),\\] Es decir, el número de muertes es Poisson con valor esperado igual al número de expuestos multiplicado por la tasa común de mortalidad.\nlibrary(cmdstanr)\nmod_agregado <- cmdstan_model(\"./src/heart-agregado.stan\")\ndatos_agregado <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_agregado <- mod_agregado$sample(data = datos_agregado, chains = 4, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 0.1 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 0.1 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 0.1 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 0.1 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.1 seconds.\nTotal execution time: 0.6 seconds.\najuste_agregado$summary(\"lambda\")\n\n# A tibble: 1 × 10\n variable mean median sd mad q5 q95 rhat ess_bulk ess_tail\n <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>\n1 lambda 0.939 0.938 0.0555 0.0544 0.850 1.03 1.00 1633. 1960.\nLos diagnósticos básicos parecen ser apropiados. Procedemos a hacer un chequeo predictivo posterior:\nset.seed(912)\najuste_agregado$draws(\"y_sim\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"y_sim\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n filter(hospital %in% sample(1:94, 20)) |>\n ggplot(aes(x = value)) + geom_histogram(binwidth = 1) +\n facet_wrap(~ hospital) + \n geom_vline(aes(xintercept = y), color = \"red\")\nY vemos fallas en el ajuste del modelo, con varias observaciones en los extremos de las colas.\nPodemos considerar un modelo donde cada hospital tiene su propia tasa de mortalidad.\nlibrary(cmdstanr)\nmod_ind <- cmdstan_model(\"./src/heart-individual.stan\")\nprint(mod_ind)\n\ndata {\n int<lower=0> N;\n array[N] int e;\n array[N] int y;\n}\n\nparameters {\n vector<lower=0>[N] lambda;\n}\n\ntransformed parameters {\n vector[N] media_hospital;\n // lambda es por cada 1000 expuestos:\n for (i in 1:N){\n media_hospital[i] = lambda[i] * e[i] / 1000;\n }\n}\n\nmodel {\n // partes no determinísticas\n y ~ poisson(media_hospital);\n lambda ~ exponential(1);\n}\n\ngenerated quantities {\n array[N] int y_sim;\n for (i in 1:N){\n y_sim[i] = poisson_rng(media_hospital[i]);\n }\n}\n\ndatos_ind <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_ind <- mod_ind$sample(data = datos_ind, chains = 4, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 0.3 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 0.3 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 0.3 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 0.3 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.3 seconds.\nTotal execution time: 1.3 seconds.\n\nresumen <- ajuste_ind$summary(\"lambda\") |> \n select(variable, mean, sd, rhat, ess_bulk)\nresumen |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nrhat\ness_bulk\n\n\n\n\nlambda[1]\n0.6583536\n0.6586216\n1.0006192\n5165.406\n\n\nlambda[2]\n0.6275285\n0.6100568\n1.0006134\n5304.057\n\n\nlambda[3]\n1.7901338\n1.0150032\n1.0025797\n7752.468\n\n\nlambda[4]\n1.1631030\n0.8126933\n1.0029684\n6266.203\n\n\nlambda[5]\n1.0546849\n0.7280221\n1.0031314\n7189.272\n\n\nlambda[6]\n0.4379974\n0.4299703\n1.0009799\n5048.264\n\n\nlambda[7]\n0.4997928\n0.4831605\n1.0016690\n5114.259\n\n\nlambda[8]\n0.8132338\n0.5780811\n1.0020729\n7136.650\n\n\nlambda[9]\n2.2283861\n1.1061633\n0.9995477\n7795.995\n\n\nlambda[10]\n0.4943771\n0.4791999\n1.0015410\n6199.135\n\n\nlambda[11]\n0.5702635\n0.5669676\n0.9999858\n4844.867\n\n\nlambda[12]\n0.7276062\n0.5194843\n0.9996745\n7401.780\n\n\nlambda[13]\n0.5402685\n0.5416521\n1.0009094\n4667.626\n\n\nlambda[14]\n1.4168025\n0.8179681\n1.0001357\n8158.471\n\n\nlambda[15]\n1.8374637\n0.8959153\n1.0003162\n7266.626\n\n\nlambda[16]\n0.4686611\n0.4580127\n1.0018647\n5925.258\n\n\nlambda[17]\n0.4299892\n0.4270344\n1.0000900\n4716.068\n\n\nlambda[18]\n1.4398167\n0.7206289\n1.0014807\n7010.188\n\n\nlambda[19]\n0.4361010\n0.3004024\n1.0020841\n7361.362\n\n\nlambda[20]\n0.9095600\n0.6463542\n0.9999059\n6731.727\n\n\nlambda[21]\n0.8950893\n0.6226518\n1.0012198\n7102.283\n\n\nlambda[22]\n0.9026263\n0.6513811\n1.0023325\n7832.570\n\n\nlambda[23]\n2.0032715\n0.9300883\n1.0002577\n8627.692\n\n\nlambda[24]\n1.5902697\n0.8109377\n1.0013903\n8360.192\n\n\nlambda[25]\n1.3937997\n0.6810875\n1.0001507\n7706.375\n\n\nlambda[26]\n0.6984656\n0.5001702\n0.9999789\n6761.789\n\n\nlambda[27]\n0.4461970\n0.4635060\n1.0008701\n6028.760\n\n\nlambda[28]\n1.2594830\n0.6986847\n1.0012426\n7572.902\n\n\nlambda[29]\n1.1320465\n0.6506051\n1.0010134\n7522.168\n\n\nlambda[30]\n1.8764928\n0.8466750\n1.0000906\n8114.597\n\n\nlambda[31]\n1.7583001\n0.8069553\n1.0031715\n7914.872\n\n\nlambda[32]\n1.6035141\n0.7899954\n1.0008976\n8036.806\n\n\nlambda[33]\n1.1555324\n0.6697436\n1.0003042\n7501.702\n\n\nlambda[34]\n1.5264033\n0.6616486\n1.0025811\n7766.213\n\n\nlambda[35]\n0.7899508\n0.5578459\n0.9999789\n7090.187\n\n\nlambda[36]\n1.4532723\n0.7375873\n1.0007186\n9869.132\n\n\nlambda[37]\n0.4285978\n0.4199888\n0.9999393\n5751.457\n\n\nlambda[38]\n1.9897239\n0.8793718\n1.0003754\n9144.105\n\n\nlambda[39]\n0.7450916\n0.5182003\n0.9995554\n8130.725\n\n\nlambda[40]\n1.1374976\n0.6525920\n1.0017931\n8589.492\n\n\nlambda[41]\n1.4244404\n0.7006266\n1.0023593\n6858.366\n\n\nlambda[42]\n1.6637849\n0.7509851\n0.9996539\n7139.173\n\n\nlambda[43]\n1.8140081\n0.8307266\n1.0031303\n8294.113\n\n\nlambda[44]\n0.8571984\n0.4790812\n1.0023603\n7703.580\n\n\nlambda[45]\n1.0880935\n0.6318477\n1.0006352\n7566.251\n\n\nlambda[46]\n1.4361456\n0.6503897\n0.9994384\n8163.939\n\n\nlambda[47]\n0.8847706\n0.5167225\n1.0009238\n8324.206\n\n\nlambda[48]\n1.0750511\n0.5339827\n1.0016644\n8622.261\n\n\nlambda[49]\n0.3018790\n0.2959550\n1.0005851\n5793.900\n\n\nlambda[50]\n0.3197025\n0.3256233\n0.9994628\n5081.758\n\n\nlambda[51]\n0.7794332\n0.4571045\n1.0016552\n9014.116\n\n\nlambda[52]\n1.5544563\n0.6441122\n1.0010498\n9468.760\n\n\nlambda[53]\n1.4271320\n0.5891077\n1.0008465\n8036.982\n\n\nlambda[54]\n0.5978108\n0.4191586\n1.0009834\n7923.881\n\n\nlambda[55]\n0.5552029\n0.3868425\n0.9998611\n7153.238\n\n\nlambda[56]\n0.8218314\n0.4135715\n0.9999527\n8158.309\n\n\nlambda[57]\n0.5449502\n0.3894453\n0.9999776\n6458.686\n\n\nlambda[58]\n0.5348793\n0.3716342\n1.0007056\n6879.272\n\n\nlambda[59]\n0.9940355\n0.4830594\n1.0003936\n10337.022\n\n\nlambda[60]\n0.4437015\n0.3096729\n1.0029815\n6798.740\n\n\nlambda[61]\n0.8094635\n0.4614335\n0.9997315\n7392.990\n\n\nlambda[62]\n1.6002911\n0.6164370\n1.0024416\n7827.165\n\n\nlambda[63]\n0.2097533\n0.2161231\n1.0001642\n5961.516\n\n\nlambda[64]\n0.5998704\n0.3543889\n1.0010214\n7784.407\n\n\nlambda[65]\n0.8302986\n0.4806738\n1.0025724\n8145.229\n\n\nlambda[66]\n0.5185593\n0.3582384\n1.0000323\n6377.592\n\n\nlambda[67]\n0.5622628\n0.3337068\n1.0017643\n7154.676\n\n\nlambda[68]\n2.0368689\n0.6876336\n1.0055722\n9092.125\n\n\nlambda[69]\n1.5065795\n0.5699950\n1.0005292\n8331.294\n\n\nlambda[70]\n0.3844750\n0.2785353\n1.0024007\n6767.158\n\n\nlambda[71]\n1.4130430\n0.5030808\n1.0027316\n9470.380\n\n\nlambda[72]\n0.9854344\n0.4297633\n1.0011536\n9078.722\n\n\nlambda[73]\n0.3803165\n0.2642860\n0.9998781\n6647.621\n\n\nlambda[74]\n0.7987972\n0.3949402\n1.0025064\n8176.634\n\n\nlambda[75]\n1.0660119\n0.4160935\n1.0009367\n8879.975\n\n\nlambda[76]\n0.4578378\n0.2659640\n1.0003575\n8105.424\n\n\nlambda[77]\n0.6694614\n0.3042366\n1.0001769\n7553.550\n\n\nlambda[78]\n0.6279796\n0.3145321\n1.0010509\n8771.816\n\n\nlambda[79]\n0.9175721\n0.4044257\n1.0010852\n9683.504\n\n\nlambda[80]\n1.0506304\n0.4302338\n1.0022860\n7827.670\n\n\nlambda[81]\n0.5012500\n0.3018368\n1.0017463\n7269.050\n\n\nlambda[82]\n0.9981823\n0.3795039\n1.0020283\n8411.693\n\n\nlambda[83]\n1.4705479\n0.4957901\n1.0014892\n8909.492\n\n\nlambda[84]\n0.4915877\n0.1923660\n1.0009710\n8681.406\n\n\nlambda[85]\n0.1462425\n0.1448864\n1.0002353\n5320.621\n\n\nlambda[86]\n0.9944543\n0.3670536\n1.0001632\n9571.313\n\n\nlambda[87]\n1.3736207\n0.4610920\n1.0023358\n8707.553\n\n\nlambda[88]\n1.1210221\n0.3999280\n1.0004132\n11185.793\n\n\nlambda[89]\n0.5515533\n0.2814439\n1.0009379\n9472.479\n\n\nlambda[90]\n0.5020421\n0.2537327\n0.9997052\n7704.323\n\n\nlambda[91]\n1.1323293\n0.3517581\n1.0021811\n11321.426\n\n\nlambda[92]\n0.7582604\n0.2697603\n1.0006837\n9264.479\n\n\nlambda[93]\n1.4530631\n0.3388141\n1.0010033\n9858.270\n\n\nlambda[94]\n1.3687930\n0.3160478\n1.0007887\n8029.575\nEl problema en este caso es que tenemos intervalos que simplemente no son creíbles, en particular con aquellos hospitales que tienen poca exposición.\nset.seed(912)\najuste_ind$draws(\"lambda\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"lambda\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n mutate(hospital = factor(hospital)) |>\n group_by(hospital, e, y) |> \n summarise(inf = quantile(value, 0.1), sup = quantile(value, 0.9)) |>\n ggplot(aes(x = e)) + geom_linerange(aes(ymin = inf, ymax = sup)) +\n geom_point(aes(y = 1000 * y / e), color = \"red\") +\n scale_x_log10() + xlab(\"Número de expuestos e\") + ylab(\"Muertes por mil expuestos\")\nEn este caso, la variabilidad es muy alta para hospitales con poca exposición, tanto en los datos observados como en los intervalos. Los intervalos no aportan mucha información. En este punto utilizar iniciales fuertes para las \\(\\lambda_j\\) si tenemos la información disponible. Sin embargo, los resultados serán altamente sensible a esta información inicial.\nUna alternativa intermedia es poner una distribución inicial sobre las tasas que pueda adaptarse a los datos. Esta es una estrategia intermedia, donde permitimos variación en las \\(\\lambda_j\\) que sea consistente con la variación que observamos a lo largo de los hospitales.\nlibrary(cmdstanr)\nmod_jer <- cmdstan_model(\"./src/heart-jerarquico.stan\")\nprint(mod_jer)\n\ndata {\n int<lower=0> N;\n array[N] int e;\n array[N] int y;\n}\n\nparameters {\n vector<lower=0>[N] lambda;\n real<lower=0> alpha;\n real<lower=0> mu;\n}\n\ntransformed parameters {\n vector[N] media_hospital;\n // lambda es por cada 1000 expuestos:\n for (i in 1:N){\n media_hospital[i] = lambda[i] * e[i] /1000;\n }\n}\n\nmodel {\n // partes no determinísticas\n y ~ poisson(media_hospital);\n lambda ~ gamma(alpha, alpha / mu);\n mu ~ exponential(1);\n alpha ~ exponential(1);\n}\n\ngenerated quantities {\n array[N] int y_sim;\n for (i in 1:N){\n y_sim[i] = poisson_rng(media_hospital[i]);\n }\n}\n\ndatos_jer <- list(N = nrow(datos_hosp), y = datos_hosp$y, e = datos_hosp$e)\najuste_jer <- mod_jer$sample(data = datos_ind, \n chains = 4, step_size = 0.5, iter_sampling = 3000, refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 1 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 1 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 1 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 1 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 1 finished in 0.7 seconds.\nChain 2 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 2 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 2 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 2 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 2 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 2 finished in 0.7 seconds.\nChain 3 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 3 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 3 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 3 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 3 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 3 finished in 0.7 seconds.\nChain 4 Iteration: 1 / 4000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 4000 [ 25%] (Warmup) \nChain 4 Iteration: 1001 / 4000 [ 25%] (Sampling) \nChain 4 Iteration: 2000 / 4000 [ 50%] (Sampling) \nChain 4 Iteration: 3000 / 4000 [ 75%] (Sampling) \nChain 4 Iteration: 4000 / 4000 [100%] (Sampling) \nChain 4 finished in 0.7 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 0.7 seconds.\nTotal execution time: 3.3 seconds.\n\nresumen <- ajuste_jer$summary(c(\"alpha\", \"mu\")) |> \n select(variable, mean, sd, rhat, ess_bulk)\nresumen |> kable()\n\n\n\n\n\nvariable\nmean\nsd\nrhat\ness_bulk\n\n\n\n\nalpha\n4.3771616\n1.3246645\n1.000421\n2640.041\n\n\nmu\n0.9626838\n0.0818993\n1.000104\n9910.558\nEl problema en este caso es que tenemos intervalos que simplemente no son creíbles, en particular con aquellos hospitales que tienen poca exposición.\nset.seed(912)\najuste_jer$draws(\"lambda\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"lambda\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n mutate(hospital = factor(hospital)) |>\n group_by(hospital, e, y) |> \n summarise(inf = quantile(value, 0.1), sup = quantile(value, 0.9), median = median(value)) |>\n ggplot(aes(x = e)) + geom_linerange(aes(ymin = inf, ymax = sup)) +\n geom_point(aes(y = 1000 * y / e), color = \"red\") +\n geom_point(aes(y = median)) +\n scale_x_log10() + xlab(\"Número de expuestos e\") + ylab(\"Muertes por mil expuestos\")\nLos resultados del chequo predictivo posterior da mejores resultados (compara con el modelo agregado):\nset.seed(912)\najuste_jer$draws(\"y_sim\", format = \"df\") |> \n as_tibble() |> \n pivot_longer(cols = starts_with(\"y_sim\"), names_to = \"variable\") |> \n separate(variable, into = c(\"variable\", \"hospital\"), sep = \"[\\\\[\\\\]]\") |>\n mutate(hospital = as.integer(hospital)) |>\n left_join(datos_hosp, by = \"hospital\") |>\n filter(hospital %in% sample(1:94, 20)) |>\n ggplot(aes(x = value)) + geom_histogram(binwidth = 1) +\n facet_wrap(~ hospital) + \n geom_vline(aes(xintercept = y), color = \"red\")", "crumbs": [ "9  Modelos jerárquicos" ] @@ -604,7 +604,7 @@ "href": "09-modelos-jerarquicos.html#primer-ejemplo-construyendo-un-modelo-jerárquico.", "title": "9  Modelos jerárquicos", "section": "", - "text": "Nota\n\n\n\n#Modelos jerárquicos y estimación Los modelos jerárquicos nos permiten ajustar modelos con agregación parcial: es decir, estimamos parámetros a nivel de grupo con mejor precisión que si ajustamos modelos individuales (varianza muy alta) o agregamos los datos e ignoramos el grupo (sesgo alto).