-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis_predict_correl_graph_loop.py
35 lines (27 loc) · 1.44 KB
/
analysis_predict_correl_graph_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import os
import configparser
parser = configparser.ConfigParser()
parser.read('config.ini')
current_dir = os.path.dirname(os.path.realpath(__file__))
base_dir = parser.get('directory','base_dir')
in_dir = parser.get('directory','company_datalist_prefilter')
in_dir1 = parser.get('directory','company_stock_marketprice_baseprice_prefilter')
out_dir = parser.get('directory','company_stock_marketprice_processed')
comp_datalist = pd.read_csv(current_dir+"/"+base_dir+"/"+in_dir+"/"+in_dir+"_combined.csv")
for i in range(0,comp_datalist['stock_symbol'].count()):
try:
hist = pd.read_csv(current_dir+"/"+base_dir+"/"+in_dir1+"/"+in_dir1+'_'+comp_datalist['stock_symbol'][i]+'.csv')
fcst = pd.read_csv(current_dir+"/"+base_dir+"/"+out_dir+'/'+comp_datalist['stock_symbol'][i]+"/"+out_dir+"_"+comp_datalist['stock_symbol'][i]+'.csv')
plt.scatter(hist['close'], fcst['yhat'], c='blue',marker='o')
plt.xlabel('Actual Close Price')
plt.ylabel('Predicted Close Price')
plt.title(comp_datalist['stock_symbol'][i]+" Correlation Plot")
plt.savefig(current_dir+"/"+base_dir+"/"+out_dir+'/'+comp_datalist['stock_symbol'][i]+"/"+out_dir+'_correlation_plot_'+comp_datalist['stock_symbol'][i]+'.png')
#plt.show()
plt.close()
except:
print(comp_datalist['stock_symbol'][i]+" is not found")