-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSolver.py
589 lines (496 loc) · 25.2 KB
/
Solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import numpy as np
import cv2
import operator
# Class for CSP solving
class Solver:
def __init__(self, game_info):
self.info = game_info
self.GRID_LEN = self.info['GRID_LEN']
self.solving = False
self.result = None
def solveGame(self, game_data):
self.data = game_data
self.iterations = 0
if self.info['game'] == 'sudoku':
return self.solveSudoku()
elif self.info['game'] == 'stars':
return self.solveStars()
elif self.info['game'] == 'skyscrapers':
return self.solveSkyscrapers()
else:
return None
def solveSudoku(self):
self.SQUARE_LEN = self.info['SQUARE_LEN']
cells = []
[[cells.append(str(i) + str(j)) for j in range(self.GRID_LEN)] for i in range(self.GRID_LEN)]
domains = {}
for var in cells:
# var = '00'
domains[var] = [str(k + 1) for k in range(self.GRID_LEN)]
self.CSP = {
"VARIABLES": cells,
"DOMAINS": domains,
"CONSTRAINTS": [self.alldiff_in_cols_and_rows, self.all_diff_in_areas]
}
#initial_assignment = self.init_assignment(self.CSP)
initial_assignment = self.easy_inference(self.CSP)
print('initial_assignment ', initial_assignment)
#self.CSP['DOMAINS'] = self.update_domains(initial_assignment, domains)
# Check initial assesment
if self.alldiff_in_cols_and_rows(initial_assignment) or self.all_diff_in_areas(initial_assignment):
self.print_sudoku_result(initial_assignment)
return 'WRONG_INITIAL_ASSIGNMENT'
self.solving = True
self.result = self.recursive_backtracking(initial_assignment, self.CSP)
self.solving = False
print('self.iterations ', self.iterations)
print(self.result)
if self.result != "FAILURE":
self.print_sudoku_result(self.result)
return 'SOLVED'
return 'FAILURE'
def solveSkyscrapers(self):
observers = {}
observers["left"] = [int(self.data['variables_found'][str(k)+'0']) for k in range(1, self.GRID_LEN+1)]
observers["right"] = [int(self.data['variables_found'][str(k)+str(self.GRID_LEN+1)]) for k in range(1, self.GRID_LEN+1)]
observers["top"] = [int(self.data['variables_found']['0'+str(k)]) for k in range(1, self.GRID_LEN+1)]
observers["bottom"] = [int(self.data['variables_found'][str(self.GRID_LEN+1) + str(k)]) for k in range(1, self.GRID_LEN+1)]
self.observers = observers
cells = []
[[cells.append(str(i) + str(j)) for j in range(self.GRID_LEN)] for i in range(self.GRID_LEN)]
domains = {}
for var in cells:
# var = '00'
domains[var] = [str(k + 1) for k in range(self.GRID_LEN)]
self.CSP = {
"VARIABLES": cells,
"DOMAINS": domains,
"CONSTRAINTS": [self.alldiff_in_cols_and_rows, self.values_are_ordered]
}
# initial_assignment = self.init_assignment(self.CSP)
initial_assignment = self.easy_inference(self.CSP)
print('initial_assignment ', initial_assignment)
self.CSP['DOMAINS'] = self.update_domains(initial_assignment, domains)
# Check initial assesment
if self.alldiff_in_cols_and_rows(initial_assignment) or self.values_are_ordered(initial_assignment):
return 'WRONG_INITIAL_ASSIGNMENT'
self.solving = True
self.result = self.recursive_backtracking(initial_assignment, self.CSP)
self.solving = False
print(self.result)
print('self.iterations ', self.iterations)
if self.result != "FAILURE":