\nLa regularización que ocurre en estos modelos está relacionada a la inicial que estimamos sobre parámetros indiviiduales: cuando hay muchos datos en un grupo, la inicial es menos importante, y cuando hay más datos en un grupo, la inicial es menos importante. El grado de regularización es estimado de la evidencia de variación entre los grupos.", + "text": "Modelos jerárquicos y estimación\n\n\n\nLos modelos jerárquicos nos permiten ajustar modelos con agregación parcial: es decir, estimamos parámetros a nivel de grupo con mejor precisión que si ajustamos modelos individuales (varianza muy alta) o agregamos los datos e ignoramos el grupo (sesgo alto).\nLa regularización que ocurre en estos modelos está relacionada a la inicial que estimamos sobre parámetros indiviiduales: cuando hay muchos datos en un grupo, la inicial es menos importante, y cuando hay más datos en un grupo, la inicial es menos importante. El grado de regularización es estimado de la evidencia de variación entre los grupos.", "crumbs": [ "9  Modelos jerárquicos" ] @@ -624,7 +624,7 @@ "href": "09-modelos-jerarquicos.html#primera-parte-de-estructura-jerárquica", "title": "9  Modelos jerárquicos", "section": "9.3 Primera parte de estructura jerárquica", - "text": "9.3 Primera parte de estructura jerárquica\nEmpecemos primero como en nuestro ejemplo anterior, modelando jerárquicamente el uso de anticonceptivos segun distrito (solo vemos el efecto \\(D\\to AC\\)). Esta variable nos puede ayudar a controlar variables asociadas con distrito que mejore la estimación de otras cantidades de interés, y es importante usar una estructura jerárquica pues los tamaños de muestra por distrito son considerablemente distintos:\n\nbangladesh <- read_csv(\"../datos/bangladesh.csv\") |> \n mutate(district = factor(district, levels = 1:61)) \n\nRows: 1934 Columns: 6\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\ndbl (6): woman, district, use.contraception, living.children, age.centered, ...\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n\n\n\nbangladesh |> count(district, .drop = FALSE) |> \n mutate(district_fct = fct_reorder(district, n)) |>\n ggplot(aes(x = as.numeric(district), y = n)) + geom_point() +\n xlab(\"Distrito num\")\n\n\n\n\n\n\n\n\nNótese que un distrito no contiene ninguna observación, y que hay distritos con muy pocas observaciones. Este es un caso típico donde un modelo jerárquico puede mejorar nuestras estimaciones de la relación de distrito con la variable respuesta de interés.\nLos datos, por persona, los modelamos como sigue (regresión logística): \\[\n\\begin{align}\nC_i &\\sim \\text{Bernoulli}(p_i)\\\\\n\\textrm{logit}(p_i) &= \\alpha_{D[i]} \\\\\n\\alpha_j &\\sim N(\\bar{\\alpha},\\sigma) \\\\\n\\bar{\\alpha} &\\sim N(0, 1) \\\\\n\\sigma &\\sim N^+(0, 1) \\\\\n\\end{align}\n\\] Que implementado en stan puede quedar como:\n\nmod_1_bangladesh <- cmdstan_model(\"./src/bangladesh-1.stan\")\nprint(mod_1_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n}\n\nparameters {\n real alpha_bar;\n vector[N_d] alpha;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito]);\n alpha ~ normal(alpha_bar, sigma);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito;\n for (i in 1:N_d) {\n prob_distrito[i] = inv_logit(alpha[i]);\n }\n\n}\n\n\n\ndatos_lst <- list(\n ac_uso = bangladesh$use.contraception,\n distrito = as.integer(bangladesh$district),\n N = nrow(bangladesh),\n N_d = 61\n)\najuste_1_bangladesh <- mod_1_bangladesh$sample(data = datos_lst,\n refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 1.5 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 1.5 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 1.4 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 1.5 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 1.5 seconds.\nTotal execution time: 6.2 seconds.\n\n\n\najuste_1_bangladesh$cmdstan_diagnose()\n\nProcessing csv files: /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-1-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-2-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-3-41c9f4.csv, /tmp/RtmpeQ3eCr/bangladesh-1-202404172025-4-41c9f4.csv\n\nChecking sampler transitions treedepth.\nTreedepth satisfactory for all transitions.\n\nChecking sampler transitions for divergences.\nNo divergent transitions found.\n\nChecking E-BFMI - sampler transitions HMC potential energy.\nE-BFMI satisfactory.\n\nEffective sample size satisfactory.\n\nSplit R-hat values satisfactory all parameters.\n\nProcessing complete, no problems detected.\n\n\n\najuste_1_bangladesh$summary(c(\"alpha_bar\", \"sigma\", \"alpha\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.54\n-0.54\n0.09\n0.08\n-0.68\n-0.40\n1.00\n4085.44\n3240.28\n\n\nsigma\n0.52\n0.51\n0.08\n0.08\n0.39\n0.67\n1.00\n1466.15\n2140.47\n\n\nalpha[1]\n-1.00\n-1.00\n0.20\n0.20\n-1.33\n-0.67\n1.00\n6708.19\n2445.02\n\n\nalpha[2]\n-0.59\n-0.59\n0.36\n0.35\n-1.19\n-0.02\n1.00\n7627.66\n2919.07\n\n\nalpha[3]\n-0.24\n-0.25\n0.52\n0.51\n-1.04\n0.61\n1.00\n6914.02\n2660.74\n\n\nalpha[4]\n-0.18\n-0.18\n0.29\n0.30\n-0.65\n0.30\n1.00\n6717.37\n3126.67\n\n\nalpha[5]\n-0.58\n-0.57\n0.28\n0.28\n-1.05\n-0.11\n1.00\n7317.02\n2743.21\n\n\nalpha[6]\n-0.81\n-0.80\n0.24\n0.24\n-1.21\n-0.43\n1.00\n6410.45\n3010.84\n\n\nalpha[7]\n-0.76\n-0.74\n0.37\n0.35\n-1.37\n-0.16\n1.00\n7030.13\n2965.32\n\n\nalpha[8]\n-0.51\n-0.51\n0.28\n0.28\n-0.98\n-0.06\n1.00\n8071.81\n3194.77\n\n\nalpha[9]\n-0.71\n-0.71\n0.34\n0.33\n-1.27\n-0.16\n1.00\n7868.70\n2515.75\n\n\nalpha[10]\n-1.14\n-1.13\n0.42\n0.43\n-1.85\n-0.49\n1.00\n4682.64\n3203.02\n\n\nalpha[11]\n-1.55\n-1.53\n0.43\n0.42\n-2.31\n-0.90\n1.00\n3598.80\n2719.42\n\n\nalpha[12]\n-0.61\n-0.61\n0.30\n0.30\n-1.11\n-0.11\n1.00\n7084.31\n3243.42\n\n\nalpha[13]\n-0.43\n-0.43\n0.33\n0.33\n-0.97\n0.11\n1.00\n7175.59\n2941.12\n\n\nalpha[14]\n0.39\n0.39\n0.18\n0.18\n0.10\n0.69\n1.00\n6439.59\n2988.87\n\n\nalpha[15]\n-0.56\n-0.56\n0.34\n0.34\n-1.13\n-0.01\n1.00\n8492.92\n2772.50\n\n\nalpha[16]\n-0.12\n-0.12\n0.35\n0.35\n-0.68\n0.47\n1.00\n7681.17\n2730.42\n\n\nalpha[17]\n-0.75\n-0.74\n0.35\n0.35\n-1.33\n-0.19\n1.00\n7398.34\n3177.56\n\n\nalpha[18]\n-0.63\n-0.63\n0.26\n0.26\n-1.07\n-0.21\n1.00\n7939.92\n3138.83\n\n\nalpha[19]\n-0.49\n-0.49\n0.32\n0.31\n-1.03\n0.02\n1.00\n7839.24\n3075.07\n\n\nalpha[20]\n-0.48\n-0.48\n0.39\n0.38\n-1.11\n0.16\n1.00\n8125.28\n2828.64\n\n\nalpha[21]\n-0.51\n-0.51\n0.37\n0.36\n-1.10\n0.10\n1.00\n7697.11\n3023.53\n\n\nalpha[22]\n-0.96\n-0.94\n0.37\n0.38\n-1.58\n-0.36\n1.00\n5859.65\n3134.66\n\n\nalpha[23]\n-0.76\n-0.75\n0.38\n0.37\n-1.39\n-0.15\n1.00\n6525.52\n2626.27\n\n\nalpha[24]\n-1.18\n-1.15\n0.43\n0.42\n-1.91\n-0.50\n1.00\n5731.86\n2963.71\n\n\nalpha[25]\n-0.27\n-0.28\n0.22\n0.23\n-0.64\n0.09\n1.00\n7193.19\n2720.95\n\n\nalpha[26]\n-0.50\n-0.49\n0.40\n0.39\n-1.16\n0.15\n1.00\n7883.64\n3156.22\n\n\nalpha[27]\n-1.19\n-1.17\n0.30\n0.30\n-1.69\n-0.70\n1.00\n6331.04\n2802.17\n\n\nalpha[28]\n-0.96\n-0.96\n0.28\n0.27\n-1.43\n-0.50\n1.00\n7081.91\n2409.17\n\n\nalpha[29]\n-0.80\n-0.80\n0.31\n0.31\n-1.33\n-0.30\n1.00\n7163.13\n2631.89\n\n\nalpha[30]\n-0.14\n-0.14\n0.23\n0.22\n-0.51\n0.25\n1.00\n7345.14\n2399.03\n\n\nalpha[31]\n-0.30\n-0.30\n0.28\n0.28\n-0.76\n0.16\n1.00\n6597.27\n2535.55\n\n\nalpha[32]\n-0.98\n-0.97\n0.36\n0.35\n-1.58\n-0.41\n1.00\n5813.85\n2675.61\n\n\nalpha[33]\n-0.43\n-0.42\n0.38\n0.38\n-1.05\n0.18\n1.00\n7067.69\n2939.45\n\n\nalpha[34]\n0.27\n0.26\n0.30\n0.30\n-0.21\n0.78\n1.00\n5706.61\n2959.05\n\n\nalpha[35]\n-0.13\n-0.13\n0.26\n0.25\n-0.55\n0.30\n1.00\n6863.83\n3322.41\n\n\nalpha[36]\n-0.58\n-0.56\n0.36\n0.36\n-1.18\n0.00\n1.00\n7167.41\n3256.03\n\n\nalpha[37]\n-0.22\n-0.23\n0.39\n0.39\n-0.85\n0.42\n1.00\n7072.38\n3072.21\n\n\nalpha[38]\n-0.72\n-0.71\n0.40\n0.41\n-1.41\n-0.05\n1.00\n7256.40\n3111.33\n\n\nalpha[39]\n-0.20\n-0.20\n0.31\n0.31\n-0.71\n0.31\n1.00\n7096.85\n3273.86\n\n\nalpha[40]\n-0.26\n-0.26\n0.27\n0.27\n-0.70\n0.20\n1.00\n7961.40\n3175.23\n\n\nalpha[41]\n-0.20\n-0.20\n0.32\n0.30\n-0.71\n0.32\n1.01\n6772.06\n2794.87\n\n\nalpha[42]\n-0.24\n-0.24\n0.41\n0.41\n-0.92\n0.42\n1.00\n7046.38\n2770.57\n\n\nalpha[43]\n-0.04\n-0.04\n0.26\n0.26\n-0.46\n0.39\n1.00\n7561.89\n2316.58\n\n\nalpha[44]\n-0.96\n-0.95\n0.34\n0.34\n-1.53\n-0.42\n1.00\n6056.58\n3031.15\n\n\nalpha[45]\n-0.66\n-0.65\n0.28\n0.28\n-1.13\n-0.19\n1.00\n6817.39\n2466.31\n\n\nalpha[46]\n-0.01\n-0.01\n0.20\n0.19\n-0.33\n0.32\n1.00\n7247.88\n2908.16\n\n\nalpha[47]\n-0.34\n-0.34\n0.37\n0.37\n-0.95\n0.26\n1.00\n7726.65\n2941.93\n\n\nalpha[48]\n-0.07\n-0.08\n0.26\n0.26\n-0.51\n0.36\n1.01\n7051.22\n3035.58\n\n\nalpha[49]\n-0.86\n-0.85\n0.48\n0.48\n-1.66\n-0.11\n1.00\n6613.44\n2913.84\n\n\nalpha[50]\n-0.29\n-0.30\n0.36\n0.35\n-0.88\n0.30\n1.00\n7805.72\n3156.53\n\n\nalpha[51]\n-0.28\n-0.27\n0.28\n0.28\n-0.73\n0.18\n1.01\n7001.68\n2937.20\n\n\nalpha[52]\n-0.30\n-0.29\n0.23\n0.24\n-0.69\n0.08\n1.00\n6897.06\n2924.66\n\n\nalpha[53]\n-0.42\n-0.41\n0.35\n0.35\n-1.02\n0.15\n1.00\n8921.96\n2768.60\n\n\nalpha[54]\n-0.54\n-0.53\n0.53\n0.51\n-1.42\n0.30\n1.00\n6146.52\n2658.35\n\n\nalpha[55]\n-0.79\n-0.77\n0.47\n0.45\n-1.60\n-0.03\n1.00\n6719.53\n2708.30\n\n\nalpha[56]\n0.09\n0.10\n0.28\n0.28\n-0.34\n0.55\n1.00\n6564.85\n2834.75\n\n\nalpha[57]\n-1.07\n-1.05\n0.35\n0.35\n-1.65\n-0.51\n1.00\n6170.13\n3165.92\n\n\nalpha[58]\n-0.30\n-0.30\n0.29\n0.29\n-0.79\n0.18\n1.00\n6784.27\n3517.21\n\n\nalpha[59]\n-1.00\n-0.98\n0.45\n0.45\n-1.78\n-0.29\n1.00\n6168.08\n2615.60\n\n\nalpha[60]\n-1.00\n-0.99\n0.32\n0.32\n-1.55\n-0.49\n1.00\n5765.81\n3026.31\n\n\nalpha[61]\n-1.06\n-1.05\n0.30\n0.29\n-1.58\n-0.58\n1.00\n6304.21\n3056.65\n\n\n\n\n\n\n\n\nLos diagnósticos no apuntan a ningún problema, y obtenemos estimaciones tanto para los parámetros poblacionales como para los parámetros por distrito.\nVeamos cómo se ven las estimaciones crudas (proporción de uso de anticonceptivos en cada distrito) contra las estimaciones de nuestro modelo jerárquico.\n\nprobs_1 <- ajuste_1_bangladesh$draws(\"prob_distrito\", format = \"df\") |> \n as_tibble() |> pivot_longer(cols = starts_with(\"prob\"), names_to = \"variable\") |>\n separate(variable, sep = \"[\\\\[\\\\]]\", into = c(\"variable\", \"district\"), \n extra = \"drop\", convert = TRUE) |> \n group_by(district) |> summarise(media = mean(value),\n q5 = quantile(value, 0.05),\n q95 = quantile(value, 0.95)) \nresumen_1 <- bangladesh |> group_by(district) |> \n summarise(prop_cruda = mean(use.contraception), n = n()) |> \n mutate(district = as.integer(district))\nprobs_1 |> left_join(resumen_1) |> \n ggplot(aes(x = district)) +\n geom_point(aes(y = media), color = \"red\") +\n geom_linerange(aes(ymin = q5, ymax = q95), color = \"red\") +\n geom_point(aes(y = prop_cruda, size = n), color = \"black\", alpha = 0.2) \n\n\n\n\n\n\n\n\nObservaciones: - Nótese que cuando la muestra de un distrito es chica, la cantidad de encogimiento es grande (el estimador crudo está cercano de nuestro estimador jerárquico si la muestra es grande). El caso extremo es el distrito 53, donde tenemos muestra de 0. En ese caso, usamos la inicial ajustada para producir estimaciones de la posterior - Adicionalmente, cuando la muestra es chica en un distrito, tenemos también más incertidumbre en la estimación de la proporción de uso de anticonceptivos. - Examina por ejemplo el distrito 11: obtuvimos 0 casos de usos de anticonceptivos, y es una mala estimación de esta proporción. El estimador del modelo jerárquico es de los más bajos, pero se encoge hacia la media poblacional.", + "text": "9.3 Primera parte de estructura jerárquica\nEmpecemos primero como en nuestro ejemplo anterior, modelando jerárquicamente el uso de anticonceptivos segun distrito (solo vemos el efecto \\(D\\to AC\\)). Esta variable nos puede ayudar a controlar variables asociadas con distrito que mejore la estimación de otras cantidades de interés, y es importante usar una estructura jerárquica pues los tamaños de muestra por distrito son considerablemente distintos:\n\nbangladesh <- read_csv(\"../datos/bangladesh.csv\") |> \n mutate(district = factor(district, levels = 1:61)) \n\nRows: 1934 Columns: 6\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\ndbl (6): woman, district, use.contraception, living.children, age.centered, ...