-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
325 lines (279 loc) · 17.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os, sys, torch, copy, gym_rotor
# os.environ["CUDA_VISIBLE_DEVICES"] = "MIG-43983c88-ad09-55fa-a5f4-884dffcb799d"
import gymnasium as gym
from datetime import datetime
import args_parse
import numpy as np
from numpy import random
from gym_rotor.envs.quad_utils import *
from gym_rotor.wrappers.decoupled_yaw_wrapper import DecoupledWrapper
from gym_rotor.wrappers.coupled_yaw_wrapper import CoupledWrapper
from trajectory_generation import TrajectoryGeneration
from algos.replay_buffer import ReplayBuffer
from algos.matd3 import MATD3
from algos.td3 import TD3
# Create directories:
os.makedirs("./models") if not os.path.exists("./models") else None
os.makedirs("./results") if not os.path.exists("./results") else None
class Learner:
def __init__(self, args, framework, seed):
# Make OpenAI Gym environment:
self.args = args
self.framework = framework
self.total_timesteps = 0
if self.framework in ("DTDE", "CTDE"):
"""--------------------------------------------------------------------------------------------------
| Agents | Observations | obs_dim | Actions: | act_dim | Rewards |
| #agent1 | {ex, ev, b3, w12, eIx} | 15 | {f_total, tau} | 4 | f(ex, ev, eb3, ew12, eIx) |
| #agent2 | {b1, W3, eIb1} | 5 | {M3} | 1 | f(eb1, eW3, eIb1) |
--------------------------------------------------------------------------------------------------"""
self.env = DecoupledWrapper()
self.args.N = 2 # The number of agents
self.args.obs_dim_n = [15, 5]
self.args.action_dim_n = [4, 1]
elif self.framework == "SARL":
"""--------------------------------------------------------------------------------------------------------------
| Agents | Observations | obs_dim | Actions: | act_dim | Rewards |
| #agent1 | {ex, ev, R, eW, eIx, eIb1} | 22 | {T1,T2,T3,T4} | 4 | f(ex, ev, eb1, eb3, eW, eIx, eIb1) |
---------------------------------------------------------------------------------------------------------------"""
self.env = CoupledWrapper()
self.args.N = 1 # The number of agents
self.args.obs_dim_n = [22]
self.args.action_dim_n = [4]
self.eval_max_steps = self.args.eval_max_steps/self.env.dt
self.trajectory = TrajectoryGeneration(self.env)
# Set seed for random number generators:
self.seed = seed
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.env.action_space.seed(self.seed)
self.env.observation_space.seed(self.seed)
# Initialize N agents:
if self.framework == "CTDE":
self.agent_n = [MATD3(args, agent_id) for agent_id in range(args.N)]
elif self.framework in ("SARL", "DTDE"):
self.agent_n = [TD3(args, agent_id) for agent_id in range(args.N)]
self.args.noise_std_decay = (args.explor_noise_std_init - args.explor_noise_std_min) / args.explor_noise_decay_steps
self.explor_noise_std = self.args.explor_noise_std_init # Initialize explor_noise_std
# Initialize replay buffer:
self.replay_buffer = ReplayBuffer(self.args)
# Load trained models and optimizer parameters:
if args.test_model == True:
agent_id = 0
if self.framework in ("DTDE", "CTDE"):
# self.agent_n[agent_id].load(self.framework, 4200_000, agent_id, self.seed)
self.agent_n[agent_id].load_solved_model(self.framework, 3670_000, agent_id, self.seed)
agent_id = 1
# self.agent_n[agent_id].load(self.framework, 1980_000, agent_id, self.seed)
self.agent_n[agent_id].load_solved_model(self.framework, 3700_000, agent_id, self.seed)
elif self.framework == "SARL":
# self.agent_n[agent_id].load(self.framework, 2910_000, agent_id, self.seed)
self.agent_n[agent_id].load_solved_model(self.framework, 1720_000, agent_id, self.seed)
def train_policy(self):
# Evaluate policy:
self.eval_policy()
# Setup loggers:
log_step_path = os.path.join("./results", "log_step_seed_"+str(self.seed)+".txt")
log_eval_path = os.path.join("./results", "log_eval_seed_"+str(self.seed)+".txt")
log_step = open(log_step_path,"w+") # Total timesteps vs. Total reward
log_eval = open(log_eval_path,"w+") # Total timesteps vs. Evaluated average reward
# Initialize environment:
obs_n, done_episode = self.env.reset(env_type='train', seed=self.seed), False
b1d = self.env.b1d
max_total_reward = [0.9*self.eval_max_steps,0.9*self.eval_max_steps] # 90% of max_steps to save best models
episode_timesteps = 0
if self.framework in ("DTDE", "CTDE"):
episode_reward = [0.,0.]