# self.print_stars_result(self.result)
return 'SOLVED'
return 'FAILURE'
def solveStars(self):
self.NUM_STARS = self.info['NUM_STARS']
cells = []
[[cells.append(str(i) + str(j)) for j in range(self.GRID_LEN)] for i in range(self.GRID_LEN)]
domains = {}
for var in cells:
# var = '00'
domains[var] = ['0', '1']
self.CSP = {
"VARIABLES": cells,
"DOMAINS": domains,
"CONSTRAINTS": [self.only_X_in_colums_and_rows, self.only_x_in_areas, self.never_adjacents, self.max_X_zeros]
}
# initial_assignment = self.init_assignment(self.CSP)
initial_assignment = self.easy_inference(self.CSP)
print('initial_assignment ', initial_assignment)
#self.CSP['DOMAINS'] = self.update_domains(initial_assignment, domains)
# Check initial assesment
if self.only_X_in_colums_and_rows(initial_assignment) or self.only_x_in_areas(initial_assignment) or self.never_adjacents(initial_assignment):
return 'WRONG_INITIAL_ASSIGNMENT'
self.solving = True
self.result = self.recursive_backtracking(initial_assignment, self.CSP)
self.solving = False
print(self.result)
print('self.iterations ',self.iterations)
if self.result != "FAILURE":
# self.print_stars_result(self.result)
return 'SOLVED'
return 'FAILURE'
def is_complete(self, assignment):
return None not in (assignment.values())
def select_unassigned_variable(self, variables, assignment):
self.iterations += 1
nones = [var for var in variables if assignment[var] is None]
return nones[0]
def is_consistent(self, assignment, constraints):
for constraint_violated in constraints:
if constraint_violated(assignment):
return False
return True
def init_assignment(self, csp):
assignment = {}
for var in csp["VARIABLES"]:
assignment[var] = None
if self.info['game'] == 'sudoku':
already_found = self.data['variables_found']
for var in already_found:
assignment[var] = already_found[var]
return assignment
def recursive_backtracking(self, assignment, csp):
if self.is_complete(assignment):
if not self.there_are_enough_values(assignment):
return "FAILURE"
return assignment
var = self.select_unassigned_variable(csp["VARIABLES"], assignment)
domains_copy = {}
for v in self.CSP['VARIABLES']:
domains_copy[v] = csp["DOMAINS"][v]
# domain = lcv_heuristic(assignment, domains_copy, var)
domain = self.neighbors_heuristic(assignment, domains_copy, var)
for value in domain:
assignment[var] = value
if self.is_consistent(assignment, csp["CONSTRAINTS"]):
result = self.recursive_backtracking(assignment, csp)
if result != "FAILURE":
return result
assignment[var] = None
return "FAILURE"
def easy_inference(self, csp):
assignment = {}
for var in csp["VARIABLES"]:
assignment[var] = None
if self.info['game'] == 'stars':
for area in self.data['variables_found']:
for k in range(self.GRID_LEN):
if len(area) == len([el for el in area if el[0] == str(k)]):
# all in row
for r in range(self.GRID_LEN):
if str(k) + str(r) not in area:
assignment[str(k) + str(r)] = '0'
csp['DOMAINS'][str(k) + str(r)] = []
if len(area) == len([el for el in area if el[1] == str(k)]):
# all in col
for r in range(self.GRID_LEN):
if str(r) + str(k) not in area:
assignment[str(r) + str(k)] = '0'
csp['DOMAINS'][str(r) + str(k)] = []
if self.NUM_STARS == 1:
# if all elements in the row are inside the area, set to 0 other area elements
row = [str(k) + str(i) for i in range(self.GRID_LEN)]
