-
Notifications
You must be signed in to change notification settings - Fork 2
/
12-mlp-test2.hdev
81 lines (81 loc) · 3.21 KB
/
12-mlp-test2.hdev
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
<?xml version="1.0" encoding="UTF-8"?>
<hdevelop file_version="1.1" halcon_version="12.0">
<procedure name="main">
<interface/>
<body>
<c>*关闭当前窗口</c>
<l>dev_close_window ()</l>
<c>*创建新窗口</c>
<l>dev_open_window (0, 0, 512, 512, 'black', WindowHandle)</l>
<c>*设置显示颜色</c>
<l>dev_set_colored (6)</l>
<c>*设置绘制形状的方式</c>
<l>dev_set_draw ('margin')</l>
<l>dev_set_line_width (3)</l>
<c>*创建mlp分类器,输出方法选择‘softmax’用于分类</c>
<l>create_class_mlp (6, 5, 3, 'softmax', 'normalization', 3, 42, MLPHandle)</l>
<c>*创建训练样本图像与其分类的对应关系</c>
<c>*图像和分类名称一一对应</c>
<l>FileNames := ['m1','m2','m3','m4']</l>
<l>Classes := [0,0,1,1]</l>
<l>for J := 0 to |FileNames| - 1 by 1</l>
<c> *读取训练图像</c>
<l> read_image (Image, 'data/' + FileNames[J])</l>
<l> dev_display (Image)</l>
<c> *对图像进行自动分割</c>
<l> rgb1_to_gray (Image, GrayImage)</l>
<l> threshold (GrayImage, darkRegion, 0, 105)</l>
<l> connection (darkRegion, ConnectedRegions)</l>
<l> select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 2000, 99999)</l>
<l> fill_up (SelectedRegions, Objects)</l>
<l> dev_display (Objects)</l>
<l> disp_message (WindowHandle, 'Add Sample ' + J + ', Class Index ' + Classes[J], 'window', 10, 10, 'black', 'true')</l>
<c> *将分割后的对象objects添加进分类器对应的分类Classes[J]中</c>
<l> count_obj (Objects, Number)</l>
<l> for N := 1 to Number by 1</l>
<l> select_obj (Objects, Region, N)</l>
<l> circularity (Region, Circularity)</l>
<l> add_sample_class_mlp (MLPHandle, Circularity,Classes[J])</l>
<l> endfor</l>
<l> stop()</l>
<l> disp_continue_message (WindowHandle, 'black', 'true')</l>
<l>endfor</l>
<l>dev_clear_window ()</l>
<l>disp_message (WindowHandle, 'Training...', 'window', 10, 10, 'black', 'true')</l>
<c>*训练mlp分类器</c>
<l>train_class_mlp (MLPHandle, 200, 1, 0.01, Error, ErrorLog)</l>
<l>clear_samples_class_mlp (MLPHandle)</l>
<l>disp_message (WindowHandle, 'Training... completed', 'window', 10, 10, 'black', 'true')</l>
<c>*读取输入的待检测图像</c>
<l>read_image (testImage, 'E:/Doc/MV/pics/12-m5.jpg')</l>
<l>rgb1_to_gray (testImage, GrayTestImage)</l>
<c></c>
<c>*将图像进行分割</c>
<l>threshold (GrayTestImage, darkTestRegion, 0, 105)</l>
<l>connection (darkTestRegion, ConnectedTestRegions)</l>
<l>select_shape (ConnectedTestRegions, SelectedTestRegions, 'area', 'and', 1500, 99999)</l>
<l>fill_up (SelectedTestRegions, testObjects)</l>
<c>*将分割后的对象objects进行分类</c>
<l>count_obj (testObjects, Number)</l>
<l>Classes := []</l>
<l>Colors := ['yellow','magenta']</l>
<l>dev_display (testImage)</l>
<l>for J := 1 to Number by 1</l>
<l> select_obj (testObjects, singleRegion, J)</l>
<l> circularity (singleRegion, Circularity)</l>
<l> classify_class_mlp (MLPHandle, Circularity, 1, Class, Confidence)</l>
<l> Classes := [Classes,Class]</l>
<c></c>
<l> dev_set_color (Colors[Classes[J-1]])</l>
<l> dev_display (singleRegion)</l>
<l>endfor</l>
<c></c>
<c>*清除MLP分类器,释放内存</c>
<l>clear_class_mlp (MLPHandle)</l>
<c></c>
</body>
<docu id="main">
<parameters/>
</docu>
</procedure>
</hdevelop>