elif self.framework == "SARL":
episode_reward = [0.]
# Training loop:
for self.total_timesteps in range(int(self.args.max_timesteps)):
episode_timesteps += 1
# Each agent selects actions based on its own local observations w/ exploration noise:
if self.total_timesteps < self.args.start_timesteps: # select action randomly
act_n = [random.rand(action_dim_n)*2-1 for action_dim_n in self.args.action_dim_n] # between -1 and 1
else:
act_n = [agent.choose_action(obs, explor_noise_std=self.explor_noise_std) for agent, obs in zip(self.agent_n, obs_n)]
action = np.concatenate((act_n), axis=None)
# Perform actions:
obs_next_n, r_n, done_n, _, _ = self.env.step(copy.deepcopy(action))
eX = np.round(obs_next_n[0][0:3]*self.env.x_lim, 5) # position error [m]
if self.framework in ("DTDE", "CTDE"):
eb1 = ang_btw_two_vectors(obs_next_n[1][0:3], b1d) # heading error [rad]
elif self.framework == "SARL":
eb1 = ang_btw_two_vectors(obs_next_n[0][6:9], b1d) # heading error [rad]
# Episode termination:
if episode_timesteps == self.args.max_steps: # Episode terminated!
done_episode = True
done_n[0] = True if (abs(eX) <= 0.05).all() else False # Problem is solved!
if self.framework in ("DTDE", "CTDE"):
done_n[1] = True if abs(eb1) <= 0.02 else False # Problem is solved!
# Store a set of transitions in replay buffer:
self.replay_buffer.store_transition(obs_n, act_n, r_n, obs_next_n, done_n)
obs_n = obs_next_n
episode_reward = [float('{:.4f}'.format(episode_reward[agent_id]+r)) for agent_id, r in zip(range(self.args.N), r_n)]
#episode_reward += sum(r_n)/self.args.N
self.total_timesteps += 1
# Decay explor_noise_std:
if self.args.use_explor_noise_decay:
self.explor_noise_std = self.explor_noise_std - self.args.noise_std_decay if self.explor_noise_std - self.args.noise_std_decay > self.args.explor_noise_std_min else self.args.explor_noise_std_min
# Train agent after collecting sufficient data:
if self.total_timesteps > self.args.start_timesteps:
# Train each agent individually:
for agent_id in range(self.args.N):
self.agent_n[agent_id].train(self.replay_buffer, self.agent_n, self.env)
# Evaluate policy:
if self.total_timesteps % self.args.eval_freq == 0 and self.total_timesteps > self.args.start_timesteps:
eval_reward = self.eval_policy()
# Logging updates:
if self.framework in ("DTDE", "CTDE"):
log_eval.write('{}\t {}\n'.format(self.total_timesteps, eval_reward))
elif self.framework == "SARL":
log_eval.write('{}\t {}\n'.format(self.total_timesteps, eval_reward))
log_eval.flush()
# Save best model:
for agent_id in range(self.args.N):
if eval_reward[agent_id] > max_total_reward[agent_id]:
max_total_reward[agent_id] = eval_reward[agent_id]
self.agent_n[agent_id].save_model(self.framework, self.total_timesteps, agent_id, self.seed)
# If done_episode:
if any(done_n) == True or done_episode == True:
print(f"total_timestpes: {self.total_timesteps+1}, time_stpes: {episode_timesteps}, reward: {episode_reward}, eX: {eX}, eb1: {eb1:.3f}")
# Log data:
if self.total_timesteps >= self.args.start_timesteps:
if self.framework in ("DTDE", "CTDE"):
log_step.write('{}\t {}\n'.format(self.total_timesteps, episode_reward))
elif self.framework == "SARL":
log_step.write('{}\t {}\n'.format(self.total_timesteps, episode_reward))
log_step.flush()
# Reset environment:
obs_n, done_episode = self.env.reset(env_type='train', seed=self.seed), False
episode_timesteps = 0
if self.framework in ("DTDE", "CTDE"):
episode_reward = [0.,0.]
