-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path7_object_detection_demo_ssd_async.py
executable file
·214 lines (184 loc) · 9.31 KB
/
7_object_detection_demo_ssd_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
"""
Copyright (C) 2018-2019 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import print_function
import sys
import os
from argparse import ArgumentParser, SUPPRESS
import cv2
import time
import logging as log
from openvino.inference_engine import IENetwork, IECore
def build_argparser():
parser = ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
required=True, type=str)
args.add_argument("-i", "--input",
help="Required. Path to video file or image. 'cam' for capturing video stream from camera",
required=True, type=str)
args.add_argument("-l", "--cpu_extension",
help="Optional. Required for CPU custom layers. Absolute path to a shared library with the "
"kernels implementations.", type=str, default=None)
args.add_argument("-d", "--device",
help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is "
"acceptable. The demo will look for a suitable plugin for device specified. "
"Default value is CPU", default="CPU", type=str)
args.add_argument("--labels", help="Optional. Path to labels mapping file", default=None, type=str)
args.add_argument("-pt", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
default=0.4, type=float)
args.add_argument("--no_show", help="Optional. Don't show output", action='store_true')
return parser
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
log.info("Creating Inference Engine...")
ie = IECore()
if args.cpu_extension and 'CPU' in args.device:
ie.add_extension(args.cpu_extension, "CPU")
# Read IR
log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin))
net = IENetwork(model=model_xml, weights=model_bin)
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
img_info_input_blob = None
feed_dict = {}
for blob_name in net.inputs:
if len(net.inputs[blob_name].shape) == 4:
input_blob = blob_name
elif len(net.inputs[blob_name].shape) == 2:
img_info_input_blob = blob_name
else:
raise RuntimeError("Unsupported {}D input layer '{}'. Only 2D and 4D input layers are supported"
.format(len(net.inputs[blob_name].shape), blob_name))
assert len(net.outputs) == 1, "Demo supports only single output topologies"
out_blob = next(iter(net.outputs))
log.info("Loading IR to the plugin...")
exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)
# Read and pre-process input image
n, c, h, w = net.inputs[input_blob].shape
if img_info_input_blob:
feed_dict[img_info_input_blob] = [h, w, 1]
if args.input == 'cam':
input_stream = 0
else:
input_stream = args.input
cap = cv2.VideoCapture(input_stream)
W, H = None, None
writer = None
if W is None or H is None:
ret, frame = cap.read()
(H, W) = frame.shape[:2]
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter("11_openvino_result/output_openvino.avi", fourcc, 30, (W, H), True)
assert cap.isOpened(), "Can't open " + input_stream
if args.labels:
with open(args.labels, 'r') as f:
labels_map = [x.strip() for x in f]
else:
labels_map = None
cur_request_id = 0
next_request_id = 1
log.info("Starting inference in async mode...")
is_async_mode = True
render_time = 0
if is_async_mode:
ret, frame = cap.read()
frame_h, frame_w = frame.shape[:2]
print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key")
print("To switch between sync/async modes, press TAB key in the output window")
while cap.isOpened():
if is_async_mode:
ret, next_frame = cap.read()
else:
ret, frame = cap.read()
if ret:
frame_h, frame_w = frame.shape[:2]
if not ret:
break # abandons the last frame in case of async_mode
# Main sync point:
# in the truly Async mode we start the NEXT infer request, while waiting for the CURRENT to complete
# in the regular mode we start the CURRENT request and immediately wait for it's completion
inf_start = time.time()
if is_async_mode:
in_frame = cv2.resize(next_frame, (w, h))
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
in_frame = in_frame.reshape((n, c, h, w))
feed_dict[input_blob] = in_frame
exec_net.start_async(request_id=next_request_id, inputs=feed_dict)
else:
in_frame = cv2.resize(frame, (w, h))
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
in_frame = in_frame.reshape((n, c, h, w))
feed_dict[input_blob] = in_frame
exec_net.start_async(request_id=cur_request_id, inputs=feed_dict)
if exec_net.requests[cur_request_id].wait(-1) == 0:
inf_end = time.time()
det_time = inf_end - inf_start
# Parse detection results of the current request
res = exec_net.requests[cur_request_id].outputs[out_blob]
for obj in res[0][0]:
# Draw only objects when probability more than specified threshold
if obj[2] > args.prob_threshold:
xmin = int(obj[3] * frame_w)
ymin = int(obj[4] * frame_h)
xmax = int(obj[5] * frame_w)
ymax = int(obj[6] * frame_h)
class_id = int(obj[1])
# Draw box and label\class_id
color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), color, 2)
det_label = labels_map[class_id] if labels_map else str(class_id)
cv2.putText(frame, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7),
cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
# Draw performance stats
inf_time_message = "Inference time: N\A for async mode" if is_async_mode else \
"Inference time: {:.3f} ms".format(det_time * 1000)
render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1000)
async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id) if is_async_mode else \
"Async mode is off. Processing request {}".format(cur_request_id)
cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1)
cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
cv2.putText(frame, async_mode_message, (10, int(frame_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
(10, 10, 200), 1)
#
render_start = time.time()
if not args.no_show:
cv2.imshow("Detection Results", frame)
writer.write(frame)
render_end = time.time()
render_time = render_end - render_start
if is_async_mode:
cur_request_id, next_request_id = next_request_id, cur_request_id
frame = next_frame
frame_h, frame_w = frame.shape[:2]
if not args.no_show:
key = cv2.waitKey(1)
if key == 27:
break
if (9 == key):
is_async_mode = not is_async_mode
log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))
cv2.destroyAllWindows()
if __name__ == '__main__':
sys.exit(main() or 0)