The goal of limmbo2
is to estimate Vg and Ve covariance matrices in the multivariate LMM. Note that it uses the python module limmbo
to do this. The preprint article that describes the limmbo
python module's methods is here: https://www.biorxiv.org/content/early/2018/01/30/255497
First, be sure that you have python modules limix
and limmbo
installed:
conda install -c conda-forge limix
pip install limmbo
Once those two modules are successfully installed, you can proceed to install the limmbo2 R package:
# install.packages("devtools")
devtools::install_github("fboehm/limmbo2")
This is a basic example which shows you how to solve a common problem:
library(limmbo2)
pheno <- matrix(data = runif(300), nrow = 100, ncol = 3)
kinship <- diag(100)
t(chol(kinship)) -> chol_kin
prep_data(pheno, kinship) -> input_data
make_limmbo(input_data, TRUE, 10, 2) -> l_out
bs_covar_est(l_out, 1, 1) -> bs_out
bs_out2 <- lapply(FUN = convert_for_bscombine, X = bs_out)
combine_bs(bs_out2, l_out) -> fits
(fits$Cn_fit -> Ve)
#> [,1] [,2] [,3]
#> [1,] 0.1696938 0.1342838 0.1126630
#> [2,] 0.1342838 0.1813464 0.1230871
#> [3,] 0.1126630 0.1230871 0.1421201
(fits$Cg_fit -> Vg)
#> [,1] [,2] [,3]
#> [1,] 0.1696938 0.1342838 0.1126630
#> [2,] 0.1342838 0.1813464 0.1230871
#> [3,] 0.1126630 0.1230871 0.1421201