Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

frequent/largest/smallest determined from source and compare combined #66

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 23 additions & 10 deletions sweetviz/series_analyzer_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,17 +36,23 @@ def do_detail_numeric(series: pd.Series, counts: dict, counts_compare: dict, upd
detail["frequent_values"] = list()
detail["min_values"] = list()
detail["max_values"] = list()
frequent_values = pd.DataFrame(counts["value_counts_without_nan"].head(num_to_show))
min_values = pd.DataFrame(counts["value_counts_without_nan"].sort_index( \
ascending=True).head(num_to_show))
max_values = pd.DataFrame(counts["value_counts_without_nan"].sort_index( \
ascending=False)).head(num_to_show)

if counts_compare is not None:
this_compare_count = counts_compare["value_counts_without_nan"]
compare_total_num = float(updated_dict["compare"]["base_stats"]["num_values"])
total_counts = counts["value_counts_without_nan"].add(this_compare_count, fill_value=0)
frequent_values = pd.DataFrame(total_counts.head(num_to_show))
min_values = pd.DataFrame(total_counts.sort_index( \
ascending=True).head(num_to_show))
max_values = pd.DataFrame(total_counts.sort_index( \
ascending=False)).head(num_to_show)
else:
this_compare_count = None
frequent_values = pd.DataFrame(counts["value_counts_without_nan"].head(num_to_show))
min_values = pd.DataFrame(counts["value_counts_without_nan"].sort_index( \
ascending=True).head(num_to_show))
max_values = pd.DataFrame(counts["value_counts_without_nan"].sort_index( \
ascending=False)).head(num_to_show)

for frequent, min_value, max_value in zip(frequent_values.itertuples(), \
min_values.itertuples(), max_values.itertuples()):
def get_comparison_num(feature_name):
Expand All @@ -69,11 +75,18 @@ def get_comparison_num(feature_name):
# ("none" is the absence of value)
this_comparison = NumWithPercent(0, compare_total_num)
return this_comparison
detail["frequent_values"].append((frequent[0], NumWithPercent(frequent[1], total_num),

def get_num(feature_name):
if feature_name in counts["value_counts_without_nan"]:
return NumWithPercent(counts["value_counts_without_nan"][feature_name], total_num)
else:
return NumWithPercent(0, total_num)

detail["frequent_values"].append((frequent[0], get_num(frequent[0]),
get_comparison_num(frequent[0])))
detail["min_values"].append((min_value[0], NumWithPercent(min_value[1], total_num),
detail["min_values"].append((min_value[0], get_num(min_value[0]),
get_comparison_num(min_value[0])))
detail["max_values"].append((max_value[0], NumWithPercent(max_value[1], total_num),
detail["max_values"].append((max_value[0], get_num(max_value[0]),
get_comparison_num(max_value[0])))
# detail["min_values"] = pd.DataFrame(counts["value_counts_without_nan"].sort_index( \
# ascending=True).tail(num_to_show))
Expand Down Expand Up @@ -108,4 +121,4 @@ def analyze(to_process: FeatureToProcess, feature_dict: dict):
if to_process.is_target():
feature_dict["html_summary"] = sv_html.generate_html_summary_target_numeric(feature_dict, compare_dict)
else:
feature_dict["html_summary"] = sv_html.generate_html_summary_numeric(feature_dict, compare_dict)
feature_dict["html_summary"] = sv_html.generate_html_summary_numeric(feature_dict, compare_dict)