\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n\n\n\nbangladesh |> count(district, .drop = FALSE) |> \n mutate(district_fct = fct_reorder(district, n)) |>\n ggplot(aes(x = as.numeric(district), y = n)) + geom_point() +\n xlab(\"Distrito num\")\n\n\n\n\n\n\n\n\nNótese que un distrito no contiene ninguna observación, y que hay distritos con muy pocas observaciones. Este es un caso típico donde un modelo jerárquico puede mejorar nuestras estimaciones de la relación de distrito con la variable respuesta de interés.\nLos datos, por persona, los modelamos como sigue (regresión logística): \\[\n\\begin{align}\nC_i &\\sim \\text{Bernoulli}(p_i)\\\\\n\\textrm{logit}(p_i) &= \\alpha_{D[i]} \\\\\n\\alpha_j &\\sim N(\\bar{\\alpha},\\sigma) \\\\\n\\bar{\\alpha} &\\sim N(0, 1) \\\\\n\\sigma &\\sim N^+(0, 1) \\\\\n\\end{align}\n\\] Que implementado en stan puede quedar como:\n\nmod_1_bangladesh <- cmdstan_model(\"./src/bangladesh-1.stan\")\nprint(mod_1_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n}\n\nparameters {\n real alpha_bar;\n vector[N_d] alpha;\n real <lower=0> sigma;\n}\n\ntransformed parameters {\n\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito]);\n alpha ~ normal(alpha_bar, sigma);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito;\n for (i in 1:N_d) {\n prob_distrito[i] = inv_logit(alpha[i]);\n }\n\n}\n\n\n\ndatos_lst <- list(\n ac_uso = bangladesh$use.contraception,\n distrito = as.integer(bangladesh$district),\n N = nrow(bangladesh),\n N_d = 61\n)\najuste_1_bangladesh <- mod_1_bangladesh$sample(data = datos_lst,\n refresh = 1000)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 1.5 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 1.5 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 1.4 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 1.5 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 1.5 seconds.\nTotal execution time: 6.2 seconds.\n\n\n\najuste_1_bangladesh$cmdstan_diagnose()\n\nProcessing csv files: /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-1-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-2-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-3-41cc84.csv, /tmp/Rtmpu7yxKO/bangladesh-1-202404230337-4-41cc84.csv\n\nChecking sampler transitions treedepth.\nTreedepth satisfactory for all transitions.\n\nChecking sampler transitions for divergences.\nNo divergent transitions found.\n\nChecking E-BFMI - sampler transitions HMC potential energy.\nE-BFMI satisfactory.\n\nEffective sample size satisfactory.\n\nSplit R-hat values satisfactory all parameters.\n\nProcessing complete, no problems detected.\n\n\n\najuste_1_bangladesh$summary(c(\"alpha_bar\", \"sigma\", \"alpha\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.54\n-0.54\n0.09\n0.08\n-0.68\n-0.40\n1.00\n4085.44\n3240.28\n\n\nsigma\n0.52\n0.51\n0.08\n0.08\n0.39\n0.67\n1.00\n1466.15\n2140.47\n\n\nalpha[1]\n-1.00\n-1.00\n0.20\n0.20\n-1.33\n-0.67\n1.00\n6708.19\n2445.02\n\n\nalpha[2]\n-0.59\n-0.59\n0.36\n0.35\n-1.19\n-0.02\n1.00\n7627.66\n2919.07\n\n\nalpha[3]\n-0.24\n-0.25\n0.52\n0.51\n-1.04\n0.61\n1.00\n6914.02\n2660.74\n\n\nalpha[4]\n-0.18\n-0.18\n0.29\n0.30\n-0.65\n0.30\n1.00\n6717.37\n3126.67\n\n\nalpha[5]\n-0.58\n-0.57\n0.28\n0.28\n-1.05\n-0.11\n1.00\n7317.02\n2743.21\n\n\nalpha[6]\n-0.81\n-0.80\n0.24\n0.24\n-1.21\n-0.43\n1.00\n6410.45\n3010.84\n\n\nalpha[7]\n-0.76\n-0.74\n0.37\n0.35\n-1.37\n-0.16\n1.00\n7030.13\n2965.32\n\n\nalpha[8]\n-0.51\n-0.51\n0.28\n0.28\n-0.98\n-0.06\n1.00\n8071.81\n3194.77\n\n\nalpha[9]\n-0.71\n-0.71\n0.34\n0.33\n-1.27\n-0.16\n1.00\n7868.70\n2515.75\n\n\nalpha[10]\n-1.14\n-1.13\n0.42\n0.43\n-1.85\n-0.49\n1.00\n4682.64\n3203.02\n\n\nalpha[11]\n-1.55\n-1.53\n0.43\n0.42\n-2.31\n-0.90\n1.00\n3598.80\n2719.42\n\n\nalpha[12]\n-0.61\n-0.61\n0.30\n0.30\n-1.11\n-0.11\n1.00\n7084.31\n3243.42\n\n\nalpha[13]\n-0.43\n-0.43\n0.33\n0.33\n-0.97\n0.11\n1.00\n7175.59\n2941.12\n\n\nalpha[14]\n0.39\n0.39\n0.18\n0.18\n0.10\n0.69\n1.00\n6439.59\n2988.87\n\n\nalpha[15]\n-0.56\n-0.56\n0.34\n0.34\n-1.13\n-0.01\n1.00\n8492.92\n2772.50\n\n\nalpha[16]\n-0.12\n-0.12\n0.35\n0.35\n-0.68\n0.47\n1.00\n7681.17\n2730.42\n\n\nalpha[17]\n-0.75\n-0.74\n0.35\n0.35\n-1.33\n-0.19\n1.00\n7398.34\n3177.56\n\n\nalpha[18]\n-0.63\n-0.63\n0.26\n0.26\n-1.07\n-0.21\n1.00\n7939.92\n3138.83\n\n\nalpha[19]\n-0.49\n-0.49\n0.32\n0.31\n-1.03\n0.02\n1.00\n7839.24\n3075.07\n\n\nalpha[20]\n-0.48\n-0.48\n0.39\n0.38\n-1.11\n0.16\n1.00\n8125.28\n2828.64\n\n\nalpha[21]\n-0.51\n-0.51\n0.37\n0.36\n-1.10\n0.10\n1.00\n7697.11\n3023.53\n\n\nalpha[22]\n-0.96\n-0.94\n0.37\n0.38\n-1.58\n-0.36\n1.00\n5859.65\n3134.66\n\n\nalpha[23]\n-0.76\n-0.75\n0.38\n0.37\n-1.39\n-0.15\n1.00\n6525.52\n2626.27\n\n\nalpha[24]\n-1.18\n-1.15\n0.43\n0.42\n-1.91\n-0.50\n1.00\n5731.86\n2963.71\n\n\nalpha[25]\n-0.27\n-0.28\n0.22\n0.23\n-0.64\n0.09\n1.00\n7193.19\n2720.95\n\n\nalpha[26]\n-0.50\n-0.49\n0.40\n0.39\n-1.16\n0.15\n1.00\n7883.64\n3156.22\n\n\nalpha[27]\n-1.19\n-1.17\n0.30\n0.30\n-1.69\n-0.70\n1.00\n6331.04\n2802.17\n\n\nalpha[28]\n-0.96\n-0.96\n0.28\n0.27\n-1.43\n-0.50\n1.00\n7081.91\n2409.17\n\n\nalpha[29]\n-0.80\n-0.80\n0.31\n0.31\n-1.33\n-0.30\n1.00\n7163.13\n2631.89\n\n\nalpha[30]\n-0.14\n-0.14\n0.23\n0.22\n-0.51\n0.25\n1.00\n7345.14\n2399.03\n\n\nalpha[31]\n-0.30\n-0.30\n0.28\n0.28\n-0.76\n0.16\n1.00\n6597.27\n2535.55\n\n\nalpha[32]\n-0.98\n-0.97\n0.36\n0.35\n-1.58\n-0.41\n1.00\n5813.85\n2675.61\n\n\nalpha[33]\n-0.43\n-0.42\n0.38\n0.38\n-1.05\n0.18\n1.00\n7067.69\n2939.45\n\n\nalpha[34]\n0.27\n0.26\n0.30\n0.30\n-0.21\n0.78\n1.00\n5706.61\n2959.05\n\n\nalpha[35]\n-0.13\n-0.13\n0.26\n0.25\n-0.55\n0.30\n1.00\n6863.83\n3322.41\n\n\nalpha[36]\n-0.58\n-0.56\n0.36\n0.36\n-1.18\n0.00\n1.00\n7167.41\n3256.03\n\n\nalpha[37]\n-0.22\n-0.23\n0.39\n0.39\n-0.85\n0.42\n1.00\n7072.38\n3072.21\n\n\nalpha[38]\n-0.72\n-0.71\n0.40\n0.41\n-1.41\n-0.05\n1.00\n7256.40\n3111.33\n\n\nalpha[39]\n-0.20\n-0.20\n0.31\n0.31\n-0.71\n0.31\n1.00\n7096.85\n3273.86\n\n\nalpha[40]\n-0.26\n-0.26\n0.27\n0.27\n-0.70\n0.20\n1.00\n7961.40\n3175.23\n\n\nalpha[41]\n-0.20\n-0.20\n0.32\n0.30\n-0.71\n0.32\n1.01\n6772.06\n2794.87\n\n\nalpha[42]\n-0.24\n-0.24\n0.41\n0.41\n-0.92\n0.42\n1.00\n7046.38\n2770.57\n\n\nalpha[43]\n-0.04\n-0.04\n0.26\n0.26\n-0.46\n0.39\n1.00\n7561.89\n2316.58\n\n\nalpha[44]\n-0.96\n-0.95\n0.34\n0.34\n-1.53\n-0.42\n1.00\n6056.58\n3031.15\n\n\nalpha[45]\n-0.66\n-0.65\n0.28\n0.28\n-1.13\n-0.19\n1.00\n6817.39\n2466.31\n\n\nalpha[46]\n-0.01\n-0.01\n0.20\n0.19\n-0.33\n0.32\n1.00\n7247.88\n2908.16\n\n\nalpha[47]\n-0.34\n-0.34\n0.37\n0.37\n-0.95\n0.26\n1.00\n7726.65\n2941.93\n\n\nalpha[48]\n-0.07\n-0.08\n0.26\n0.26\n-0.51\n0.36\n1.01\n7051.22\n3035.58\n\n\nalpha[49]\n-0.86\n-0.85\n0.48\n0.48\n-1.66\n-0.11\n1.00\n6613.44\n2913.84\n\n\nalpha[50]\n-0.29\n-0.30\n0.36\n0.35\n-0.88\n0.30\n1.00\n7805.72\n3156.53\n\n\nalpha[51]\n-0.28\n-0.27\n0.28\n0.28\n-0.73\n0.18\n1.01\n7001.68\n2937.20\n\n\nalpha[52]\n-0.30\n-0.29\n0.23\n0.24\n-0.69\n0.08\n1.00\n6897.06\n2924.66\n\n\nalpha[53]\n-0.42\n-0.41\n0.35\n0.35\n-1.02\n0.15\n1.00\n8921.96\n2768.60\n\n\nalpha[54]\n-0.54\n-0.53\n0.53\n0.51\n-1.42\n0.30\n1.00\n6146.52\n2658.35\n\n\nalpha[55]\n-0.79\n-0.77\n0.47\n0.45\n-1.60\n-0.03\n1.00\n6719.53\n2708.30\n\n\nalpha[56]\n0.09\n0.10\n0.28\n0.28\n-0.34\n0.55\n1.00\n6564.85\n2834.75\n\n\nalpha[57]\n-1.07\n-1.05\n0.35\n0.35\n-1.65\n-0.51\n1.00\n6170.13\n3165.92\n\n\nalpha[58]\n-0.30\n-0.30\n0.29\n0.29\n-0.79\n0.18\n1.00\n6784.27\n3517.21\n\n\nalpha[59]\n-1.00\n-0.98\n0.45\n0.45\n-1.78\n-0.29\n1.00\n6168.08\n2615.60\n\n\nalpha[60]\n-1.00\n-0.99\n0.32\n0.32\n-1.55\n-0.49\n1.00\n5765.81\n3026.31\n\n\nalpha[61]\n-1.06\n-1.05\n0.30\n0.29\n-1.58\n-0.58\n1.00\n6304.21\n3056.65\n\n\n\n\n\n\n\n\nLos diagnósticos no apuntan a ningún problema, y obtenemos estimaciones tanto para los parámetros poblacionales como para los parámetros por distrito.\nVeamos cómo se ven las estimaciones crudas (proporción de uso de anticonceptivos en cada distrito) contra las estimaciones de nuestro modelo jerárquico.\n\nprobs_1 <- ajuste_1_bangladesh$draws(\"prob_distrito\", format = \"df\") |> \n as_tibble() |> pivot_longer(cols = starts_with(\"prob\"), names_to = \"variable\") |>\n separate(variable, sep = \"[\\\\[\\\\]]\", into = c(\"variable\", \"district\"), \n extra = \"drop\", convert = TRUE) |> \n group_by(district) |> summarise(media = mean(value),\n q5 = quantile(value, 0.05),\n q95 = quantile(value, 0.95)) \nresumen_1 <- bangladesh |> group_by(district) |> \n summarise(prop_cruda = mean(use.contraception), n = n()) |> \n mutate(district = as.integer(district))\nprobs_1 |> left_join(resumen_1) |> \n ggplot(aes(x = district)) +\n geom_point(aes(y = media), color = \"red\") +\n geom_linerange(aes(ymin = q5, ymax = q95), color = \"red\") +\n geom_point(aes(y = prop_cruda, size = n), color = \"black\", alpha = 0.2) \n\n\n\n\n\n\n\n\nObservaciones: - Nótese que cuando la muestra de un distrito es chica, la cantidad de encogimiento es grande (el estimador crudo está cercano de nuestro estimador jerárquico si la muestra es grande). El caso extremo es el distrito 53, donde tenemos muestra de 0. En ese caso, usamos la inicial ajustada para producir estimaciones de la posterior - Adicionalmente, cuando la muestra es chica en un distrito, tenemos también más incertidumbre en la estimación de la proporción de uso de anticonceptivos. - Examina por ejemplo el distrito 11: obtuvimos 0 casos de usos de anticonceptivos, y es una mala estimación de esta proporción. El estimador del modelo jerárquico es de los más bajos, pero se encoge hacia la media poblacional.", "crumbs": [ "9  Modelos jerárquicos" ] @@ -634,7 +634,7 @@ "href": "09-modelos-jerarquicos.html#agregando-covariables", "title": "9  Modelos jerárquicos", "section": "9.4 Agregando covariables", - "text": "9.4 Agregando covariables\nConsideremos ahora la variable de urbano-rural. Incluiremos esta variable también, considerando que su efecto puede variar por distrito:\n\\[\n\\begin{align}\nC_i &\\sim \\text{Bernoulli}(p_i)\\\\\n\\textrm{logit}(p_i) &= \\alpha_{D[i]} + \\beta_{D[i]} U_i \\\\\n\\alpha_j &\\sim N(\\bar{\\alpha},\\sigma_{\\alpha}) \\\\\n\\beta_j &\\sim N(\\bar{\\beta},\\sigma_{ \\beta}) \\\\\n\\bar{\\alpha}, \\bar{\\beta} &\\sim N(0, 1)\\\\\n\\sigma_{\\alpha}, \\sigma_{\\beta} &\\sim N^+(0, 1) \\\\\n\\end{align}\n\\] Que implementado en stan puede quedar como:\n\nmod_2_bangladesh <- cmdstan_model(\"./src/bangladesh-2.stan\")\nprint(mod_2_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\nparameters {\n real alpha_bar;\n real beta_bar;\n vector[N_d] alpha;\n vector[N_d] beta;\n real <lower=0> sigma_alpha;\n real <lower=0> sigma_beta;\n}\n\ntransformed parameters {\n\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito] + beta[distrito] .* urbano);\n alpha ~ normal(alpha_bar, sigma_alpha);\n beta ~ normal(beta_bar, sigma_beta);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n beta_bar ~ normal(0, 1);\n sigma_alpha ~ normal(0, 1);\n sigma_beta ~ normal(0, 1);\n}\n\n\n\ndatos_lst <- list(\n ac_uso = bangladesh$use.contraception,\n distrito = as.integer(bangladesh$district),\n urbano = bangladesh$urban,\n N = nrow(bangladesh),\n N_d = 61\n)\najuste_2_bangladesh <- mod_2_bangladesh$sample(data = datos_lst,\n refresh = 1000, seed = 9394)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \n\n\nChain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpeQ3eCr/model-2a0873e2c776.stan', line 26, column 2 to column 38)\n\n\nChain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 1 \n\n\nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 4.1 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 4.0 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \n\n\nChain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/RtmpeQ3eCr/model-2a0873e2c776.stan', line 25, column 2 to column 41)\n\n\nChain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 3 \n\n\nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 4.1 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 3.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.8 seconds.\nTotal execution time: 15.8 seconds.\n\n\nWarning: 19 of 4000 (0.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 3 of 4 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nY encontramos divergencias en el ajuste. Veamos los tamaños efectivos de muestra y los valores rhat:\n\najuste_2_bangladesh$summary(c(\"alpha_bar\", \"beta_bar\", \"sigma_alpha\", \"sigma_beta\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.70\n-0.70\n0.09\n0.09\n-0.85\n-0.55\n1.00\n2294.96\n2911.84\n\n\nbeta_bar\n0.62\n0.62\n0.16\n0.15\n0.36\n0.87\n1.00\n1307.26\n2195.23\n\n\nsigma_alpha\n0.49\n0.48\n0.09\n0.09\n0.35\n0.64\n1.01\n575.25\n685.91\n\n\nsigma_beta\n0.57\n0.57\n0.20\n0.20\n0.22\n0.91\n1.02\n139.35\n143.32\n\n\n\n\n\n\n\n\nAunque los valores de rhat no presentan problema, vemos que los tamaños efectivos de muestra para las desviaciones estándar poblacionales son malos (especialmente para el parámetro asociado a \\(\\beta\\)). Las trazas indican que quizá el problema no es muy grave, pero las cadenas muestran cierta heterogeneidad y autocorrelación alta:\n\nlibrary(bayesplot)\najuste_2_bangladesh$draws(c(\"sigma_beta\")) |> \n mcmc_trace()\n\n\n\n\n\n\n\n\nAunque quizá en este ejemplo es posible correr más iteraciones y obtener resultados más confiables, en estos casos es mejor diagnosticar el problema y corregirlo: obtendremos mejores estimaciones de manera más rápida.", + "text": "9.4 Agregando covariables\nConsideremos ahora la variable de urbano-rural. Incluiremos esta variable también, considerando que su efecto puede variar por distrito:\n\\[\n\\begin{align}\nC_i &\\sim \\text{Bernoulli}(p_i)\\\\\n\\textrm{logit}(p_i) &= \\alpha_{D[i]} + \\beta_{D[i]} U_i \\\\\n\\alpha_j &\\sim N(\\bar{\\alpha},\\sigma_{\\alpha}) \\\\\n\\beta_j &\\sim N(\\bar{\\beta},\\sigma_{ \\beta}) \\\\\n\\bar{\\alpha}, \\bar{\\beta} &\\sim N(0, 1)\\\\\n\\sigma_{\\alpha}, \\sigma_{\\beta} &\\sim N^+(0, 1) \\\\\n\\end{align}\n\\] Que implementado en stan puede quedar como:\n\nmod_2_bangladesh <- cmdstan_model(\"./src/bangladesh-2.stan\")\nprint(mod_2_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\nparameters {\n real alpha_bar;\n real beta_bar;\n vector[N_d] alpha;\n vector[N_d] beta;\n real <lower=0> sigma_alpha;\n real <lower=0> sigma_beta;\n}\n\ntransformed parameters {\n\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito] + beta[distrito] .