-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mask_detector.py
122 lines (104 loc) · 3.81 KB
/
train_mask_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import AveragePooling2D, Dropout, Flatten, Dense, Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, SGD, RMSprop, Adamax, Nadam
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import os
from time import sleep
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# hyper parameter GG
# learning rate, jmlh epoch, n batch size
INIT_LR = 1e-4
EPOCHS = 20
BS = 32
# buat preprocessing
imagePaths = list(paths.list_images('dataset/'))
data = []
labels = []
# loop smpe smua yg ada di imagePaths
for imagePath in imagePaths:
# ekstrak label kelas dari nama file
# label berisi 'with_mask' atau 'without_mask' sesuai nama folder image-nya
label = imagePath.split(os.path.sep)[-2]
# load inputan gambar (224x224)
image = load_img(imagePath, target_size=(224, 224))
image = img_to_array(image)
# men-skala intensitas piksel ke range[-1,1]
image = preprocess_input(image)
# mengupdate list data dan labels
data.append(image)
labels.append(label)
# print('label : ',label)
# mengconvert data dan label ke arr
data = np.array(data, dtype="float32")
labels = np.array(labels)
# menggunakan one hot encoder
lb = LabelBinarizer()
labels = lb.fit_transform(labels)
labels = to_categorical(labels)
# tts
(trainX, testX, trainY, testY) = train_test_split(data, labels,
test_size=0.20, stratify=labels, random_state=42)
# data augmen
aug = ImageDataGenerator(
rotation_range=20,
zoom_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True,
fill_mode="nearest")
# base model tanpa kepala (inculde_top = False)
baseModel = MobileNetV2(weights="imagenet", include_top=False,
input_tensor=Input(shape=(224, 224, 3)))
# buat kepala model yg menggantikan include_top
headModel = baseModel.output
headModel = AveragePooling2D(pool_size=(7, 7))(headModel)
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(128, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(2, activation="softmax")(headModel)
model = Model(inputs=baseModel.input, outputs=headModel)
# supaya weight pada base layers tidak ikut terupdate selama proses backpropagation
# weights head layernya saja yg dituned
for layer in baseModel.layers:
layer.trainable = False
opt = Adamax(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="binary_crossentropy", optimizer=opt,
metrics=["accuracy"])
H = model.fit(
aug.flow(trainX, trainY, batch_size=BS),
steps_per_epoch=len(trainX) // BS,
validation_data=(testX, testY),
validation_steps=len(testX) // BS,
epochs=EPOCHS)
predIdxs = model.predict(testX, batch_size=BS)
# mencari index label dengan probabilitas prediksi tertinggi
predIdxs = np.argmax(predIdxs, axis=1)
# report
print(classification_report(testY.argmax(axis=1), predIdxs,
target_names=lb.classes_))
# save model
model.save('model/model.model', save_format="h5")
# plot los mbe akurasi
N = EPOCHS
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig('plot.png')