if self.GRID_LEN == len([r for r in row if r in area]):
for el in [e for e in area if e not in row]:
assignment[el] = '0'
csp['DOMAINS'][el] = []
# if all elements in the col are inside the area, set to 0 other area elements
col = [str(i) + str(k) for i in range(self.GRID_LEN)]
if self.GRID_LEN == len([c for c in col if c in area]):
for el in [e for e in area if e not in col]:
assignment[el] = '0'
csp['DOMAINS'][el] = []
# If an area has only one cell empty, fill with 1 and set to 0 corrisponding row/col
if self.NUM_STARS == 1:
for area in self.data['variables_found']:
area_nones = [el for el in area if assignment[el] is None]
if len(area_nones) == 1:
row = [area_nones[0][0] + str(k) for k in range(self.GRID_LEN) if
area_nones[0][0] + str(k) is not area_nones[0]]
col = [str(k) + area_nones[0][1] for k in range(self.GRID_LEN) if
str(k) + area_nones[0][1] is not area_nones[0]]
for r in row:
assignment[r] = '0'
csp['DOMAINS'][r] = []
for c in col:
assignment[c] = '0'
csp['DOMAINS'][c] = []
assignment[area_nones[0]] = '1'
csp['DOMAINS'][area_nones[0]] = []
# If an row/col has only one cell empty, fill with 1 and set to 0 corrisponding row/col
if self.NUM_STARS == 1:
for k in range(self.GRID_LEN):
row_nones = [str(k) + str(r) for r in range(self.GRID_LEN) if assignment[str(k) + str(r)] is None]
col_nones = [str(c) + str(k) for c in range(self.GRID_LEN) if assignment[str(c) + str(k)] is None]
if len(row_nones) == 1:
assignment[row_nones[0]] = '1'
csp['DOMAINS'][row_nones[0]] = []
if len(col_nones) == 1:
assignment[col_nones[0]] = '1'
csp['DOMAINS'][col_nones[0]] = []
# For each 1s put 0 in diagonals also
for var in [v for v in csp['VARIABLES'] if assignment[v] == '1']:
e_0 = int(var[0])
e_1 = int(var[1])
diagonals = [str(e_0 - 1) + str(e_1 - 1), str(e_0 - 1) + str(e_1 + 1), str(e_0 + 1) + str(e_1 - 1),
str(e_0 + 1) + str(e_1 + 1)]
for d in diagonals:
if d in csp['VARIABLES']:
assignment[d] = '0'
csp['DOMAINS'][d] = []
elif self.info['game'] == 'skyscrapers':
asmt_matrix = np.zeros((self.GRID_LEN, self.GRID_LEN))
for i in range(self.GRID_LEN):
if self.observers['left'][i] == self.GRID_LEN:
asmt_matrix[i, :] = list(range(1, self.GRID_LEN+1))
if self.observers['left'][i] == 1:
asmt_matrix[i, 0] = self.GRID_LEN
if self.observers['right'][i] == self.GRID_LEN:
for k in range(1, self.GRID_LEN+1):
asmt_matrix[i, self.GRID_LEN - k] = k
if self.observers['right'][i] == 1:
asmt_matrix[i, self.GRID_LEN - 1] = self.GRID_LEN
if self.observers['top'][i] == self.GRID_LEN:
asmt_matrix[:, i] = list(range(1, self.GRID_LEN+1))
if self.observers['top'][i] == 1:
asmt_matrix[0, i] = self.GRID_LEN
if self.observers['bottom'][i] == self.GRID_LEN:
for k in range(1, self.GRID_LEN+1):
asmt_matrix[self.GRID_LEN - k, i] = k
if self.observers['bottom'][i] == 1:
asmt_matrix[self.GRID_LEN - 1, i] = self.GRID_LEN
asmt_flatten = asmt_matrix.flatten()
for idx, var in enumerate(csp["VARIABLES"]):
assignment[var] = str(int(asmt_flatten[idx])) if asmt_flatten[idx] != 0 else None
elif self.info['game'] == 'sudoku':
already_found = self.data['variables_found']
for var in already_found:
assignment[var] = already_found[var]