* urbano);\n alpha ~ normal(alpha_bar, sigma_alpha);\n beta ~ normal(beta_bar, sigma_beta);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n beta_bar ~ normal(0, 1);\n sigma_alpha ~ normal(0, 1);\n sigma_beta ~ normal(0, 1);\n}\n\n\n\ndatos_lst <- list(\n ac_uso = bangladesh$use.contraception,\n distrito = as.integer(bangladesh$district),\n urbano = bangladesh$urban,\n N = nrow(bangladesh),\n N_d = 61\n)\najuste_2_bangladesh <- mod_2_bangladesh$sample(data = datos_lst,\n refresh = 1000, seed = 9394)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \n\n\nChain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmpu7yxKO/model-2c984f6bb0d9.stan', line 26, column 2 to column 38)\n\n\nChain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 1 \n\n\nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 4.0 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 4.0 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \n\n\nChain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:\n\n\nChain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in '/tmp/Rtmpu7yxKO/model-2c984f6bb0d9.stan', line 25, column 2 to column 41)\n\n\nChain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,\n\n\nChain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.\n\n\nChain 3 \n\n\nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 4.1 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 3.2 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.8 seconds.\nTotal execution time: 15.8 seconds.\n\n\nWarning: 19 of 4000 (0.0%) transitions ended with a divergence.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nWarning: 3 of 4 chains had an E-BFMI less than 0.3.\nSee https://mc-stan.org/misc/warnings for details.\n\n\nY encontramos divergencias en el ajuste. Veamos los tamaños efectivos de muestra y los valores rhat:\n\najuste_2_bangladesh$summary(c(\"alpha_bar\", \"beta_bar\", \"sigma_alpha\", \"sigma_beta\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.70\n-0.70\n0.09\n0.09\n-0.85\n-0.55\n1.00\n2294.96\n2911.84\n\n\nbeta_bar\n0.62\n0.62\n0.16\n0.15\n0.36\n0.87\n1.00\n1307.26\n2195.23\n\n\nsigma_alpha\n0.49\n0.48\n0.09\n0.09\n0.35\n0.64\n1.01\n575.25\n685.91\n\n\nsigma_beta\n0.57\n0.57\n0.20\n0.20\n0.22\n0.91\n1.02\n139.35\n143.32\n\n\n\n\n\n\n\n\nAunque los valores de rhat no presentan problema, vemos que los tamaños efectivos de muestra para las desviaciones estándar poblacionales son malos (especialmente para el parámetro asociado a \\(\\beta\\)). Las trazas indican que quizá el problema no es muy grave, pero las cadenas muestran cierta heterogeneidad y autocorrelación alta:\n\nlibrary(bayesplot)\najuste_2_bangladesh$draws(c(\"sigma_beta\")) |> \n mcmc_trace()\n\n\n\n\n\n\n\n\nAunque quizá en este ejemplo es posible correr más iteraciones y obtener resultados más confiables, en estos casos es mejor diagnosticar el problema y corregirlo: obtendremos mejores estimaciones de manera más rápida.", "crumbs": [ "9  Modelos jerárquicos" ] @@ -644,7 +644,7 @@ "href": "09-modelos-jerarquicos.html#parametrización-no-centrada", "title": "9  Modelos jerárquicos", "section": "9.5 Parametrización no centrada", - "text": "9.5 Parametrización no centrada\nEl problema que ocurre en este modelo es uno que aparece con cierta frecuencia en modelos jerárquicos, y está relacionado con el embudo de Neal que vimos al final de la sección anterior.\nEn nuestro ejemplo \\(\\beta_j\\) tienen una inicial que depende de parámetros \\(N(\\beta_0,\\sigma_{\\beta})\\). Cuando \\(\\sigma_{\\beta}\\) es chica, esperamos que haya poca variación en las \\(\\beta_j\\), y cuando es grande, por el contrario, esperamos que haya mucha variación. Esto produce una especie de embudo de Neal:\n\nsims_beta <- ajuste_2_bangladesh$draws(c(\"beta\", \"sigma_beta\"), format = \"df\")\ndiagnosticos_tbl <- ajuste_2_bangladesh$sampler_diagnostics(format = \"df\")\nsims_beta <- left_join(sims_beta, diagnosticos_tbl)\n\nJoining with `by = join_by(.chain, .iteration, .draw)`\n\n\nPodemos examinar gráficas de pares para ver donde aparece el problema: efectivamente, ocurre para valores chicos de \\(\\sigma\\).\n\nsims_beta |> \n ggplot(aes(y = log(sigma_beta), x = `beta[1]`, size = factor(divergent__),\n colour = factor(divergent__))) + geom_point() +\n ylab(\"log sigma_beta\") + xlab(\"beta\")\n\n\n\n\n\n\n\n\nPara corregir este problema (en el mejor de los casos ineficiencia), podemos usar el mismo truco que vimos al final de la sección anterior. En lugar de escribir \\[\\alpha_j = N(\\bar{\\alpha}, \\sigma_{\\alpha})\\] Definimos los valores \\(z_j\\) como \\(z_j\\sim N(0,1)\\) y escribimos \\[\\alpha_j = \\bar{\\alpha} + \\sigma_{\\alpha} z_j\\] Y lo mismo para el parámetro \\(\\beta\\). Se trata exactamente del mismo modelo, pero está parametrizado de manera distinta.\nNuestro modelo reparametrizado se vería como sigue:\n\nmod_3_bangladesh <- cmdstan_model(\"./src/bangladesh-3.stan\")\nprint(mod_3_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\nparameters {\n real alpha_bar;\n real beta_bar;\n vector[N_d] z_alpha;\n vector[N_d] z_beta;\n real <lower=0> sigma_alpha;\n real <lower=0> sigma_beta;\n}\n\ntransformed parameters {\n vector[N_d] alpha;\n vector[N_d] beta;\n\n alpha = alpha_bar + sigma_alpha * z_alpha;\n beta = beta_bar + sigma_beta * z_beta;\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito] + beta[distrito] .* urbano);\n z_alpha ~ normal(0, 1);\n z_beta ~ normal(0, 1);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n beta_bar ~ normal(0, 1);\n sigma_alpha ~ normal(0, 1);\n sigma_beta ~ normal(0, 1);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(alpha[i] + beta[i]);\n prob_distrito_rural[i] = inv_logit(alpha[i]);\n }\n\n}\n\n\n\najuste_3_bangladesh <- mod_3_bangladesh$sample(data = datos_lst,\n refresh = 1000, seed = 9394)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 3.7 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 4.7 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 3.4 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 3.4 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.8 seconds.\nTotal execution time: 15.5 seconds.\n\n\nEl resultado es mejor y logramos mejorar todos los diagnósticos:\n\najuste_3_bangladesh$summary(c(\"alpha_bar\", \"beta_bar\", \"sigma_alpha\", \"sigma_beta\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.70\n-0.70\n0.09\n0.09\n-0.85\n-0.56\n1.00\n2171.35\n2785.76\n\n\nbeta_bar\n0.62\n0.62\n0.15\n0.15\n0.37\n0.87\n1.00\n3228.90\n2921.34\n\n\nsigma_alpha\n0.49\n0.48\n0.09\n0.09\n0.35\n0.64\n1.00\n1429.93\n2279.99\n\n\nsigma_beta\n0.57\n0.57\n0.21\n0.21\n0.22\n0.91\n1.01\n747.12\n463.35\n\n\n\n\n\n\n\n\n\nmcmc_trace(ajuste_3_bangladesh$draws(c(\"sigma_beta\")))\n\n\n\n\n\n\n\n\nAhora podemos considerar el efecto de la variable urbano rural por distrito, donde vemos otra vez el efecto de agregación parcial, aunque esta vez el encogimiento es hacia la media de urbano y rural respectivamente:\n\nprobs_1 <- ajuste_3_bangladesh$draws(c(\"prob_distrito_urbano\", \"prob_distrito_rural\"), \n format = \"df\") |> \n as_tibble() |> pivot_longer(cols = starts_with(\"prob\"), names_to = \"variable\") |>\n mutate(tipo = ifelse(str_detect(variable, \"urbano\"), \"urbano\", \"rural\")) |> \n separate(variable, sep = \"[\\\\[\\\\]]\", into = c(\"variable\", \"district\"), \n extra = \"drop\", convert = TRUE) |> \n group_by(district, tipo) |> summarise(media = mean(value),\n q5 = quantile(value, 0.05),\n q95 = quantile(value, 0.95)) \nresumen_1 <- bangladesh |>\n mutate(tipo = ifelse(urban == 1, \"urbano\", \"rural\")) |> \n mutate(tipo = factor(tipo, levels = c(\"urbano\", \"rural\"))) |> \n group_by(district, tipo, .drop = FALSE) |> \n summarise(prop_cruda = mean(use.contraception), n = n()) |> \n mutate(district = as.integer(district))\nprobs_1 |> left_join(resumen_1) |>\n ggplot(aes(x = district)) +\n geom_hline(yintercept = 0.5, linetype = 2) +\n geom_point(aes(y = media), color = \"red\") +\n geom_linerange(aes(ymin = q5, ymax = q95), color = \"red\") +\n geom_point(aes(y = prop_cruda, size = n), color = \"black\", alpha = 0.2) +\n facet_wrap(~tipo, nrow = 2)\n\n\n\n\n\n\n\n\nObservaciones: - Nótese que generalmente tenemos muestras más chicos en zonas urbanas, y por eso vemos que hay más incertidumbre en las estimaciones urbanas. - Sin embargo, vemos que en general la variable urbana influye en el uso de anticonceptivos, aunque tenemos incertidumbre considerable en las estimaciones de las zonas urbanas de los distritos (menos muestra).\nPodemos también comparar más directamente cómo cambia la probabilidad de zonas urbanas a rurales dentro de cada distrito:\n\nprobs_1 |> \n select(-q5, -q95) |>\n pivot_wider(names_from = tipo, values_from = media) |> \n ggplot(aes(x = urbano, y = rural)) +\n geom_abline(intercept = 0, slope = 1, linetype = 2) +\n geom_point(colour = \"red\") \n\n\n\n\n\n\n\n\nNótese que vemos aquí también la diferencia dentro de distritos entre zonas urbanas y rurales. Las medias posteriores en general están por debajo de la identidad. Adicionalmente, y como es de esperarse, hay correlación dentro de distritos entre las tasas de uso de anticonceptivos en zonas urbanas y rurales.\nEsta última observación suguiere que todavía podemos mejorar nuestras estimaciones: en este modelo, encogemos la estimación de cada zona hacia la media urbana o rural, independientemente una de otra. Sin embargo, si queremos obtener mejores estimaciones, el “encogimiento” debe estar correlacionado dentro de los distritos: estamos dejando de utilizar información que está en los datos. Si observamos que el uso de anticonceptivos en una zona urbana de el distrito A es relativamente alto, esperamos que el uso en la zona rural de ese mismo distrito sea también relativamente alto.", + "text": "9.5 Parametrización no centrada\nEl problema que ocurre en este modelo es uno que aparece con cierta frecuencia en modelos jerárquicos, y está relacionado con el embudo de Neal que vimos al final de la sección anterior.\nEn nuestro ejemplo \\(\\beta_j\\) tienen una inicial que depende de parámetros \\(N(\\beta_0,\\sigma_{\\beta})\\). Cuando \\(\\sigma_{\\beta}\\) es chica, esperamos que haya poca variación en las \\(\\beta_j\\), y cuando es grande, por el contrario, esperamos que haya mucha variación. Esto produce una especie de embudo de Neal:\n\nsims_beta <- ajuste_2_bangladesh$draws(c(\"beta\", \"sigma_beta\"), format = \"df\")\ndiagnosticos_tbl <- ajuste_2_bangladesh$sampler_diagnostics(format = \"df\")\nsims_beta <- left_join(sims_beta, diagnosticos_tbl)\n\nJoining with `by = join_by(.chain, .iteration, .draw)`\n\n\nPodemos examinar gráficas de pares para ver donde aparece el problema: efectivamente, ocurre para valores chicos de \\(\\sigma\\).\n\nsims_beta |> \n ggplot(aes(y = log(sigma_beta), x = `beta[1]`, size = factor(divergent__),\n colour = factor(divergent__))) + geom_point() +\n ylab(\"log sigma_beta\") + xlab(\"beta\")\n\n\n\n\n\n\n\n\nPara corregir este problema (en el mejor de los casos ineficiencia), podemos usar el mismo truco que vimos al final de la sección anterior. En lugar de escribir \\[\\alpha_j = N(\\bar{\\alpha}, \\sigma_{\\alpha})\\] Definimos los valores \\(z_j\\) como \\(z_j\\sim N(0,1)\\) y escribimos \\[\\alpha_j = \\bar{\\alpha} + \\sigma_{\\alpha} z_j\\] Y lo mismo para el parámetro \\(\\beta\\). Se trata exactamente del mismo modelo, pero está parametrizado de manera distinta.\nNuestro modelo reparametrizado se vería como sigue:\n\nmod_3_bangladesh <- cmdstan_model(\"./src/bangladesh-3.stan\")\nprint(mod_3_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\nparameters {\n real alpha_bar;\n real beta_bar;\n vector[N_d] z_alpha;\n vector[N_d] z_beta;\n real <lower=0> sigma_alpha;\n real <lower=0> sigma_beta;\n}\n\ntransformed parameters {\n vector[N_d] alpha;\n vector[N_d] beta;\n\n alpha = alpha_bar + sigma_alpha * z_alpha;\n beta = beta_bar + sigma_beta * z_beta;\n}\n\nmodel {\n // partes no determinísticas\n ac_uso ~ bernoulli_logit(alpha[distrito] + beta[distrito] .