forked from CAMeL-Lab/Arabic_ALA-LC_Romanization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile
245 lines (195 loc) · 10.5 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
## Download Datasets
download_data:
git clone https://github.com/NYULibraries/aco-karms/ data/raw_records/aco/
wget -nc -P data/raw_records/umich http://www.lib.umich.edu/files/umich_bib.xml.gz
gunzip data/raw_records/umich/*
for val in {01..43}; do wget -nc -P data/raw_records/loc https://www.loc.gov/cds/downloads/MDSConnect/BooksAll.2016.part$$val.xml.gz; done
gunzip data/raw_records/loc/*
## extract parallel lines
extract_lines:
python3 src/loc_transcribe.py extract
## filter, clean, and split data into train dev test
data_set:
python3 src/loc_transcribe.py preprocess --split
## train full mle learning curve
train_mles:
python3 src/loc_transcribe.py train mle
# prep dataset and create dalma scripts
prep_seq2seq:
python3 src/loc_transcribe.py train seq2seq --prep
# (dalma scripts) trains full learning curve and predicts dev
train_seq2seq:
python3 src/loc_transcribe.py train seq2seq --train
predict_seq2seq_test:
python3 src/loc_transcribe.py predict seq2seq --predict_test -s 1.0
align_seq2seq:
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/dev/seq2seq_size1.0.out predictions_out/mle_morph/dev/mle_morph_size1.0.out
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/dev/seq2seq_size1.0.out predictions_out/mle_simple/dev/mle_simple_size1.0.out
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/dev/seq2seq_size1.0.out predictions_out/morph/dev/morph.out
align_seq2seq_test:
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/test/seq2seq_size1.0.out predictions_out/mle_morph/test/mle_morph_size1.0.out
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/test/seq2seq_size1.0.out predictions_out/mle_simple/test/mle_simple_size1.0.out
python3 src/loc_transcribe.py predict seq2seq -b predictions_out/seq2seq/test/seq2seq_size1.0.out predictions_out/morph/test/morph.out
predict_translit:
python3 src/loc_transcribe.py predict simple dev
python3 src/loc_transcribe.py predict morph dev
predict_translit_test:
python3 src/loc_transcribe.py predict translit_simple test
python3 src/loc_transcribe.py predict translit_morph test
## predict full mle curve
predict_mles:
python3 src/loc_transcribe.py predict mle dev -m models/mle/size1.0.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.5.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.25.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.125.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.0625.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.03125.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size0.015625.tsv -b predictions_out/simple/dev/simple.out
python3 src/loc_transcribe.py predict mle dev -m models/mle/size1.0.tsv -b predictions_out/morph/dev/morph.out
predict_mles_test:
python3 src/loc_transcribe.py predict mle test -m models/mle/size1.0.tsv -b predictions_out/simple/test/simple.out
python3 src/loc_transcribe.py predict mle test -m models/mle/size1.0.tsv -b predictions_out/morph/test/morph.out
## evaluate full mle curve
evaluate:
#eval seq2seq dev aligned
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/dev/seq2seq_size1.0Xmle_morph_size1.0.out data/processed/dev.tsv
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/dev/seq2seq_size1.0Xmle_simple_size1.0.out data/processed/dev.tsv
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/dev/seq2seq_size1.0Xmorph.out data/processed/dev.tsv
#eval mle_morph dev
python3 src/loc_transcribe.py evaluate predictions_out/mle_morph/dev/mle_morph_size1.0.out
#eval morph dev
python3 src/loc_transcribe.py evaluate predictions_out/morph/dev/morph.out
#eval mle_simple curve
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size1.0.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.5.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.25.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.125.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.0625.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.03125.out
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/dev/mle_simple_size0.015625.out
#eval simple dev
python3 src/loc_transcribe.py evaluate predictions_out/simple/dev/simple.out
#eval seq2seq dev curve
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size1.0.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.5.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.25.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.125.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.0625.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.03125.out
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/dev/seq2seq_size0.015625.out
#eval seq2seq test aligned
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/test/seq2seq_size1.0Xmle_morph_size1.0.out data/processed/test.tsv