return assignment
def update_domains(self, definitive_asmt, domains_starting):
domains_copy = {}
for v in self.CSP['VARIABLES']:
domains_copy[v] = domains_starting[v]
for i in range(self.GRID_LEN):
for j in range(self.GRID_LEN):
val = definitive_asmt[str(i) + str(j)]
if val != None:
for k in range(self.GRID_LEN):
if val in domains_copy[str(i) + str(k)]:
domains_copy[str(i) + str(k)].remove(val)
if val in domains_copy[str(k) + str(j)]:
domains_copy[str(k) + str(j)].remove(val)
return domains_copy
# Stars
def only_x_in_areas(self, asmt):
for area in self.data['variables_found']:
area_stars = [asmt[variable] for variable in area if asmt[variable] == "1"]
if not len(area_stars) <= self.NUM_STARS:
return True
return False
def never_adjacents(self, asmt):
for i in range(self.GRID_LEN):
for j in range(self.GRID_LEN):
if (asmt[str(i) + str(j)] != "1"):
continue
for v in range(i - 1, i + 2):
for u in range(j - 1, j + 2):
if v is i and u is j:
continue
if str(v) + str(u) in self.CSP["VARIABLES"]:
if asmt[str(v) + str(u)] == "1":
return True
return False
def only_X_in_colums_and_rows(self, asmt):
for i in range(self.GRID_LEN):
col = [str(i) + str(j) for j in range(self.GRID_LEN)]
row = [str(j) + str(i) for j in range(self.GRID_LEN)]
col_stars = [asmt[variable] for variable in col if asmt[variable] == "1"]
row_stars = [asmt[variable] for variable in row if asmt[variable] == "1"]
if not len(col_stars) <= self.NUM_STARS:
return True
if not len(row_stars) <= self.NUM_STARS:
return True
return False
def max_X_zeros(self, asmt):
for i in range(self.GRID_LEN):
col = [str(i) + str(j) for j in range(self.GRID_LEN)]
row = [str(j) + str(i) for j in range(self.GRID_LEN)]
col_zeros = [variable for variable in col if asmt[variable] == "0"]
row_zeros = [variable for variable in row if asmt[variable] == "0"]
if len(col_zeros) == self.GRID_LEN:
return True
if len(row_zeros) == self.GRID_LEN:
return True
return False
# Sudoku Heuristics
def there_are_enough_values(self, assignment):
if self.info['game'] == 'sudoku' or self.info['game'] == 'skyscrapers':
asmt_matrix = np.array(list(assignment.values())).reshape(self.GRID_LEN, self.GRID_LEN)
for i in range(self.GRID_LEN):
col_values = asmt_matrix[:, i]
row_values = asmt_matrix[i, :]
col_ok = True
row_ok = True
for k in range(self.GRID_LEN):
col_ok = col_ok and str(k + 1) in col_values
row_ok = row_ok and str(k + 1) in row_values
if not col_ok or not row_ok:
return False
elif self.info['game'] == 'stars':
for i in range(self.GRID_LEN):
col = [str(i) + str(j) for j in range(self.GRID_LEN)]
row = [str(j) + str(i) for j in range(self.GRID_LEN)]
col_stars = [assignment[variable] for variable in col if assignment[variable] == "1"]
row_stars = [assignment[variable] for variable in row if assignment[variable] == "1"]
if not len(col_stars) == self.NUM_STARS or not len(row_stars) == self.NUM_STARS:
return False
return True
def neighbors_heuristic(self, assignment, domains, var):
domain = [d for d in domains[var]]
if self.info['game'] == 'sudoku':
asmt_matrix = np.array(list(assignment.values())).reshape(self.GRID_LEN, self.GRID_LEN)
row = [v for v in asmt_matrix[int(var[0]), :] if v is not None]
col = [v for v in asmt_matrix[:, int(var[1])] if v is not None]
