-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
156 lines (127 loc) · 5.28 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Code to compute the SI-SDR and SI-SIR metrics
#
# Copyright 2020 Robin Scheibler
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import numpy as np
from scipy.optimize import linear_sum_assignment
def si_bss_eval(reference_signals, estimated_signals, scaling=True):
"""
Compute the Scaled Invariant Signal-to-Distortion Ration (SI-SDR) and related
measures according to [1]_.
.. [1] J. Le Roux, S. Wisdom, H. Erdogan, J. R. Hershey, "SDR - half-baked or well
done?", 2018, https://arxiv.org/abs/1811.02508
Parameters
----------
reference_signals: ndarray (n_samples, n_channels)
The reference clean signals
estimated_signal: ndarray (n_samples, n_channels)
The signals to evaluate
scaling: bool
Flag that indicates whether we want to use the scale invariant (True)
or scale dependent (False) method
Returns
-------
SDR: ndarray (n_channels)
Signal-to-Distortion Ratio
SIR: ndarray (n_channels)
Signal-to-Interference Ratio
SAR: ndarray (n_channels)
Signal-to-Artefact Ratio
"""
n_samples, n_chan = estimated_signals.shape
Rss = np.dot(reference_signals.transpose(), reference_signals)
SDR = np.zeros((n_chan, n_chan))
SIR = np.zeros((n_chan, n_chan))
SAR = np.zeros((n_chan, n_chan))
for r in range(n_chan):
for e in range(n_chan):
SDR[r, e], SIR[r, e], SAR[r, e] = _compute_measures(
estimated_signals[:, e], reference_signals, Rss, r, scaling=scaling
)
dum, p_opt = _linear_sum_assignment_with_inf(-SIR)
return SDR[dum, p_opt], SIR[dum, p_opt], SAR[dum, p_opt], p_opt
def _compute_measures(estimated_signal, reference_signals, Rss, j, scaling=True):
"""
Compute the Scale Invariant SDR and other metrics
This implementation was provided by Johnathan Le Roux
[here](https://github.com/sigsep/bsseval/issues/3)
Parameters
----------
estimated_signal: ndarray (n_samples, n_channels)
The signals to evaluate
reference_signals: ndarray (n_samples, n_channels)
The reference clean signals
Rss: ndarray(n_channels, n_channels)
The covariance matrix of the reference signals
j: int
The index of the source to evaluate
scaling: bool
Flag that indicates whether we want to use the scale invariant (True)
or scale dependent (False) method
"""
this_s = reference_signals[:, j]
if scaling:
# get the scaling factor for clean sources
a = np.dot(this_s, estimated_signal) / Rss[j, j]
else:
a = 1
e_true = a * this_s
e_res = estimated_signal - e_true
Sss = (e_true ** 2).sum()
Snn = (e_res ** 2).sum()
SDR = 10 * math.log10(Sss / Snn)
# Get the SIR
Rsr = np.dot(reference_signals.transpose(), e_res)
b = np.linalg.solve(Rss, Rsr)
e_interf = np.dot(reference_signals, b)
e_artif = e_res - e_interf
SIR = 10 * math.log10(Sss / (e_interf ** 2).sum())
SAR = 10 * math.log10(Sss / (e_artif ** 2).sum())
return SDR, SIR, SAR
def _linear_sum_assignment_with_inf(cost_matrix):
"""
Solves the permutation problem efficiently via the linear sum
assignment problem.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
This implementation was proposed by @louisabraham in
https://github.com/scipy/scipy/issues/6900
to handle infinite entries in the cost matrix.
"""
cost_matrix = np.asarray(cost_matrix)
min_inf = np.isneginf(cost_matrix).any()
max_inf = np.isposinf(cost_matrix).any()
if min_inf and max_inf:
raise ValueError("matrix contains both inf and -inf")
if min_inf or max_inf:
cost_matrix = cost_matrix.copy()
values = cost_matrix[~np.isinf(cost_matrix)]
m = values.min()
M = values.max()
n = min(cost_matrix.shape)
# strictly positive constant even when added
# to elements of the cost matrix
positive = n * (M - m + np.abs(M) + np.abs(m) + 1)
if max_inf:
place_holder = (M + (n - 1) * (M - m)) + positive
if min_inf:
place_holder = (m + (n - 1) * (m - M)) - positive
cost_matrix[np.isinf(cost_matrix)] = place_holder
return linear_sum_assignment(cost_matrix)