forked from Allen-Synthesis/EuroPi
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathharmonic_lfos.py
274 lines (234 loc) · 10.2 KB
/
harmonic_lfos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from europi import *
from math import cos, radians
from time import sleep_ms, ticks_diff, ticks_ms
from machine import freq
from random import randint
from europi_script import EuroPiScript
MAX_VOLTAGE = MAX_OUTPUT_VOLTAGE # Default is inherited but this can be overriden by replacing "MAX_OUTPUT_VOLTAGE" with an integer
MAX_HARMONIC = 32 # Too high a value may be hard to select using the knob, but the actual hardware limit is only reached at 4096
LONG_PRESS_MIN_DURATION = 500
class HarmonicLFOs(EuroPiScript):
MODES_SHAPES = {
'SINE': 0,
'SAW': 1,
'SQUARE': 2,
'OFF': 3,
'RANDOM': 4,
'NOISE': 5,
}
def __init__(self):
super().__init__()
# Retreive saved state information from file
state = self.load_state_json()
# Use the saved values for the LFO divisions and mode if found in the save state file, using defaults if not
self.divisions = state.get("divisions", [1, 3, 5, 7, 11, 13])
self.modes = state.get("modes", [self.MODES_SHAPES['SINE']] * 6)
self.MODES_COUNT = len(self.MODES_SHAPES)
self.viewAllWaveforms = state.get("viewAllWaveforms", True)
# Initialise all the other variables
self.degree = 0
self.rad = radians(self.degree)
self.delay, self.increment_value = self.get_delay_increment_value()
self.pixel_x = OLED_WIDTH-1
self.pixel_y = OLED_HEIGHT-1
self.selected_lfo = 0
self.clock_division = self.selected_lfo_start_value = self.get_clock_division()
self.state_needs_saving = False
# Set the digital input and button handlers
din.handler(self.reset)
@b1.handler_falling
def b1Pressed():
"""Triggered when B1 is pressed"""
diff = ticks_diff(ticks_ms(), b1.last_pressed())
if diff > LONG_PRESS_MIN_DURATION:
"""Long press: toggle waveform view mode"""
self.viewAllWaveforms = not self.viewAllWaveforms
else:
"""Short press: Change the mode that controls wave shape"""
self.modes[self.selected_lfo] = (self.modes[self.selected_lfo] + 1) % self.MODES_COUNT
self.state_needs_saving = True
@b2.handler_falling
def b2Pressed():
"""Move the selection to the next LFO"""
self.selected_lfo = (self.selected_lfo + 1) % 6
self.selected_lfo_start_value = self.get_clock_division()
def get_clock_division(self):
"""Determine the new clock division based on the position of knob 2"""
return k2.read_position(MAX_HARMONIC) + 1
def reset(self):
"""Reset all LFOs to zero volts, maintaining their divisions"""
self.degree = 0
def get_delay_increment_value(self):
"""Calculate the wait time between degrees"""
delay = (0.1 - (k1.read_position(100, 1) / 1000)) + (ain.read_voltage(1) / 100)
return delay, round((((1 / delay) - 10) / 1) + 1)
def save_state(self):
"""Save the current set of divisions to file"""
# Prevent save-spam by limiting save rate to 1Hz
if self.last_saved() < 1000:
return
self.state_needs_saving = False
self.save_state_json({
"divisions": self.divisions,
"modes": self.modes,
"viewAllWaveforms": self.viewAllWaveforms,
})
def update_display(self):
"""Update the OLED display every 10 cycles (degrees)"""
oled.scroll(-1, 0)
if round(self.degree, -1) % 10 == 0:
oled.show()
def increment(self):
"""Increment the current degree and determine new values of delay and increment_value"""
self.degree += self.increment_value
self.delay, self.increment_value = self.get_delay_increment_value()
sleep_ms(int(self.delay))
def draw_wave(self):
shape = self.modes[self.selected_lfo]
if shape == self.MODES_SHAPES['SINE']:
oled.pixel(3, 31, 1)
oled.pixel(3, 30, 1)
oled.pixel(3, 29, 1)
oled.pixel(4, 28, 1)
oled.pixel(4, 27, 1)
oled.pixel(4, 26, 1)
oled.pixel(4, 25, 1)
oled.pixel(5, 24, 1)
oled.pixel(6, 23, 1)
oled.pixel(7, 23, 1)
oled.pixel(8, 24, 1)
oled.pixel(9, 25, 1)
oled.pixel(9, 26, 1)
oled.pixel(9, 27, 1)
oled.pixel(10, 28, 1)
oled.pixel(10, 29, 1)
oled.pixel(11, 30, 1)
oled.pixel(12, 31, 1)
oled.pixel(13, 31, 1)
oled.pixel(14, 30, 1)
oled.pixel(15, 29, 1)
oled.pixel(15, 28, 1)
oled.pixel(15, 27, 1)
oled.pixel(15, 26, 1)
oled.pixel(16, 25, 1)
oled.pixel(16, 24, 1)
oled.pixel(16, 23, 1)
elif shape == self.MODES_SHAPES['SAW']:
oled.line(3, 31, 9, 24, 1)
