-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
23 changed files
with
2,988 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
.pyc | ||
.ipynb_checkpoints | ||
__pycache__ |
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import cv2\n", | ||
"import numpy as np\n", | ||
"import glob" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"img_array = []\n", | ||
"file_list = glob.glob('outputs/*.png')\n", | ||
"file_list = np.sort(glob.glob('outputs/*.png'))\n", | ||
"for filename in file_list:\n", | ||
" img = cv2.imread(filename)\n", | ||
" height, width, layers = img.shape\n", | ||
" size = (width,height)\n", | ||
" img_array.append(img)\n", | ||
"\n", | ||
"out = cv2.VideoWriter('project.avi',cv2.VideoWriter_fourcc(*'DIVX'), 24, size)\n", | ||
" \n", | ||
"for i in range(len(img_array)):\n", | ||
" out.write(img_array[i])\n", | ||
"out.release()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import argparse\n", | ||
"import os\n", | ||
"import sys\n", | ||
"import cv2\n", | ||
"import numpy as np\n", | ||
"import glob\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import matplotlib\n", | ||
"from PIL import Image, ImageOps\n", | ||
"import pandas as pd\n", | ||
"from tqdm import tqdm\n", | ||
"import json\n", | ||
"import copy\n", | ||
"from utils import *" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"with open('./data/pano_tracks_2.json', 'r') as f:\n", | ||
" pano_tracks = json.load(f)\n", | ||
" \n", | ||
"with open('./data/pano_bridges_2.json', 'r') as f:\n", | ||
" pano_bridges = json.load(f) " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"n_frames = len(pano_tracks)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tracking_raw = {}\n", | ||
"for frame in pano_tracks:\n", | ||
" for instance in pano_tracks[frame]:\n", | ||
" location = instance[:2]\n", | ||
" track_id = instance[2]\n", | ||
" if track_id not in list(tracking_raw.keys()):\n", | ||
" tracking_raw[track_id] = []\n", | ||
" tracking_raw[track_id].append([float(location[0]),float(location[1]),int(frame)])\n", | ||
" else:\n", | ||
" tracking_raw[track_id].append([float(location[0]),float(location[1]),int(frame)])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from scipy.ndimage.filters import gaussian_filter1d\n", | ||
"\n", | ||
"tracking_sm = {}\n", | ||
"for k in tracking_raw:\n", | ||
" location = tracking_raw[k]\n", | ||
" if len(location)>5:\n", | ||
" location = np.stack(location)\n", | ||
" location[:,0] = gaussian_filter1d(location[:,0],0.5)\n", | ||
" location[:,1] = gaussian_filter1d(location[:,1],0.5)\n", | ||
" tracking_sm[k] = location\n", | ||
" else:\n", | ||
" tracking_sm[k] = location" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tracking = {k:[] for k in range(2,n_frames+2)}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for k in tracking_sm:\n", | ||
" track_id = k\n", | ||
" for t in tracking_sm[k]:\n", | ||
" frame = int(t[2])\n", | ||
" tracking[frame].append([t[0],t[1],track_id])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with open('./data/video_1_pano_smooth_2.json', 'w') as fp:\n", | ||
" json.dump(tracking, fp)\n", | ||
" \n", | ||
"with open('./data/video_1_single_smooth_2.json', 'w') as fp:\n", | ||
" json.dump(pano_bridges, fp)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
File renamed without changes
File renamed without changes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
*.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
from .baseline import Baseline | ||
|
||
def build_encoder(): | ||
model = Baseline() | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# encoding: utf-8 | ||
""" | ||
@author: liaoxingyu | ||
@contact: sherlockliao01@gmail.com | ||
""" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
# encoding: utf-8 | ||
""" | ||
@author: liaoxingyu | ||
@contact: sherlockliao01@gmail.com | ||
""" | ||
|
||
import math | ||
|
||
import torch | ||
from torch import nn | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1): | ||
"""3x3 convolution with padding""" | ||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | ||
padding=1, bias=False) | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = conv3x3(inplanes, planes, stride) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.conv2 = conv3x3(planes, planes) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | ||
padding=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(planes * 4) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
def __init__(self, last_stride=2, block=Bottleneck, layers=[3, 4, 6, 3]): | ||
self.inplanes = 64 | ||
super().__init__() | ||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | ||
bias=False) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
# self.relu = nn.ReLU(inplace=True) # add missed relu | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, layers[0]) | ||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | ||
self.layer4 = self._make_layer( | ||
block, 512, layers[3], stride=last_stride) | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.inplanes, planes * block.expansion, | ||
kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(planes * block.expansion), | ||
) | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample)) | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
# x = self.relu(x) # add missed relu | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
x = self.layer2(x) | ||
x = self.layer3(x) | ||
x = self.layer4(x) | ||
|
||
return x | ||
|
||
def load_param(self, model_path): | ||
param_dict = torch.load(model_path) | ||
for i in param_dict: | ||
if 'fc' in i: | ||
continue | ||
self.state_dict()[i].copy_(param_dict[i]) | ||
|
||
def random_init(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
|
Oops, something went wrong.