[domain.remove(r) for r in row if r in domain]
[domain.remove(c) for c in col if c in domain]
squares = []
for i in range(self.SQUARE_LEN):
for j in range(self.SQUARE_LEN):
square_tmp = []
for k in range(self.SQUARE_LEN):
[square_tmp.append(str(i * self.SQUARE_LEN + k) + str(s + self.SQUARE_LEN * j)) for s in
range(self.SQUARE_LEN)]
squares.append(square_tmp)
for square in squares:
if var in square:
[domain.remove(v) for v in [assignment[vv] for vv in square] if v in domain]
elif self.info['game'] == 'stars':
asmt_matrix = np.array(list(assignment.values())).reshape(self.GRID_LEN, self.GRID_LEN)
row = [v for v in asmt_matrix[int(var[0]), :] if v is not None]
col = [v for v in asmt_matrix[:, int(var[1])] if v is not None]
if '1' in domain:
if '1' in row:
domain.remove('1')
elif '1' in col:
domain.remove('1')
else:
for square in self.data['variables_found']:
if var in square and '1' in [assignment[vv] for vv in square]:
domain.remove('1')
elif self.info['game'] == 'skyscrapers':
domain = [d for d in domains[var]]
asmt_matrix = np.array(list(assignment.values())).reshape(self.GRID_LEN, self.GRID_LEN)
row = [v for v in asmt_matrix[int(var[0]), :] if v is not None]
col = [v for v in asmt_matrix[:, int(var[1])] if v is not None]
[domain.remove(r) for r in row if r in domain]
[domain.remove(c) for c in col if c in domain]
return domain
def all_diff_in_areas(self, asmt):
for i in range(self.SQUARE_LEN):
for j in range(self.SQUARE_LEN):
square_tmp = []
for k in range(self.SQUARE_LEN):
[square_tmp.append(asmt[str(i * self.SQUARE_LEN + k) + str(s + self.SQUARE_LEN * j)]) for s in
range(self.SQUARE_LEN)]
if (not None in square_tmp and not len(square_tmp) == len(set(square_tmp))):# or (self.solving and not len(square_tmp) == len(set(square_tmp))):
return True
return False
def alldiff_in_cols_and_rows(self, asmt):
asmt_matrix = np.array(list(asmt.values())).reshape(self.GRID_LEN, self.GRID_LEN)
for i in range(self.GRID_LEN):
row = asmt_matrix[:, i]
col = asmt_matrix[i, :]
if (not None in col and not len(col) == len(set(col))) or (
not None in row and not len(row) == len(set(row))):# or (self.solving and (not len(col) == len(set(col)) or not len(row) == len(set(row)))):
return True
return False
def print_sudoku_result(self, result):
result_values = list(result.values())
sudoku = ''
for k in range(self.GRID_LEN * self.GRID_LEN):
if result_values[k] is not None:
sudoku += result_values[k] + ' '
if (k + 1) % self.SQUARE_LEN == 0:
sudoku += '| '
if (k + 1) % (self.SQUARE_LEN * self.SQUARE_LEN) == 0:
sudoku += '\n'
if (k + 1) % (self.GRID_LEN * self.SQUARE_LEN) == 0:
sudoku += '\n'
print(sudoku)
def drawResult(self, grid_image, data=None):
if self.result is not None:
if self.info['game'] == 'sudoku':
return self.drawSudokuResult(grid_image, data)
if self.info['game'] == 'stars':
return self.drawStarsResult(grid_image, data)
if self.info['game'] == 'skyscrapers':
return self.drawSkyscrapersResult(grid_image, data)
def drawSudokuResult(self, grid_image, sudoku_values):
squares = []
grid_len = self.GRID_LEN # Ex. 9
side = grid_image.shape[:1]
side = side[0] / grid_len
for j in range(grid_len):
for i in range(grid_len):
p1 = (int(i * side), int(j * side)) # Top left corner of a box