elif self.framework == "SARL":
episode_reward = [0.]
# Close environment:
self.env.close()
def eval_policy(self):
# Set mode for generating trajectory:
mode = 5
""" Mode List -----------------------------------------------
0 or 1: idle and warm-up (approach to xd = [0,0,0])
2: take-off
3: landing
4: stay (hovering)
5: circle
----------------------------------------------------------"""
# Make OpenAI Gym environment:
if self.framework in ("DTDE", "CTDE"):
"""--------------------------------------------------------------------------------------------------
| Agents | Observations | obs_dim | Actions: | act_dim | Rewards |
| #agent1 | {ex, ev, b3, w12, eIx} | 15 | {f_total, tau} | 4 | f(ex, ev, eb3, ew12, eIx) |
| #agent2 | {b1, W3, eIb1} | 5 | {M3} | 1 | f(eb1, eW3, eIb1) |
--------------------------------------------------------------------------------------------------"""
eval_env = DecoupledWrapper()
elif self.framework == "SARL":
"""--------------------------------------------------------------------------------------------------------------
| Agents | Observations | obs_dim | Actions: | act_dim | Rewards |
| #agent1 | {ex, ev, R, eW, eIx, eIb1} | 22 | {T1,T2,T3,T4} | 4 | f(ex, ev, eb1, eb3, eW, eIx, eIb1) |
---------------------------------------------------------------------------------------------------------------"""
eval_env = CoupledWrapper()
# Fixed seed is used for the eval environment.
seed = 123
eval_env.action_space.seed(seed)
eval_env.observation_space.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
# Save solved model:
success_count = []
if self.framework in ("DTDE", "CTDE"):
success, eval_reward = [False,False], [0.,0.]
elif self.framework == "SARL":
success, eval_reward = [False], [0.]
print("---------------------------------------------------------------------------------------------------------------------")
for num_eval in range(self.args.num_eval):
# Data save:
act_list, obs_list, cmd_list = [], [], [] if args.save_log else None
# Reset envs, timesteps, and reward:
obs_n = eval_env.reset(env_type='eval', seed=self.seed)
episode_timesteps = 0
if self.framework in ("DTDE", "CTDE"):
episode_reward = [0.,0.]
elif self.framework == "SARL":
episode_reward = [0.]