* urbano);\n z_alpha ~ normal(0, 1);\n z_beta ~ normal(0, 1);\n // parámetros poblacionales\n alpha_bar ~ normal(0, 1);\n beta_bar ~ normal(0, 1);\n sigma_alpha ~ normal(0, 1);\n sigma_beta ~ normal(0, 1);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(alpha[i] + beta[i]);\n prob_distrito_rural[i] = inv_logit(alpha[i]);\n }\n\n}\n\n\n\najuste_3_bangladesh <- mod_3_bangladesh$sample(data = datos_lst,\n refresh = 1000, seed = 9394)\n\nRunning MCMC with 4 sequential chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 3.7 seconds.\nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 4.6 seconds.\nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 3.4 seconds.\nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 3.4 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 3.8 seconds.\nTotal execution time: 15.4 seconds.\n\n\nEl resultado es mejor y logramos mejorar todos los diagnósticos:\n\najuste_3_bangladesh$summary(c(\"alpha_bar\", \"beta_bar\", \"sigma_alpha\", \"sigma_beta\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nalpha_bar\n-0.70\n-0.70\n0.09\n0.09\n-0.85\n-0.56\n1.00\n2171.35\n2785.76\n\n\nbeta_bar\n0.62\n0.62\n0.15\n0.15\n0.37\n0.87\n1.00\n3228.90\n2921.34\n\n\nsigma_alpha\n0.49\n0.48\n0.09\n0.09\n0.35\n0.64\n1.00\n1429.93\n2279.99\n\n\nsigma_beta\n0.57\n0.57\n0.21\n0.21\n0.22\n0.91\n1.01\n747.12\n463.35\n\n\n\n\n\n\n\n\n\nmcmc_trace(ajuste_3_bangladesh$draws(c(\"sigma_beta\")))\n\n\n\n\n\n\n\n\nAhora podemos considerar el efecto de la variable urbano rural por distrito, donde vemos otra vez el efecto de agregación parcial, aunque esta vez el encogimiento es hacia la media de urbano y rural respectivamente:\n\nprobs_1 <- ajuste_3_bangladesh$draws(c(\"prob_distrito_urbano\", \"prob_distrito_rural\"), \n format = \"df\") |> \n as_tibble() |> pivot_longer(cols = starts_with(\"prob\"), names_to = \"variable\") |>\n mutate(tipo = ifelse(str_detect(variable, \"urbano\"), \"urbano\", \"rural\")) |> \n separate(variable, sep = \"[\\\\[\\\\]]\", into = c(\"variable\", \"district\"), \n extra = \"drop\", convert = TRUE) |> \n group_by(district, tipo) |> summarise(media = mean(value),\n q5 = quantile(value, 0.05),\n q95 = quantile(value, 0.95)) \nresumen_1 <- bangladesh |>\n mutate(tipo = ifelse(urban == 1, \"urbano\", \"rural\")) |> \n mutate(tipo = factor(tipo, levels = c(\"urbano\", \"rural\"))) |> \n group_by(district, tipo, .drop = FALSE) |> \n summarise(prop_cruda = mean(use.contraception), n = n()) |> \n mutate(district = as.integer(district))\nprobs_1 |> left_join(resumen_1) |>\n ggplot(aes(x = district)) +\n geom_hline(yintercept = 0.5, linetype = 2) +\n geom_point(aes(y = media), color = \"red\") +\n geom_linerange(aes(ymin = q5, ymax = q95), color = \"red\") +\n geom_point(aes(y = prop_cruda, size = n), color = \"black\", alpha = 0.2) +\n facet_wrap(~tipo, nrow = 2)\n\n\n\n\n\n\n\n\nObservaciones: - Nótese que generalmente tenemos muestras más chicos en zonas urbanas, y por eso vemos que hay más incertidumbre en las estimaciones urbanas. - Sin embargo, vemos que en general la variable urbana influye en el uso de anticonceptivos, aunque tenemos incertidumbre considerable en las estimaciones de las zonas urbanas de los distritos (menos muestra).\nPodemos también comparar más directamente cómo cambia la probabilidad de zonas urbanas a rurales dentro de cada distrito:\n\nprobs_1 |> \n select(-q5, -q95) |>\n pivot_wider(names_from = tipo, values_from = media) |> \n ggplot(aes(x = urbano, y = rural)) +\n geom_abline(intercept = 0, slope = 1, linetype = 2) +\n geom_point(colour = \"red\") \n\n\n\n\n\n\n\n\nNótese que vemos aquí también la diferencia dentro de distritos entre zonas urbanas y rurales. Las medias posteriores en general están por debajo de la identidad. Adicionalmente, y como es de esperarse, hay correlación dentro de distritos entre las tasas de uso de anticonceptivos en zonas urbanas y rurales.\nEsta última observación suguiere que todavía podemos mejorar nuestras estimaciones: en este modelo, encogemos la estimación de cada zona hacia la media urbana o rural, independientemente una de otra. Sin embargo, si queremos obtener mejores estimaciones, el “encogimiento” debe estar correlacionado dentro de los distritos: estamos dejando de utilizar información que está en los datos. Si observamos que el uso de anticonceptivos en una zona urbana de el distrito A es relativamente alto, esperamos que el uso en la zona rural de ese mismo distrito sea también relativamente alto.", "crumbs": [ "9  Modelos jerárquicos" ] @@ -654,9 +654,59 @@ "href": "09-modelos-jerarquicos.html#variables-correlacionadas", "title": "9  Modelos jerárquicos", "section": "9.6 Variables correlacionadas", - "text": "9.6 Variables correlacionadas\nEn nuestro ejemplo anterior, observamos que existe correlación entre las tasas de uso de anticonceptivos en zonas urbanas y rurales a lo largo de los distritos. En términos de nuestro modelo, los coeficientes \\(\\alpha_j +\\beta_j\\) están correlacionados con los coeficientes \\(\\alpha_j\\). Nótese que la inicial (o hiper-inicial) poblacional no incluye esta correlación, pero efectivamente la posterior captura la correlación. Podemos hacer la estimación más eficiente modelando explícitamente la correlación en la inicial poblacional. Con dos coeficientes podríamos modelar la población con una distribución normal multivariada.\nCambiamos nuestra notación por conveniencia: ahora \\(\\beta\\) es un vector que incluye la ordenada al origen \\(\\beta_1\\) y la pendiente \\(\\beta_2\\).\n\\[\\beta \\sim NMV(\\bar{\\beta}, \\Sigma)\\] adicionalmente a \\(\\bar{\\beta} \\sim N(0,I)\\) y \\(\\sigma_1, \\sigma_2 \\sim N^{+}(0,1)\\).\nPodemos pensar en la matriz de covarianzas \\(\\Sigma\\) como dada en dos partes: \\(\\Omega\\), una matriz de correlaciones, y dos deviaciones estándar \\(\\sigma\\), de modo que\n\\[\\Sigma = \\textrm{diag}(\\sigma)\\,\\Omega\\, \\textrm{diag}(\\sigma)\\]\nEn nuestro ejemplo anterior teníamos \\(\\Omega = I\\). En general, si \\(\\Omega\\) es una matriz de correlaciones, entonces \\(\\Sigma\\) se escribe como:\nLa pregunta ahora es qué distribución inicial le podemos dar a la matriz \\(\\Omega\\) de correlaciones. Aún cuando en este caso bivariado sólo tenemos que dar una inicial a la correlación y es posible definir alguna distribución inicial para \\(\\rho\\in(-1,1)\\), en general el problema de poner una distribución sobre matrices de correlación no es simple. Usamos la llamada distribución LKJ, \\[\\Omega \\sim \\textrm{LKJ}(\\eta)\\] con \\(\\eta>0\\). \\(\\eta\\) indica qué tan concentrada está la distribución en correlaciones cercanas a 0, o cuánta dispersión esperamos:\n\nmodelo_str <- \"\ndata{}\nparameters {}\nmodel {}\ngenerated quantities {\n matrix[2,2] Omega_02;\n matrix[2,2] Omega_2;\n matrix[2,2] Omega_20;\n Omega_02 = lkj_corr_rng(2, 0.2);\n Omega_2 = lkj_corr_rng(2, 2);\n Omega_20 = lkj_corr_rng(2, 20);\n}\n\"\narchivo <-file(\"./src/ejemplo_lkj.stan\")\nwriteLines(modelo_str, archivo)\nclose(archivo)\nsim_lkj <- cmdstanr::cmdstan_model(\"./src/ejemplo_lkj.stan\")\nsalida <- sim_lkj$sample(fixed_param = TRUE, iter_sampling = 1000,\n show_messages = FALSE)\nsims <- salida$draws(format = \"df\") |> \n select(contains(\"[1,2]\")) |> \n pivot_longer(cols = everything(), names_to = \"variable\", values_to = \"valor\") \nsims |> \nggplot(aes(x = valor)) +\n geom_histogram() +\n facet_wrap(~variable)\n\n\n\n\n\n\n\n\nAhora intentamos ajustar un modelo con esta nueva distribución poblacional inicial:\n\nmod_4_bangladesh <- cmdstan_model(\"./src/bangladesh-4.stan\")\nprint(mod_4_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\ntransformed data {\n matrix[N, 2] x;\n for (n in 1:N) {\n x[n,1] = 1;\n x[n,2] = urbano[n];\n }\n}\n\nparameters {\n vector[2] beta_bar;\n array[N_d] vector[2] beta;\n vector<lower=0>[2] sigma;\n corr_matrix[2] Omega;\n}\n\ntransformed parameters {\n cov_matrix[2] Sigma;\n\n Sigma = quad_form_diag(Omega, sigma);\n}\n\nmodel {\n for(n in 1:N){\n ac_uso[n] ~ bernoulli_logit(x[n] * beta[distrito[n]]);\n }\n beta ~ multi_normal(beta_bar, Sigma);\n // parámetros poblacionales\n beta_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n Omega ~ lkj_corr(4);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(beta[i][1] + beta[i][2]);\n prob_distrito_rural[i] = inv_logit(beta[i][1]);\n }\n}\n\n\n\najuste_4_bangladesh <- mod_4_bangladesh$sample(data = datos_lst,\n refresh = 1000, init = 0.1, step_size = 0.1, parallel_chains = 4, seed = 9394)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 18.7 seconds.\nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 20.0 seconds.\nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 21.4 seconds.\nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 26.6 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 21.6 seconds.\nTotal execution time: 26.7 seconds.\n\n\n\najuste_4_bangladesh$summary(c(\"beta_bar\", \"sigma\", \"Omega\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nbeta_bar[1]\n-0.70\n-0.70\n0.10\n0.10\n-0.87\n-0.54\n1.00\n2900.62\n2602.54\n\n\nbeta_bar[2]\n0.67\n0.67\n0.17\n0.16\n0.40\n0.96\n1.00\n2255.70\n3108.16\n\n\nsigma[1]\n0.56\n0.55\n0.09\n0.09\n0.42\n0.71\n1.00\n1266.21\n1996.28\n\n\nsigma[2]\n0.76\n0.75\n0.19\n0.18\n0.46\n1.08\n1.01\n596.57\n806.78\n\n\nOmega[1,1]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\nOmega[2,1]\n-0.56\n-0.58\n0.18\n0.17\n-0.81\n-0.22\n1.00\n900.09\n1631.08\n\n\nOmega[1,2]\n-0.56\n-0.58\n0.18\n0.17\n-0.81\n-0.22\n1.00\n900.09\n1631.08\n\n\nOmega[2,2]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\n\n\n\n\n\n\nAunque no tiene problemas graves de divergencia, el ajuste es lento como vemos en el tamaño efectivo bajo de las correlaciones entre la constante \\(\\beta_1\\) y el coeficiente de la variable urbana \\(\\beta_2\\). Nota: observa que los coeficientes \\(\\beta_1\\) y \\(\\beta_2\\) son negativamente correlacionados. Sin embargo, la correlación entre \\(\\beta_1 + \\beta_2\\) y \\(\\beta_1\\) es positiva como veremos más adelante.\nPodemos usar también una parametrización no centrada para este modelo. Observamos primero que si \\(\\Omega\\) es una matriz de correlaciones, entonces siempre podemos escribir su factorización de Cholesky, dada por \\(\\Omega = LL^T\\), donde \\(L\\) es una matriz triangular inferior. De esta forma, podemos escribir\n\\[\\Sigma = \\textrm{diag}(\\sigma)\\,LL^T\\, \\textrm{diag}(\\sigma)\\] De forma que el factor de Cholesky para \\(\\Sigma\\) es \\(\\textrm{diag}(\\sigma)\\,L\\).\nAhora tomemos \\(Z\\sim NMV(0,I)\\) y definamos \\(X = \\textrm{diag}(\\sigma)\\,L\\,Z\\). Entonces se puede demostrar que \\(X\\sim NMV(0,\\Sigma)\\). De esta forma, si \\(\\beta \\sim NMV(\\bar{\\beta}, \\Sigma)\\), podemos escribir \\[\\beta = \\bar{\\beta} + \\textrm{diag}(\\sigma)\\,L\\,Z.\\] Nótese que el caso de una dimensión, para centrar multiplicábamos por la desviación estándar. El análogo en el caso multivariado es el factor de Cholesky de la covarianza, que es una especie de “raíz” de la covarianza.\n\nmod_5_bangladesh <- cmdstan_model(\"./src/bangladesh-5.stan\")\nprint(mod_5_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\ntransformed data {\n matrix[N, 2] x;\n for (n in 1:N) {\n x[n,1] = 1;\n x[n,2] = urbano[n];\n }\n}\n\nparameters {\n vector[2] beta_bar;\n vector<lower=0>[2] sigma;\n cholesky_factor_corr[2] L_Omega;\n matrix[2, N_d] z;\n}\n\ntransformed parameters {\n cov_matrix[2] Sigma;\n corr_matrix[2] Omega;\n matrix[2, N_d] beta;\n\n // parametrización no centrada:\n beta = rep_matrix(beta_bar, N_d) + diag_pre_multiply(sigma, L_Omega) * z;\n\n // Esto solo para recordar dónde están covarianzas y correlaciones:\n // no son necesarias\n Omega = L_Omega * L_Omega';\n Sigma = quad_form_diag(Omega, sigma);\n\n}\n\nmodel {\n for(n in 1:N){\n ac_uso[n] ~ bernoulli_logit( x[n] * beta[,distrito[n]]);\n }\n to_vector(z) ~ std_normal();\n // parámetros poblacionales\n beta_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n // La siguente línea es para tener Omega ~ lkj_corr(4)\n L_Omega ~ lkj_corr_cholesky(4);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(beta[1,i] + beta[2,i]);\n prob_distrito_rural[i] = inv_logit(beta[1,i]);\n }\n}\n\n\n\najuste_5_bangladesh <- mod_5_bangladesh$sample(data = datos_lst,\n refresh = 1000, init = 0.1, step_size = 0.1, parallel_chains = 4, seed = 9394)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 13.3 seconds.\nChain 2 finished in 13.3 seconds.\nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 13.3 seconds.\nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 14.0 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 13.5 seconds.\nTotal execution time: 14.2 seconds.\n\n\n\najuste_5_bangladesh$summary(c(\"beta_bar\", \"sigma\", \"Omega\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nbeta_bar[1]\n-0.71\n-0.70\n0.10\n0.10\n-0.86\n-0.55\n1\n2087.86\n2700.10\n\n\nbeta_bar[2]\n0.68\n0.68\n0.16\n0.16\n0.41\n0.95\n1\n2560.44\n2699.90\n\n\nsigma[1]\n0.56\n0.56\n0.09\n0.09\n0.42\n0.72\n1\n2076.00\n2819.38\n\n\nsigma[2]\n0.76\n0.76\n0.20\n0.19\n0.45\n1.08\n1\n1339.00\n1471.26\n\n\nOmega[1,1]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\nOmega[2,1]\n-0.56\n-0.58\n0.18\n0.18\n-0.81\n-0.23\n1\n1877.68\n2531.87\n\n\nOmega[1,2]\n-0.56\n-0.58\n0.18\n0.18\n-0.81\n-0.23\n1\n1877.68\n2531.87\n\n\nOmega[2,2]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\n\n\n\n\n\n\nEste resultado es superior al anterior.