-
Notifications
You must be signed in to change notification settings - Fork 4
/
experiment1.py
95 lines (72 loc) · 2.85 KB
/
experiment1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# This file contains code to run the 1st experiment
#
# Copyright 2020 Robin Scheibler
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import datetime
import json
from multiprocessing import Pool
from pathlib import Path
import numpy
import pyroomacoustics as pra
from process import bss_algorithms, process
def gen_args(config_fn):
with open(config_fn, "r") as f:
config = json.load(f)
with open(config["metadata_fn"], "r") as f:
metadata = json.load(f)
args = []
for label, room_list in metadata.items():
n_rooms = len(room_list)
n_channels = int(label[0])
for room_id in range(n_rooms):
for bss_algo in bss_algorithms.keys():
args.append([n_channels, room_id, bss_algo, str(config_fn)])
return args
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run experiment in parallel")
parser.add_argument("config_file", type=str, help="Path to the configuration file")
parser.add_argument(
"-t",
"--test",
action="store_true",
help="Fix number of iterations to two for test purposes",
)
parser.add_argument(
"-s", "--seq", action="store_true", help="Run the experiment sequentially",
)
args = parser.parse_args()
sim_args = gen_args(args.config_file)
if args.test:
sim_args = sim_args[:2]
# date of simulation in string format
date_str = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
all_results = []
if args.seq:
for this_args in sim_args:
all_results += process(this_args)
else:
with Pool() as p:
results = p.map(process, sim_args)
for r in results:
all_results += r
filename = f"{date_str}_smd_results.json"
with open(filename, "w") as f:
json.dump(all_results, f)