-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
271 lines (224 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import print_function
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from PIL import Image
from model import capsules
from loss import SpreadLoss
from datasets import smallNORB
from datasets import GTRSB
# Training settings
parser = argparse.ArgumentParser(description='Matrix-Capsules')
parser.add_argument('--load-weights', type=str, default=None, metavar='LW',
help='load weights from given file')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--test-intvl', type=int, default=1, metavar='N',
help='test intvl (default: 1)')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--weight-decay', type=float, default=0, metavar='WD',
help='weight decay (default: 0)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--em-iters', type=int, default=2, metavar='N',
help='iterations of EM Routing')
parser.add_argument('--snapshot-folder', type=str, default='./snapshots', metavar='SF',
help='where to store the snapshots')
parser.add_argument('--data-folder', type=str, default='./data', metavar='DF',
help='where to store the datasets')
parser.add_argument('--dataset', type=str, default='gtrsb', metavar='D',
help='dataset for training(mnist, smallNORB)')
def get_setting(args):
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
path = os.path.join(args.data_folder, args.dataset)
if args.dataset == 'mnist':
num_class = 10
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(path, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(path, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'smallNORB':
num_class = 5
train_loader = torch.utils.data.DataLoader(
smallNORB(path, train=True, download=True,
transform=transforms.Compose([
transforms.Resize(48),
transforms.RandomCrop(32),
transforms.ColorJitter(brightness=32./255, contrast=0.5),
transforms.ToTensor()
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
smallNORB(path, train=False,
transform=transforms.Compose([
transforms.Resize(48),
transforms.CenterCrop(32),
transforms.ToTensor()
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'gtrsb':
num_class = 43
full_dataset = GTRSB(path, download=True,
transform=transforms.Compose([
transforms.Grayscale(),
transforms.Resize((48,48), interpolation=Image.LANCZOS),
transforms.ToTensor()
]))
train_size = 39209
val_size = 12630
print(f"Train Size: {str(train_size)}")
print(f"Val Size: {str(val_size)}")
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
raise NameError('Undefined dataset {}'.format(args.dataset))
return num_class, train_loader, val_loader
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train(train_loader, model, criterion, optimizer, epoch, device):
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
train_len = len(train_loader)
epoch_acc = []
epoch_loss = []
start = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
data_time.update(time.time() - start)
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
r = (1.*batch_idx + (epoch-1)*train_len) / (args.epochs*train_len)
loss = criterion(output, target, r)
acc = accuracy(output, target)
loss.backward()
optimizer.step()
batch_time.update(time.time() - start)
start = time.time()
epoch_acc.append(acc[0].item())
epoch_loss.append(loss.item())
if batch_idx % args.log_interval == 0:
print('Train Epoch: {}\t[{}/{} ({:.0f}%)]\t'
'Loss: {:.6f}\tAccuracy: {:.6f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item(), acc[0].item(),
batch_time=batch_time, data_time=data_time))
return torch.mean(torch.tensor(epoch_acc)), torch.mean(torch.tensor(epoch_loss))
def snapshot(model, folder, epoch):
path = os.path.join(folder, 'model_{}.pth'.format(epoch))
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
print('saving model to {}'.format(path))
torch.save(model.state_dict(), path)
def test(test_loader, model, criterion, device):
model.eval()
test_loss = 0
acc = 0
test_len = len(test_loader)
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target, r=1).item()
acc += accuracy(output, target)[0].item()
test_loss /= test_len
acc /= test_len
print('\nTest set: Average loss: {:.6f}, Accuracy: {:.6f} \n'.format(
test_loss, acc))
return acc, test_loss
def print_number_parameters(model):
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of Trainables Params: {str(total_params)}")
def main():
global args, best_prec1
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
# datasets
num_class, train_loader, val_loader = get_setting(args)
# model
A, B, C, D = 64, 8, 16, 16
# A, B, C, D = 32, 32, 32, 32
model = capsules(A=A, B=B, C=C, D=D, E=num_class,
iters=args.em_iters).to(device)
print(model)
if args.load_weights:
model.load_state_dict(torch.load(os.path.join(args.snapshot_folder, args.load_weights)))
print_number_parameters(model)
criterion = SpreadLoss(num_class=num_class, m_min=0.2, m_max=0.9)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=3)
best_acc = 0.0
for epoch in range(1, args.epochs + 1):
acc, loss = train(train_loader, model, criterion, optimizer, epoch, device)
# scheduler.step(acc)
if epoch % args.test_intvl == 0:
val_acc, val_loss = test(val_loader, model, criterion, device)
print("Train - Average loss: {:.6f} Average acc: {:.6f}".format(loss, acc))
if val_acc > best_acc:
best_acc = val_acc
snapshot(model, args.snapshot_folder, epoch)
print("Current Best: {:.6f}".format(best_acc))
print('[EPOCH {}] TRAIN_LOSS: {:.6f} TRAIN_ACC: {:.6f}'.format(epoch, loss, acc))
print('[EPOCH {}] VAL_LOSS: {:.6f} VAL_ACC: {:.6f}'.format(epoch, val_loss, val_acc))
print('Best val accuracy: {:.6f}'.format(best_acc))
if __name__ == '__main__':
main()