\n\n\n\n\nAlbert, Jim. 2009. Bayesian computation with R. Dordrecht: Springer. http://www.springerlink.com/content/978-0-387-92298-0#section=15956&page=1.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", + "text": "9.6 Variables correlacionadas\nEn nuestro ejemplo anterior, observamos que existe correlación entre las tasas de uso de anticonceptivos en zonas urbanas y rurales a lo largo de los distritos. En términos de nuestro modelo, los coeficientes \\(\\alpha_j +\\beta_j\\) están correlacionados con los coeficientes \\(\\alpha_j\\). Nótese que la inicial (o hiper-inicial) poblacional no incluye esta correlación, pero efectivamente la posterior captura la correlación. Podemos hacer la estimación más eficiente modelando explícitamente la correlación en la inicial poblacional. Con dos coeficientes podríamos modelar la población con una distribución normal multivariada.\nCambiamos nuestra notación por conveniencia: ahora \\(\\beta\\) es un vector que incluye la ordenada al origen \\(\\beta_1\\) y la pendiente \\(\\beta_2\\).\n\\[\\beta \\sim NMV(\\bar{\\beta}, \\Sigma)\\] adicionalmente a \\(\\bar{\\beta} \\sim N(0,I)\\) y \\(\\sigma_1, \\sigma_2 \\sim N^{+}(0,1)\\).\nPodemos pensar en la matriz de covarianzas \\(\\Sigma\\) como dada en dos partes: \\(\\Omega\\), una matriz de correlaciones, y dos deviaciones estándar \\(\\sigma\\), de modo que\n\\[\\Sigma = \\textrm{diag}(\\sigma)\\,\\Omega\\, \\textrm{diag}(\\sigma)\\]\nEn nuestro ejemplo anterior teníamos \\(\\Omega = I\\). En general, si \\(\\Omega\\) es una matriz de correlaciones, entonces \\(\\Sigma\\) se escribe como:\nLa pregunta ahora es qué distribución inicial le podemos dar a la matriz \\(\\Omega\\) de correlaciones. Aún cuando en este caso bivariado sólo tenemos que dar una inicial a la correlación y es posible definir alguna distribución inicial para \\(\\rho\\in(-1,1)\\), en general el problema de poner una distribución sobre matrices de correlación no es simple. Usamos la llamada distribución LKJ, \\[\\Omega \\sim \\textrm{LKJ}(\\eta)\\] con \\(\\eta>0\\). \\(\\eta\\) indica qué tan concentrada está la distribución en correlaciones cercanas a 0, o cuánta dispersión esperamos:\n\nmodelo_str <- \"\ndata{}\nparameters {}\nmodel {}\ngenerated quantities {\n matrix[2,2] Omega_02;\n matrix[2,2] Omega_2;\n matrix[2,2] Omega_20;\n Omega_02 = lkj_corr_rng(2, 0.2);\n Omega_2 = lkj_corr_rng(2, 2);\n Omega_20 = lkj_corr_rng(2, 20);\n}\n\"\narchivo <-file(\"./src/ejemplo_lkj.stan\")\nwriteLines(modelo_str, archivo)\nclose(archivo)\nsim_lkj <- cmdstanr::cmdstan_model(\"./src/ejemplo_lkj.stan\")\nsalida <- sim_lkj$sample(fixed_param = TRUE, iter_sampling = 1000,\n show_messages = FALSE)\nsims <- salida$draws(format = \"df\") |> \n select(contains(\"[1,2]\")) |> \n pivot_longer(cols = everything(), names_to = \"variable\", values_to = \"valor\") \nsims |> \nggplot(aes(x = valor)) +\n geom_histogram() +\n facet_wrap(~variable)\n\n\n\n\n\n\n\n\nAhora intentamos ajustar un modelo con esta nueva distribución poblacional inicial:\n\nmod_4_bangladesh <- cmdstan_model(\"./src/bangladesh-4.stan\")\nprint(mod_4_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\ntransformed data {\n matrix[N, 2] x;\n for (n in 1:N) {\n x[n,1] = 1;\n x[n,2] = urbano[n];\n }\n}\n\nparameters {\n vector[2] beta_bar;\n array[N_d] vector[2] beta;\n vector<lower=0>[2] sigma;\n corr_matrix[2] Omega;\n}\n\ntransformed parameters {\n cov_matrix[2] Sigma;\n\n Sigma = quad_form_diag(Omega, sigma);\n}\n\nmodel {\n for(n in 1:N){\n ac_uso[n] ~ bernoulli_logit(x[n] * beta[distrito[n]]);\n }\n beta ~ multi_normal(beta_bar, Sigma);\n // parámetros poblacionales\n beta_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n Omega ~ lkj_corr(4);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(beta[i][1] + beta[i][2]);\n prob_distrito_rural[i] = inv_logit(beta[i][1]);\n }\n}\n\n\n\najuste_4_bangladesh <- mod_4_bangladesh$sample(data = datos_lst,\n refresh = 1000, init = 0.1, step_size = 0.1, parallel_chains = 4, seed = 9394)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 18.5 seconds.\nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 20.9 seconds.\nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 21.8 seconds.\nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 25.7 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 21.7 seconds.\nTotal execution time: 25.9 seconds.\n\n\n\najuste_4_bangladesh$summary(c(\"beta_bar\", \"sigma\", \"Omega\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nbeta_bar[1]\n-0.70\n-0.70\n0.10\n0.10\n-0.87\n-0.54\n1.00\n2900.62\n2602.54\n\n\nbeta_bar[2]\n0.67\n0.67\n0.17\n0.16\n0.40\n0.96\n1.00\n2255.70\n3108.16\n\n\nsigma[1]\n0.56\n0.55\n0.09\n0.09\n0.42\n0.71\n1.00\n1266.21\n1996.28\n\n\nsigma[2]\n0.76\n0.75\n0.19\n0.18\n0.46\n1.08\n1.01\n596.57\n806.78\n\n\nOmega[1,1]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\nOmega[2,1]\n-0.56\n-0.58\n0.18\n0.17\n-0.81\n-0.22\n1.00\n900.09\n1631.08\n\n\nOmega[1,2]\n-0.56\n-0.58\n0.18\n0.17\n-0.81\n-0.22\n1.00\n900.09\n1631.08\n\n\nOmega[2,2]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\n\n\n\n\n\n\nAunque no tiene problemas graves de divergencia, el ajuste es lento como vemos en el tamaño efectivo bajo de las correlaciones entre la constante \\(\\beta_1\\) y el coeficiente de la variable urbana \\(\\beta_2\\). Nota: observa que los coeficientes \\(\\beta_1\\) y \\(\\beta_2\\) son negativamente correlacionados. Sin embargo, la correlación entre \\(\\beta_1 + \\beta_2\\) y \\(\\beta_1\\) es positiva como veremos más adelante.\nPodemos usar también una parametrización no centrada para este modelo. Observamos primero que si \\(\\Omega\\) es una matriz de correlaciones, entonces siempre podemos escribir su factorización de Cholesky, dada por \\(\\Omega = LL^T\\), donde \\(L\\) es una matriz triangular inferior. De esta forma, podemos escribir\n\\[\\Sigma = \\textrm{diag}(\\sigma)\\,LL^T\\, \\textrm{diag}(\\sigma)\\] De forma que el factor de Cholesky para \\(\\Sigma\\) es \\(\\textrm{diag}(\\sigma)\\,L\\).\nAhora tomemos \\(Z\\sim NMV(0,I)\\) y definamos \\(X = \\textrm{diag}(\\sigma)\\,L\\,Z\\). Entonces se puede demostrar que \\(X\\sim NMV(0,\\Sigma)\\). De esta forma, si \\(\\beta \\sim NMV(\\bar{\\beta}, \\Sigma)\\), podemos escribir \\[\\beta = \\bar{\\beta} + \\textrm{diag}(\\sigma)\\,L\\,Z.\\] Nótese que el caso de una dimensión, para centrar multiplicábamos por la desviación estándar. El análogo en el caso multivariado es el factor de Cholesky de la covarianza, que es una especie de “raíz” de la covarianza.\n\nmod_5_bangladesh <- cmdstan_model(\"./src/bangladesh-5.stan\")\nprint(mod_5_bangladesh)\n\ndata {\n int<lower=0> N;\n int<lower=0> N_d;\n array[N] int ac_uso;\n array[N] int distrito;\n vector[N] urbano;\n}\n\ntransformed data {\n matrix[N, 2] x;\n for (n in 1:N) {\n x[n,1] = 1;\n x[n,2] = urbano[n];\n }\n}\n\nparameters {\n vector[2] beta_bar;\n vector<lower=0>[2] sigma;\n cholesky_factor_corr[2] L_Omega;\n matrix[2, N_d] z;\n}\n\ntransformed parameters {\n cov_matrix[2] Sigma;\n corr_matrix[2] Omega;\n matrix[2, N_d] beta;\n\n // parametrización no centrada:\n beta = rep_matrix(beta_bar, N_d) + diag_pre_multiply(sigma, L_Omega) * z;\n\n // Esto solo para recordar dónde están covarianzas y correlaciones:\n // no son necesarias\n Omega = L_Omega * L_Omega';\n Sigma = quad_form_diag(Omega, sigma);\n\n}\n\nmodel {\n for(n in 1:N){\n ac_uso[n] ~ bernoulli_logit( x[n] * beta[,distrito[n]]);\n }\n to_vector(z) ~ std_normal();\n // parámetros poblacionales\n beta_bar ~ normal(0, 1);\n sigma ~ normal(0, 1);\n // La siguente línea es para tener Omega ~ lkj_corr(4)\n L_Omega ~ lkj_corr_cholesky(4);\n}\n\ngenerated quantities {\n vector[N_d] prob_distrito_urbano;\n vector[N_d] prob_distrito_rural;\n\n for (i in 1:N_d) {\n prob_distrito_urbano[i] = inv_logit(beta[1,i] + beta[2,i]);\n prob_distrito_rural[i] = inv_logit(beta[1,i]);\n }\n}\n\n\n\najuste_5_bangladesh <- mod_5_bangladesh$sample(data = datos_lst,\n refresh = 1000, init = 0.1, step_size = 0.1, parallel_chains = 4, seed = 9394)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 finished in 13.0 seconds.\nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 13.1 seconds.\nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 finished in 13.2 seconds.\nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 13.9 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 13.3 seconds.\nTotal execution time: 14.1 seconds.\n\n\n\najuste_5_bangladesh$summary(c(\"beta_bar\", \"sigma\", \"Omega\")) |> \n knitr::kable(digits = 2)\n\n\n\n\n\nvariable\nmean\nmedian\nsd\nmad\nq5\nq95\nrhat\ness_bulk\ness_tail\n\n\n\n\nbeta_bar[1]\n-0.71\n-0.70\n0.10\n0.10\n-0.86\n-0.55\n1\n2087.86\n2700.10\n\n\nbeta_bar[2]\n0.68\n0.68\n0.16\n0.16\n0.41\n0.95\n1\n2560.44\n2699.90\n\n\nsigma[1]\n0.56\n0.56\n0.09\n0.09\n0.42\n0.72\n1\n2076.00\n2819.38\n\n\nsigma[2]\n0.76\n0.76\n0.20\n0.19\n0.45\n1.08\n1\n1339.00\n1471.26\n\n\nOmega[1,1]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\nOmega[2,1]\n-0.56\n-0.58\n0.18\n0.18\n-0.81\n-0.23\n1\n1877.68\n2531.87\n\n\nOmega[1,2]\n-0.56\n-0.58\n0.18\n0.18\n-0.81\n-0.23\n1\n1877.68\n2531.87\n\n\nOmega[2,2]\n1.00\n1.00\n0.00\n0.00\n1.00\n1.00\nNA\nNA\nNA\n\n\n\n\n\n\n\n\nEste resultado es superior al anterior.\n\n\n\n\nAlbert, Jim. 2009. Bayesian computation with R. Dordrecht: Springer. http://www.springerlink.com/content/978-0-387-92298-0#section=15956&page=1.\n\n\nMcElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. A Chapman & Hall libro. CRC Press. https://books.google.com.mx/books?id=Ie2vxQEACAAJ.", "crumbs": [ "9  Modelos jerárquicos" ] + }, + { + "objectID": "13-exp-naturales.html", + "href": "13-exp-naturales.html", + "title": "10  Otros métodos para inferencia causal", + "section": "", + "text": "10.1 Intro: Variables instrumentales\nEn el siglo XIX John Snow tenía la teoría de que algo en la calidad del suministro de agua estaba relacionado con la aparición de casos de cólera en Londres (que entonces era una epidemia).\nReconoció que tenía el problema de variables no observadas que abren puertas traseras: la calidad de agua que toman las personas (o por ejemplo en zonas de la ciudad) es diferente: en zonas más pobres en general la calidad del agua es mala, y también hay más muertes de cólera en lugares pobres.\nOtra variable de confusión podía ser el entonces llamado “miasma”: cosas malas en el aire que contaminan el agua y a las personas.\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n \n node [shape = circle]\n MiasmaPobreza\n node [shape=plaintext]\n\n edge [minlen = 3]\n PurezaAgua -> Colera\n MiasmaPobreza -> Colera\n MiasmaPobreza -> PurezaAgua\n {rank = same; PurezaAgua; Colera}\n}\n\", width = 200, height = 100)\nDado este diagrama, como hemos discutido, no podemos identificar el efecto causal de la calidad de suministro de agua en las muertes o infecciones de cólera: podría ser la “miasma” que contamina el agua y enferma a las personas (correlación no causal), por ejemplo, y no hay relación causal entre tomar agua contaminada y cólera.\nJohn Snow, sin embargo, que no creía en la teoría del miasma, investigó con detalle de dónde provenía el agua que tomaban en varias casas a lo largo de toda la ciudad. Lo que descubrió, en sus palabras es que:\nSi las distintas compañías de agua tiene distintos niveles de calidad de agua, podriamos expandir nuestro DAG a:\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n \n node [shape = circle]\n Miasma\n node [shape=plaintext]\n\n edge [minlen = 3]\n Comp -> PurezaAgua -> Colera\n Miasma -> PurezaAgua\n Miasma -> Colera\n {rank = same; Comp; PurezaAgua; Colera}\n}\n\")\nTenemos entonces:\nLa conclusión de Snow es que desde el punto de vista de cólera y el sistema que nos interesa, la compañía de agua se comporta como si fuera asignada al azar: no hay ninguna variable relevente al problema que incida en qué compañía abastece a cada casa o zona. Como observó asociación entre compañía de agua y Cólera, concluyó correctamente que esto implicaba que la pureza del agua tenía un efecto causal en la propagación del cólera.\nLa idea de Snow entonces podemas :\nLa tabla de Snow, tomada de Freedman (1991):\ntibble(comp = c(\"Southwark+Vauxhall\", \"Lambeth\", \"Resto\"),\n casas = c(40046, 26107, 256423),\n muertes_colera = c(1263, 98, 1422),\n tasa_muertes_10milcasas = c(315, 37, 59)) |> \nknitr::kable() |> kable_paper()\n\n\n\n\n\ncomp\ncasas\nmuertes_colera\ntasa_muertes_10milcasas\n\n\n\n\nSouthwark+Vauxhall\n40046\n1263\n315\n\n\nLambeth\n26107\n98\n37\n\n\nResto\n256423\n1422\n59\nEsta diferencia grande muestra que la razón de la aparición de cólera tenía que ver con el agua que consumían las personas, considerando los supuestos de arriba. Para llegar a la conclusión de Snow, es necesario que se cumpla la estructura causal del diagrama de arriba.", + "crumbs": [ + "10  Otros métodos para inferencia causal" + ] + }, + { + "objectID": "13-exp-naturales.html#intro-variables-instrumentales", + "href": "13-exp-naturales.html#intro-variables-instrumentales", + "title": "10  Otros métodos para inferencia causal", + "section": "", + "text": "En grandes partes de Londres, los suministros de agua de distintas compañías están organizados de forma compleja. Los tubos de cada compañía van por todas las calles de todas las zonas.