Skip to content

Latest commit

 

History

History
27 lines (23 loc) · 1.45 KB

README.md

File metadata and controls

27 lines (23 loc) · 1.45 KB

Welcome to the workshop of applying Neural Posterior Estimation in inferring historical population sizes!

Before we begin, ensure the following:

  1. Operating System: Linux/macOS/Windows (with WSL or an equivalent environment).
  2. Hardware:
    • Only CPU is needed for this workshop.
    • GPU usage will be provided in another Notebook.
  3. Software:

Environment Setup

To run this notebook, please follow these steps:

  1. Install conda if you haven’t already.
  2. Clone the repository: git clone https://github.com/fbaumdicker/ML-PopGen-Tutorials.git and navigate to the NPEinPopGen directory.
  3. Create the environment: conda env create -f popgensbi.yml
  4. Activate the environment: conda activate popgensbi
  5. Start notebook kernel: python -m ipykernel install --user --name popgensbi --display-name "popgensbi"
  6. Launch Jupyter notebook: jupyter notebook.
  7. In the Notebook, select the "popgensbi" kernel if prompted.

To run the Snakemake pipeline, please adjust the parameters in the config, and use the following command:

snakemake --use-conda --cores 4