forked from horseee/DeepCache
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext2video_zero.py
76 lines (58 loc) · 2.46 KB
/
text2video_zero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import time
import torch
from torchvision.utils import save_image
import argparse
from DeepCache.sd.pipeline_text_to_video_zero import TextToVideoZeroPipeline as DeepCacheTextToVideoZeroPipeline
from diffusers import TextToVideoZeroPipeline
import imageio
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def set_random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default='runwayml/stable-diffusion-v1-5')#model_id_v2_1 = 'stabilityai/stable-diffusion-2-1'
parser.add_argument("--prompt", type=str, default='A panda is playing guitar on times square')
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
seed = args.seed
prompt = args.prompt
baseline_pipe = TextToVideoZeroPipeline.from_pretrained(args.model, torch_dtype=torch.float16).to("cuda")
# Warmup GPU. Only for testing the speed.
logging.info("Warming up GPU...")
# baseline_pipe.enable_model_cpu_offload()
for _ in range(1):
set_random_seed(seed)
_ = baseline_pipe(prompt).images
# Baseline
logging.info("Running baseline...")
set_random_seed(seed)
start_time = time.time()
ori_output = baseline_pipe(prompt=prompt).images
use_time = time.time() - start_time
ori_output = [(r * 255).astype("uint8") for r in ori_output]
imageio.mimsave("original_video.gif", ori_output, fps=4, loop=0)
logging.info("Baseline: {:.2f} seconds".format(use_time))
del baseline_pipe
torch.cuda.empty_cache()
# DeepCache
pipe = DeepCacheTextToVideoZeroPipeline.from_pretrained(args.model, torch_dtype=torch.float16).to("cuda")
# Warmup GPU. Only for testing the speed.
logging.info("Warming up GPU...")
for _ in range(1):
set_random_seed(seed)
_ = pipe(prompt).images
logging.info("Running DeepCache...")
set_random_seed(seed)
start_time = time.time()
deepcache_output = pipe(
prompt,
cache_interval=3, cache_layer_id=0, cache_block_id=0,
uniform=True,
).images
use_time = time.time() - start_time
deepcache_output = [(r * 255).astype("uint8") for r in deepcache_output]
imageio.mimsave(f"deepcache_video.gif", deepcache_output, fps=4, loop=0)
logging.info("DeepCache: {:.2f} seconds".format(use_time))