-
Notifications
You must be signed in to change notification settings - Fork 4
/
paper_simulation.py
110 lines (79 loc) · 2.78 KB
/
paper_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# General wrapper for the simulation code
#
# Copyright 2020 Robin Scheibler
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import datetime
import json
import os
import random
import traceback
from pathlib import Path
import numpy
import repsimtools
import pyroomacoustics as pra
from process import bss_algorithms, process
# find the absolute path to this file
base_dir = os.path.abspath(os.path.split(__file__)[0])
def init(parameters):
parameters["base_dir"] = base_dir
def gen_args(parameters):
with open(parameters["metadata_fn"], "r") as f:
metadata = json.load(f)
args = []
for label, room_list in metadata.items():
n_rooms = len(room_list)
n_channels = int(label[0])
for room_id in range(n_rooms):
for bss_algo in parameters["bss_algorithms"].keys():
args.append([n_channels, room_id, bss_algo])
random.shuffle(args)
return args
def one_loop(args):
global parameters
import sys
sys.path.append(parameters["base_dir"])
from process import process
try:
res = process(args, parameters)
except Exception:
# get the traceback
tb = traceback.format_exc()
report = {
"args": args,
"tb": tb,
}
pid = os.getpid()
# now write the problem to file
fn_err = os.path.join(parameters["_results_dir"], "error_{}.json".format(pid))
with open(fn_err, "a") as f:
f.write(json.dumps(report, indent=4))
f.write(",\n")
res = []
return res
if __name__ == "__main__":
repsimtools.run(
one_loop,
gen_args,
func_init=init,
base_dir=base_dir,
results_dir="sim_results/",
description="Simulation for OverIVA",
)