oled.vline(9, 24, 8, 1)
oled.line(9, 31, 15, 24, 1)
oled.vline(15, 24, 8, 1)
elif shape == self.MODES_SHAPES['SQUARE']:
oled.vline(3, 24, 8, 1)
oled.hline(3, 24, 6, 1)
oled.vline(9, 24, 8, 1)
oled.hline(9, 31, 6, 1)
oled.vline(15, 24, 8, 1)
elif shape == self.MODES_SHAPES['OFF']:
oled.line(3, 24, 15, 31, 1)
oled.line(15, 24, 3, 31, 1)
elif shape == self.MODES_SHAPES['RANDOM']:
oled.pixel(3, 29, 1)
oled.pixel(4, 28, 1)
oled.pixel(4, 27, 1)
oled.pixel(5, 26, 1)
oled.pixel(6, 26, 1)
oled.pixel(7, 27, 1)
oled.pixel(8, 28, 1)
oled.pixel(9, 28, 1)
oled.pixel(10, 27, 1)
oled.pixel(10, 26, 1)
oled.pixel(10, 25, 1)
oled.pixel(11, 24, 1)
oled.pixel(12, 25, 1)
oled.pixel(13, 26, 1)
oled.pixel(13, 27, 1)
oled.pixel(14, 28, 1)
oled.pixel(14, 29, 1)
oled.pixel(15, 30, 1)
oled.pixel(16, 30, 1)
elif shape == self.MODES_SHAPES['NOISE']:
oled.pixel(3, 26, 1)
oled.pixel(3, 30, 1)
oled.pixel(4, 24, 1)
oled.pixel(4, 23, 1)
oled.pixel(5, 31, 1)
oled.pixel(5, 29, 1)
oled.pixel(6, 25, 1)
oled.pixel(6, 23, 1)
oled.pixel(7, 29, 1)
oled.pixel(7, 25, 1)
oled.pixel(8, 26, 1)
oled.pixel(8, 30, 1)
oled.pixel(9, 27, 1)
oled.pixel(9, 24, 1)
oled.pixel(10, 26, 1)
oled.pixel(10, 29, 1)
oled.pixel(11, 24, 1)
oled.pixel(11, 30, 1)
oled.pixel(12, 23, 1)
oled.pixel(12, 25, 1)
oled.pixel(13, 29, 1)
oled.pixel(13, 25, 1)
oled.pixel(14, 28, 1)
oled.pixel(14, 26, 1)
oled.pixel(15, 24, 1)
oled.pixel(15, 31, 1)
oled.pixel(16, 27, 1)
oled.pixel(16, 30, 1)
def display_selected_lfo(self):
"""Draw the current LFO's number and division to the OLED display"""
oled.fill_rect(0, 0, 20, 32, 0)
oled.fill_rect(0, 0, 20, 9, 1)
oled.text(f'{self.selected_lfo + 1}', 6, 1, 0)
number = self.divisions[self.selected_lfo]
x = 2 if number >= 10 else 6
oled.text(f'{number}', x, 12, 1)
self.draw_wave()
def calculate_voltage(self, cv, multiplier):
"""Determine the voltage based on current degree, wave shape, and MAX_VOLTAGE"""
three_sixty = 360 * multiplier
degree_three_sixty = self.degree % three_sixty
shape = self.modes[cvs.index(cv)]
voltage = 0
if shape == self.MODES_SHAPES['SINE']:
voltage = (0 - (cos(self.rad * (1 / multiplier))) + 1) * (MAX_VOLTAGE / 2)
elif shape == self.MODES_SHAPES['SAW']:
voltage = (degree_three_sixty / three_sixty) * MAX_VOLTAGE
elif shape == self.MODES_SHAPES['SQUARE']:
voltage = MAX_VOLTAGE * (int((degree_three_sixty / three_sixty) * MAX_VOLTAGE) < (MAX_VOLTAGE / 2))
elif shape == self.MODES_SHAPES['RANDOM']: # This is NOT actually random, it is the sum of 3 out of sync sine waves, but it produces a fluctuating voltage that is near impossible to predict over time, and which can be clocked to be in time
voltage = (((0 - (cos(self.rad * (1 / multiplier))) + 1) * (MAX_VOLTAGE / 2)) / 3) \
+ (((0 - (cos(self.rad * (1 / (multiplier * 2.3)))) + 1) * (MAX_VOLTAGE / 2)) / 3) \
+ (((0 - (cos(self.rad * (1 / (multiplier * 5.6)))) + 1) * (MAX_VOLTAGE / 2)) / 3)
elif shape == self.MODES_SHAPES['NOISE']: # The division knob is affecting the spread for the noise
voltage = MAX_VOLTAGE * randint(0, int((1000 / MAX_HARMONIC) * multiplier)) / 1000
return voltage
def display_graphic_lines(self):
"""Draw the lines displaying each LFO's voltage to the OLED display"""
self.rad = radians(self.degree)
oled.vline(self.pixel_x, 0, OLED_HEIGHT, 0)
for index, (cv, multiplier) in enumerate(zip(cvs, self.divisions)):
volts = self.calculate_voltage(cv, multiplier)
cv.voltage(volts)
if self.viewAllWaveforms:
oled.pixel(self.pixel_x, self.pixel_y - int(volts * (self.pixel_y / 10)), 1)
elif index == self.selected_lfo:
oled.pixel(self.pixel_x, self.pixel_y - int(volts * (self.pixel_y / 10)), 1)
def check_change_clock_division(self):
"""Change current LFO's division with knob movement detection"""
self.clock_division = self.get_clock_division()
if self.clock_division != self.selected_lfo_start_value:
self.selected_lfo_start_value = self.divisions[self.selected_lfo] = self.clock_division
self.state_needs_saving = True
def main(self):
while True:
self.check_change_clock_division()
self.display_graphic_lines()
self.display_selected_lfo()
self.update_display()
self.increment()
if self.state_needs_saving:
self.save_state()
if __name__ == "__main__":
HarmonicLFOs().main()