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/test/seq2seq_size1.0Xmle_simple_size1.0.out data/processed/test.tsv
python3 src/loc_transcribe.py evaluate predictions_out/aligned_seq2seq/test/seq2seq_size1.0Xmorph.out data/processed/test.tsv
#eval mle_morph test
python3 src/loc_transcribe.py evaluate predictions_out/mle_morph/test/mle_morph_size1.0.out data/processed/test.tsv
#eval morph test
python3 src/loc_transcribe.py evaluate predictions_out/morph/test/morph.out data/processed/test.tsv
#eval simple test
python3 src/loc_transcribe.py evaluate predictions_out/simple/test/simple.out data/processed/test.tsv
#eval seq2seq test
python3 src/loc_transcribe.py evaluate predictions_out/seq2seq/test/seq2seq_size1.0.out data/processed/test.tsv
#eval mle_simple test
python3 src/loc_transcribe.py evaluate predictions_out/mle_simple/test/mle_simple_size1.0.out data/processed/test.tsv
## redo custom part of pipeline
# train_mles
redo: predict_translit predict_mles evaluate
## update requirements
update_requirements:
pipdeptree -f --warn silence | grep -v '[[:space:]]' > requirements.txt
## Delete all compiled Python files
clean:
find . -type f -name "*.py[co]" -delete
find . -type d -name "__pycache__" -delete
## Lint using flake8
lint:
flake8 src
## Upload Data to hpc
sync_data_to_hpc: clean
# --delete
# rsync -av --progress ./ --exclude="data/*/*" --exclude="reports/*" tunnel-dalma:/scratch/fae211/LOC_transcribe --delete
rsync -av --progress ./ --exclude="data/*" --exclude="reports/*" --exclude="MADAMIRA/*" --exclude="predictions_out/*" --exclude="evaluation/*" --exclude="models/*" tunnel-dalma:/scratch/fae211/LOC_transcribe --delete
## Download Data from hpc
sync_data_from_hpc:
# rsync -av --progress --exclude="all_records" tunnel-dalma:/scratch/fae211/LOC_transcribe/data/ ./data/
# rsync -av --progress tunnel-dalma:/scratch/fae211/LOC_transcribe/reports/ ./reports/
rsync -av --progress --exclude="all_records" fae211@dalma.abudhabi.nyu.edu:/scratch/fae211/LOC_transcribe/data/ ./data/
rsync -av --progress fae211@dalma.abudhabi.nyu.edu:/scratch/fae211/LOC_transcribe/reports/ ./reports/
## Set up python interpreter environment
create_env:
ifeq (True,$(HAS_CONDA))
@echo ">>> Detected conda, creating conda environment."
ifeq (3,$(findstring 3,$(PYTHON_INTERPRETER)))
conda create --name $(PROJECT_NAME) python=3.7
else
conda create --name $(PROJECT_NAME) python=2.7
endif
@echo ">>> New conda env created. Activate with:\nsource activate $(PROJECT_NAME)"
else
$(PYTHON_INTERPRETER) -m pip install -q virtualenv virtualenvwrapper
@echo ">>> Installing virtualenvwrapper if not already installed.\nMake sure the following lines are in shell startup file\n\
export WORKON_HOME=$$HOME/.virtualenvs\nexport PROJECT_HOME=$$HOME/Devel\nsource /usr/local/bin/virtualenvwrapper.sh\n"
@bash -c "source `which virtualenvwrapper.sh`;mkvirtualenv $(PROJECT_NAME) --python=$(PYTHON_INTERPRETER)"
@echo ">>> New virtualenv created. Activate with:\nworkon $(PROJECT_NAME)"
endif
#################################################################################
# PROJECT RULES #
#################################################################################
#################################################################################
# Self Documenting Commands #
#################################################################################
.DEFAULT_GOAL := help
# Inspired by <http://marmelab.com/blog/2016/02/29/auto-documented-makefile.html>
# sed script explained:
# /^##/:
# * save line in hold space
# * purge line
# * Loop:
# * append newline + line to hold space
# * go to next line
# * if line starts with doc comment, strip comment character off and loop
# * remove target prerequisites
# * append hold space (+ newline) to line
# * replace newline plus comments by `---`
# * print line
# Separate expressions are necessary because labels cannot be delimited by
# semicolon; see <http://stackoverflow.com/a/11799865/1968>
.PHONY: help
help:
@echo "$$(tput bold)Available rules:$$(tput sgr0)"
@echo
@sed -n -e "/^## / { \
h; \
s/.*//; \
:doc" \
-e "H; \
n; \
s/^## //; \
t doc" \
-e "s/:.*//; \
G; \
s/\\n## /---/; \
s/\\n/ /g; \
p; \
}" ${MAKEFILE_LIST} \
| LC_ALL='C' sort --ignore-case \
| awk -F '---' \
-v ncol=$$(tput cols) \
-v indent=19 \
-v col_on="$$(tput setaf 6)" \
-v col_off="$$(tput sgr0)" \
'{ \
printf "%s%*s%s ", col_on, -indent, $$1, col_off; \
n = split($$2, words, " "); \
line_length = ncol - indent; \
for (i = 1; i <= n; i++) { \
line_length -= length(words[i]) + 1; \
if (line_length <= 0) { \
line_length = ncol - indent - length(words[i]) - 1; \
printf "\n%*s ", -indent, " "; \
} \
printf "%s ", words[i]; \
} \
printf "\n"; \
}' \
| more $(shell test $(shell uname) = Darwin && echo '--no-init --raw-control-chars')