p2 = (int((i + 1) * side), int((j + 1) * side)) # Bottom right corner
squares.append((p1, p2))
for idx, square in enumerate(squares):
if self.CSP['VARIABLES'][idx] in sudoku_values:
val = sudoku_values[self.CSP['VARIABLES'][idx]]
grid_image = cv2.putText(grid_image, str(val), (int(square[1][0]-30), int(square[1][1])-10),
cv2.FONT_HERSHEY_DUPLEX, 0.8, color=(0, 255, 0))
return grid_image
def drawStarsResult(self, grid_image, data):
squares = []
grid_len = self.GRID_LEN # Ex. 9
side = grid_image.shape[:1]
side = side[0] / grid_len
for j in range(grid_len):
for i in range(grid_len):
p1 = (int(i * side), int(j * side)) # Top left corner of a box
p2 = (int((i + 1) * side), int((j + 1) * side)) # Bottom right corner
squares.append((p1, p2))
for idx, square in enumerate(squares):
if self.CSP['VARIABLES'][idx] in data:
val = data[self.CSP['VARIABLES'][idx]]
if val == '0':
grid_image = cv2.putText(grid_image, str(val), (int(square[1][0]-15), int(square[1][1])-10),
cv2.FONT_HERSHEY_DUPLEX, 0.4, color=(0, 0, 255))
else:
grid_image = cv2.putText(grid_image, str(val), (int(square[1][0]-22), int(square[1][1])-7),
cv2.FONT_HERSHEY_DUPLEX, 0.7, color=(0, 255, 0))
return grid_image
def values_are_ordered(self, asmt):
LEFT = self.observers["left"]
RIGHT = self.observers["right"]
TOP = self.observers["top"]
BOTTOM = self.observers["bottom"]
# asmt_values = list(asmt.values())
asmt_matrix = np.array(list(asmt.values())).reshape(self.GRID_LEN, self.GRID_LEN)
asmt_matrix = np.where(asmt_matrix == None, 0, asmt_matrix).astype(int)
for i in range(self.GRID_LEN):
# i = 0
# LEFT => 00 01 02 03
l_row = asmt_matrix[i, :]
# RIGHT => 03 02 01 00
r_row = l_row[::-1]
# TOP => 00 10 20 30
t_row = asmt_matrix[:, i]
# BOTTOM => 30 20 10 00
b_row = t_row[::-1]
if 0 in l_row or 0 in t_row:
continue
left_visibles = 1
right_visibles = 1
top_visibles = 1
bottom_visibles = 1
for k in range(1, self.GRID_LEN):
left_visibles = left_visibles + 1 if l_row[k] > 0 and l_row[k] > max(l_row[:k]) else left_visibles
right_visibles = right_visibles + 1 if r_row[k] > 0 and r_row[k] > max(r_row[:k]) else right_visibles
top_visibles = top_visibles + 1 if t_row[k] > 0 and t_row[k] > max(t_row[:k]) else top_visibles
bottom_visibles = bottom_visibles + 1 if b_row[k] > 0 and b_row[k] > max(b_row[:k]) else bottom_visibles
if not (LEFT[i] > 0 and LEFT[i] == left_visibles) or not (RIGHT[i] > 0 and RIGHT[i] == right_visibles) or not (
TOP[i] > 0 and TOP[i] == top_visibles) or not (BOTTOM[i] > 0 and BOTTOM[i] == bottom_visibles):
return True
return False
def drawSkyscrapersResult(self, grid_image, data):
squares = []
grid_len = self.GRID_LEN # Ex. 9
side = grid_image.shape[:1]
side = side[0] / (grid_len + 2)
for j in range(grid_len):
for i in range(grid_len):
p1 = (int(i * side), int(j * side)) # Top left corner of a box
p2 = (int((i + 1) * side), int((j + 1) * side)) # Bottom right corner
squares.append((p1, p2))
for idx, square in enumerate(squares):
if self.CSP['VARIABLES'][idx] in data:
val = data[self.CSP['VARIABLES'][idx]]
grid_image = cv2.putText(grid_image, str(val), (int(square[1][0])+10, int(square[1][1])+30),
cv2.FONT_HERSHEY_DUPLEX, 0.8, color=(0, 255, 0))
return grid_image