\nLa decisión de qué compañía suministraba a cada casa generalmente se había tomado hace mucho, y los habitantes generalmente no lo decidían ni sabían que compañía de agua les correspondía.\nHabía casas muy cercanas, unas con una compañía y otras con otra.\n\n\n\n\n\nLa compañía que suministra a cada casa o zona es causa de la pureza de agua en cada casa.\nNo puede haber aristas directas entre compañía y cólera: el único efecto de compañía en cólera puede ser a través del agua que suministra.\nNo puede haber una arista de Pobreza a Compañía, por la observación de Snow: la decisión de qué compañía suministraba a qué casa se había tomado mucho antes, y no tenía relación con pobreza, miasma actual ni cólera (que no existía cuando se tomaron esas decisiones)\n\n\n\n\nPor la gráfica, la asociación entre Compañía y Cólera es causal (no hay confusoras para Compañía y Cólera).\nSi esta relación existe, entonces por los supuestos, la Pureza de Agua tiene un efecto causal sobre Cólera.", + "crumbs": [ + "10  Otros métodos para inferencia causal" + ] + }, + { + "objectID": "13-exp-naturales.html#variables-instrumentales", + "href": "13-exp-naturales.html#variables-instrumentales", + "title": "10  Otros métodos para inferencia causal", + "section": "10.2 Variables instrumentales", + "text": "10.2 Variables instrumentales\nEl diagrama básico que define una variable instrumental con el propósito de identificar el efecto causal de \\(T\\) sobre \\(Y\\) es el siguiente:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2]\n \n node [shape = circle]\n U\n node [shape=plaintext]\n\n edge [minlen = 3]\n Z -> T -> Y\n U-> T\n U-> Y\n {rank = same; Z;T; Y}\n}\n\", width= 200, height = 70)\n\n\n\n\n\n\n\n\n\n\n\n\nVariables instrumentales\n\n\n\nDecimos que \\(Z\\) es una variable instrumental para estimar el efecto causal de \\(T\\) sobre \\(Y\\) cuando:\n\n\\(Z\\) es una variable que influye en la asignación del tratamiento.\n\\(Z\\) está \\(d\\)-separada de \\(U\\).\n\\(Z\\) sólo influye en \\(Y\\) a través de \\(T\\) (restricción de exclusión)\n\n\n\n\nGeneralmente las últimas dos de estas hipótesis tienen que postularse basadas en conocimiento experto, ya que no es posible checarlas con datos.\nCon estrategias de condicionamiento es posible encontrar instrumentos potenciales en gráficas más complejas.\nEsta estrategia funciona con modelos lineales. Más generalmente, pero bajo ciertos supuestos, los estimadores de variables instrumentales son más propiamente estimadores de un cierto tipo de efecto causal (por ejemplo, para tratamientos binarios, el efecto causal sobre los compliers, ver Morgan y Winship (2015)).", + "crumbs": [ + "10  Otros métodos para inferencia causal" + ] + }, + { + "objectID": "13-exp-naturales.html#estimación-con-variables-instrumentales", + "href": "13-exp-naturales.html#estimación-con-variables-instrumentales", + "title": "10  Otros métodos para inferencia causal", + "section": "10.3 Estimación con variables instrumentales", + "text": "10.3 Estimación con variables instrumentales\nLa estimación de efectos causales con variables instrumentales depende de supuestos adicionales a los del cálculo-do, y su utilidad depende de qué tan fuerte es el instrumento (qué tan correlacionado está con el tratamiento).\nPrimero, hacemos una discusión para ver cómo esto puede funcionar. Lo más importante es notar que el efecto de \\(Z\\) sobre \\(Y\\) y el de \\(Z\\) sobre \\(T\\) son identificables y podemos calcularlos. El que nos interesa el efecto de \\(T\\) sobre \\(Y\\). Supongamos que todos los modelos son lineales:\n\nSupongamos que cuando \\(Z\\) aumenta una unidad, \\(T\\) aumenta en \\(a\\) unidades,\nSupongamos que cuando \\(T\\) aumenta 1 unidad \\(Y\\) aumenta \\(b\\) unidades (este es el efecto causal que queremos calcular).\nEsto quiere decir que cuando \\(Z\\) aumenta una unidad, \\(Y\\) aumenta \\(c = ab\\) unidades.\nEl efecto causal de \\(T\\) sobre \\(Y\\) se puede calcular dividiendo \\(c/a\\) (que es igual a \\(b\\)), y estas dos cantidades están identificadas\n\nNótese que si \\(a=0\\), o es muy chico, este argumento no funciona (\\(Z\\) es un instrumento débil).\nVeremos un ejemplo simulado, y cómo construir un estimador estadístico en el caso lineal para estimar el efecto causal.\n\nsim_colera <- function(n){\n # se selecciona al azar la compañía\n comp <- sample(1:5, n, replace = TRUE)\n contaminacion_comp <- c(5, 5, 0.3, 0.2, 0)\n # confusor\n u <- rnorm(n, 0, 1)\n # confusor afecta a pureza y muertes\n pureza <- rnorm(n, contaminacion_comp[comp] + 2 * u, 1)\n colera <- rnorm(n, 3 * pureza + 2 * u, 1)\n tibble(comp, pureza, colera) \n}\nset.seed(800)\ndatos_tbl <- sim_colera(1000)\n\n\ndatos_tbl |> head()\n\n# A tibble: 6 × 3\n comp pureza colera\n <int> <dbl> <dbl>\n1 3 -0.569 -3.73\n2 3 2.89 10.3 \n3 2 3.59 9.26\n4 2 4.59 12.4 \n5 4 -0.744 -2.88\n6 4 -4.23 -17.9 \n\n\nPodríamos construir un modelo generativo modelando una variable latente \\(U\\). Si embargo, es más simple definir un modelo estadístico como sigue:\n\nLas variables pureza son normales bivariadas con alguna correlación (producida por el confusor U).\nLa media de Pureza depende la compañía (modelo de primera etapa)\nLa media de Cólera depende de la pureza (modelo de segunda etapa)\n\nCon un modelo así podemos resolver el problema de estimar el efecto causal la variable instrumental.\nSin embargo, modelos de regresión simples no nos dan la respuesta correcta. Por ejemplo, sabemos que esta regresión es incorrecta (por el confusor):\n\nlm(colera~ pureza, datos_tbl) |> broom::tidy()\n\n# A tibble: 2 × 5\n term estimate std.error statistic p.value\n <chr> <dbl> <dbl> <dbl> <dbl>\n1 (Intercept) -0.739 0.0702 -10.5 1.27e-24\n2 pureza 3.38 0.0184 184. 0 \n\n\n\nlm(colera ~ pureza + factor(comp), datos_tbl) |> broom::tidy()\n\n# A tibble: 6 × 5\n term estimate std.error statistic p.value\n <chr> <dbl> <dbl> <dbl> <dbl>\n1 (Intercept) -4.02 0.137 -29.4 6.92e-137\n2 pureza 3.80 0.0187 203. 0 \n3 factor(comp)2 0.0447 0.139 0.322 7.47e- 1\n4 factor(comp)3 3.77 0.162 23.2 7.99e- 96\n5 factor(comp)4 3.92 0.164 23.9 4.03e-100\n6 factor(comp)5 4.14 0.166 24.9 5.35e-107\n\n\nY agregar la variable compañía empeora la situación. La razón es que al condicionar a pureza, abrimos un nuevo camino no causal entre compañía y la respuesta, y esta es capturada por esos coeficientes.\n\nlibrary(cmdstanr)\n\nThis is cmdstanr version 0.7.1\n\n\n- CmdStanR documentation and vignettes: mc-stan.org/cmdstanr\n\n\n- CmdStan path: /home/runner/.cmdstan/cmdstan-2.34.0\n\n\n- CmdStan version: 2.34.0\n\n\n\nA newer version of CmdStan is available. See ?install_cmdstan() to install it.\nTo disable this check set option or environment variable CMDSTANR_NO_VER_CHECK=TRUE.\n\nmod_colera <- cmdstan_model(\"./src/iv-ejemplo.stan\")\nprint(mod_colera)\n\ndata {\n int<lower=0> N;\n array[N] int compania;\n vector[N] colera;\n vector[N] pureza;\n}\n\ntransformed data {\n array[N] vector[2] py;\n for(i in 1:N){\n py[i][1] = pureza[i];\n py[i][2] = colera[i];\n }\n}\n\nparameters {\n vector[6] alpha;\n real alpha_0;\n real beta_0;\n real beta_1;\n corr_matrix[2] Omega;\n vector<lower=0>[2] sigma;\n}\n\ntransformed parameters{\n array[N] vector[2] media;\n cov_matrix[2] S;\n\n for(i in 1:N){\n media[i][2] = beta_0 + beta_1 * pureza[i];\n media[i][1] = alpha_0 + alpha[compania[i]];\n }\n\n S = quad_form_diag(Omega, sigma);\n}\n\nmodel {\n py ~ multi_normal(media, S);\n Omega ~ lkj_corr(2);\n sigma ~ normal(0, 10);\n alpha_0 ~ normal(0, 1);\n beta_0 ~ normal(0, 1);\n beta_1 ~ normal(0, 1);\n alpha ~ normal(0, 300);\n}\n\ngenerated quantities{\n\n}\n\n\n\najuste <- mod_colera$sample(\n data = list(N = nrow(datos_tbl), \n compania = datos_tbl$comp,\n colera = datos_tbl$colera,\n pureza = datos_tbl$pureza),\n init = 0.01, step_size = 0.01,\n parallel_chains = 4, iter_warmup = 500, iter_sampling = 1000\n)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 1500 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 1500 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 1500 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 1500 [ 0%] (Warmup) \nChain 4 Iteration: 100 / 1500 [ 6%] (Warmup) \nChain 1 Iteration: 100 / 1500 [ 6%] (Warmup) \nChain 2 Iteration: 100 / 1500 [ 6%] (Warmup) \nChain 3 Iteration: 100 / 1500 [ 6%] (Warmup) \nChain 1 Iteration: 200 / 1500 [ 13%] (Warmup) \nChain 4 Iteration: 200 / 1500 [ 13%] (Warmup) \nChain 2 Iteration: 200 / 1500 [ 13%] (Warmup) \nChain 3 Iteration: 200 / 1500 [ 13%] (Warmup) \nChain 1 Iteration: 300 / 1500 [ 20%] (Warmup) \nChain 4 Iteration: 300 / 1500 [ 20%] (Warmup) \nChain 2 Iteration: 300 / 1500 [ 20%] (Warmup) \nChain 3 Iteration: 300 / 1500 [ 20%] (Warmup) \nChain 4 Iteration: 400 / 1500 [ 26%] (Warmup) \nChain 1 Iteration: 400 / 1500 [ 26%] (Warmup) \nChain 2 Iteration: 400 / 1500 [ 26%] (Warmup) \nChain 3 Iteration: 400 / 1500 [ 26%] (Warmup) \nChain 4 Iteration: 500 / 1500 [ 33%] (Warmup) \nChain 4 Iteration: 501 / 1500 [ 33%] (Sampling) \nChain 1 Iteration: 500 / 1500 [ 33%] (Warmup) \nChain 1 Iteration: 501 / 1500 [ 33%] (Sampling) \nChain 3 Iteration: 500 / 1500 [ 33%] (Warmup) \nChain 3 Iteration: 501 / 1500 [ 33%] (Sampling) \nChain 2 Iteration: 500 / 1500 [ 33%] (Warmup) \nChain 2 Iteration: 501 / 1500 [ 33%] (Sampling) \nChain 4 Iteration: 600 / 1500 [ 40%] (Sampling) \nChain 1 Iteration: 600 / 1500 [ 40%] (Sampling) \nChain 3 Iteration: 600 / 1500 [ 40%] (Sampling) \nChain 2 Iteration: 600 / 1500 [ 40%] (Sampling) \nChain 4 Iteration: 700 / 1500 [ 46%] (Sampling) \nChain 1 Iteration: 700 / 1500 [ 46%] (Sampling) \nChain 3 Iteration: 700 / 1500 [ 46%] (Sampling) \nChain 2 Iteration: 700 / 1500 [ 46%] (Sampling) \nChain 4 Iteration: 800 / 1500 [ 53%] (Sampling) \nChain 1 Iteration: 800 / 1500 [ 53%] (Sampling) \nChain 3 Iteration: 800 / 1500 [ 53%] (Sampling) \nChain 2 Iteration: 800 / 1500 [ 53%] (Sampling) \nChain 4 Iteration: 900 / 1500 [ 60%] (Sampling) \nChain 1 Iteration: 900 / 1500 [ 60%] (Sampling) \nChain 3 Iteration: 900 / 1500 [ 60%] (Sampling) \nChain 2 Iteration: 900 / 1500 [ 60%] (Sampling) \nChain 1 Iteration: 1000 / 1500 [ 66%] (Sampling) \nChain 4 Iteration: 1000 / 1500 [ 66%] (Sampling) \nChain 3 Iteration: 1000 / 1500 [ 66%] (Sampling) \nChain 2 Iteration: 1000 / 1500 [ 66%] (Sampling) \nChain 1 Iteration: 1100 / 1500 [ 73%] (Sampling) \nChain 4 Iteration: 1100 / 1500 [ 73%] (Sampling) \nChain 3 Iteration: 1100 / 1500 [ 73%] (Sampling) \nChain 2 Iteration: 1100 / 1500 [ 73%] (Sampling) \nChain 1 Iteration: 1200 / 1500 [ 80%] (Sampling) \nChain 4 Iteration: 1200 / 1500 [ 80%] (Sampling) \nChain 3 Iteration: 1200 / 1500 [ 80%] (Sampling) \nChain 2 Iteration: 1200 / 1500 [ 80%] (Sampling) \nChain 1 Iteration: 1300 / 1500 [ 86%] (Sampling) \nChain 4 Iteration: 1300 / 1500 [ 86%] (Sampling) \nChain 3 Iteration: 1300 / 1500 [ 86%] (Sampling) \nChain 2 Iteration: 1300 / 1500 [ 86%] (Sampling) \nChain 1 Iteration: 1400 / 1500 [ 93%] (Sampling) \nChain 4 Iteration: 1400 / 1500 [ 93%] (Sampling) \nChain 3 Iteration: 1400 / 1500 [ 93%] (Sampling) \nChain 2 Iteration: 1400 / 1500 [ 93%] (Sampling) \nChain 1 Iteration: 1500 / 1500 [100%] (Sampling) \nChain 1 finished in 56.9 seconds.\nChain 3 Iteration: 1500 / 1500 [100%] (Sampling) \nChain 4 Iteration: 1500 / 1500 [100%] (Sampling) \nChain 2 Iteration: 1500 / 1500 [100%] (Sampling) \nChain 2 finished in 58.7 seconds.\nChain 3 finished in 58.6 seconds.\nChain 4 finished in 58.6 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 58.2 seconds.\nTotal execution time: 58.8 seconds.\n\n\n\najuste$summary(c(\"alpha\", \"beta_0\", \"beta_1\", \"sigma\", \"Omega\")) |> select(variable, mean, q5, q95)\n\n# A tibble: 14 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n 1 alpha[1] 5.00 3.32 6.68 \n 2 alpha[2] 4.94 3.26 6.62 \n 3 alpha[3] 0.302 -1.38 1.98 \n 4 alpha[4] 0.259 -1.40 1.93 \n 5 alpha[5] -0.00562 -1.71 1.67 \n 6 alpha[6] -4.02 -511. 493. \n 7 beta_0 0.0634 -0.0938 0.221\n 8 beta_1 2.98 2.92 3.03 \n 9 sigma[1] 2.29 2.21 2.37 \n10 sigma[2] 2.31 2.19 2.44 \n11 Omega[1,1] 1 1 1 \n12 Omega[2,1] 0.811 0.785 0.835\n13 Omega[1,2] 0.811 0.785 0.835\n14 Omega[2,2] 1 1 1 \n\n\nNótese que recuperamos el coeficiente correcto (\\(\\beta_1\\)).\nNotas:\n\nEn estos modelos, muchas veces es crucial la información a priori. Iniciales no informativas pueden dar resultados malos (dificultades numéricas, poca precisión y sesgo).\nFuera del ámbito bayesiano se utilizan métodos como mínimos cuadrados en 2 etapas.\nSin supuestos lineales, hay más supuestos que se tienen que cumplir para que este enfoque funcione (ver Morgan y Winship (2015)), por ejemplo, ¿qué se identifica en el caso de efecto heterogéneo sobre los individuos?\nEl enfoque de contrafactuales esclarece cómo funciona este método.\n\nEjemplos clásicos de potenciales instrumentos son:\n\nTemporada en la que nace una persona (construye por ejemplo un diagrama para educación, salario en el futuro y mes en el que nació una persona), y por qué variables instrumentales podrían ayudar a identificar el efecto causal de educación en salario futuro.