# Evaluation loop:
for _ in range(int(self.eval_max_steps)):
episode_timesteps += 1
# Generate trajectory:
state = eval_env.get_current_state()
xd, vd, b1d, b3d, Wd = self.trajectory.get_desired(state, mode)
eval_env.set_goal_pos(xd)
error_obs_n = self.trajectory.get_error_state(obs_n, self.framework)
# Actions w/o exploration noise:
act_n = [agent.choose_action(obs, explor_noise_std=0) for agent, obs in zip(self.agent_n, error_obs_n)] # obs_n
# act_n = [agent.choose_action(obs, explor_noise_std=0) for agent, obs in zip(self.agent_n, obs_n)]
action = np.concatenate((act_n), axis=None)
# Perform actions:
obs_next_n, r_n, done_n, _, _ = eval_env.step(copy.deepcopy(action))
state_next = eval_env.get_current_state()
eval_env.render() if args.render == True else None
# Cumulative rewards:
episode_reward = [float('{:.4f}'.format(episode_reward[agent_id]+r)) for agent_id, r in zip(range(self.args.N), r_n)]
obs_n = obs_next_n
# Save data:
if args.save_log:
if self.framework in ("DTDE", "CTDE"):
eIx = obs_next_n[0][12:]
elif self.framework == "SARL":
eIx = obs_next_n[0][15:18]
act_list.append(action)
obs_list.append(np.concatenate((state_next, eIx), axis=None))
cmd_list.append(np.concatenate((xd, vd, b1d, b3d, Wd), axis=None))
# Episode termination:
if any(done_n) or episode_timesteps == self.eval_max_steps:
eX = np.round(error_obs_n[0][0:3]*self.env.x_lim, 5) # position error [m]
if self.framework in ("DTDE", "CTDE"):
eb1 = ang_btw_two_vectors(obs_next_n[1][0:3], b1d) # heading error [rad]
success[0] = True if (abs(eX) <= 0.05).all() else False
success[1] = True if abs(eb1) <= 0.01 else False
elif self.framework == "SARL":
eb1 = ang_btw_two_vectors(obs_next_n[0][6:9], b1d) # heading error [rad]
success[0] = True if (abs(eX) <= 0.05).all() else False
print(f"eval_iter: {num_eval+1}, time_stpes: {episode_timesteps}, episode_reward: {episode_reward}, eX: {eX}, eb1: {eb1:.3f}")
success_count.append(success)
break
eval_reward = [eval_reward[agent_id]+epi_r for agent_id, epi_r in zip(range(self.args.N), episode_reward)]
# Save data:
if args.save_log:
min_len = min(len(act_list), len(obs_list), len(cmd_list))
log_data = np.column_stack((act_list[-min_len:], obs_list[-min_len:], cmd_list[-min_len:]))
header = "Actions and States\n"
header += "action[0], ..., state[0], ..., command[0], ..."
time_now = datetime.now().strftime("%m%d%Y_%H%M%S")
fpath = os.path.join('./results', 'log_' + time_now + '.dat')
np.savetxt(fpath, log_data, header=header, fmt='%.10f')
sys.exit("The trained agent has been test!") if args.test_model == True else None
# Average reward:
eval_reward = [float('{:.4f}'.format(eval_r/self.args.num_eval)) for eval_r in eval_reward]
print("------------------------------------------------------------------------------------------")
print(f"total_timesteps: {self.total_timesteps} \t eval_reward: {eval_reward} \t explor_noise_std: {self.explor_noise_std}")
print("------------------------------------------------------------------------------------------")
# Save solved model:
for agent_id in range(self.args.N):
if all(i[agent_id] == True for i in success_count) and args.save_model == True: # Problem is solved
self.agent_n[agent_id].save_solved_model(self.framework, self.total_timesteps, agent_id, self.seed)
return eval_reward
if __name__ == '__main__':
# Hyperparameters:
parser = args_parse.create_parser()
args = parser.parse_args()
# Show information:
print("---------------------------------------------------------------------------------------------------------------------")
print("Framework:", args.framework_id, "| Seed:", args.seed, "| Batch size:", args.batch_size)
print("gamma:", args.discount, "| lr_a:", args.lr_a, "| lr_c:", args.lr_c,
"| Actor hidden dim:", args.actor_hidden_dim,
"| Critic hidden dim:", args.critic_hidden_dim)
print("---------------------------------------------------------------------------------------------------------------------")
learner = Learner(args, framework=args.framework_id, seed=args.seed)
learner.train_policy()