\nDistancia a algún servicio: el uso de un servicio varía con la distancia para accederlo (por ejemplo, ¿cómo saber si un centro comunitario en una población mejora el bienestar del que lo usan?)\nLoterías reales para determinar cuál es el efecto de recibir una cantidad grande de dinero sobre bienestar o ahorros futuros, etc.\n\nPuedes encontrar más ejemplos en Morgan y Winship (2015) y aquí.", + "crumbs": [ + "10  Otros métodos para inferencia causal" + ] + }, + { + "objectID": "13-exp-naturales.html#regresión-discontinua", + "href": "13-exp-naturales.html#regresión-discontinua", + "title": "10  Otros métodos para inferencia causal", + "section": "10.4 Regresión discontinua", + "text": "10.4 Regresión discontinua\nMuchas veces, la decisión de aplicar un tratamiento o no depende de un límite administrativo en una variable dada. Por ejemplo, supongamos que quisiéramos saber si una atracción particular de feria produce malestar en niños al salir del parque.\nTodos los niños de una escuela se forman para subirse a la atracción. Si al director de la escuela le interesara hacer un experimento, podría seleccionar al azar a algunos niños para subirse y otros no. Sin embargo, el director de la escuela nota que hay un límite de estatura que hay que pasar para poder subirse al juego.\nTienen la idea entonces de que esto presenta un experimento natural: entre todos los niños que están cerca de 1.20 de estatura, quién se sube o no prácticamente depende del azar.\nNuestro diagrama es como sigue:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir=LR]\n node [shape = circle]\n U\n #V\n node [shape=plaintext]\n Estatura\n edge [minlen = 3]\n U -> Y\n #V -> Estatura\n #V -> Y\n Estatura -> T\n T -> Y\n Estatura -> Y\n{rank = same; U; T}\n{rank = min; Estatura}\n\n}\n\", width = 200, height = 200)\n\n\n\n\n\n\nComo vimos, hay una variable observable (la estatura) que determina la aplicación del tratamiento, y que se asigna de la siguiente forma:\n\nSi \\(Estatura >= 1.20\\) entonces \\(T=1\\)\nSi \\(Estatura < 1.20\\) entonces \\(T=0\\),\n\nentonces es posible restringir el análisis a un intervalo muy chico alrededor del punto de corte 1.20, y para fines prácticos el diagrama se convierte en:\n\n\nCódigo\ngrViz(\"\ndigraph {\n graph [ranksep = 0.2, rankdir=LR]\n \n node [shape = circle]\n U\n node [shape=plaintext]\n\n edge [minlen = 3]\n U -> Y\n \n Estatura120 -> T\n T -> Y\n{rank = same; U; Y}\n{rank = min; T; Estatura120}\n}\n\",width = 200, height = 200)\n\n\n\n\n\n\nEn este caso, el grupo Estatura120 son aquellos que miden entre 118 y 122, por ejemplo, y estamos suponiendo que el efecto de la variación de la estatura en este grupo es mínimo.\nLa idea es comparar en el grupo Estatura120 aquellos que recibieron el tratamiento con los que no lo recibieron, y la razón es:\n\nCaminos no causales a través de Estatura están prácticamente bloqueados, pues prácticamente estamos condicionando a un valor de Estatura fijo.\nPor la regla administrativa, no existen otras variables no observadas que influyan en la asignación de tratamiento \\(T\\) (no hay puertas traseras).\n\nEn la práctica, usualmente un grupo suficientemente angosto produciría un tamaño de muestra chico y sería difícil estimar el efecto del tratamiento (no tendríamos precisión). Así que recurrimos a modelos simples de la forma\n\\[p(y|x)\\] que tienen la particularidad de que permiten un cambio discontinuo en la distribución en el punto de corte \\(x = x_0\\). Se puede tratar de dos modelos: uno del lado izquierdo y otro del lado derecho, aunque es posible que compartir parámetros.\n\nEjemplo simulado\nSupongamos existe un programa de becas para permanecer en la escuela que se les da a niños de 9 o más años cumplidos. Nos interesa ver cuál es la asistencia escolar en el año siguiente al programa. Veamos un ejemplo simulado:\n\ninv_logit <- function(x) 1/(1+exp(-x))\nsimular_des <- function(n = 100){\n edad <- runif(n, 5, 12)\n t <- ifelse(edad >= 9, 1, 0)\n u <- rnorm(n, 0, 0.6)\n asistencia_dias <- 200 * inv_logit(3 - 0.6* (edad - 5) + 1 * t + u)\n tibble(edad, t, asistencia_dias)\n}\nset.seed(8)\ndatos_tbl <- simular_des(500)\nggplot(datos_tbl, aes(x = edad, y = asistencia_dias)) +\n geom_point() +\n geom_vline(xintercept = 9, colour = \"red\")\n\n\n\n\n\n\n\n\nPodríamos ajustar dos modelos:\n\nggplot(datos_tbl, aes(x = edad, y = asistencia_dias)) +\n geom_point() +\n geom_vline(xintercept = 9, colour = \"red\") +\n geom_smooth(aes(group = t))\n\n`geom_smooth()` using method = 'loess' and formula = 'y ~ x'\n\n\n\n\n\n\n\n\n\nSi nuestros modelos son apropiados, podemos estimar el efecto causal a los 9 años: el programa incrementa la asistencia en un promedio de larededor de 25 días de 200 posibles. Para hacer inferencia apropiadamente, podemos ajustar modelos como veremos más adelante.\n\n\n\n\n\n\nRegresión discontinua\n\n\n\nEl supuesto básico de identificación para regresión discontinua se puede expresar con contrafactuales:\n\nTanto \\(p(Y_i^1|X=x)\\) como \\(p(Y_i^0|X=x)\\) varían continuamente en el punto de corte \\(x=x_0\\)\nEl único criterio de aplicación del tratamiento es estar en \\(X\\) por arriba o abajo de \\(x_0\\).\n\n\n\nEsto quiere decir que si vemos un salto en el punto de corte del tratamiento, este se debe al tratamiento, y no a cómo son \\(p(Y_i^0|X=x)\\) y \\(p(Y_i^1|X=x)\\).\nEn particular, para el efecto promedio:\n\\[E[Y^1 - Y^0|X=x_0] = E[Y^1|X=x_0] - E[Y^1|X=x_0]\\] es igual a\n\\[\\lim_{x\\to x_0^+} E[Y^1|X=x_0] - \\lim_{x\\to x_0^-} E[Y^0|X=x_0]\\] Después de \\(x_0\\) todas las unidades tienen el tratamiento, y antes ninguna, de modo que esto equivale a\n\\[\\lim_{x\\to x_0^+} E[Y|X=x, T = 1] - \\lim_{x\\to x_0^-} E[Y|X=x, T = 0]\\] y estas dos cantidades están identificadas. Solamente usamos el supuesto de continuidad y del punto de corte para el tratamiento. Nótese que este supuesto se puede violar cuando unidades de un lado del corte son diferentes a las del otro lado, lo cual sucede por ejemplo cuando es un corte genérico que afecta muchas cosas o cuando de alguna manera la variable del corte es manipulable por los individuos:\n\nHay otras cosas que suceden el punto de corte, por ejemplo: es difícil usar mayoria de edad como punto de corte, porque varias cosas suceden cuando alguien cumple 18 años (puede votar, puede ser que tome decisiones alrededor de esos momentos, puede comprar alcohol, etc).\nHay maneras de manipular la variable con la que se hace el punto de corte (por ejemplo, si mi hijo nace en septiembre reporto en el acta que nació en agosto por fines escolares).\n\nUna manera usual de checar estos supuestos es considerar otras variables (que varían continuamente con la variable que usa para el corte), y que no deberían ser afectadas por el tratamiento, y verificar que no hay discontinuidades en el punto de corte de interés.\nPuedes ver más aquí\n\n\nEjemplo: parte 2\nArriba hicimos un ajuste con curvas loess. Lo más apropiado es construir modelos y así facilitar la inferencia del tamaño del efecto.\n\nlibrary(cmdstanr)\nlibrary(splines)\n\nmodelo_disc <- cmdstan_model(\"./src/reg-discontinua.stan\")\nprint(modelo_disc)\n\ndata {\n int N;\n int n_base;\n vector[N] y;\n vector[N] x;\n vector[N] trata;\n matrix[n_base, N] B;\n}\n\nparameters {\n row_vector[n_base] a_raw;\n real a0;\n real delta;\n real<lower=0> sigma;\n real<lower=0> tau;\n}\n\ntransformed parameters {\n row_vector[n_base] a;\n vector[N] y_media;\n a = a_raw * tau;\n y_media = a0 * x + to_vector(a * B) + trata * delta;\n}\n\nmodel {\n a_raw ~ normal(0, 1);\n tau ~ normal(0, 1);\n sigma ~ normal(0, 10);\n delta ~ normal(0, 10);\n y ~ normal(y_media, sigma);\n}\n\ngenerated quantities {\n\n}\n\n\n\nx <- datos_tbl$edad \nB <- t(ns(x, knots = 6, intercept = TRUE)) \ny <- datos_tbl$asistencia_dias\ntrata <- datos_tbl$t\ndatos_lista <- list(N = length(x), n_base = nrow(B), B = B,\n y = y, x = x, trata = trata)\najuste <- modelo_disc$sample(data = datos_lista, parallel_chains = 4, \n refresh = 1000)\n\nRunning MCMC with 4 parallel chains...\n\nChain 1 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 2 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 3 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 4 Iteration: 1 / 2000 [ 0%] (Warmup) \nChain 1 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 1 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 3 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 2 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 2 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 4 Iteration: 1000 / 2000 [ 50%] (Warmup) \nChain 4 Iteration: 1001 / 2000 [ 50%] (Sampling) \nChain 3 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 3 finished in 2.8 seconds.\nChain 1 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 2 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 4 Iteration: 2000 / 2000 [100%] (Sampling) \nChain 1 finished in 2.9 seconds.\nChain 2 finished in 3.0 seconds.\nChain 4 finished in 2.9 seconds.\n\nAll 4 chains finished successfully.\nMean chain execution time: 2.9 seconds.\nTotal execution time: 3.1 seconds.\n\n\nNuestro resumen del efecto local en 9 años es el siguiente:\n\najuste$summary(\"delta\") |> select(variable, mean, q5, q95)\n\n# A tibble: 1 × 4\n variable mean q5 q95\n <chr> <dbl> <dbl> <dbl>\n1 delta 19.4 12.5 26.1\n\n\nFinalmente, vemos cómo ajusta el modelo:\n\ny_media_tbl <- ajuste$draws(\"y_media\", format = \"df\") |> \n pivot_longer(cols = contains(\"y_media\"), names_to = \"variable\") |> \n separate(variable, into = c(\"a\", \"indice\"), sep = \"[\\\\[\\\\]]\", \n extra = \"drop\", convert = TRUE) \n\nWarning: Dropping 'draws_df' class as required metadata was removed.\n\ny_media_tbl <- y_media_tbl |> \n left_join(tibble(indice = 1:length(x), edad= x))\n\nJoining with `by = join_by(indice)`\n\n\n\nres_y_media_tbl <- y_media_tbl |> group_by(indice, edad) |> \n summarise(media = mean(value), q5 = quantile(value, 0.05),\n q95 = quantile(value, 0.95))\n\n`summarise()` has grouped output by 'indice'. You can override using the\n`.groups` argument.\n\nggplot(res_y_media_tbl, aes(x = edad)) + \n geom_line(aes(y = media), colour = \"red\", size = 2) +\n geom_line(aes(y = q5), colour = \"red\") +\n geom_line(aes(y = q95), colour = \"red\") + \n geom_point(data = datos_tbl, aes(y = asistencia_dias), alpha = 0.2)\n\nWarning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.\nℹ Please use `linewidth` instead.\n\n\n\n\n\n\n\n\n\nNotas:\n\nIgual que en experimentos, puede tener sentido controlar por otras variables(“buenos controles”) para mejorar la precisión del análisis.\nEsto es especialmente cierto cuando la variable \\(x\\) en la regresión discontinua no determina de manera muy fuerte la respuesta \\(y\\) (datos ruidosos)\nEs necesario tener cuidado con la forma funcional que se utiliza en los modelos (ver esta liga, donde muestran por ejemplo este análisis que es incorrecto:\n\n\nEn general, usar polinomios de orden alto es mala idea, pues la forma general de los datos lejos de la discontinuidad puede influir fuertemente la diferencia que observamos cerca de la discontinuidad.\n\n\nEjemplo: edad mínima de consumo de alcohol\nConsideramos datos de The Effect of Alcohol Consumption on Mortality: Regression Discontinuity Evidence from the Minimum Drinking Age\nEn este caso, queremos ver el efecto causal de permitir legalmente tomar alcohol sobre la mortalidad de jóvenes. La regla administrativa en este caso es que a partir de los 21 años es legal que consuman alcohol.\nEn este ejemplo particular, los datos se agruparon en cubetas por rangos de edad de 2 meses de edad. Esto no es necesario (podríamos utilizar los datos desagregados y un modelo logístico, por ejemplo).\nVeamos dos ejemplos particulares, muertes en vehículos, suicidios y homicidios:\n\nmlda_tbl <- read_csv(\"../datos/mlda.csv\") |> \n select(agecell, over21, all, homicide, suicide, \n `vehicle accidents` = mva, drugs, external, externalother) |> \n pivot_longer(cols=c(all:externalother), names_to = \"tipo\", values_to = \"mortalidad\") |> \n filter(tipo %in% c(\"vehicle accidents\", \"suicide\", \"homicide\"))\nhead(mlda_tbl)\n\n# A tibble: 6 × 4\n agecell over21 tipo mortalidad\n <dbl> <dbl> <chr> <dbl>\n1 19.1 0 homicide 16.3\n2 19.1 0 suicide 11.2\n3 19.1 0 vehicle accidents 35.8\n4 19.2 0 homicide 16.9\n5 19.2 0 suicide 12.2\n6 19.2 0 vehicle accidents 35.6\n\nggplot(mlda_tbl, aes(x = agecell, y = mortalidad, group = over21)) + geom_point() +\n geom_smooth(method = \"loess\", span = 1, formula = \"y ~ x\") + facet_wrap(~tipo)\n\n\n\n\n\n\n\n\nEjercicio: construye modelos de stan para estos datos, como en el ejemplo anterior.\n\n\n\n\nFreedman, David A. 1991. «Statistical Models and Shoe Leather». Sociological Methodology 21: 291-313. http://www.jstor.org/stable/270939.\n\n\nMorgan, S. L., y C. Winship. 2015. Counterfactuals and Causal Inference. Analytical Methods for Social Research. Cambridge University Press. https://books.google.com.mx/books?id=Q6YaBQAAQBAJ.", + "crumbs": [ + "10  Otros métodos para inferencia causal" + ] } ] \ No newline at end of file
+ +